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Geometry of Chaotic and Stable Discussions

Donald G. Saari

1. INTRODUCTION. It always seems to be the case. No matter how hard you might
work on a proposal, no matter how polished and complete the final product may
be, when it is presented to a group for approval, there always seems to be a majority
who wants to “improve it.” Is this just an annoyance or is there a reason? The mathe-
matical modeling provides an immediate explanation in terms of some interesting and
unexpected mathematics. Even more: the mathematics describing this behavior under-
scores the reality that it can be surprisingly easy even for a group sincerely striving
for excellence to make inferior decisions. Indeed, these difficulties are so pervasive
and can arise in such unexpected ways that it is realistic to worry whether groups you
belong to have been inadvertently victimized by these mathematical subtleties based
on the orbits of symmetry groups. These problems can occur even if all decisions are
reached by consensus, such as a committee discussing the selection of a new calculus
book.

This paper addresses deliberations by discussing a branch of voting theory where
Euclidean geometry models an “issue space.” When describing how it is possible to un-
intentionally make inferior choices, we will encounter mathematical behaviors remark-
ably similar to “attractors” and “chaotic dynamics” from dynamical systems. Since the
coexistence of chaotic and stable behavior is common in the Newtonian N -body prob-
lem and dynamical systems, it is interesting to find that this combination also coexists
in the “dynamics of discussions.” Another connection arises when configurations cen-
tral to the N -body problem play a suggestive role in the analysis; at another step we
use singularity theory. What adds to the delight of this topic is that, while the mathe-
matics can be intricate, the issues can be described at a classroom level where some
even lead to student-level research projects.

2. SYMMETRY AND SOME OF ITS CONSEQUENCES. A convenient way to
introduce the mathematical structures that cause problems is with an example (see
Saari [14], [15]) explicitly designed to underscore the reality that an election outcome
need not reflect the views of the voters. To emphasize that outcomes can drastically
change with the choice of an election procedure, I often joke that

For a price, I will come to your organization before your next election. You tell me who you
want to win. After talking with members of your group, I will design a voting procedure that
involves all candidates in which your designated choice will be the sincere winner.

To illustrate, suppose that in a department of thirty, the voter preferences for a slate
of candidates {A, B, C, D, E, F} (where “A � B” means that A is strictly preferred
to B) are as in Table 1.

Table 1.

Number Ranking

10 A � B � C � D � E � F
10 B � C � D � E � F � A
10 C � D � E � F � A � B

(1)
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It is trivial to find a way to elect C . The real challenge is to elect F : this is because
everyone prefers C , D, and E to F , so this group clearly views F as the inferior
choice. But notice what would happen should candidates be compared pairwise, with
the loser eliminated and the winner advanced to be compared with the next candidate.
If we start by comparing D and E , D wins unanimously; comparing D with C , C
wins unanimously; comparing C with B, B wins with a two-thirds vote; comparing
B with A, A wins with a two-thirds vote; and in the final comparison of A with F ,
F is the final winner with a two-thirds vote. Nobody likes F , but each comparison is
decided with a vote of landslide proportions, so who would dare argue with the final
outcome?

Such behavior can, and probably often does occur in discussions where the goal is
to reach a consensus. Imagine trying to select a calculus book. Let’s see: book D costs
less than E ; C does a better job of describing limits than D; B has a better selection of
problems than C ; . . . The rest of the story is apparent; after selecting book F everyone
leaves the meeting disappointed not only with the selection but with the tastes and
standards of his or her colleagues.
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Figure 1. Ranking wheel and Z6 orbits.

To understand this phenomenon, notice that Table 1 consists of three of the six
terms from the Z6-orbit of the ranking A � B � C � D � E � F . A convenient way
to introduce this structure to nonmathematicians and students is with what I call a
ranking wheel. Equally spaced, place the numbers 1, 2, . . . up to the number of can-
didates (six in our case) along the edge of a freely rotating wheel attached to a wall.
Then, as illustrated in Figure 1, write on the wall the names of the candidates as given
in an initial ranking. Next, rotate the wheel to move the “1” under the next candidate,
in this instance B, and read off the second ranking: B � C � D � E � F � A. Con-
tinue creating rankings in this manner until each candidate is in first place precisely
once. While the construction does not favor any candidate, any three or more rank-
ings from this orbit create a pairwise voting cycle. With a little experimentation, it
becomes obvious how to compare candidates to make any designated choice the “final
winner.”

This structure does not merely provide a way to generate cyclic outcomes, it is the
only way. It was recently proved (see Saari [13]) that all possible pairwise comparison
anomalies with n alternatives, whether used to describe surprising outcomes from tour-
naments, agendas, pairwise cycles, comparison of pairwise outcomes with other pro-
cedures, and so forth, arise because the data includes components of Zn-orbits of the
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alternatives.1 An extension of these comments explains all those mysteries that occur
with other aggregation methods such as the well known difficulties of pairwise com-
parisons in probability and statistics. More generally, we now know that all of those
mysterious voting paradoxes, which have been described in many delightful papers
but which can cause serious problems with actual elections, occur because embed-
ded within the data (voter preferences) are components of orbits of a wide variety of
symmetry groups (see (Saari [13], [14]). Moreover, by imposing a coordinate system
on the space of data where some coordinate directions correspond to these symmetry
configurations, it follows that almost all data sets must be tainted by these symmetry
structures.

If so many unexpected difficulties are caused by the symmetries defined by a finite
number of objects, imagine what might occur with a continuum of alternatives con-
strained only by residing in Euclidean n-space Rn . An aspect of this issue is explored
for the remainder of this paper.

