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What does it take to qualify as a “problem for the twenty-first century?” Obviously, the topic
must be of fundamental importance, it must be difficult to solve as manifested by the number of
excellent people who have tried—but failed, and non-experts should be able to appreciate the basic
issues. The particular problem described here, which involves finding certain geometric configura-
tions that arise in several places including the Newtonian N -body problem, easily satisfies these
criteria. The issue is not new: a couple of centuries ago Euler and Lagrange answered the question
for the three-body problem. But the full problem for N ≥ 4 has proved resistant to solution. What
makes the topic so important is that even partial answers add to our understanding of N -body
systems. These brief comments already suggest why Smale [17] listed one of the problems described
below as a mathematical challenge for the twenty-first century. Of particular interest, this topic is
one where non-experts can be expected to add new insights. In fact, beyond describing aspects of
this fascinating issue, a goal of this paper to enlist new people to this area.

The general objective is to find all of the central configurations and their basic properties.
While the term may be new for you, you probably have seen some of them if your interests include
paddling a canoe, or watching the weather channel, as these are the configurations that tend to
be formed by the swirly vortices—or cyclones in the Indian Ocean— as they move along. My
examples from celestial mechanics (the mathematical study of how N -astronomical bodies move
when governed by Newton’s equations) will indicate why these configurations are so important.

To motivate the definition, start with the equations of motion for the Newtonian N -body
problem

mjr′′j =
∂U

∂rj
=

∑
k 6=j

mkmj(rk − rj)
r3
j,k

, j = 1, . . . , N, U =
∑
j<k

mjmk

rj,k
, (1)

where mj and rj , are, respectively, the mass and position vector (relative to the center of mass)
for the jth particle, and rjk = |rj − rk| is the distance between particles j and k. Rather than
analyzing this notoriously difficult equation, it would be much easier if we could justify dealing
with the special setting where

r′′j = λ(t)rj , j = 1, . . . , N, (2)

where λ is a scalar function that is the same for all particles. The first step is to determine what
it means if at even one instant of time Eq. 2 holds. By combining Eqs. 1, 2, it follows that Eq. 2
holds iff the configuration formed by the bodies satisfies

λrj =
1

mj

∂U

∂rj
, j = 1, . . . , N. (3)

A configuration that satisfies Eq. 3 at an instant of time is called a central configuration. In
other words, a central configuration occurs when the acceleration vector for each particle lines up
with its force vector, and the scalar difference is the same for all particles. In this special setting,
the dynamics of each particle mimics that of a “central force” problem.
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1 Where do they occur?

What makes central configurations important is that they arise so often in N -body systems. To
indicate why this is so, start with colliding particles. To simplify the story, assume that all particles
collide at the center of mass at time t = 0.

A reasonable guess about the motion of the colliding particles (as they approach the origin)
is that they behave like rj ∼ Ajt

α where we need to determine the vector constant Aj and
scalar α. If we are allowed to twice differentiate this asymptotic relationship,1 we would have
r′′j ∼ (α− 1)αAjt

α−2. Substituting terms into the equations of motion (Eq. 1) leads to

(α− 1)αAjt
α−2 ∼ 1

mj

∑
k 6=j

mkmj(Ak −Aj)
|Aj −Ak|3

t−2α, j = 1, . . . , N.

By comparing terms (e.g., this requires tα−2 = t−2α), we have that if these steps can be
justified, then α = 2

3 and the Aj terms satisfy the central configuration Eq. 3; that is, colliding
particles form a central configuration in the limit as t → 0! Proving that all of this actually
happens requires justifying that collision orbits can be described in terms of rj ∼ Ajt

α and that
the asymptotic relationship can be differentiated. Siegal [15] did this for triple collisions in the
three-body problem, Wintner [18] did this for the complete collapse of all N -bodies (i.e., all bodies
collide at the center of mass), and I did this for all possible kinds of collisions [12, 14]; e.g., it
may be that only some particles collide where, say, a five-body collision occurs at one place while,
simultaneously, a ten-body collision occurs elsewhere.

