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Abstract. Recent empirical studies suggest that the volatility of an underlying price process

may have correlations that decay slowly under certain market conditions. In this paper, the volatility

is modeled as a stationary process with long-range correlation properties to capture such a situa-

tion and we consider European option pricing. This means that the volatility process is neither a

Markov process nor a martingale. However, by exploiting the fact that the price process still is a

semimartingale and accordingly using the martingale method, one can get an analytical expression

for the option price in the regime where the volatility process is fast mean reverting. The volatility

process is modeled as a smooth and bounded function of a fractional Ornstein Uhlenbeck process

and we give the expression for the implied volatility which has a fractional term structure.
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1. Introduction.

Stochastic Volatility and the Implied Surface. Under many market scenar-

ios the assumption that the volatility is constant, as in the standard Black-Scholes

model, is not realistic. Practically, this reflects itself in an implied volatility that de-

pends on the pricing parameters. This means that, in order to match observed prices,

the volatility one needs to use in the Black-Scholes option pricing formula depends on

time to maturity and log moneyness, with moneyness being the strike price over the

current price of the underlying. The implied volatility is a convenient way to param-

eterize the price of a financial contract relative to a particular underlying. It gives

insight about how the market deviates from the ideal Black-Scholes situation and,

after calibration of an implied volatility model to liquid contracts, it can be used for

pricing less liquid contracts written on the same underlying. It is therefore of interest

to identify a consistent parameterization of the implied volatility that corresponds to

an underlying model for stochastic volatility fluctuations. As in Garnier and Solna
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(2015) a main objective of our modeling is to construct a time-consistent scheme so

that indeed the volatility model is chosen as a stationary process and we consider

general times to maturity. For background on stochastic volatility models we refer to

the books and surveys by Fouque et al. (2011); Gatheral (2006); Ghysels et al.

(1995); Gulisashvili (2012); Henry-Labordére (2009); Rebonato (2004) (see the ref-

erences therein). We also refer to our recent paper on fractional stochastic volatility

Garnier and Solna (2015) for further references on the recent literature on the class

of volatility models we consider here.

Empirical studies suggest that volatility may exhibit a “multi scale” character

with long-range correlations as in Bollerslev et al. (2013); Breidt et al. (1998);

Chronopoulou and Viens (2012); Cont (2001, 2005); Engle and Patton (2001); Oh

et al. (2008). That is, correlations that decay as a power law in offset rather than as

an exponential function as in a Markov process. Here we seek to identify parametric

forms for the implied volatility consistent with such long-range correlations. In our

recent paper Garnier and Solna (2015) we considered this question in the context

where the magnitude of the volatility fluctuations is small. Here, we consider the

situation where the magnitude of the volatility fluctuations is of the same order as

the mean volatility. Indeed empirical studies show that the volatility fluctuations

may be quite large: Breidt et al. (1998); Cont (2001); Engle and Patton (2001).

While in Garnier and Solna (2015) the volatility fluctuations were small leading to

a (regular) perturbative situation, here the situation is different in that it is the fast

mean reversion (fast relative to the diffusion time of the underlying) that allows us to

push through an asymptotic analysis. However, the presence of long-range correlations

in this context gives a novel singular perturbation situation. The analysis becomes

significantly more involved. In particular the detailed analysis of the covariation

process is an important ingredient. We consider here option pricing, but the approach

set forth is general and will be useful in other financial contexts as well.

It follows from our analysis that the form for the implied volatility surface is sim-

ilar as in the Markovian case. This confirms the robustness of the implied volatility

parametric model with respect to the underlying price dynamics. There are, however,

central differences. In particular the long-range correlations produce a volatility co-

variance that is not integrable which in turn gives an implied volatility surface that

is a random field, whose statistics can be described in detail. Moreover, in the long-
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range case the implied volatility has a fractional behavior as a function of time to

maturity. The empirical study in Fouque et al. (2003) shows that, in order to fit well

the implied volatility, it is appropriate to consider a two-time scale model with one

slow and one fast volatility factor. In Garnier and Solna (2015) we considered a slow

factor, which closely associates with a small fluctuations factor. Here, we consider

a fast factor with large fluctuations. Taken together we have a generalization of the

two-factor model of Fouque et al. (2003, 2011) to the case of processes with long-

range correlations. This leads to a fractional term structure of the implied volatility

and it was shown in Fouque et al. (2004) that such a term structure may be useful

to fit the implied volatility under certain market conditions.

Long Memory and Fast Mean Reversion. As mentioned above the asymp-

totic regime considered in this paper is the situation where the volatility is fast mean

reverting. We denote its time scale by ε and this is the small parameter in our model.

The volatility then decorrelates on the time scale ε.

Stochastic volatility models are most often posed with a volatility driving process

that has mean zero and mixing properties. This means that the random values of the

volatility driving process at times t and t+∆t, that are Zεt and Zεt+∆t, become rapidly

uncorrelated when ∆t → ∞, i.e., the autocovariance function Cε(∆t) = E[ZεtZ
ε
t+∆t]

decays rapidly to zero as ∆t → ∞. More precisely we say that the volatility driving

process is mixing if its autocovariance function decays fast enough at infinity so that

it is absolutely integrable:

∫ ∞
0

|Cε(t)|dt <∞ . (1.1)

In this case we may associate the process with the finite correlation time tc =

2
∫∞

0
Cε(t)dt/Cε(0), which is of order ε.

Stochastic volatility models with long-range correlation properties have recently

attracted a lot of attention, as more and more data collected under various situations

confirm that this situation can be encountered in many different markets. Qualita-

tively, the long-range correlation property means that the random process has long

memory (in contrast with a mixing process). This means that the correlation between

the random values Zεt and Zεt+∆t taken at two times separated by ∆t is not completely

negligible even for large ∆t. More precisely we say that the random process Zεt has
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the H-long-range correlation property if its autocovariance function satisfies:

Cε(t)
|t|→∞
' rH

∣∣∣ t
ε

∣∣∣2H−2

, (1.2)

where rH > 0 and H ∈ (1/2, 1). We refer to H as the Hurst exponent. Here the

correlation time ε is the critical time scale beyond which the power law behavior (1.2)

is valid. Note that the autocovariance function is not integrable as 2H − 2 ∈ (−1, 0),

which means that a random process with the H-long-range correlation property is

not mixing. As we describe in more detail below a common approach for modeling

long-range dependence is via using fractional Brownian motion (fBm) processes as

introduced in Mandelbrot and Van Ness (1968).

Long-memory stochastic volatility models are indeed easy to pose, however, their

analysis is quite challenging. This is largely due to the fact that the volatility process

is then neither a Markov process nor a semimartingale. It is, however, important to

notice that the price process is still a semimartingale and the problem formulation

does not entail arbitrage (Mendes et al. (2015)), as has been argued for some mod-

els whose price process itself is driven by fractional processes as in Bjork and Hult

(2005); Rogers (1997); Shiryaev (1998). A main motivation for long-memory is to

be able to fit observed implied volatilities. One classic challenge regarding fitting of

implied volatility surfaces is to capture a strong moneyness dependence for short time

to maturity without creating artificial behavior for long time to maturity. Another

one is to retain a strong parametric dependence for long maturities despite averaging

effects that occur in this regime, as discussed in Bollerslev and Mikkelsen (1999);

Bollerslev et al. (2013); Comte et al. (2012); Sundarsen et al. (2000). We remark

that models involving jumps have been promoted as one approach to meet these chal-

lenges by Carr and Wu (2003); Mijatovic and Tankov (2016). Recent works show

that stochastic volatility models with long-range dependence also provide a promising

framework for meeting such challenges. Approaches based on using fractional noises

in the description of the stochastic volatility process were used by Comte and Renault

(1998); Comte et al. (2012). This provides an approach for endowing the volatility

process with high persistence in the long run (long memory with H > 1/2) in or-

der to capture the steepness of long term volatility smiles without overemphasizing

the short run persistence. In order to get explicit results for the implied volatility a

number of asymptotic regimes have been considered. Chief among them has been the

regime of short time to maturity. The model presented in Comte et al. (2012) was
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recently revisited in Guennoun et al. (2014) where short and long time to maturity

asymptotics are analyzed using large deviations principles. In Alòs et al. (2007) the

authors use Malliavin calculus to decompose option prices as the sum of the classic

Black-Scholes formula with volatility parameter equal to the root-mean-square future

average volatility plus a term due to the leverage effect (i.e., the correlation between

the underlying return and its changes of volatility) and a term due to the volatility of

the volatility. Their model is a fractional version of the Bates model (Bates (1996)).

They find that the implied volatility flattens in the long-range dependent case in the

limit of small time to maturity. In Forde and Zhang (2015) the authors use large

deviation principles to compute the short time to maturity asymptotic form of the im-

plied volatility. They consider the leverage effect and obtain results that are consistent

with those in Alòs et al. (2007). They consider stochastic volatility models driven

by fBms which are analyzed using rough path theory. They also consider large time

asymptotics for some fractional processes. Small time to maturity asymptotic results

were recently also presented in Gulisashvili et al. (2015) in a context of long-range

processes. In Fukasawa (2011) the author discusses the asymptotic regime with small

volatility fluctuations and long-range dependence impact on the implied volatility as

an application of the general theory he sets forth. In this paper as well as in Alòs et al.