3. ISSUE SPACE. What complicates a selection process are the competing issues.
Even when selecting a calculus book we worry about the book size, the cost, the graph-
ics, the exposition, the exercises, and so forth. In national legislation, the issues might
involve balancing the amount of money dedicated toward foreign aid and domestic
issues including NSF-sponsored research. A department’s graduate committee may
worry about the level of a TA’s stipend combined with the expected number of hours
of work.

Following the lead of Hotelling [4], as extended by others including Enelow and
Hinich [2], Kramer [5], McKelvey [7], and Plott [10], the obvious way to model n is-
sues is to assign each issue to an axis of Rn . Designate a voter’s level of support for the
various issues by a point in Rn called the voter’s “ideal point.” In the graduate student
TA example, an ideal point in R2 represents a voter’s desired level of (stipend, hours
of work). Similarly, since a proposal, or an item of legislation, describes a particular
combination of the issues, it also is represented as a point of Rn . As for voter prefer-
ences, it is reasonable to assume that the closer a proposed alternative is to a voter’s
ideal point, the more the voter likes it. The first goal is to determine which alternatives
will be adopted by a majority vote for a specified set of voters’ ideal points.

To illustrate with a simple example, consider three voters and two issues such that
the ideal points define the vertices of a triangle in R2. Which alternative should these
voters adopt? The baricenter? How about favoring a particular voter by selecting her
ideal point? The surprising fact is that, whatever point is selected, a majority of the vot-
ers can successfully offer a competing counterproposal! Rephrasing this assertion in
terms of frustration that many of us have experienced, no matter how refined and com-
plete a proposal may be, during a meeting some majority can propose an “improving
amendment” that will pass. For instance, at almost any MAA business meeting when
bylaw changes and other legislation are introduced, one can expect amendments.

The geometry explaining this situation is demonstrated in Figure 2, where the ideal
points for the three voters indicated by bullets define the vertices of a triangle and the
proposal is depicted by the diamond in the interior of the triangle (it is hidden behind
the intersection of the three circles). Each circle has its center at a particular voter’s
ideal point and passes through the diamond proposal. As all points inside a particular
circle are closer to the associated voter’s ideal point, this voter prefers any of these
points to the diamond proposal.

1By using this fact, a wide selection of interesting problems can be designed for students. By experimenting
with terms from Zn-orbits they can create several examples using pairwise comparisons with counterintuitive
outcomes.
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Figure 2. Forming coalitions.

The intersections of the circles in Figure 2 define the trefoil shaded regions. Each
shaded leaf identifies points that a majority of the voters prefers to the diamond pro-
posal. The largest region, for instance, consists of alternatives that coalition {1, 2}
strictly prefers to the proposed diamond, while the upper-right leaf identifies all op-
tions strictly preferred by coalition {2, 3}. In other words, with a surprisingly wide
variety of possibilities, any majority can force an “improvement” over the original
diamond proposal.

The discouraging observation is that, unless the ideal points lie along a line (where
an appropriate combination of the issues defines a single issue), circles constructed as
suggested intersect for any proposal. Consequently, whatever the new proposal, there
is always a majority coalition that can offer an “improved alternative.” The dynamic
continues; another majority can be found to propose an even better “improvement” to
the just approved “improvement,” and for this proposal . . . .

This dynamic forces us to wonder whether, similar to the selection of F in the ear-
lier Z6 example, a group might adopt an outcome that everyone dislikes more than the
original proposal. This is the case. Notice, for instance, the dagger hiding in the far
right of Figure 2. As described later in this paper, there is a sequence of “improve-
ments,” each approved by a majority vote, starting at the diamond and ending at the
dagger. As mathematicians, it is reasonable to explore this setting in order to under-
stand how bad the situation can be and whether other voting procedures offer help.
But before addressing these concerns, let me identify what it takes for a proposal to be
“durable” in the sense that there are no successful counterproposals.

Core and attractors. Should the ideal points lie on a line, as in Figure 3a, certain
proposals could never be undone by any majority. As simple experimentation using
the “circle geometry” proves, the only durable proposal in the five voter setting of
Figure 3a is voter three’s ideal point—the views of the median voter. For instance,
select any proposal to the right of this ideal point, say the diamond. While voters four
and five support the new proposal, all voters with ideal points on or to the left of the
dashed vertical line, the majority coalition of {1, 2, 3}, prefer voter three’s ideal point.
More generally, the definition of “median” ensures that any point on one side or the
other of the median voter’s ideal point must be supported by less than a majority of
the voters; i.e., it cannot replace the median voter’s ideal point. This geometry makes
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a. Single issue setting b. Special two issue setting

Figure 3. Finding the core.

it easy to understand why this “median voter” phenomenon is often used to explain the
similarity of the political platforms for the major political parties.

In game theory, these durable configurations are called “core points.” This term is
used in what follows.

Definition 1. For a specified decision rule that compares two points, if p is such that
no other point is preferred by the decision rule to p, then p is called a core point. The
core is the set of all core points. If a voter’s ideal point is a core point, then it is called
a bliss point.

In Figure 3a, voter three’s ideal point is the bliss point. Figure 3b depicts a two-
dimensional setting that also has a core point: this symmetric five voter arrangement
pairs ideal points on opposite sides of straight lines that pass through the third voter’s
ideal point. To construct a “Plott configuration” (see Plott [10]), start with an odd
number of points on the line: the core is the median voter’s ideal point. Next, partition
the remaining points on the line into pairs where one is to the left, and the other to the
right, of the median voter’s ideal point. Rotate this pair about the median voter’s ideal
point.