Now jump from collisions to expansions. Here our interest is in the evolution of the N -body
problem: can we find the general behavior of all possible N -body systems as t → ∞? Such a
description exists (Saari [10], Marchal and Saari [5]), and it shows that particles tend to separate
from one another in three different ways. By using this information, a rough description of the
evolution of an universe emerges. Start by calling those collections of particles that tend to remain
relatively close to one another “galaxies.” Then the galaxies form “groups of galaxies” that separate
from one another at a specified rate, and finally the groups of galaxies separate from one another
like a multiple of time. It is interesting how this mathematical result corresponds to what we
actually observe; e.g., our home galaxy, the Milky Way, belongs to the “Local Group.”

Part of the analysis requires determining how the galaxies within a particular “group of galax-
ies” separate from one another. To develop insight we might guess that the jth galaxy separates
from the center of mass of the group like Rj ∼ Ajt

α. By mimicking what was done for collisions,
where the asymptotic relationship is differentiated and then substituted back into the equations
of motion (but here the differentiation is even more problematic), we discover that the galaxies
should separate like Rj ∼ Ajt

2/3 and tend to form central configurations. In other words, expect
the galaxies within a group to eventually create well defined, expanding configurational shapes.
This is what I proved; again, I had to establish that there are settings where Rj ∼ Ajt

α holds and
that it is permitted to differentiate the asymptotic relations.

Between the extremes of where particles collide or expand is where they move in the plane
behaving like a rigid body. By use of complex variables, the position of each particle can be
expressed as zj(t) = aje

ωit where ω is a constant. There are no mathematical worries in this setting
about whether it is permissible to differentiate, so we have that z′′j (t) = −ω2aje

ωit. Substituting
the appropriate terms back into the equations of motion, we learn that if the particles rotate like

1While we always can integrate an asymptotic relations, in general we cannot differentiate it. For instance,
although f(t) = t2(1 + t sin( 1

t4
)) ∼ t2 as t → 0, it is not true that f ′(t) ∼ 2t. Tauberian theorems, as developed by

Hardy and Littlewood [3] (also see Saari [14]), describe when an asymptotic relations can be differentiated.
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a rigid body, then, again, they must form a central configuration where λ = −ω2.
I could go on to describe what happens when surfaces defined by the constants of the system

(the total energy and the angular momentum) bifurcate either in the topological (Smale [16]) or
geometric frameworks (Saari [13]), but you probably already suspect that these bifurcation locations
tend to be characterized by central configurations. Indeed, in any limiting or extreme setting2 where
the motion is delicately determined by the equations of motion, expect a central configuration to
occur. In other words, as discovered through research in this area, central configurations play a
particularly “central” role in the study of N -body systems.

Fig. 1. Saturn and its rings; my thanks to
NASA/JPL-Caltech for permission to use this picture.

2 Other applications?

The above description suggests other settings where we now might expect to find central configu-
rations. For instance, the rings of Saturn (Fig. 1) appear to involve “rigid body” rotating motion
with particles on a circle, so it seems reasonable to try to analyze them via rigid body motions. In
arguing that the rings had to be individual particles, Maxwell introduced this approach back in the
1850s. The connection with the above discussion is that a rigid body motion requires the particles
to form a central configuration. A first step, then, is to determine whether it is possible to create
a central configuration by symmetrically placing particles on a circle.

It is possible, and the idea is illustrated with Fig. 2a where equal masses are symmetrically
positioned on a circle. The advantage of using equal masses in a symmetric configuration is that
the force acting on any one body determines what happens to the force with all other bodies. Thus
we just need to analyze what happens with one of them, say m1. Partition the remaining bodies
into pairs that are the same distance from m1; e.g., m2 and m8 define one pair. It could be that one
body, as true with m5 in Fig. 2a, cannot be placed in a pair. But this creates no problem because
with m5 directly opposite from m1, its gravitational force on m1 is directed toward the center of
mass.