(2007) the authors use a modeling where the time 0 plays a special role and hence the

modeling is not completely satisfactory because it leads to a non-stationary volatility

model. This is also the case in Bayer et al. (2016) where the authors consider the

so-called rough Bergomi, or “rBergomi”, model. In this paper and in Garnier and

Solna (2015) which deals with small volatility fluctuations we use a formulation with

a stationary model. This is also the case in the recent paper by Fukasawa (2017)

which considers small time asymptotics in the rough volatility case, with H < 1/2.

This distinction is important: If the volatility factor is a fBm emanating from the ori-

gin, then the implied volatility surface is identified conditioned on the present value

of the volatility factor only. Below with a stationary model the implied volatility

surface depends on the path of the volatility factor until the present, reflecting the

non-Markovian nature of fBm. We discuss in detail in Section 6 the consequences of

this for the interpretation of the implied volatlity surface as a random field. Recently,

pricing approximations in the regime of small fractional volatility fluctuations were

presented in Alòs and Yang (2017). In terms of computation of prices for general
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maturities and fractional volatility fluctuations, so far mainly numerical approxima-

tions have been available. However, here we present an asymptotic regime based on

fast mean reversion which gives explicit price approximations in this context. Taken

together the results of Garnier and Solna (2015) and this paper allow to construct

a fractional two-time scale stochastic volatility model and flexibility to fit both the

short and long time to maturity parts of the implied volatility surface.

We remark that we here consider the case withH > 1/2 and long-range correlation

only as opposed to the case with rough volatility and H < 1/2 corresponding to sharp

decay of the correlations at the origin. Indeed both regimes have been identified

from the empirical perspective. We refer to for instance Gatheral et al. (2016)

for observations of rough volatility, while in Chronopoulou and Viens (2012) cases of

long-range volatility are reported. A persistent or long-range mean reverting volatility

situation is reported in Jensen (2016) in a discrete modeling framework. Long-range

volatility situations are also reported for currencies in Walther et al. (2017), for

commodities in Charfeddine (2014), and for equity index in Chia et al. (2015), while

analysis of electricity markets data typically gives H < 1/2 as in Simonsen (2002);

Rypdal and Lovsletten (2013); Bennedsen (2015). We believe that both the rough

and the long-range cases are important and can be seen depending on the specific

market and regime. Even though the “rough” case with H < 1/2 may be the most

common situation, it may be of particular importance to understand the situation

where H > 1/2 and the ramification of this for pricing and hedging. In this paper we

only consider the analytic aspects of our model. The fitting with respect to specific

data is beyond the scope of this paper and will be presented elsewhere.

The fractional model we set forth here produces typical “stylized facts”, like heavy

tails of returns, volatility clustering, mean reversion, and long memory or volatility

persistence. Additionally, we here incorporate the leverage effect. A term coined by

Black et al. (1976) referring to stock price movements which are correlated (typically

negatively) with volatility, as falling stock prices may imply more uncertainty and

hence volatility. Note, however, that the model for the implied volatility surface

derived below is linear in log moneyness. This may seem somewhat restrictive from

the point of view of fitting because in many cases a strong skew in log moneyness

may be observed in certain markets. This has particularly been the case for stock

markets, but relatively less so in other markets like fixed income markets. However,
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if one considers higher order approximations, then this generates also skew effects. A

number of modeling issues not considered here, like transaction costs, bid-ask spreads

and liquidity, may also affect the skew shape. Note also that for simplicity we do

not incorporate a non-zero interest rate, nor do we incorporate market price of risk

aspects.

Rapid-Clustering, Long-Memory and the Implied Surface. We summa-

rize next the main result of the paper from the point of view of calibration. That

is, the form of the implied volatility surface in the context of a stochastic volatility

modeled by a fast process with long-range correlation properties. We summarize first

some aspects of the modeling.

We consider a continuous time stochastic volatility model that is a smooth func-

tion of a Gaussian long-range process. Explicitly, we model the fractional stochastic

volatility (fSV) as a smooth function of a fractional Ornstein-Uhlenbeck (fOU) pro-

cess. The fOU process is a classic model for a stationary process with a fractional

long-range correlation structure. This process can be expressed in terms of an integral

of a fractional Brownian motion (fBm) process. The distribution of a fBm process is

characterized in terms of the Hurst exponent H ∈ (0, 1). The fBm process is locally

Hölder continuous of exponent H ′ for all H ′ < H and this property is inherited by

the fOU process. The fBm process, WH
t , is also self-similar in that

{
WH
αt, t ∈ R

} dist.
=
{
αHWH

t , t ∈ R
}

for all α > 0. (1.3)

The self-similarity property is inherited approximately by the fOU process on scales

smaller than the mean reversion time of the fOU process which we denote by ε below.

In this sense we may refer to the fOU process as a multiscale process on short scales.

The case H ∈ (1/2, 1) that we address in this paper gives a fOU process that is a

long-range process. This regime corresponds to a persistent process where consecutive

increments of the fBm are positively correlated. The stronger positive correlation for

the consecutive increments of the associated fBm process with increasing H values

gives a smoother process whose autocovariance function decay slowly. For more details

regarding the fBm and fOU processes we refer repectively to Biagini et al. (2008);

Coutin (2007); Doukhan et al. (2003); Mandelbrot and Van Ness (1968) and

Cheridito et al. (2003); Kaarakka and Salminen (2011).

The volatility driving process is the ε-scaled fractional Ornstein-Uhlenbeck pro-
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cess (fOU) defined by:

Zεt = ε−H
∫ t

−∞
e−

t−s
ε dWH

s . (1.4)

It is a zero-mean, stationary Gaussian process, that exhibits long-range correlations for

the Hurst exponent H ∈ (1/2, 1). It is important to note that this is a process whose

“natural time scale” is ε, this in the sense that the mean reversion time or time before

the process reaches its equilibrium distribution scales like ε. It is also important to

note that the decay of the correlations (on the ε time scale) is polynomial rather than

exponential as in the standard Ornstein-Uhlenbeck process. Explicitly, the correlation

of the process between times t and t + ∆t decays as (∆t/ε)2H−2, while the variance

of the process is independent of ε.

In this paper we consider a stochastic volatility model that is a smooth function

of the rapidly varying fractional Ornstein-Uhlenbeck process with Hurst coefficient

H ∈ (1/2, 1), it is given by

σεt = F (Zεt ), (1.5)

where F is a smooth, positive, one-to-one, bounded function with bounded derivatives

and with an additional technical condition that is given in Eq. (3.5). The process σεt

inherits the long-range correlation properties of the fOU Zεt .

The main result we set forth in Section 5 is an expression for the implied volatility

of the European Call Option for strike K, maturity T , and current time t:

It = E
[ 1

T − t

∫ T

t

(σεs)
2ds
∣∣Ft]1/2 + σaF

[(τ
τ̄

)H−1/2

+
(τ
τ̄

)H−3/2

log
(K
Xt

)]
. (1.6)

Here

aF = ε1−H σ̃σouρ 〈FF ′〉 τ̄H

23/2σΓ(H + 3/2)
, (1.7)

τ = T − t is time to maturity, ρ the correlation between the Brownian motion driving

the fBM and the Brownian motion driving the underlying, and

τ̄ =
2

σ2 (1.8)

is the characteristic diffusion time. Furthermore, we have with σ2
ou = 1/(2 sin(πH)):

σ2 =
〈
F 2
〉

=

∫
R
F (σouz)

2p(z)dz,

σ̃ = 〈F 〉 =

∫
R
F (σouz)p(z)dz,

〈FF ′〉 =

∫
R
F (σouz)F

′(σouz)p(z)dz,
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with p(z) the pdf of the standard normal distribution. That is, we form moments of

the volatility function averaged with respect to the invariant distribution of the fOU

process Zεt .

The first term in Eq. (1.6) is indeed the expected effective volatility until maturity

conditioned on the present. The second term is a skewness term that is non-zero only

when the volatility process and the underlying are correlated so that ρ is non-zero.

Note that the exponent of the fractional term structure depends on the Hurst exponent

which determines the smoothness and the decorrelation rate of the volatility driving

process Zεt . The smoother the process the larger the implied volatility for large times

to maturity.

In the fast case presented here with large and fast volatility fluctuations the

implied volatility explodes in the regime of short time to maturity. Indeed, short

time to maturity means time to maturity smaller than the diffusion time (1.8), but

larger than the mean reversion time ε. Therefore short time to maturity involves

large volatility fluctuations over a short maturity horizon resulting in a moneyness

correction that explodes and dominates the pure maturity term. In the context of

short or long times to maturity the conditional expected effective volatility gives a

small contribution and we have for short times to maturity and K 6= Xt:

It ∼ aF
[ (τ

τ̄

)H−3/2

log
(K
Xt

)]
, (1.9)

and respectively in the regime of long times to maturity:

It ∼ aF
(τ
τ̄

)H−1/2

. (1.10)

We remark here that the fractional scaling in the skewness term in Eq. (1.6) is

exactly the fractional scaling that corresponds to the case of large time to maturity

and small volatility fluctuations given in Garnier and Solna (2015). That is, with

large times to maturity there we have a situation reminiscent of the one we have here

with rapid volatility fluctuations, however, here the volatility fluctuations are large as

compared to the small volatility fluctuations in Garnier and Solna (2015).