The Plott configuration always admits a core. As true with Figure 3a, voter three’s
ideal point is the Figure 3b bliss point. To see this, suppose the diamond in Figure 3b
is a counterproposal. Let the line from the diamond to voter three’s ideal point (the
horizontal dashed line in the figure) be the normal vector for the vertical dashed line
passing through this point. All voters with ideal points on and to the right of this
vertical dashed line, a majority coalition of {2, 3, 5}, prefer three’s ideal point to the
diamond.

As Plott’s construction can be used in any dimension, for any number of issues
there always exists a core point whenever there are an odd number of voters. The same
statement holds for an even number of voters. To see this, add a fictitious “median
voter” to create a Plott construction. While this point is not a true ideal point, it is a
core point for the even number of voters. (In Figure 3b, for instance, a core point for
voters 1, 2, 4, and 5 is where voter three—who is now fictitious—had an ideal point.)

The core—in Figures 3a and 3b this is a bliss point given by voter three’s ideal
point—enjoys properties reminiscent of an attractor from dynamical systems. To ex-
plain, notice that the diamond proposal in Figure 3a can be beaten by any alternative
closer to voter three’s ideal point. In turn, the new proposal can be beaten by any pro-
posal even closer to the median voter’s ideal point. Similarly, proposals in Figure 3b
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that are closer to voter three’s ideal point on the horizontal dashed line beat the di-
amond proposal. It is this succession of successful proposals and counterproposals
converging to the core that resembles an attractor in dynamics.

A natural generalization of the majority rule requires a specified super-majority,
such as a two-thirds or four-fifths vote, for victory. This is called a “q-rule.”

Definition 2. For n voters, a q-rule is one for which an alternative wins if and only if
it receives at least q-votes.

Let �x� be the function that rounds a real number up to the nearest integer. Majority
rule is where q = �(n + 1)/2�. The decision procedure currently used to select a pope
for the Catholic Church requires over a two-thirds vote of the cardinals: this is the q
rule for �(2n + 1)/3�. Unanimity is where q = n. An obvious relationship follows.

Proposition 1. If p is a core point for a q1-rule, then it is a core point for any q-rule
where q > q1.

Implications of an empty core. If a core ensures stability and even serves as an at-
tractor for the dynamic of proposals and counterproposals, what happens when the
core is empty, as with the ideal points in Figure 2? Problems must arise because, by
definition, an empty core means that any proposal can be beaten by some other pro-
posal. But even without the stability ensured by a core, it is reasonable to expect these
proposals to satisfy some nice property such as remaining within a reasonable distance
of the ideal points. This is not the case: the democratic process permitting counterpro-
posals allows discussions to resemble “chaotic dynamics.” While counterintuitive, this
assertion may have been anticipated by veterans of departmental politics.

To explain, McKelvey [7] used arguments from differential topology to prove the
remarkable fact that, if the core is empty, it is possible to go, via majority votes, from
any proposal to any other proposal. There are no restrictions on the beginning and
final choices.

Theorem 1 (McKelvey). Suppose the ideal points of the voters have an empty core
for the majority vote. For any two proposals pb and p f there exists a sequence of
counterproposals {p j }N

j=1 that starts at the beginning proposal pb = p1 and progresses
to the final proposal p f = pN by majority votes; i.e., for each j = 1, . . . , N − 1,
proposal p j+1 beats p j by a majority vote.

An immediate consequence of this so-called chaos theorem is that there exist pro-
posals beginning at pb that pass through any number of specified proposals in any
specified order, only to return to pb. To illustrate with the ideal points in Figure 2,
a sequence of proposals can be found starting at the diamond, moving high into the
second quadrant (assuming that negative values for coordinates have interpretations),
jumping next over to the dagger, then progressing all the way to a point in the ex-
treme right side in the fourth quadrant before ending at the original diamond proposal.
No wonder some departmental meetings seem interminable and cyclic in substance!
(Richards [11] relates the “voting chaos theorem” with “dynamical chaos” by mim-
icking mathematical approaches used to demonstrate dynamical chaos to recover the
voting result.)

A way to develop insight into the mathematical structure at play here is to compute
some of these agendas. To provide intuition, the shaded region in Figure 4a contains
all points that can beat the original proposal from Figure 2. To find the possible second
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a. First iterate by {1, 3} b. All second iterates

Figure 4. Second iterate.

counterproposals, start with the points in the upper left shaded leaf. The points that can
be reached in two steps passing through this leaf are inside the solid curved arcs of Fig-
ure 4a. This region resembles a pinched pea pod and includes the shaded region as well
as voter three’s ideal point. Notice the dynamic: the first step, a successful amendment
made by coalition {1, 3}, defines a point in this leaf; the second step requires either
voter one or voter three to create a new coalition with voter two, the possible proposals
of which are determined by a circle using voter two’s ideal point as the center that
passes through the choice determined at the first step. Figure 4a describes the extreme
situation by using the far tip of the upper left leaf.

To find all points that can be reached in two steps, compute similar regions for
the other two shaded leafs of the original trefoil; these three superimposed pinched
pea pods are in Figure 4b. As an illustration of what we learn from this geometry,
these ideal points make it possible to go from the diamond proposal to any specified
voter’s ideal point with just two “amendments.” Notice the opportunities provided to a
sufficiently crafty individual who could channel the discussion and change coalitions
in a manner to ensure that the final outcome is precisely what he wants: his ideal point.