2This is in the collinear or coplanar problems; different configurations arise in higher dimensional physical spaces.
For instance, see Saari [13] or Palmore [8].
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Fig. 2. Central configurations for Saturn
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To determine the force on m1 defined by the {m2,m8} pair, divide the force that m2 exerts
on m1—the dashed arrow in Fig. 2a indicating that m1 is being pulled directly toward m2— into
components as indicated in Fig. 2a. Namely, find the horizontal component of this force (in the
−r1 direction) and the vertical component (on the dotted line passing through m2). A similar
decomposition applies to the force coming from m8 except that the force in the vertical direction is
precisely the opposite of the m2 vertical force. As such, the two forces components that are along
the dotted line cancel: this means that each pair combines to create a force on m1 that is directed
toward the center of mass 0. By symmetry, the same argument shows that the force on each particle
is directed toward 0 with equal magnitude. All that remains is to compute the common scalar value
of λ so that λrj = r′′j . Consequently, the particles form a central configuration. Of course, because
each particle is pulled toward the center of mass, λ has a negative value.

We now have the ring, but where is Saturn? No problem: a similar symmetry argument shows
that by placing a new particle mN+1, at the center of mass, the forces over all particles cancel
so that r′′N+1 = rN+1 = 0. As λ0 = 0, this new setting also is a central configuration. Because
this assertion holds for all choices of the mass mN+1, Saturn can have its actual mass, and the
ring particles can have very small masses. We need the masses on the ring to have small values to
analyze whether this rigid body motion is stable, but that is a different unsolved research problem.

There is an obvious objection: while Maxwell’s approach defines a ring, Fig. 1 clearly displays
that Saturn has several rings. We could dismiss this problem by arguing that the masses in a ring
are so small that they do not affect other rings. In addition to being dubious, this argument runs
counter to our goal of understanding central configurations. So let me introduce a trick (described
in Saari [14]) that allows us to construct cental configurations with as many rings as desired.

The idea is illustrated in Fig. 2b where particles on the inner and outer rings are symmetrically
positioned on spokes coming from the center: the particles on the inner ring, with radius 1 from
the origin, all have mass m while those on the outer ring, which has radius r > 1, all have mass
m∗. The above symmetry arguments prove that the force acting on each particle is along the spoke
passing through the particle and the origin. But the magnitude, and even the direction, of the
forces on each ring can differ. An easy way to see this is to consider what happens should the outer
ring be nearly on top of the inner one. The inverse square force law requires a particle’s neighbor on
the spoke to create the dominant component of force; as the force on each body is directed toward
its partner, one force vector must point away from the center of mass. By placing the particles
close enough together, (so r − 1 has a very small value) the force can be made arbitrarily large.

Symmetry ensures that what happens to one particle on a ring happens to all of them. Thus
there is a λ1 so that all particles on the inner ring satisfy λ1rj = r′′j . The particles on the outer
ring satisfy a similar relationship with a λ2. Moreover, both λj values depend continuously on the
r value. For instance, by letting r → 1, we have that λ1(r) → ∞. (The force on each inner ring
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body is infinitely large and points toward its neighboring partner on a spoke, or outwards.) But,
as r →∞, which means that the second ring is pushed so far away that its particles have minimal
effect on the inner ring, λ1(r) approaches the negative value of the Fig. 2a one-ring setting.

The other function, λ2(r), approaches −∞ as r → 1. (The force is infinitely large and points
toward the neighboring particle on the inner ring, or toward the origin.) But, as r → ∞, we
have that λ2(r) → 0. (With particles being far apart, the force and r′′j terms have small values.
On the other hand, the rj distance is very large, so λ2 in λ2rj = r′′j must have a small value to
attain equality.) Thus λ1(r) and λ2(r) define two continuous curves that, from their properties,
must cross. At such a crossing point λ1(r) = λ2(r), which defines a central configuration. Obvious
modifications of this argument hold for any number of rings. Here is a challenge: what modifications
to this argument lead to other classes of central configurations? (Some suggestions are in Saari
[14], while others are immediate. For instance, instead of a circle, use a sphere.)