We remark also that the case with a mixing volatility, and hence integrable cor-

relation function for the volatility fluctuations, would correspond to H ↘ 1/2. Note,

however, that our derivation is valid only for H ∈ (1/2, 1). If we consider the formula

(4.10) for σφ that determines the variance of the first term in Eq. (1.6), we can ob-

serve that it vanishes when H ↘ 1/2, which shows that the first term in Eq. (1.6)
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becomes to leading order deterministic. In the mixing case the implied volatility is

deterministic to leading correction order, while the non-integrability of the volatility

covariance function makes it a stochastic process in the general long-range case with

a variance that goes to zero as H ↘ 1/2. Indeed in the limit case H ↘ 1/2 we get

a result as in (Fouque et al. , 2000, Section 5.2.5) that deals with the mixing case.

Explicitly, consider the mixing case where the volatility driving process is an ordinary

Ornstein-Uhlenbeck process, moreover, the interest rate and market price of volatility

risk are zero as we consider here. Then (Fouque et al. , 2000, Eq. (5.55)) gives the

implied volatility in terms of a coefficient V3 defined in (Fouque et al. , 2000, Section

5.2.5):

It = σ − V3

[
1

2σ
+

1

σ3τ
log

(
K

Xt

)]
, (1.11)

that has the same form as the formal limit of (1.6) as H ↘ 1/2. However the averaging

expression giving the coefficient V3 does not correspond to the interpretation we arrive

at here by the formal limit H ↘ 1/2. This is because the singular perturbation

situation we consider in fact is “singular” at H = 1/2 and ordering of important

terms becomes different. Nevertheless it is important from the calibration point of

view that we have continuity of the implied volatility parameterization and its form

at H = 1/2, providing robustness to the asymptotic framework.

In Section 6 we give the complete statistical description of the stochastic correction

coefficient which determines the random component of the price correction and the

implied volatility (the first term in Eq. (1.6)). It is a random function of the maturity

T and the current time t with Gaussian statistics and with a covariance function that

we describe in detail. This covariance function has interesting and non-trivial self-

similar properties and it is important in order to construct and characterize estimators

of the implied volatility surface.

Outline. The outline of the paper is as follows. In Section 2 we describe the

fractional Ornstein-Uhlenbeck process and derive some fundamental a priori bounds.

In Section 3 we describe the stochastic volatility model. In Section 4 we derive the

expression for the price in the fast mean reverting fractional case. The derivation is

based on the martingale method. That is, we make an ansatz for the price as a process

that has the correct payoff and to leading order is a martingale. Then indeed this

process is the leading order expression for the price with an error that is of the order
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of the non-martingale part. This approach involves introducing correctors so that the

non-martingale part is pushed to a small term and we give the resulting decomposition

in Section 4. Based on the expression for the price we derive the associated implied

volatility in Section 5 and present finally some concluding remarks in Section 7. We

give a convenient Hermite decomposition of the volatility in Appendix A. A number

of the technical lemmas are proved in Appendix B.

2. The Rapid Fractional Ornstein-Uhlenbeck Process. We use a rapid

fractional Ornstein-Uhlenbeck (fOU) process as the volatility factor and describe here

how this process can be represented in terms of a fractional Brownian motion. Since

fractional Brownian motion can be expressed in terms of ordinary Brownian motion

we also arrive at an expression for the rapid fOU process as a filtered version of

Brownian motion.

A fractional Brownian motion (fBM) is a zero-mean Gaussian process (WH
t )t∈R

with the covariance

E[WH
t W

H
s ] =

σ2
H

2

(
|t|2H + |s|2H − |t− s|2H

)
, (2.1)

where σH is a positive constant. We use the following moving-average stochastic

integral representation of the fBM (Mandelbrot and Van Ness (1968)):

WH
t =

1

Γ(H + 1
2 )

∫
R

(t− s)H−
1
2

+ − (−s)H−
1
2

+ dWs, (2.2)

where (Wt)t∈R is a standard Brownian motion over R. Then indeed (WH
t )t∈R is a

zero-mean Gaussian process with the covariance (2.1) and where we now have

σ2
H =

1

Γ(H + 1
2 )2

[ ∫ ∞
0

(
(1 + s)H−

1
2 − sH− 1

2

)2
ds+

1

2H

]
=

1

Γ(2H + 1) sin(πH)
. (2.3)

We introduce the ε-scaled fractional Ornstein-Uhlenbeck process (fOU) as

Zεt = ε−H
∫ t

−∞
e−

t−s
ε dWH

s = ε−HWH
t − ε−1−H

∫ t

−∞
e−

t−s
ε WH

s ds. (2.4)

Thus, the fractional OU process is in fact a fractional Brownian motion with a restor-

ing force towards zero. It is a zero-mean, stationary Gaussian process, with variance

E[(Zεt )2] = σ2
ou, with σ2

ou =
1

2
Γ(2H + 1)σ2

H =
1

2 sin(πH)
, (2.5)

11



that is independent of ε, and covariance:

E[ZεtZ
ε
t+s] = σ2

ouCZ
(s
ε

)
,

that is a function of s/ε only, with

CZ(s) =
1

Γ(2H + 1)

[1

2

∫
R
e−|v||s+ v|2Hdv − |s|2H

]
=

2 sin(πH)

π

∫ ∞
0

cos(sx)
x1−2H

1 + x2
dx.

This shows that ε is the natural scale of variation of the fOU Zεt . Note that the

random process Zεt is not a martingale, neither a Markov process. For H ∈ (1/2, 1)

it possesses long-range correlation properties:

CZ(s) =
1

Γ(2H − 1)
s2H−2 + o

(
s2H−2

)
, s� 1. (2.6)

This shows that the correlation function is non-integrable at infinity. In this paper

we focus on the case H ∈ (1/2, 1).

We remark that if H = 1/2, then the standard OU process (synthesized with a

standard Brownian motion) is a stationary Gaussian Markov process with an expo-

nential correlation and hence a mixing process. It is possible to simulate paths of the

fractional OU process using the Cholesky method (see Figure 2.1) or other well-known

methods described in Omre et al. (1993); Bardet et al. (2003).

Using Eqs. (2.2) and (2.4) we arrive at the moving-average integral representation

of the scaled fOU as:

Zεt = σou

∫ t

−∞
Kε(t− s)dWs, (2.7)

where

Kε(t) =
1√
ε
K
( t
ε

)
, K(t) =

1

Γ(H + 1
2 )

[
tH−

1
2 −

∫ t

0

(t− s)H− 1
2 e−sds

]
. (2.8)

The main properties of the kernel K in our context are the following ones (valid for

any H ∈ (1/2, 1)):

- K is nonnegative-valued, K ∈ L2(0,∞) with
∫∞

0
K2(u)du = 1, but K 6∈ L1(0,∞).

- for small times t� 1:

K(t) =
1

Γ(H + 1
2 )

(
tH−

1
2 +O

(
tH+ 1

2

))
, (2.9)
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- for large times t� 1:

K(t) =
1

Γ(H − 1
2 )

(
tH−

3
2 +O

(
tH−

5
2

))
, (2.10)

and in particular K(t)− 1
Γ(H− 1

2 )
tH−

3
2 ∈ L1(0,∞).

3. The Stochastic Volatility Model. The price of the risky asset follows the

stochastic differential equation:

dXt = σεtXtdW
∗
t , (3.1)

where the stochastic volatility is

σεt = F (Zεt ), (3.2)

and with Zεt being the scaled fOU introduced in the previous section which is adapted

to the Brownian motion Wt. Moreover, W ∗t is a Brownian motion that is correlated

to the stochastic volatility through

W ∗t = ρWt +
√

1− ρ2Bt, (3.3)

where the Brownian motion Bt is independent of Wt.

The function F is assumed to be one-to-one, positive-valued, smooth, bounded

and with bounded derivatives. Accordingly, the filtration Ft generated by (Bt,Wt)

is also the one generated by Xt. Indeed, it is equivalent to the one generated by

(W ∗t ,Wt), or (W ∗t , Z
ε
t ). Since F is one-to-one, it is equivalent to the one generated

by (W ∗t , σt). Since F is positive-valued, it is equivalent to the one generated by

(W ∗t , (σ
ε
t )

2), or Xt.

We denote the Hermite coefficients of the volatility function F with respect to

the invariant distribution of the fOU process by Ck :

Ck =

∫
R
Hk(z)F 2(σouz)p(z)dz, Hk(z) = (−1)kez

2/2 d
k

dzk
e−z

2/2, (3.4)

with p(z) = exp(−z2/2)/
√

2π. We use these in Appendix A to derive some technical

lemmas. Indeed, for a technical reason, we require that F satisfies the following

condition: there exists some α > 2 such that

∞∑
k=0

αkC2
k

k!
<∞. (3.5)
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As we have discussed above, the volatility driving process Zεt possesses long-range

correlation properties. As we now show the volatility process σεt itself inherits this

property.

Lemma 3.1. We denote, for j = 1, 2:

〈
F j
〉

=

∫
R
F (σouz)

jp(z)dz,
〈
F ′

j
〉

=

∫
R
F ′(σouz)

jp(z)dz, (3.6)

where p(z) is the pdf of the standard normal distribution.

1. The process σεt is a stationary random process with mean E[σεt ] = 〈F 〉 and

variance Var(σεt ) =
〈
F 2
〉
− 〈F 〉2, independently of ε.

2. The covariance function of the process σεt is of the form

Cov
(
σεt , σ

ε
t+s

)
=
( 〈
F 2
〉
− 〈F 〉2

)
Cσ
(s
ε

)
, (3.7)

where the correlation function Cσ satisfies Cσ(0) = 1 and

Cσ(s) =
1

Γ(2H − 1)

σ2
ou 〈F ′〉

2

〈F 2〉 − 〈F 〉2
s2H−2 + o

(
s2H−2

)
, for s� 1. (3.8)

Consequently, the process σεt possesses long-range correlation properties (i.e. its

correlation function is not integrable at infinity).