To compute what can happen in three steps, use the same approach. Notice from
Figure 4b, where the shaded region contains the proposals that can win with one
step and the superimposed peapods identify the alternatives that can be adopted in
two steps, how the regions of successful counterproposals expand quite rapidly. For
three steps, the regions expand even more.

This chaos theorem supports my earlier “for a price . . . ” claim. Namely, with an
empty core and any initial proposal, there are always ways to make counterproposals,
each accepted by a majority vote, so as to reach eventually any specified point. A
particularly worrisome interpretation is that, even with the best intensions, voters could
keep “improving” a proposal, each by a majority vote, only to reach a final version to
which everyone strongly prefers the original.

Rate of convergence. But what is the minimum value of N? For instance, although
some meetings may seem incessant, they never allow N = 10100 proposals, if only
because this would require more time than allowed by the age of the universe. Con-
sequently, should the minimal value of N required to go from pb to p f be sufficiently
large, the chaos theorem would lose practical significance.

One of my former Ph.D. students, Maria Tataru, investigated this growth rate ques-
tion in her dissertation. But first she extended the McKevley “chaos theorem” from the
majority vote to any q-rule. (See Tataru [20], [21].)

Theorem 2 (Tataru). Suppose that the ideal points in Rn for a finite number of vot-
ers fail to admit a core for a q-rule. For any two proposals pb and p f there exist N
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proposals {p j }N
j=1 such that pb = p1, p f = pN , and p j+1 beats p j with the q-rule for

j = 1, . . . , N − 1.

Tataru’s proof differs from McKelvey’s in that, rather than using differential topol-
ogy, she emphasizes the set-orbit structure introduced by the symmetry of the circles:
the symmetries form a group, and she determined the associated orbits. Her orbit struc-
ture approach had the advantage of giving her a handle on the number of iterations N
needed to go from one point to another. In this manner she showed that upper and
lower bounds on the minimum value of N depend linearly on the distance between pb

and p f . As suggested by Figure 4, the locations of the ideal points determine the size
of regions of counterproposals; e.g., size matters, larger regions allow smaller values
of N . In turn, a smaller bound on the minimum value of N means that the setting is
more chaotic [20],[21].

Theorem 3 (Tataru). With a finite number of voters whose ideal points fail to admit
a core for a q-rule, upper and lower bounds for the value of N can be found that are
linear in the (Euclidean) distance ‖pb − p f ‖2. These bounds are determined by the
locations of the ideal points.

In her thesis [20], Tataru examined how the configuration defined by the ideal points
determines the coefficients of the linear expression. To describe her result in terms of
three voters, in Figure 5 let h = min(h1, h2, h3) be the minimum of the three altitudes
defined by the triangle. While she has even sharper estimates, Tataru proved that

C + ‖pb − p f ‖2

h
≤ Minimum N ≤ C + 3

‖pb − p f ‖2

h
, (2)

in which C is a constant needed to handle situations where pb and p f are close to each
other. For example, if in Figure 2 pb is the diamond proposal and p f is a point close
to pb but outside the trefoil, it takes N = 2 steps, rather than one iterate, to achieve
the goal. (Tataru’s result is a limit theorem, so it is more applicable for large values of
‖pb − p f ‖2.)
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Figure 5. The minimum altitude and growth rates.

According to inequality (2), the smallest bounds on N occur when the ideal points
define an equilateral triangle; this setting permits the maximum chaotic behavior. At
the other extreme, h → 0 requires that the location of the ideal points approximate a
straight line setting in which a core exists (here N → ∞). Consequently, the closer the
ideal points approximate settings where a core exists, the more subdued the successful
proposals and counterproposals. While it remains theoretically possible to reach any
desired point, it requires an unrealistic number of steps. Tataru’s growth estimates
establish a nice link between admissible chaotic behavior and the stability of a core
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point. Incidentally, while it is easy to form an agenda moving from any beginning pb

to a final p f , I do not believe that an algorithm specifying the “optimal” path (i.e.,
with a minimum N ) has been found or even investigated. But by following the lead of
Figure 4, finding such an algorithm seems to be a doable and reasonable project.

4. GENERIC PROPERTIES OF THE CORE. The core plays a central role in un-
derstanding voting behavior for q-rules. As asserted earlier, the combination of Plott’s
construction (see Figure 3) and Proposition 1 ensures that a core exists for any q-rule
with any number of issues and voters. But what about structural stability? Will the core
persist with slight changes to the ideal points? Namely, can a trivial shift in just one
individual’s preferences push a group’s discussion from the stability setting of a core
to McKelvey’s chaotic framework?

To demonstrate that a core need not persist, I use the easily proved fact that with
preferences defined by the Euclidean distance the points preferred by q voters are the
points in the convex hull defined by their ideal points. Thus, for n = 5 and q = 3, the
core is the intersection of the convex hulls defined by the

(5
3

) = 10 triplets. We use this
fact to show that the configuration in Figure 6, where voter two’s ideal point is only
slightly changed from that in Figure 3b, has an empty core.

By moving voter two’s ideal point, the convex hull defined by voters {1, 2, 4} in
Figure 6 (denoted by the dashed lines) meets the convex hull defined by {3, 4, 5} only
in voter four’s ideal point. Similarly, this hull meets the hull defined by {2, 3, 5} only
in voter two’s ideal point. Thus, the common intersection of all hulls—the core—is
empty. To see, for instance, that voter three’s ideal point is no longer a core point,
notice that the majority coalition of {1, 2, 4} prefers any point on the line segment
starting from and perpendicular to the line connecting the ideal points of voters two
and four and ending in voter three’s ideal point.
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Figure 6. Dropping the core.