3 Finding λ, and deciding how to count

To find still other central configurations, let

R2 =
N∑

j=1

mjr2
j . (4)

Notice that R is a crude measure of the radius of the system of N -bodies. Now consider the RU
product of the radius R and self-potential U of the system; I call RU the configurational measure.
The connection this measure has with central configurations can be seen by using the product rule
from differential calculus to obtain

∇RU = R(
U

R2
m1r1 −

∂U

∂r1
, . . . ,

U

R2
mNrN − ∂U

∂rN
). (5)

We can anticipate the following theorem by comparing the components of this gradient with Eq. 3.

Theorem 1 A central configuration is defined if and only if ∇RU = 0. Moreover, at a central
configuration, λ = − U

R2 .

I don’t know who first proved this theorem, but simple proofs can be found in the classic book
Wintner [18], or in Chapter 2 of my book [14]. Notice how this expression, which is basic for what is
discussed in the rest of this paper, separates the study of central configurations from actual N -body
dynamics. This separation, which emphasizes the critical point structure of an analytic function,
is why I stated earlier that non-experts in celestial mechanics can become experts in the study of
central configurations.

The configurational measure also indicates how to count the number of central configurations.
But first, recall that the center of mass is fixed at the origin; e.g.,

∑
mjrj = 0. Thus, letting

M =
∑

mj be the total mass of the system, we have that

R2 =
1
M

∑
j<k

mjmkr
2
j,k. (6)

Establishing Eq. 6 just involves carrying out the multiplication∑
j<k

mjmk(rj − rk)2 =
1
2

∑
j

∑
k

mjmk[r2
j + r2

k − 2rj · rk] =
1
2
[2MR2 +

∑
j

mjrj ·
∑

k

mkrk].
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The conclusion follows because each
∑

j mjrj term in the last expression equals 0.
A consequence of this exercise in dot products is that the configurational measure depends

only on the mutual distances between particles. In other words, it is rotation invariant because
any change in the orientation of the configuration does not affect the RU value. Even more, R
is homogeneous of degree 1; i.e., multiplying all distances by the positive scalar µ leads to a µR
value. Because U is homogeneous of degree −1, we have that RU is homogeneous of degree 0:
changes in the size of the configuration do not effect the RU value. To see where I am headed,
recall from high school geometry that Euler similarity classes equate those configurations that can
be obtained from each other with changes in scale and rotation. This means that the value of the
configurational measure RU is fixed over an Euler similarity class. In particular, if ∇RU = 0 for a
particular configuration, than after any rotation or scalar change in the configuration, we still have
∇RU = 0. Consequently, any rotation or scalar change of a central configuration remains a central
configuration. So when counting central configurations, we count the Euler equivalence classes.

We now come to one of Smale’s problems for the 21st century, which renews interest in a
conjecture that probably was formulated in the nineteenth century and is described in Wintner
[18].

It is believed that for any value of N and any choices of the positive masses mj, there
are only a finite number of central configurations. Is this true?

To describe this problem in terms of critical point theory, recall that, generically, an analytic
function has its critical points separated. This generic setting corresponds to the belief that, once
the invariances captured by the Euler similarity classes are divided out, RU always will have
separated critical points and, hence, a finite number of central configurations. The question, then,
is equivalent to showing that RU does not have a line of critical points outside an Euler similarity
class. Can this happen? In the eighteenth century, Euler and Lagrange proved for N = 3 that
there are only four central configurations. (I describe them below.) With a computer assisted proof,
Hampton and Moeckel [2] proved that the four-body problem admits only a finite number. Roberts
[9], on the other hand, proved that such a continuum does exist if we allow negative masses. Not
much is known beyond this.