Proof. The fact that σεt is a stationary random process with mean 〈F 〉 is straight-

forward in view of the definition (3.2) of σεt .

For any t, s, the vector σ−1
ou (Zεt , Z

ε
t+s) is a Gaussian random vector with mean

(0, 0) and 2× 2 covariance matrix:

Cε =

 1 CZ(s/ε)

CZ(s/ε) 1

 .

Therefore, denoting Fc(z) = F (σouz)−〈F 〉, the covariance function of the process σεt

is

Cov(σεt , σ
ε
t+s) = E

[
Fc(σ

−1
ou Z

ε
t )Fc(σ

−1
ou Z

ε
t+s)

]
=

1

2π
√

detCε

∫∫
R2

Fc(z1)Fc(z2) exp
(
− (z1, z2)Cε−1(z1, z2)T

2

)
dz1dz2

= Ψ
(
CZ
(s
ε

))
,

with

Ψ(C) =
1

2π
√

1− C2

∫∫
R2

Fc(z1)Fc(z2) exp
(
− z2

1 + z2
2 − 2Cz1z2

2(1− C2)

)
dz1dz2 .
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This shows that Cov(σεt , σ
ε
t+s) is a function of s/ε only. Moreover, the function Ψ can

be expanded in powers of C for small C:

Ψ(C) =
1

2π

∫∫
R2

Fc(z1)Fc(z2) exp
(
− z2

1 + z2
2

2

)
dz1dz2

+C
1

2π

∫∫
R2

z1z2Fc(z1)Fc(z2) exp
(
− z2

1 + z2
2

2

)
dz1dz2 +O(C2), C � 1,

which gives with (2.6) the form (3.8) of the correlation function for σεt .

4. The Option Price. We aim at computing the option price defined as the

martingale

Mt = E
[
h(XT )|Ft

]
, (4.1)

where h is a smooth function. In fact weaker assumptions are possible for h, as we

only need to control the function Q
(0)
t (x) defined below rather than h.

We introduce the operator

LBS(σ) = ∂t +
1

2
σ2x2∂2

x, (4.2)

that is, the standard Black-Scholes operator at zero interest rate and (constant)

volatility σ.

We next exploit the fact that the price process is a martingale to obtain an

approximation, via constructing an explicit function Qεt (x) so that QεT (x) = h(x) and

so that Qεt (Xt) is a martingale to first-order corrected terms. Then, indeed Qεt (Xt)

gives the approximation for Mt to this order.

The following proposition gives the first-order correction to the expression for the

martingale Mt in the regime of ε small.

Proposition 4.1. When ε is small, we have

Mt = Qεt (Xt) + o(ε1−H), (4.3)

where

Qεt (x) = Q
(0)
t (x) +

(
x2∂2

xQ
(0)
t (x)

)
φεt + ε1−H σ̃ρQ

(1)
t (x), (4.4)

Q
(0)
t (x) is deterministic and given by the Black-Scholes formula with constant volatility

σ,

LBS(σ)Q
(0)
t (x) = 0, Q

(0)
T (x) = h(x), (4.5)
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with

σ2 =
〈
F 2
〉

=

∫
R
F (σouz)

2p(z)dz, σ̃ = 〈F 〉 =

∫
R
F (σouz)p(z)dz, (4.6)

p(z) the pdf of the standard normal distribution, φεt is the random component

φεt = E
[1

2

∫ T

t

(
(σεs)

2 − σ2
)
ds
∣∣Ft], (4.7)

and Q
(1)
t (x) is the deterministic correction

Q
(1)
t (x) = x∂x

(
x2∂2

xQ
(0)
t (x)

)
Dt, (4.8)

with Dt defined by

Dt = D(T − t)H+ 1
2 , D =

σou 〈FF ′〉
Γ(H + 3

2 )
=

σou

Γ(H + 3
2 )

∫
R
FF ′(σouz)p(z)dz. (4.9)

As shown in Lemma B.3 (first item), as ε → 0, the zero-mean random variable

εH−1φεt has a variance that converges to σ2
φ(T − t)2H , with

σ2
φ = σ2

ou 〈FF ′〉
2
( 1

Γ(2H + 1) sin(πH)
− 1

2HΓ(H + 1
2 )2

)
, (4.10)

moreover, it converges in distribution to a Gaussian random variable with mean zero

and variance σ2
φ(T − t)2H . This shows that the two corrective terms in (4.4) are of the

same order ε1−H , but the first one is random, zero-mean and approximately Gaussian

distributed, while the second one is deterministic.

Proof. For any smooth function qt(x), we have by Itô’s formula

dqt(Xt) = ∂tqt(Xt)dt+
(
x∂xqt

)
(Xt)σ

ε
t dW

∗
t +

1

2

(
x2∂2

xqt
)
(Xt)(σ

ε
t )

2dt

= LBS(σεt )qt(Xt)dt+
(
x∂xqt

)
(Xt)σ

ε
t dW

∗
t ,

the last term being a martingale. Therefore, by (4.5), we have

dQ
(0)
t (Xt) =

1

2

(
(σεt )

2 − σ2
)(
x2∂2

x

)
Q

(0)
t (Xt)dt+ dN

(0)
t , (4.11)

with N
(0)
t a martingale:

dN
(0)
t =

(
x∂x

)
Q

(0)
t (Xt)σ

ε
t dW

∗
t .

Note also that in Eq. (4.11) (and below) we use the notation

(
x2∂2

x

)
Q

(0)
t (Xt) =

((
x2∂2

x

)
Q

(0)
t (x)

) ∣∣
x=Xt

.
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Let φεt be defined by (4.7). We have

φεt = ψεt −
1

2

∫ t

0

(
(σεs)

2 − σ2
)
ds,

where the martingale ψεt is defined by

ψεt = E
[1

2

∫ T

0

(
(σεs)

2 − σ2
)
ds
∣∣Ft]. (4.12)

We can write

1

2

(
(σεt )

2 − σ2
)(
x2∂2

x

)
Q

(0)
t (Xt)dt =

(
x2∂2

x

)
Q

(0)
t (Xt)dψ

ε
t −

(
x2∂2

x

)
Q

(0)
t (Xt)dφ

ε
t .

By Itô’s formula:

d
[
φεt
(
x2∂2

x

)
Q

(0)
t (Xt)

]
=
(
x2∂2

x

)
Q

(0)
t (Xt)dφ

ε
t +

(
x∂x

(
x2∂2

x

))
Q

(0)
t (Xt)σ

ε
tφ

ε
tdW

∗
t

+LBS(σεt )
(
x2∂2

x

)
Q

(0)
t (Xt)φ

ε
tdt

+
(
x∂x

(
x2∂2

x

))
Q

(0)
t (Xt)σ

ε
t d 〈φε,W ∗〉t .

Since LBS(σεt ) = LBS(σ) + 1
2

(
(σεt )

2 − σ2
)(
x2∂2

x

)
and LBS(σ)

(
x2∂2

x

)
Q

(0)
t (x) = 0, this

gives

d
[
φεt
(
x2∂2

x

)
Q

(0)
t (Xt)

]
= −1

2

(
(σεt )

2 − σ2
)(
x2∂2

x

)
Q

(0)
t (Xt)dt

+
1

2

(
(σεt )

2 − σ2
)(
x2∂2

x

(
x2∂2

x

))
Q

(0)
t (Xt)φ

ε
tdt

+
(
x∂x

(
x2∂2

x

))
Q

(0)
t (Xt)σ

ε
t d 〈φε,W ∗〉t

+
(
x∂x

(
x2∂2

x

))
Q

(0)
t (Xt)σ

ε
tφ

ε
tdW

∗
t +

(
x2∂2

x

)
Q

(0)
t (Xt)dψ

ε
t .

We have 〈φε,W ∗〉t = 〈ψε,W ∗〉t = ρ 〈ψε,W 〉t and therefore

d
[
(φεt
(
x2∂2

x

)
Q

(0)
t (Xt)

]
= −1

2

(
(σεt )

2 − σ2
)(
x2∂2

x

)
Q

(0)
t (Xt)dt

+
1

2

(
(σεt )

2 − σ2
)(
x2∂2

x

(
x2∂2

x

))
Q

(0)
t (Xt)φ

ε
tdt

+ρ
(
x∂x

(
x2∂2

x

))
Q

(0)
t (Xt)σ

ε
t d 〈ψε,W 〉t

+dN
(1)
t ,

where N
(1)
t is a martingale,

dN
(1)
t =

(
x∂x

(
x2∂2

x

))
Q

(0)
t (Xt)σ

ε
tφ

ε
tdW

∗
t +

(
x2∂2

x

)
Q

(0)
t (Xt)dψ

ε
t .