Geometry and the existence of the core. The geometry of convex hulls helps us
appreciate when a core can, or cannot, persist under small changes in voter preferences.
Intuitively, the more hulls there are, the more difficult it is for them to have a nonempty
intersection. But since a q-rule with q ≥ �(n + 1)/2� defines

(n
q

)
possible coalitions

and convex hulls and since
(n

q

)
increases as q decreases to n/2 (the majority rule), we

must anticipate that the closer q is to majority rule, the more difficult it is for a core to
exist or persist.

The dimensionality k of issue space also plays a crucial role. With k = 1 (a single
issue), the core is nonempty because any convex hull involving q ≥ �(n + 1)/2� points
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must include the median voter’s ideal point. This need not be true when k ≥ 2. Indeed,
as the majority rule for n = 3 requires q = 2, the convex hulls are the edges of the
triangle defined by the ideal points. Because these edges never have a common inter-
section, a core never exists.

To trace what happens to the core with changes in dimensions, consider the special
case of n = 4 and q = 3. When k = 1, the convex hull of any three points (Figure 7a)
must include the two interior ideal points, so the core is the closed interval defined
by these two points. This core clearly persists with changes in these points. If k = 2
(Figure 7b), the convex hulls are now triangles consisting of any two edges of the
quadrilateral sharing a common vertex and a diagonal. These hulls meet at the in-
tersection of the diagonals to create a core in a two-dimensional issue space; again,
changes in the ideal points only move the diagonals, so the core persists. (Similarly,
an ideal point in the interior of the triangle defined by the other three ideal points must
be a bliss point.) But for k = 3, the four ideal points define a tetrahedron whose faces
are the hulls in question. As the faces never have a common intersection, a core does
not exist. So, with changes in k, the core for this example progresses from an interval,
to a point, to the empty set.
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a. k = 1; core = interval b. k = 2; core = point c. k = 3; core = ∅
Figure 7. Changes in the core with dimensions.

In general, larger q values define fewer hulls. Since these hulls require more points,
their larger size and dimension make it is easier to have a stable core. Indeed, as the
hulls for a q1-rule are subsets of hulls for a q-rule with q > q1, results about the ge-
ometric structure of the core, and others such as Proposition 1, follow immediately.
Incidentally, these notions probably can be combined to determine which issue space
dimensions allow a structurally stable core, but I doubt whether anyone has tried this
approach.

Stability of a core. The natural problem is to understand when a core will persist with
small changes in the ideal points. Restating the dimensionality comments in common
terms, more issues provide more reasons for voters to disagree, so it is more likely
for chaos to ensue. Using these terms, this concern was brought to my attention by
R. Kieckhefer, a professor of the history of religions at Northwestern University. He
pointed out that several times when a simple majority (q = �(n + 1)/2�) was used to
elect a pope for the Catholic Church, the precarious instability of the voting system,
generated by raising new issues (so k increases) to induce voters to change opinion,
caused the church to erupt into dissension and conflict, with a pope and an antipope
vying for power. To achieve stability, in 1179 the Third Lateran Council adopted the
current q = �(2n + 1)/3� rule; stability was achieved—for a while. This history sug-
gests that the persistence of the core involves finding an upper bound on k, the number
of issues, in terms of the values of q and n. As shown next, this is the case.

The importance of this problem caused it to attract considerable research attention.
Schofield [18] and then McKelvey and Schofield [8], [9] obtained some bounds on k
values. While their conclusion described only a subset of the relevant k values, it was
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correctly greeted as a major advance. Banks [1] found an error in these papers that,
unfortunately, invalidated the conclusions and reopened the problem. The problem
was finally completed in Saari [12]; the result is described next.

But first, why should a voter’s preferences be defined in terms of Euclidean dis-
tances? After all, a voter placing more importance on one issue than another might
measure “closeness” with ellipses. More generally, rather than the Euclidean distance
where a person with ideal point q strictly prefers x to y if and only if ‖x − q‖2 <

‖y − q‖2, that is, −‖x − q‖2 > −‖y − q‖2, we determine what happens if the j th per-
son’s preferences are defined in terms of a utility function U j : Rk → R, where x is
strictly preferred to y precisely when U j (x) > U j (y), and x is indifferent to y if and
only if U j (x) = U j (y). Assume that these utility functions are smooth and strictly con-
vex. (Just the assumption of smoothness is sufficient for much of what follows.) The
Euclidean preferences become the special case U j (x) = −‖x − q‖2. Other choices
might define ellipsoids for level sets to capture individual scaling effects for certain
issues. But notice: by generalizing to utility functions, the geometry defining the core
may change.

Rather than changing ideal points, we must now determine when a core exists for an
open set of utility functions. The topology imposed on the utility functions is the Whit-
ney topology. (There are several references for this topology and the singularity theory
used next; for example, see Golubitsky and Guillemin [3] or Saari and Simon [17].)
In the following theorem, “generic” means that an assertion holds for a residual set of
utility functions in this topology; that is, it holds for a countable intersection of open,
dense sets. As one can show (see Saari and Simon [17]), if the proposals are restricted
to a compact subset of Rk , the residual sets can be replaced with open dense sets. To
interpret these comments in simpler terms, if k satisfies the specified bounds, then, in
general, a core persists even with small changes in preferences. On the other hand, if k
does not satisfy the bounds, then slight changes in preferences cause the core to disap-
pear. To state the theorem, recall that a “bliss point” is a core point that also is a voter’s
ideal point. After the formal statement (see [12]), an easily used, intuitive description
is given.