4 Weighted means

We could appeal to the well known strategy that if a mathematical problem proves to be difficult,
then a solution may become apparent by considering a more general problem. To motivate the
extended setting that I recommend for central configurations [14], recall the standard calculus
problem where the student is asked to find the rectangle, with unit area, that has the smallest
perimeter. It is easy to show that the answer is a square, but can this be done without calculus?

To do so, start with the inequality

xy = (
x + y

2
)2 − (

x− y

2
)2 ≤ (

x + y

2
)2, (7)

where equality holds iff x = y. Because xy is the area of a rectangle with leg lengths x and y, while
2(x + y) is the perimeter, it follows from the extreme ends of this expression that the minimum
length of the perimeter is 4(xy)

1
2 = 2(x+y) where the minimum occurs iff the leg lengths are equal

iff the rectangle is a square.
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4.1 Weighted means

The extreme ends of Eq. 7 corresponds to a special case of a general class of weighted mean
inequalities that have been studied, in various forms, for centuries. To introduce the terms, let
a = (a1, . . . , aJ) be a J-vector of positive terms—these are the variables. The “weights” are fixed
positive values g1, . . . , gJ .

Definition 1 For p 6= 0, the pth weighted mean of a is

Wp(a) = (
∑

gia
p
i∑

gi
)1/p. (8)

The geometric mean, which is the definition of the weighted mean for p = 0, is

W0(a) = (ag1
1 ag2

2 . . . agJ
J )1/

P
gi .

The following result, which has been known for over a century (see the delightful classic by
Hardy, Littlewood, and Polya [4]), will identify other central configurations:

Theorem 2 For p1 > p2, we have that

Wp1(a) ≥ Wp2(a) (9)

where equality holds if and only if a = a(1, , 1, . . . , 1).

Equation 7, then, is the special case of Thm. 2 where g1 = g2 = 1, J = 2, p1 = 1 and p2 = 0.
(This relationship relates the arithmetic (p1 = 1) and geometric (p2 = 0) means.) An extension of
Thm. 2 shows that a1 = a2 = . . . = aJ is the only critical point of Wp1(a)/Wp2(a).

To relate all of this to central configurations, choose the g weights to be mjmk and the a
values to be rj,k: these choices make R a multiple of the quadratic mean W2 and U−1 a multiple
of the harmonic mean W−1. In other words, the study of central configurations becomes a special
case of the study of weighted means. Viewing the problem in this manner makes it easier to find
certain central configurations. As an example of what is gained, Thm. 2 means that the only critical
point of RU , which is a scalar multiple of W2/W−1, is when r1,2 = r1,3 = . . . = rN−1,N , or when
the particles form an equilateral object. For three particles, the configuration is an equilateral
triangle, for four it is an equilateral tetrahedron, for more than four particles, the equilateral figure
cannot exist in our R3 physical space, but it can in Rd, d > 3. While the equilateral triangle and
tetrahedron configurations have been known for centuries, the standard proofs are laborious: by
using weighted means, they are immediate.

A surprising fact is that the equilateral triangle, which is the only non-collinear three-body
central configuration, is a central configuration no matter what the values of the masses—even in
extreme settings where one mass could be a rock while the other two could be, say, a planet and
the Sun. This actually occurs.

4.2 Trojans

Way back in 1772 and by using very different techniques, Lagrange discovered that these vertices of
an equilateral triangle create a central configuration. It took another 134 years until the German
astronomer Max Wolf checked whether this configuration actually occurs in our solar system: it
does. If you are going to search for such a configuration, the natural choice is to use the two heaviest
bodies, the Sun and Jupiter, to form the defining leg of an equilateral triangle. This defines two
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equilateral triangles—one leads and the other follows Jupiter. The surprise is that Wolf discovered
asteroids located at the remaining vertex of each triangle! Wolf called them the Trojans. Jumping
ahead to 1990, the asteroid Eureka was found at the triangular point of Sun-Mars, and there may
be objects in the triangular locations of the Sun-Earth and other planets (Saari [14]). Indeed, as
noted by several, the triangular points defined by the Earth and our moon would make a nice
docking position for a satellite. Central configurations matter!