Therefore:

d
[
Q

(0)
t (Xt) + φεt

(
x2∂2

x

)
Q

(0)
t (Xt)

]
=

1

2

(
(σεt )

2 − σ2
)(
x2∂2

x

(
x2∂2

x

))
Q

(0)
t (Xt)φ

ε
tdt

+ρ
(
x∂x

(
x2∂2

x

))
Q

(0)
t (Xt)σ

ε
t d 〈ψε,W 〉t

+dN
(0)
t + dN

(1)
t . (4.13)
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The deterministic function Q
(1)
t defined by (4.8) satisfies

LBS(σ)Q
(1)
t (x) = −

(
x∂x

(
x2∂2

xQ
(0)
t (x)

))
θt, Q

(1)
T (x) = 0,

where θt = −dDt/dt is such that

d 〈ψε,W 〉t =
(
ε1−Hθt + θ̃εt

)
dt,

as shown in Lemmas B.1-B.2 with θ̃εt characterized in Eq. (B.9). Applying Itô’s

formula

dQ
(1)
t (Xt) = LBS(σεt )Q

(1)
t (Xt)dt+

(
x∂x

)
Q

(1)
t (Xt)σ

ε
t dW

∗
t

= LBS(σ)Q
(1)
t (Xt)dt+

1

2

(
(σεt )

2 − σ2
)(
x2∂2

x

)
Q

(1)
t (Xt)dt

+
(
x∂x

)
Q

(1)
t (Xt)σ

ε
t dW

∗
t

=
1

2

(
(σεt )

2 − σ2
)(
x2∂2

x

)
Q

(1)
t (Xt)dt−

(
x∂x

(
x2∂2

x

))
Q

(0)
t (Xt)θtdt+ dN

(2)
t ,

where N
(2)
t is a martingale,

dN
(2)
t =

(
x∂x

)
Q

(1)
t (Xt)σ

ε
t dW

∗
t .

Therefore

d
[
Q

(0)
t (Xt) + φεt

(
x2∂2

x

)
Q

(0)
t (Xt) + ε1−Hρσ̃Q

(1)
t (Xt)

]
=

1

2

(
(σεt )

2 − σ2
)(
x2∂2

x

(
x2∂2

x

))
Q

(0)
t (Xt)φ

ε
tdt+

ε1−H

2
ρσ̃
(
(σεt )

2 − σ2
)(
x2∂2

x

)
Q

(1)
t (Xt)dt

+ε1−Hρ
(
x∂x

(
x2∂2

x

))
Q

(0)
t (Xt)(σ

ε
t − σ̃)θtdt+ ρ

(
x∂x

(
x2∂2

x

))
Q

(0)
t (Xt)σ

ε
t θ̃
ε
tdt

+dN
(0)
t + dN

(1)
t + ε1−Hρσ̃dN

(2)
t . (4.14)

We next show that the first four terms of the right-hand side are of small order ε1−H .

We introduce for any t ∈ [0, T ]:

R
(1)
t,T =

∫ T

t

1

2

(
x2∂2

x

(
x2∂2

x

))
Q(0)
s (Xs)

(
(σεs)

2 − σ2
)
φεsds, (4.15)

R
(2)
t,T =

∫ T

t

ε1−H

2
ρσ̃
(
x2∂2

x

)
Q(1)
s (Xs)

(
(σεs)

2 − σ2
)
ds, (4.16)

R
(3)
t,T =

∫ T

t

ε1−Hρ
(
x∂x

(
x2∂2

x

))
Q(0)
s (Xs)θs(σ

ε
s − σ̃)ds, (4.17)

R
(4)
t,T =

∫ T

t

ρ
(
x∂x

(
x2∂2

x

))
Q(0)
s (Xs)σ

ε
s θ̃
ε
sds. (4.18)

We show that, for j = 1, 2, 3, 4,

lim
ε→0

εH−1 sup
t∈[0,T ]

E
[
(R

(j)
t,T )2

]1/2
= 0. (4.19)
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Step 1: Proof of (4.19) for j = 1.

We denote

Y (1)
s =

(
x2∂2

x

(
x2∂2

x

))
Q(0)
s (Xs)

and

γεt =
1

2

∫ t

0

(
(σεs)

2 − σ2
)
φεsds, (4.20)

so that

R
(1)
t,T =

∫ T

t

Y (1)
s

dγεs
ds

ds.

Note that Y
(1)
s is a bounded semimartingale with bounded quadratic variations, so

that its mean square increments E[(Y
(1)
s −Y (1)

s′ )2] are uniformly bounded by K|s−s′|.

Let N be a positive integer. We denote tk = t+ (T − t)k/N . We have

R
(1)
t,T =

N−1∑
k=0

∫ tk+1

tk

Y (1)
s

dγεs
ds

ds = R
(1,a)
t,T +R

(1,b)
t,T ,

R
(1,a)
t,T =

N−1∑
k=0

∫ tk+1

tk

Y
(1)
tk

dγεs
ds

ds =

N−1∑
k=0

Y
(1)
tk

(
γεtk+1

− γεtk
)
,

R
(1,b)
t,T =

N−1∑
k=0

∫ tk+1

tk

(
Y (1)
s − Y (1)

tk

)dγεs
ds

ds.

Note that we have by Minkowski’s inequality:

E
[
(R

(1,a)
t,T )2

]1/2 ≤ 2

N∑
k=0

‖Y (1)‖∞E[(γεtk)2]1/2 ≤ 2(N + 1)‖Y (1)‖∞ sup
s∈[0,T ]

E[(γεs)2]1/2,

so that, by Lemma B.4, for any fixed N :

lim
ε→0

εH−1 sup
t∈[0,T ]

E
[
(R

(1,a)
t,T )2

]1/2
= 0.

On the other hand

E
[
(R

(1,b)
t,T )2

]1/2 ≤ ‖F‖2∞ N−1∑
k=0

∫ tk+1

tk

E[
(
Y (1)
s − Y (1)

tk

)4
]1/4E[(φεs)

4]1/4ds

≤ K
N−1∑
k=0

∫ tk+1

tk

(s− tk)1/2ds sup
s∈[0,T ]

E[(φεs)
4]1/4

≤ K ′√
N

sup
s∈[0,T ]

E[(φεs)
4]1/4.
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Therefore, by Lemma B.3 (fourth item), we get

lim sup
ε→0

εH−1 sup
t∈[0,T ]

E
[
(R

(1)
t,T )2

]1/2 ≤ lim sup
ε→0

εH−1 sup
t∈[0,T ]

E
[
(R

(1,b)
t,T )2

]1/2 ≤ K ′√
N
.

Since this is true for any N , we get the desired result.

Step 2: Proof of (4.19) for j = 2.

We denote

Y (2)
s = ρσ̃

(
x2∂2

x

)
Q(1)
s (Xs)

and

κεt =
ε1−H

2

∫ t

0

(
(σεs)

2 − σ2
)
ds, (4.21)

so that

R
(2)
t,T =

∫ T

t

Y (2)
s

dκεs
ds

ds.

Note that Y
(2)
s is a bounded semimartingale with bounded quadratic variations. Let

N be a positive integer. We denote as above tk = t+ (T − t)k/N . We then have

R
(2)
t,T =

N−1∑
k=0

∫ tk+1

tk

Y (2)
s

dκεs
ds

ds = R
(2,a)
t,T +R

(2,b)
t,T ,

R
(2,a)
t,T =

N−1∑
k=0

∫ tk+1

tk

Y
(2)
tk

dκεs
ds

ds =

N−1∑
k=0

Y
(2)
tk

(
κεtk+1

− κεtk
)
,

R
(2,b)
t,T =

N−1∑
k=0

∫ tk+1

tk

(
Y (2)
s − Y (2)

tk

)dκεs
ds

ds.

Then, on the one hand

E
[
(R

(2,a)
t,T )2

]1/2 ≤ 2

N∑
k=0

‖Y (2)‖∞E[(κεtk)2]1/2 ≤ 2(N + 1)‖Y (2)‖∞ sup
s∈[0,T ]

E[(κεs)
2]1/2,

so that, by Lemma B.6,

lim
ε→0

εH−1 sup
t∈[0,T ]

E
[
(R

(2,a)
t,T )2

]1/2
= 0.

On the other hand

E
[
(R

(2,b)
t,T )2

]1/2 ≤ ε1−H‖F‖2∞
N−1∑
k=0

∫ tk+1

tk

E[
(
Y (2)
s − Y (2)

tk

)2
]1/2ds

≤ Kε1−H
N−1∑
k=0

∫ tk+1

tk

(s− tk)1/2ds

≤ K ′ε1−H
√
N

.
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Therefore, we get

lim sup
ε→0

εH−1 sup
t∈[0,T ]

E
[
(R

(2)
t,T )2

]1/2 ≤ lim sup
ε→0

εH−1 sup
t∈[0,T ]

E
[
(R

(2,b)
t,T )2

]1/2 ≤ K ′√
N
.

Since this is true for any N , we get the desired result.

Step 3: Proof of (4.19) for j = 3.

This proof follows the same lines as the proof of Step 2 with

ηεt = ε1−H
∫ t

0

(
σεs − σ̃

)
ds, (4.22)

instead of κεt , and using that θt is bounded. We then get the desired result by Lemma

B.5.

Step 4: Proof of (4.19) for j = 4.

We have

E
[
(R

(4)
t,T )2

]1/2 ≤ K ∫ T

t

E
[
(θ̃εs)

2
]1/2

ds ≤ K ′ sup
s∈[0,T ]

E
[
(θ̃εs)

2
]1/2

.

By Lemma B.2,

lim
ε→0

εH−1 sup
t∈[0,T ]

E
[
(R

(4)
t,T )2

]1/2
= 0.

We can now complete the proof of Proposition 4.1. In (4.4) we introduced the

approximation:

Qεt (x) = Q
(0)
t (x) + φεt

(
x2∂2

x

)
Q

(0)
t (x) + ε1−Hρσ̃Q

(1)
t (x).