Theorem 4 (Saari).

a. For a q-rule, bliss-core points exist generically if and only if

k ≤ 2q − n. (3)

b. Nonbliss core points exist, generically, for k ≤ 2 when q = 3 and n = 4. If n ≥ 5
and 4q < 3n + 1, then nonbliss core points exist generically if and only if

k ≤ 2q − n − 1. (4)

For super-majorities in which 4q ≥ 3n + 1, let α be the largest odd integer such
that q/n > α/(α + 1). Nonbliss core points exist generically if and only if

k ≤ 2q − n − 1 + α − 1

2
. (5)

c. For any k and n there exists a q-rule where core points exist generically. In
particular, the unanimity rule q = n exists in all dimensions.
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Unless 4q ≥ 3n + 1, which is a super-majority where a successful vote requires
more than three-fourths support, expect stable cores of some sort to exist whenever
k ≤ 2q − n. To interpret this inequality, notice that the maximal value of k = 2[q −
(n/2)] corresponds to the number of voters who would have to change their minds to
reverse the outcome. In other words, the bound on k identifies the number of issues,
one per voter, that need to be raised to change the election outcome. To illustrate with
the two-thirds vote adopted by the Catholic Church, the current values are n = 135
cardinals and q = 91. For the n − q = 44 voters on the losing side to reverse the
outcome, they would have to convince 91 − 44 = 47 voters to change their minds.
This number of required defections agrees with k = 2q − n = 2(91) − 135 = 47.

To illustrate further we consider the majority vote and an odd number of voters. As it
takes only one voter to change the conclusion, a stable core exists only with a single is-
sue. (Here q = (n + 1)/2, so k = 2[(n + 1)/2] − n = 1.) The situation improves only
slightly with an even number of voters. It takes two voters to change an outcome, so the
core persists for up to two issues. (Here q = (n/2) + 1 so k ≤ 2[(n/2) + 1] − n = 2
issues.) As it is difficult to imagine elections with only two issues, these assertions
underscore the precarious nature of this standard voting method.

It is interesting to wonder whether this instability is observed in actual elections.
For instance, if the voters’ general perception of a candidate places her at a core point,
she will win. To defeat her, her opposition must destroy the core: they must change
the voters’ perception of the winning candidate. Theorem 4 describes how to do this:
introduce new issues in a way that will perturb voter preferences. This flurry of new
issues is common in the closing days of any closely contested election. In effect, this
activity—that may, or may not, be manifested by negative campaigning—increases the
dimension k.

Yet, in other ways, the conclusion of Theorem 4 seems to be in conflict with reality:
we can enjoy stability in two-candidate elections for, say, mayor. To explain, notice
that Theorem 4 describes what happens if there is a freedom to advance different pro-
posals. In contrast, a mayoral or gubernatorial election involves specific candidates,
so it imposes stability. Thus, instability requires permitting any proposal, or candi-
date, to join. An illustration is the 2003 California recall election for governor, where
135 competing proposals (candidates) including a self-described “porn-queen” were
thrown into the mix. Unintentionally reflecting the mathematics, the press commonly
described the situation as “chaotic”!

It remains to discuss the “super-majorities” described by inequality (5). This in-
equality shows that a super-majority election provides a slight stability bonus by
adding extra dimensions to the “number of voters who need to reverse opinions”
computation. With a three-fourths rule, the bonus allows the number of issues permit-
ting stability for a bliss and nonbliss core point to agree. With a five-sixths rule, the
nonbliss core points exist for a dimension k = 2q − n − 1 + (5 − 1)/2 = 2q − n + 1.

The number of extra dimensions, however, is “slight” when using reasonable super-
majorities. After all, the extreme 90% rule, where q/n > 9/10, adds only four extra
dimensions to permit the core to persist with k = 2q − n − 1 + 4 = 2q − n + 3 in-
dependent issues. The mathematical significance of these bonus dimensions is that as
the q-rule approaches unanimity, the issue space dimension k grows without bound as
it must. But for the more widely used super-majorities and for Euclidean preferences,
the appropriate choice is the k = 2q − n value corresponding to the “number of voters
who need to reverse opinions” computation. (For Euclidean preferences, an exception
occurs for q = n − 1 to reflect partially the transition to k = ∞ for q = n.) Notice a
peculiarity: these bonus dimensions never involve bliss points. The reason is given in
the next section.
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5. OUTLINE OF THE PROOF. Although the proof of Theorem 4 is technical and
long (it requires about thirty published pages), the basic ideas are natural: this is where
singularity theory and configurations from the Newtonian N -body problem play a role.
To start, with n voters and a specified proposal x, alternatives that are preferred by the
j th voter are determined by the gradient ∇U j (x). Actually, it is not the gradient that
matters, but its direction ∇U j (x)/‖∇U j (x)‖. (The strict convexity assumption forces
the preferred choices to be strictly in the half-plane that includes the normal vector
∇U j (x) .) If at x the gradient directions of a majority of the voters point in the same
general direction, then this majority can successfully propose an alternative. Therefore
proposal x is a core point only when a limited number of these gradient directions
point in the same general direction. Only the gradient directions are needed, so the
gradient conditions for a core can be described as an arrangement of points on the
sphere Sk−1.