4.3 Collinear configurations

The next central configurations are the collinear ones—this is where all particles lie on a straight
line. Euler discovered the collinear configurations for the three-body problem and Moulton [7]
analyzed the general N -body case where he proved the following:

Theorem 3 (Moulton [7]) The N body problem with positive masses, there are precisely N !/2
collinear central configurations. More precisely for each way the particles can be ordered along a
line, there is a unique position that causes a central configuration.

According to this result, there is unique position between the Earth and the Moon where a
object could be placed—and (theoretically) it would remain there forever.3 The other two locations
have the Earth in the middle or the Moon in the middle. Indeed, for the three-body problem, we now
have all of the central configurations—the three collinear central configurations and the equilateral
triangle. To indicate how Euler found the collinear configurations, as in Fig. 3, set one distance
equal to unity and the other with length x. Substituting these distances into the equations for a
central configuration leads to a fifth order polynomial in x; the sole positive zero of this polynomial
is the x value needed for a central configuration.

If it takes a fifth order polynomial in x to handle the three-body problem, you can imagine the
complexity of the equations in at least two variables that would arise for the four-body problem,
and then the even increased complexity for the five, and six, and . . . body problems. In other words,
to prove his result, Moulton needed to develop a new strategy: he found what happened each time
a new mass was introduced. (See [7, 14].) But even this analysis is complex. So, perhaps as a way
to entice non-experts to join this search for central configurations, let me show how a particularly
elementary proof (Saari [11, 14]) emerges by using the weighted means.
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Fig. 3 Collinear central configurations
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First consider the problem of describing all critical points of a function f restricted to a linear
constraint. To make the problem easier, suppose that the level sets of f are strictly concave up.
(See Fig. 3b.) The answer is obvious for any dimensional space; the unique critical point occurs
where the level set of f kisses the linear constraint. Neighboring level sets either miss the linear
constraint or meet it in more than one point. An even easier problem is when the linear constraint
is replaced by a constraint surface that is strictly concave down (Fig. 3c). The answer, which
obviously is the same, shows how to find collinear central configurations.

3Of more practical value, this position has proved to be a useful location for “mid-course” corrections.
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As shown earlier, the central configurations that result strictly from the W2/W−1 structure
are the equilateral central configurations. Thus all remaining central configurations involve finding
the critical points of W2/W−1 subject to natural constraints that are imposed on the distances
between particles. These constraints determine whether or not the distances can be used to create
a configuration. To illustrate with the collinear three-body problem, where all particles are on a
straight line and m2 is in the middle, if we have r1,2 = r2,3 = 1, then we must have r1,3 = 2.
Namely, to allow the rjk distances to define a configuration that lies on a line, the degenerate
triangle inequality of r1,2 + r2,3 − r1,3 = 0 must be satisfied.

So, finding N -body collinear central configurations is equivalent to finding the critical point of
W2/W−1 subject to all of the rjk + rkl − rjl = 0 type linear constraints that are needed to specify
that all of the particles are on a line; the actual choices of constraints represent a specified ordering
of the bodies on this line. Because W2/W−1 is homogeneous of degree zero, we can include W2

with the linear constraints by setting it equal to unity: the equivalent problem now is to describe
the critical points of 1/W−1 subject to these constraints. The proof follows from the nature of
the constraints: they are linear or concave down (the W2 = 1 constraint). In contrast, the level
sets of 1/W−1, or of U =

∑ mjmk

rjk
in a space of mutual distances, are concave up. The above

geometric argument depicted by Fig. 3c now shows that there is a unique central configuration for
each ordering of the particles on the line. This proves Moulton’s theorem.