We then have

QεT (x) = h(x),

because Q
(0)
T (x) = h(x), φεT = 0, and Q

(1)
T (x) = 0. Let us denote

Rt,T = R
(1)
t,T +R

(2)
t,T +R

(3)
t,T +R

(4)
t,T , (4.23)

Nt =

∫ t

0

dN (0)
s + dN (1)

s + ε1−Hρσ̃dN (2)
s . (4.24)

By (4.14) we have

QεT (Xt)−Qεt (Xt) = Rt,T +NT −Nt.
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Therefore

Mt = E
[
h(XT )|Ft

]
= E

[
QεT (XT )|Ft

]
= Qεt (Xt) + E

[
Rt,T |Ft

]
+ E

[
NT −Nt|Ft

]
= Qεt (Xt) + E

[
Rt,T |Ft

]
, (4.25)

which gives the desired result because E
[
Rt,T |Ft

]
is of order o(ε1−H) in L2.

5. Call Price Correction and Implied Volatility. We denote the Black-

Scholes call price, with current time t, maturity T , strike K, underlying value x, and

volatility σ, by CBS(t, x;K,T ;σ), so that Q
(0)
t in Eq. (4.5) is

Q
(0)
t (x) = CBS(t, x;K,T ;σ).

Indeed, CBS gives an explicit formula for the price in the case with constant volatility.

In the situation with a stochastic volatility as considered here no explicit pricing

formula exists. However, as shown in Eq. (4.4) we can get an asymptotic expression

for the price in the case with the stochastic volatility (1.5) as a correction to Q
(0)
t (x),

the Black-Scholes price evaluated at the effective or “homogenized” volatility σ̄. Here,

we show that this corrected price takes on a rather simple generic form in the two

parameters, relative time to maturity and moneyness. This representation then leads

to a simple representation for the implied volatility as we show below. The long-range

character of the volatility fluctuations indeed has a strong impact on the form of the

implied volatility and this observation is important in a calibration context.

We denote the time to maturity by τ = T − t and we introduce the characteristic

diffusion time τ̄ = 2/σ2 and the dimensionless effective skewness factor:

aF = ε1−H ρσ̃Dτ̄
H

23/2σ
= ε1−H σ̃σouρ 〈FF ′〉 τ̄H

23/2σΓ(H + 3/2)
, (5.1)

with σ, σ̃ and D given in Proposition 4.1 and the correlation ρ introduced in Eq.

(3.3).

Lemma 5.1. The price correction in Eq. (4.4), normalized by the strike K, can

be written in the form

1

K

(
φεt
(
x2∂2

x

)
Q

(0)
t (x) + ε1−Hρσ̃Q

(1)
t (x)

)
=

(
e−d

2
1/2 x

K√
π

){
φεt
2

(τ
τ̄

)−1/2

+ aF

[(τ
τ̄

)H
+
(τ
τ̄

)H−1

log
(K
x

)]}
, (5.2)

with

d1 =

√
τ̄

2τ

[τ
τ̄
− log

(K
x

)]
. (5.3)
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Here, the dimensionless random and deterministic correction coefficients are small of

order

φεt = O

(( ε
τ̄

)1−H (τ
τ̄

)H)
, aF = O

( ε
τ̄

)1−H
, (5.4)

where we used that φεt as defined in Proposition 4.1 is centered and with standard

deviation

Var
(
φεt
)1/2

=
( ε
τ̄

)1−H (τ
τ̄

)H
(τ̄σφ) + o(ε1−H), (5.5)

with σφ defined by Eq. (4.10) (see also Eq. (B.14) in Lemma B.3). We comment in

more detail about the statistical structure of φεt in the next section.

It follows from the above that the normalized price correction depends on the two

parameters, the moneyness K/x and the relative time to maturity τ/τ̄ , and exhibits

a term structure in fractional powers of relative time to maturity.

In Figure 5.1 we show the relative price correction in Eq. (5.2) as function of

relative time to maturity τ/τ̄ for three values of the moneyness K/x. The solid lines

plot the mean relative price correction and the dashed lines give the mean plus/minus

one standard deviation. We use here H = 0.6, aF = 0.1, and
(
(ε/τ̄)(1−H)τ̄σφ

)
= 0.04.

The mean relative price correction is largest for a mid range of times to maturity.

For very short times to maturity relative to the effective diffusion time the effect of

the volatility fluctuations are small, while for large times the rapid mean reversion

“averages” out the effect of the fluctuations. Note, however, that at the money the

random component of the price correction decays slowly as(τ
τ̄

)H−1/2

,

as τ → 0 while “around the money” with moneyness K/x different from unity the

decay is like (τ
τ̄

)H−1/2

exp
(
− τ̄ | log(K/x)|2

4τ

)
.

This reflects the fact that the vega is diverging in this limit so that the sensitivity

to volatility fluctuations becomes large. We remark that this would affect calibration

schemes using at the money data. Moreover, results regarding small time asymp-

totics for the coherent implied volatility becomes questionable in this context as the

dominating contribution comes from the random component of the price correction.
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Note also that the parameters chosen are not calibrated to market data, this will be

considered in another publication.

In Figure 5.2 we show the price correction surface as function of relative time to

maturity τ/τ̄ and moneyness K/x.

We next present the proof of Lemma 5.1.

Proof. For the European call option with payoff h(x) = (x−K)+ we have explicitly

CBS(t, x;K,T ;σ) = xΦ

(
1

σ
√
T − t

log
( x
K

)
+
σ
√
T − t
2

)
−KΦ

(
1

σ
√
T − t

log
( x
K

)
− σ
√
T − t
2

)
,

where Φ is the cumulative distribution function of the standard normal distribution.

We then have in particular the “Greek” relationships for the call price:

∂σCBS = (T − t)σx2∂2
xCBS, x∂x∂σCBS =

(
1

2
+

log K
x

σ2(T − t)

)
∂σCBS.

We then get

x2∂2
xQ

(0)
t (x) =

1

σ(T − t)
∂σ̄CBS(t, x;K,T ;σ), (5.6)

x∂xx
2∂2
xQ

(0)
t (x) =

[
1

2σ(T − t)
+

log K
x

σ3(T − t)2

]
∂σ̄CBS(t, x;K,T ;σ), (5.7)

where the “Vega” is given by

∂σCBS(t, x;K,T ;σ) =
xe−d

2
1/2
√
T − t√

2π
, d1 =

1
2σ

2(T − t)− log K
x

σ
√
T − t

. (5.8)

Then, with Q
(1)
t (x) given in Eq. (4.8) we can identify the form of the price correction

as:

φεt
(
x2∂2

x

)
Q

(0)
t (x) + ε1−Hρσ̃Q

(1)
t (x)

= φεt
(
x2∂2

x

)
Q

(0)
t (x) + ε1−Hρσ̃D(t)x∂xx

2∂2
xQ

(0)
t (x)

= φεt

(
xe−d

2
1/2

σ
√

2π(T − t)

)
+ ε1−H

(
xρσ̃De−d

2
1/2

√
2π

)[
(T − t)H

2σ
+

log K
x

σ3(T − t)1−H

]
,(5.9)

which in turn gives (5.2).

We next consider the implied volatility associated with the price correction. For

the stochastic volatility model in Eq. (1.5) we want to identify the implied volatility

It so that in terms of the corrected price in Lemma 4.1 we have:

CBS(t, x;K,T ; It) = Q
(0)
t (x) + φεt

(
x2∂2

x

)
Q

(0)
t (x) + ε1−Hρσ̃Q

(1)
t (x). (5.10)
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We define the relative implied volatility correction, δIt, by

It = σ(1 + δIt). (5.11)

Lemma 5.2. The relative implied volatility correction has the form:

δIt =
φεt
2

(τ
τ̄

)−1

+ aF

[ (τ
τ̄

)H−1/2

+
(τ
τ̄

)H−3/2

log
(K
Xt

)]
+ o(ε1−H), (5.12)

where φεt is defined by (4.7) and aF by (5.1).

In Figure 5.3 we show the implied volatility correction in Eq. (5.12) as function of

relative time to maturity τ/τ̄ for three values of the moneyness K/x. We again used

H = 0.6, aF = 0.1 and
(
(ε/τ̄)(1−H)τ̄σφ

)
= 0.04. Note that due to the form of the

“vega” , the sensitivity of the price to the volatility, the form of the implied volatility

surface is very different from that of the price correction. In Figure 5.4 we show the

implied volatility correction surface as function of relative time to maturity τ/τ̄ and

moneyness K/x.

Proof. We find by using Eqs. (5.9) and (5.8) that the implied volatility is given

by

It = σ +
φεt

σ(T − t)
+ ε1−H σ̃ρDt

[ 1

2σ(T − t)
+

log K
Xt

σ3(T − t)2

]
+ o(ε1−H). (5.13)

Since Dt is deterministic and given by (4.9), we can then write

It = σ +
φεt

σ(T − t)
(5.14)

+ ε1−H σ̃σouρ 〈FF ′〉
σΓ(H + 3

2 )

[1

2
(T − t)H− 1

2 +
log K

Xt

σ2(T − t) 3
2−H

]
+ o(ε1−H),

and the Lemma follows.