To achieve the objective, which is to determine when the core condition is or is
not robust, we use singularity theory. To motivate the approach, consider the well-
known fact that, generically, the critical points of a smooth mapping F : R2 → R1

are isolated. In words, if (x, y) is a critical point for F , then in any sufficiently small
neighborhood of (x, y), there are no other criticial points of F . As with the core this
assertion about critical points being isolated combines domain points and the gradient.
So, to outline a proof that motivates the approach used to study the core, we use the
five dimensional jet space J 1 = (x, y; z; A, B) where x , y, z, A, and B belong to R1

and J 1 is endowed with the appropriate topology. This space J 1 is intended to capture
the domain, range, and first derivative terms, so

j1(F)(x, y) = (
x, y; F(x, y); ∇F(x, y)

)
(6)

is a mapping from R2 to the five-dimensional J 1.
To describe the generic properties of critical points, we need to find a subspace of J 1

that characterizes these points. This is easy: critical points are determined by the three-
dimensional subspace 	 = (x, y; z; 0, 0) where the gradient is zero. Thus, all critical
points of F are given by [ j1(F)]−1(	). Since 	 has dimension three, or codimension
two, the inverse function theorem tells us that, provided j1(F) satisfies the appropriate
determinant conditions, [ j1(F)]−1(	) is a codimension two (zero-dimensional) set
in R2; that is, the critical points of F are isolated.

To describe the relevant determinant conditions, first consider a smooth mapping
G : Rk → Rm , and let 	 be a smooth s-dimensional submanifold of Rm . The goal is
to find appropriate conditions on G so that the inverse function theorem can be used to
describe G−1(	). To do so, the problem of finding G−1(	) is converted into a problem
where the answer is well known: the inverse image of a point. The first step is to notice
that 	 is given locally by g−1(0) where g is an appropriately chosen smooth mapping
g : Rm → Rm−s . By composition of maps, it follows that when G(x) is in 	, we have
that g(G(x)) = 0 in Rm−s . Consequently, the inverse image G−1(	) of the manifold
	 can be described locally as the inverse image of a point [g ◦ G]−1(0). In order to
use the inverse function theorem, Dg(G) evaluated at x must have full rank m − s.
By use of the chain rule, this full rank condition translates into the condition that the
product of the matrices, Dy gDxG, where y = G(x), must have full rank m − s. In this
expression, the Jacobean Dg is evaluated at y = G(x) and DG at x.

The next step is to determine conditions G must satisfy to ensure that the matrix
product Dy gDxG has maximal rank. Stated in another manner, we need to determine
how Dy gDxG acts on a vector v in Rk so that it is, or is not, in the kernel. The first leg
of v’s journey is determined by DxG(v): the matrix DxG maps v from Rk to Rm . The
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next task is to determine those locations of DxG(v) such that, in the second leg of v’s
journey, the matrix Dy g will, or will not, map DxG(v) to zero.

The answer for this question comes from the definition of g−1(0). Because g−1(0)

defines a local portion of 	, matrix Dg maps the tangent vectors of 	 to the point 0. In
other words, the kernel of Dy g is the s-dimensional tangent space of 	 at y = G(x).
Denote this space by TG(x)	.

Combining these arguments, we see that if DxG(v) is in the tangent space Ty	, for
y = G(x), then v is in the kernel of Dy gDxG. Thus, to satisfy the rank condition, the
image of DxG must include a (m − s)-dimensional linear subspace that is not in the
tangent space Ty	. An argument putting these statements together now shows that for
Dy gDxG to have maximal rank, it must be that

Span
[
DxG(Rn) ∪ Ty	

] = Rm (7)

for y = G(x). When condition (7) is satisfied, we say that G has a transverse intersec-
tion with 	 at G(x).

Let me illustrate this condition with our motivating example about the critical points
of F . Here the jet mapping j1(F) takes the role of G, so we need to determine whether
j1(F) has a transverse intersection with 	 = (x, y; z; 0, 0). The first step, which is to
find Dj1(F), requires differentiating the three terms in (6) to obtain

Dj1(F) =
((

1 0
0 1

)
; ∇F; D2 F

)
.

According to this expression, if v is in R2, then

Dj1(F)(v) = (
v; ∇F · v; D2 F(v)

)
.

The other term is the tangent space T 	 = (x, y; z; 0, 0) (for real x , y, and z) that can
be identified with 	. Therefore, the transverse intersection condition (7) is satisfied if
and only if D2 F maps R2 to R2 in a manner that will compensate for the zeros in the
component directions of T 	 that represent the gradients. In other words, this condition
is satisfied if and only if D2 F has rank two.

Although the analysis for the motivating problem is not difficult and reduces to
a familiar condition, in general the computation to verify (7) can be messy and
complicated. This reality underscores the importance of the following result by René
Thom [22] (also see [3]). To afford a compact statement of it, the notion of a transverse
intersection must be slightly modified.

Definition 3. A smooth mapping G : Rk → Rm has a transverse intersection with a
submanifold 	 of Rm if either (1) Image(G) ∩ 	 = ∅ or (2) condition (7) is satisfied
for each x in G−1(	).

We now can state Thom’s theorem.

Theorem 5 (Thom). Let 	 be a smooth submanifold of Rm. Generically, a mapping
F : Rk → Rm has a transverse intersection with 	 (i.e., this is true for a countable
intersection of open dense sets in the space of such mappings F).