5 Other central configurations

Other than special cases, such as where some masses have very small values, or all masses are equal,
or . . . , not many other central configurations are known. So in this section, a sense of what else is
possible is given. The description is built around the notion that a way to find central configurations
with four or more particles in a plane, or five or more in the plane or in a general three dimensional
space, we need to find the critical points of W2/W−1 subject to the constraints that the distances
between particles must satisfy in order to allow a configuration to be constructed.

As it turns out, handling these constraints constitutes the full and real source of the complexity
of the central configuration problem. Thus, insight about new ways to handle these constraints
probably will lead to new conclusions. Even more: this description shows that the problems about
central configurations are special cases of the following more general mathematical issue:

Characterize all critical points when Wp1/Wp2 is restricted to algebraic surfaces.

For the remainder of this paper, I show how simple geometry can lead to new conclusions about
central configurations. As an illustration, it is reasonable to expect that choices of masses can be
found so that the three four-body configurations of Fig. 4 are central configurations. If so, for what
masses? Before reading more, let me ask the reader to speculate what might be the answer.
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Let R(N
2 ) represent mutual distances between particles. To avoid confusion between actual rjk

distances between particles, let the variables be {ξi,j}i<j ; thus ξi,j represents ri,j only when the
physical constraints, given by gk(ξ) ≥ 0, are satisfied. Defining

R̃ = [
1
M

∑
i<j

mimjξ
2
i,j ]

1/2, Ũ =
mimj

ξi,j
,

and letting gk(ξ) = 0 represent the physical constraints needed for the ξ variables to create a
constructible object of the correct dimension, a central configuration is found by the expression

∇R̃Ũ =
∑

k

λk∇gk. (10)

The standard approach for coplanar four-bodies, which traces its origin to the work of Dziobeck
[1], is to define the constraint equation g as the formula for the volume of a tetrahedron: thus
g = 0 corresponds to a degenerate tetrahedron, which is a coplanar four-body configuration. While
insightful, the computations required by this approach have proved to be difficult and messy, so
efforts have been made to simplify the analysis; e.g., see Moeckel [6].

But the volume formula is not the only approach; e.g., as introduced in [14], other choices are
to use areas or angles. To illustrate with the degenerate tetrahedron of Fig. 4b, another choice is

∠314 + ∠412− ∠312,

which is negative for an object that cannot be constructed, positive for a tetrahedron, and zero
for a coplanar figure (a degenerate tetrahedron). Another choice would be the sum of the areas of
the three small triangles minus the area of the larger triangle: it is zero for a coplanar, degenerate
tetrahedron.

Again, by using only elementary geometry, it is possible to find new results while avoiding the
complications of selecting a specific choice for g. (This material comes from Chap. 3 of [14], so
details can be found there.) For example, if only one constraint g = 0 is needed, then a way to find
partial results is to use what I call “The Rule of Signs.” The idea is to use the Lagrange multiplier
Eq. 10 by comparing the signs of the components of ∇g and ∇R̃Ũ where we avoid specifically
choosing and computing ∇g.

Let me illustrate the idea with the constraint equation ξ12 + ξ23 − ξ13 = 0 for the collinear
setting of Fig. 4a (which is Fig. 3.6 from [14]). Rather than computing the partial derivative with
respect to ξ12, notice that if the ξ12 length is increased, while the other two leg lengths are kept
fixed, the Fig. 4a construction must buckle to create a triangle. From this and the definition of
the partial derivative, we have that ∂g

∂ξ12
> 0. On the other hand, increasing the ξ13 length while

holding the other two fixed would tear the object apart: to create a triangle (where g > 0), we
need to decrease ξ13, so ∂g

∂ξ13
< 0. The signs of the three partials of ∇g are indicated in Fig. 4a.