The first two terms in Eq. (5.14) can be combined and rewritten as (up to terms

of order o(ε1−H)):

σ +
φεt

σ(T − t)
= E

[ 1

T − t

∫ T

t

(σεs)
2ds
∣∣Ft]1/2 + o(ε1−H). (5.15)

Since Dt is deterministic and given by (4.9), we can then write

It = E
[ 1

T − t

∫ T

t

(σεs)
2ds
∣∣Ft]1/2

+σaF

[(τ
τ̄

)H−1/2

+
(τ
τ̄

)H−3/2

log

(
K

Xt

)]
+ o(ε1−H), (5.16)

so that the implied volatility is the expected effective volatility over the remaining

time horizon conditioned on the present and with an added skewness correction.
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In view of Eq. (5.5), for small time to maturity the fourth term (in τH−
3
2 )

dominates in (5.12). We remark here that this is related to the fact that the small

parameter in our problem is the mean reversion time so that for any order one time

to maturity in this regime the volatility has enough time to fluctuate and mean revert

giving a price correction as in Lemma 5.1. Then with the “Vega”, ∂σCBS, being mall

away from the money, see Eq. (5.8), we get a strong moneyness dependence and the

implied volatility blows up for small time to maturity.

Moreover, for large time to maturity the third term (in τH−
1
2 ) dominates in

(5.12). The long-range dependence gives smooth volatility fluctuations which gives

an implied volatility that blows up for large time to maturity and with the current

value for the underlying being less important in this large time to maturity regime.

6. The t-T Process and the Stochastic Implied Surface. We introduced

in Eq. (4.7) the stochastic correction coefficient φεt ≡ φεt,T which gives the random

component of the price correction and the implied volatility and where we here ex-

plicitly display the dependence on maturity T . Note that if the volatility process had

been a Markovian process then the correction would have been deterministic, as in

Fouque et al. (2011). The presence of long-range memory in the volatility process

means that information from the past (volatility path) must be carried forward and

this makes the price correction relative to the price at the homogenized volatility a

stochastic process, and correspondingly for the implied volatility.

We here discuss the statistical structure of the random field which describes the

implied volatility surface in the scaling regime that we consider. The implied volatility

is the central quantity in typical calibration processes and to design efficient estima-

tors for both the coherent and incoherent parts of the implied volatility, moreover,

to characterize the resulting estimation precision, it is important to understand the

statistical fluctuations of the observed implied surface. We give a precise characteri-

zation of these fluctuations below. The fluctuations of the implied volatility for large

times to maturity (relative to τ̄) become stronger for larger Hurst exponent because

the larger Hurst exponent gives stronger temporal coherence and a larger correction

to the anticipated volatility. On the other hand for small times to maturity the fluc-

tuations become larger for small Hurst exponent because this gives a rougher process

with large fluctuations even over very small intervals. It is also interesting to note

that the correlation structure of the implied volatility surface in fact encodes informa-
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tion about the long-range character of the underlying stochastic volatility. Observing

for instance at the money implied volatility fluctuations as function of current time

for fixed time to maturity gives information that makes it possible to estimate the

Hurst exponent and check for consistency of the modeling framework. In Livieri et

al. (2017) observed at the money implied volatility was used to estimate the Hurst

exponent. The authors found a coefficient that was slightly larger than the corre-

sponding estimates using historical data and explained this discrepancy in terms of

smoothing effect due to the remaining time to maturity. To construct and interpret

estimators of this kind a model for the implied surface as a random field relating it

to the underlying volatility parameters is clearly essential.

In under to understand the implied volatility random field note first that it follows

from Lemma B.3 that as ε → 0, the random process εH−1φεt,T /[σφ(T − t)H ], t <

T , converges in distribution (in the sense of finite-dimensional distributions) to a

Gaussian stochastic process ψt,T , t < T , the normalized t-T correction process, with

mean zero, variance one, and covariance E[ψt,Tψt′,T ′ ] = Cφ(t, t′;T, T ′) for any t ∈

[0, T ), t′ ∈ [0, T ′). The four-parameter function Cφ is given by Eq. (B.16). We discuss

next in more detail the t-T process ψt,T , a two-parameter process of current time t

and maturity T . This process is scaled to have constant unit variance, however, is

a non-stationary Gaussian process supported for 0 < t < T . As we see below, close

to maturity t ≈ T , the process is strongly affected by the presence of the maturity

boundary.

Let us first consider the case of a fixed maturity T and introduce the process

ψ0(t;T ) = ψt,T , t ∈ [0, T ]. (6.1)

On short scales relative to the time to maturity, i.e. for |t − t′| � T − t, it follows

from Eq. (B.16) that the process (ψ0(t;T ))t∈[0,T ] decorrelates as

E
[
ψ0(t;T )ψ0(t′;T )

]
∼ 1− |t− t′|

2(T − t)
,

that is as a Markov process on short scales. More generally, the autocovariance

function of (ψ0(t;T ))t∈[0,T ] is

E
[
ψ0(t;T )ψ0(t′;T )

]
= C(∆0(t, t′;T )),

C(∆) =

∫∞
0
du
[(
u+ |∆|+1√

1−∆2

)H− 1
2 − uH− 1

2

][(
u+ |∆|+1√

1−∆2

)H− 1
2 −

(
u+ 2|∆|√

1−∆2

)H− 1
2
]

∫∞
0
du
[
(1 + u)H−

1
2 − uH− 1

2

]2 ,
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with

∆0(t, t′;T ) =
t′ − t

|2T − (t+ t′)|
(6.2)

which shows that the correlation function of the process (ψ0(t;T ))t∈[0,T ] depends

only on this relative separation so that we have a situation with a canonical relative

decorrelation that depends only on the times to maturity τ = T − t, τ ′ = T − t′.

Therefore, we introduce the process (ψ1(τ ;T ))τ∈[0,T ] defined by

ψ1(τ ;T ) = ψT−τ,T , τ ∈ [0, T ]. (6.3)

The process (ψ1(τ ;T ))τ∈[0,T ] is Gaussian with mean zero and autocovariance function

E
[
ψ1(τ ;T )ψ1(τ ′;T )

]
= C(∆1(τ, τ ′)),

with C as above and

∆1(τ, τ ′) =
τ − τ ′

|τ + τ ′|
. (6.4)

For |τ−τ ′| � τ the process decorrelates on the scale τ so that the process fluctuations

become more rapid close to maturity. Close to maturity the price fluctuations become

smaller, however, when we magnify them we see fluctuations on smaller scales for

smaller time to maturity which reflects the self similarity of the driving volatility

factor. In Figure 6.1 we show the correlation function ∆1 7→ C(∆1) as function of

the relative separation time ∆1 ∈ [−1, 1] and H = 0.6. The process decorrelates as

a Markov process on short scales and indeed as one of the times to maturity goes to

zero (relative to the other time) the correlation goes rapidly to zero.

Note that it follows from the expression (6.4) for ∆1 that it is scale invariant in

that ∆1(aτ, aτ ′) = ∆1(τ, τ ′) for a > 0, giving rapid fluctuations for small times to

maturity. The process has indeed a self-similar property. We have in distribution:

(
ψ1(τ ; 1)

)
τ∈[0,1]

∼
(
ψ1(τT ;T )

)
τ∈[0,1]

,

for any T > 0. In Figure 6.2 we show two realizations of the process ψ1(τ ; 1) as a

function of time to maturity τ .

One can also investigate the structure of the t-T process for a fixed time to ma-

turity τ , as a function of time t. Thus, if we observe the price for a given time to

maturity, we would like to know how the price correction, respectively the implied
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volatility, would fluctuate with respect to the current time, or time translation. Ac-

cordingly we consider the process

ψ2(t; τ) = ψt,τ+t, t ≥ 0, (6.5)

for fixed τ > 0. The process (ψ2(t; τ))t∈[0,∞) is Gaussian with mean zero and auto-

covariance function

E
[
ψ2(t; τ)ψ2(t′; τ)

]
= C2(∆2(t, t′; τ)), (6.6)

C2(∆) =

∫∞
0
du
[
(u+ 1)H−

1
2 − uH− 1

2

][
(u+ 1 + |∆|)H− 1

2 − (u+ |∆|)H− 1
2

]∫∞
0
du
[
(1 + u)H−

1
2 − uH− 1

2

]2 ,

with

∆2(t, t′; τ) =
t′ − t
τ

. (6.7)

The expression of ∆2 shows that the coherence time of this process scales with time to

maturity τ . We see again that the rescaled implied volatility surface fluctuations are

more rapid closer to maturity. We also see that on transects parallel to the maturity

boundary in the t, T plane these fluctuations are stationary, this is consistent with

the fact that we have an underlying consistent model with a stationary volatility

driving factor. The fluctuations moreover have a self-similar property. We have in

distribution: (
ψ2(t; 1)

)
t∈[0,∞)

∼
(
ψ2(τt; τ)

)
t∈[0,∞)

,

for any τ > 0. The autocovariance function of (ψ2(t; 1))t∈[0,∞) is plotted in Figure

6.3. In the figure one can see the rapid decay at the origin followed by a long-range

behavior. This shows how the implied surface decorrelates as we move in time. In

Figure 6.4 we show the autocorrelation function in a log-log plot with the dashed

line corresponding to the correlation decay |t′ − t|2H−2. In Figure 6.5 we show two

realizations of the process ψ2(t; 1).