The “empty set” condition means that, generically, the mappings miss 	. To il-
lustrate this condition, suppose that we wish to find the generic property of functions
F : R2 → R1 whose critical points occur along the line x = 1. The appropriate J 1 sub-
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manifold is 	1 = {1, y; z; 0, 0}, which has codimension three. According to Thom’s
theorem, generically, mappings have a transverse intersection with 	1. If condition (7)
were satisfied, then the set ( j1(F))−1(	1) of critical points would have codimension
three in R2; i.e., it would be a set of dimension 2 − 3 = −1, which cannot exist. Con-
sequently, generically, a smooth function F : R2 → R1 does not have a critical point
along the line x = 1. The point is that while examples with this property are easy
to create, slightly perturbing them destroys the property. As shown next, Plott’s plots
share this mathematical structure.

Core and the N-body problem. To describe the core conditions, we use the mapping
U : Rk → Rm whose components are the utility functions for all n agents:

U(x) = (
U1(x), . . . , Un(x)

)
, (8)

where the appropriate jet space is

J 1 = (x; y; A1, . . . , An) (x ∈ Rk; y ∈ Rn, A j ∈ Rk , j = 1, . . . , n)

and the jet map is

j1(U)(x) = (
x; U(x); ∇U1(x), . . . , ∇Un(x)

)
.

The approach is to define first the subspaces 	 that characterize the core conditions
and then determine the codimension of these 	 choices.

The construction is based on the positioning of the gradients, which are treated as
points on Sk−1. To see what is involved, suppose that n = 4, q = 3 (the majority rule),
and k = 2. For a point to be a core point, any line passing through it cannot have more
than q − 1 = 2 points on one side; if q or more points were on one side, they would
define a winning coalition that has a commonly preferred alternative somewhere on
that side of the line. This argument dictates that the points must be positioned on the
circle so that for any line passing through the origin (the dashed line in Figure 8)
at most two points are on either side. With a bliss point, as depicted in Figure 8a,
this condition is satisfied with the open condition that any two of the remaining three
vectors are separated by more than π/2. This leads to the definition

	2 = {
(x; y; A1, . . . , An) | A1 = 0, A j · Ak < 0 for j, k = 2, 3, 4

}
.

Since the restrictions on the vectors A j for j = 2, 3, 4 represent an open condition, 	2

has codimension two (determined by A1 = 0). Thus, generically, the core consists of
isolated points. This means, for instance, that generically the location of bliss points
cannot define a curve.
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a. n = 4, bliss point b. n = 4, symmetry c. n = 5, Plott

Figure 8. Finding 	.
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I leave it to the reader to show that for the nonbliss point setting of Figure 8b this
condition, in which no three points are on the same side of any dashed line, forces
pairs of the points to be positioned precisely opposite one another. As this imposes
conditions such as A1 = −A3 and A2 = −A4, the corresponding 	 has codimension
two. In this case the core consists of isolated points and persists with small changes in
preferences.

The Plott configuration for n = 5 and q = 3 depicted in Figure 8c leads to a dif-
ferent conclusion. Since no more than q − 1 = 2 points can be on the same side of
any line drawn through the center, even placing points equally spaced 2π/5 radians
apart (a codimension four construction) fails to meet the requirement: the condition
allowing a core can be satisfied only with a bliss point. Namely, the corresponding 	

must have A1 = 0, a codimension two condition, with a symmetry condition imposed
on the remaining points A2 = −A4 and A3 = −A5. Notice how these conditions de-
fine a codimension four setting. Generically, then, the core is empty. This determines
a situation similar to requiring a critical point at x = 1, which can happen but will not
persist.

This construction answers a question about the α/2 bonus dimensions of Theo-
rem 4: can they occur with bliss points? Yes, just place a voter’s ideal point at the core
point. But, while such core points exist, they do not exist generically. To explain, be-
cause a bliss point contributes codimension k to the 	 structure, all constraints on the
remaining vectors must define open conditions. The constraints defining the “bonus”
dimensions, however, are lower dimensional.

Part of the challenge in proving the theorem, then, is to determine whether n points
can be positioned on Sk−1 so that no more than q − 1 of them are on the same side
of any hyperplane passing through the origin and the codimension of the associated
	 is no more than k. For k = 2, the construction uses a circle, so the analysis is
easy. For k = 3 the analysis is slightly harder. The condition for n = 4 and q = 3 is
easy because the symmetric positioning of four points on S2 gives rise to a regular
tetrahedron. But how should five, or six, points be positioned and can this be done
using “open” conditions?

For k > 3, the challenge is more interesting. This is where insights from my re-
search in the Newtonian N -body problem has helped. To suggest the connection, key
to the N -body problem are configurations known as “central configurations:” this is
where the position vector for each particle is the same scalar multiple of the particle’s
acceleration vector. An interesting fact is that there exist solutions that maintain these
equilibrium configurations for all time. Now think of N equal masses placed on Sk−1

though whose center a plane is passed. Should there be many more points on one side
of the plane, then the configuration most surely would not be in “equilibrium.” The
particles would move to form a more balanced configuration. Considerations of this
type motivated the final constructions needed to prove the theorem.

6. CONCLUSION. Voting is something we all do often, yet, as shown here and
in Saari [14], the process is fraught with dangers. But voting is only one of many
mathematical concerns that surface in the social and behavioral sciences. While the
consequences and modeling of these difficulties belong to the social sciences, the
mathematics underlying many of these issues can be quite sophisticated. Indeed, I ex-
pect that the only way many of these crucial problems will ever be resolved is through
the muscle power of mathematics. In other words, more mathematicians need to get
involved. There are delightful rewards: the mathematics can be fascinating, and the
results often prove to be of interest and importance to a wide audience.
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