The same argument applies to the degenerate tetrahedrons where some particle is in the convex
hull of the other three as depicted in Fig. 4b. To create an actual tetrahedron (where g > 0) by
changing leg lengths, we must increase the lengths of any of the three interior legs, or decrease the
lengths or any of the three exterior legs. Thus the signs of the ∂g

∂ξjk
partials are as indicated in Fig.

4b. The reader can carry out a similar analysis to verify the signs of components for ∇g for a Fig.
4d configuration. The Fig. 4c choices follow from continuity and comparing Figs. 4b, d.

We now know the signs of the ∇g components for all four-body coplanar configurations, so it
remains to find the signs of the ∇R̃Ũ components. A straightforward computation shows that

∂R̃Ũ

∂ξjk
= Amjmk[

Ũ

MR̃2
ξjk −

1
ξ2
jk

] = Amjmkξjk[
1

ξ3
CAL

− 1
ξ3
jk

] (11)
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where A is a common term and I call ξCAL = [MR̃2/Ũ ]1/3 the configurational average length. It
follows immediately from Eq. 11 that the ξjk component of ∇R̃Ũ

• is negative iff ξjk < ξCAL,

• equals zero iff ξjk = ξCAL, and

• is positive iff ξjk > ξCAL,

Results about the kinds of configurations that can, and cannot, be central configurations follow
immediately just by comparing Eq. 11 with the signs of ∇g given in Fig. 4. As λ < 0 in Eq. 10, a
positive sign for a ξjk leg in Fig. 4 means that for a central configuration, ξjk < ξCAL, etc.

Theorem 4 (Saari [14]) A four-body coplanar central configuration, where one particle is in the
convex hull defined by the other three, must have the maximum length of the three inner legs strictly
smaller than the minimum length of the three outer legs. On the other hand, if no particle is in
the hull of the other three, then the maximum length of the four outer legs must be strictly smaller
than the shorter of the two interior diagonals. There never can be a non-collinear four-body central
configuration where three of the particles are on straight line.

This theorem answers the above question about whether Figs. 4 b, c, d could be central
configurations for some choices of masses. We now know the answer: none of them can be central
configurations. This is because in Fig. 4b, the exterior leg r12 is shorter than the interior leg r34,
in Fig. 4c three particles are on a straight line, and in Fig. 4d, diagonal r12 is shorter than exterior
leg r13. Figure 4c cannot be a central configuration because each of the three legs with a zero (for
∇g) by it would have to have the same leg length of ξCAL, and that is physically impossible.

A message coming from Thm. 4 is that, whatever the mass values, these central configurations
must be surprisingly regular in shape. The same kind of result holds for five-body non-coplanar
central configurations in R3 where the g constraint now is in terms of a degenerate pentahedron. I
will leave it as a challenge to the reader to assign signs for the different ξjk legs; with thought, it
is not overly difficult.

Much more is possible; e.g., are there simple ways to obtain information about the five, or
six body coplanar central configurations? Also, notice that the terms of ∇g depend only on the
leg lengths; they are independent of the masses. Can this be fully exploited to give us more
information about central configurations? While there are many other options and directions using
these approaches. if results obtained in this manner are not described in [14], they probably are
new.

6 Summary

The issue of understanding central configurations has been with us for centuries, yet so little is
known. While answers for these questions will be of value for celestial mechanics, it is reasonable
to expect that people from outside of this academic area will make important advances. For
instance, if a continuum of central configurations does exist, then there exist values of masses so
that a algebraic portion of the level set of R̃Ũ agrees with the constraint sets: this appears to be
a problem from real algebraic geometry. I also expect that a useful way to consider these issues is
to examine the more general question of weighted means and the critical points of Wp1/Wp2 when
constrained to surfaces. My sense is that understanding the more general problem will uncover
mathematical structures that will allow gains in analyzing central configurations.

Moreover, as I tried to illustrate, it is possible for simple geometric insights to lead to new
results. I encourage you to join us in analyzing these fascinating questions!
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