Finally, it is of interest to consider the case where we evaluate the stochastic

correction factor as function of time to maturity for fixed current time t:

ψ3(τ ; t) = ψt,t+τ , τ ≥ 0. (6.8)

The process (ψ3(τ ; t))τ∈[0,∞) is Gaussian with mean zero and autocovariance function

E
[
ψ3(τ ; t)ψ3(τ ′; t)

]
= C3(∆3(τ, τ ′)),

C3(∆) =

∫∞
0
du
[
(u+ 1/

√
1 + |∆|)H− 1

2 − uH− 1
2

][
(u+

√
1 + |∆|)H− 1

2 − uH− 1
2

]∫∞
0
du
[
(1 + u)H−

1
2 − uH− 1

2

]2 ,
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with

∆3(τ, τ ′) =
τ − τ ′

τ ∧ τ ′
. (6.9)

This covariance function is plotted in Figure 6.6. Note that it follows from the expres-

sion (6.9) for ∆3 that it is scale invariant in that ∆3(aτ, aτ ′) = ∆3(τ, τ ′) for a > 0, so

that again the process fluctuates more rapidly for small maturities. The distribution

of the process (ψ3(τ ; t))τ∈[0,∞) does not depend on t and it has a self-similar property.

For any a > 0, we have in distribution:

(
ψ3(τ ; t)

)
τ∈[0,∞)

∼
(
ψ3(aτ ; t)

)
τ∈[0,∞)

.

In Figure 6.7 we show two realizations of the process (ψ3(τ ; t))τ∈[0,1).

7. Conclusion. We have considered a continuous time stochastic volatility

model with long-range correlation properties. We consider the regime of fast mean

reversion. This makes it possible to derive an explicit expression for the European call

option price and the implied volatility. Specifically the volatility is a smooth function

of a fractional Ornstein-Uhlenbeck process. The analysis of such a non-Markovian

situation is challenging. To the best of our knowledge we present the first analyt-

ical expression for the price for general maturities when the volatility fluctuations

are order one. So far the price computations for such situations have been based on

numerical approximations. The main result from the applied view point is then the

form of the fractional term structure we get for the implied volatility surface. Indeed

we get an implied volatility that grows large with time to maturity while generating

a strong skew for short times to maturity consistently with common observations.

We stress that in our formulation the mean reversion time is small compared to any

fixed maturity as we consider a fast mean reverting process. Note finally that we have

considered the case of processes with long-range correlation properties with the Hurst

exponent H > 1/2 explaining the growth of implied volatility for large maturity.

A. Hermite Decomposition of the Stochastic Volatility Model. We de-

note

F̃ (z) = F (σouz)
2. (A.1)
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Because E[F̃ (Z)2] < ∞ is finite when Z is a standard normal variable, the function

F̃ can be expanded in terms of the Hermite polynomials

Hk(z) = (−1)kez
2/2 d

k

dzk
e−z

2/2 (A.2)

and the series

∞∑
k=0

Ck
k!
Hk(z), (A.3)

with

Ck = E
[
Hk(Z)F̃ (Z)

]
=

∫
R
Hk(z)F̃ (z)p(z)dz, (A.4)

converges in L2(R, p(z)dz) to F̃ (z). The Hermite polynomials satisfy

E[Hk(Z)Hj(Z)] =

∫
R
Hk(z)Hj(z)p(z)dz = δkjk!,

and we have
∑∞
k=0

C2
k

k! = E[F̃ (Z)2] <∞. Note that C0 =
〈
F 2
〉
.

Lemma A.1. If there exists α > 2 such that the function F̃ defined by (A.1)

satisfies

∞∑
k=0

αkC2
k

k!
<∞, (A.5)

then the random process

Iεt =

∫ t

0

F 2(Zεs )−
〈
F 2
〉
ds (A.6)

satisfies

sup
t∈[0,T ]

E[(Iεt )4] ≤ Kε4−4H , (A.7)

for some constant K.

Proof. Denoting Z̃εt = σ−1
ou Z

ε
t , which is a zero-mean Gaussian process with co-

variance function E[Z̃εt Z̃
ε
t+s] = CZ(s/ε), we have

Iεt =

∫ t

0

F̃ (Z̃εs )−
〈
F 2
〉
ds =

∞∑
m=1

CmI
ε
t,m,

where

Iεt,m =
1

m!

∫ t

0

Hm(Z̃εs )ds, m ≥ 1.
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From (Taqqu , 1978, Lemma 2.2) the fourth-order moment of Iεt,m can be expanded

as

E[(Iεt,m)4] =
1

2m(2m)!

∑∫ t

0

· · ·
∫ t

0

dt1dt2dt3dt4

m∏
`=1

CZ
( ti` − tj`

ε

)
,

where the sum is over all indices i1, j1, . . . , i2m, j2m such that:

i) i1, j1, . . . , i2m, j2m ∈ {1, 2, 3, 4},

ii) i1 6= j1, . . ., i2m 6= j2m,

iii) each number 1, 2, 3, 4 appears exactly m times in (i1, j1, . . . , i2m, j2m).

The number N2m of terms in this sum is therefore smaller than (4m)!/m!4 (it would

be exactly this cardinal without the second condition, therefore it is smaller than this

number).

Since CZ(s) ≤ 1 ∧K|s|2H−2 for some constant K, we have, for any t ∈ [0, T ],

E[(Iεt,m)4] ≤ 1

22m(2m)!

∑∫ T

0

· · ·
∫ T

0

dt1dt2dt3dt4

2m∏
`=1

1 ∧K
( |ti` − tj` |

ε

)2H−2
.

For each term of the sum, we apply the change of variables s1 = ti1 , s2 = tj1 ,

s3 = tmin({1,2,3,4}\{i1,j1}), s4 = tmax({1,2,3,4}\{i1,j1}). In the product we keep the first

term: K(|s1 − s2|/ε)2H−2, and the first term that has s3 in it: K(|s3 − sj |/ε)2H−2,

so that we can write, for any t ∈ [0, T ],

E[(Iεt,m)4] ≤ N2mK
2

22m(2m)!

∫ T

0

· · ·
∫ T

0

ds1ds2ds3ds4

( |s1 − s2|
ε

)2H−2
[( |s3 − s1|

ε

)2H−2

+
( |s3 − s2|

ε

)2H−2
+
( |s3 − s4|

ε

)2H−2
]

≤ K ′ (4m)!

22m(2m)!m!4
ε4−4H ,

for some constant K ′ (that depends on H and T ), because s2H−2 is integrable over

[0, T ]. By Stirling’s formula,

(4m)!

22m(2m)!m!4
' 22m

m!2
1√

2πm
.

Therefore, by Minkowski’s inequality, for any t ∈ [0, T ],

E[(Iεt )4)]1/4 ≤
∞∑
m=1

|Cm|E[(Iεm)4)]1/4 ≤ K ′′ε1−H
∞∑
m=1

|Cm|
(2m

m!

)1/2

≤ K ′′ε1−H
( ∞∑
m=1

αmC2
m

m!

)1/2( ∞∑
m=1

2m

αm

)1/2

,

for some constant K ′′, which gives the desired result.
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The hypothesis (A.5) in Lemma A.1 requires some smoothness for the function

F̃ . The following lemma gives a sufficient condition.

Lemma A.2. If the function F̃ defined by (A.1) is of the form

F̃ (x) =

∫ x

−∞
f(y)dy, (A.8)

where the Fourier transform of the function f satisfies |f̂(ν)| ≤ C exp(−ν2) for some

C > 0, then there exists K > 0 such that, for any k ≥ 0,

C2
k

k!
≤ K3−k. (A.9)

The inequality (A.9) is sufficient to ensure that the hypothesis (A.5) is fulfilled. We

may for instance consider :

F̃ (x) =

∫ x

−∞
e−y

2/4dy or F̃ (x) =

∫ x

−∞
sinc2(y)dy. (A.10)

Proof. The function F̃ is of class C∞ and we have, for any k ≥ 1, using integration

by parts,

Ck =

∫
R
F̃ (z)Hk(z)p(z)dz =

∫
R
F̃ (k)(z)p(z)dz =

∫
R
f (k−1)(z)p(z)dz

By Parseval formula,

Ck =
1

2π

∫
R
e−ν

2/2(iν)k−1f̂(ν)dν.

Since |f̂(ν)| ≤ C exp(−ν2),

|Ck| ≤ C
∫
R
e−3ν2/2|ν|k−1dν = C

(2

3

) k
2

∫ ∞
0

e−ss
k
2−1ds = C

(2

3

) k
2

Γ
(k

2

)
,

which gives the desired result using Stirling’s formula Γ(z) ∼ zz−1/2e−z
√

2π.

B. Technical Lemmas. We denote

G(z) =
1

2

(
F (z)2 − σ2

)
. (B.1)

The martingale ψεt defined by (4.12) has the form

ψεt = E
[ ∫ T

0

G(Zεs )ds
∣∣Ft]. (B.2)

Lemma B.1. (ψεt )t∈[0,T ] is a square-integrable martingale and

d 〈ψε,W 〉t = ϑεtdt, ϑεt = σou

∫ T

t

E
[
G′(Zεs )|Ft

]
Kε(s− t)ds. (B.3)
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An alternative expression of the bracket 〈ψε,W 〉t is given in (B.5-B.6).

Proof. For t ≤ s, the conditional distribution of Zεs given Ft is Gaussian with

mean

E
[
Zεs |Ft

]
= σou

∫ t

−∞
Kε(s− u)dWu

and deterministic variance given by

Var
(
Zεs |Ft

)
= (σε0,s−t)

2,

where we have defined for any 0 ≤ t ≤ s ≤ ∞:

(σεt,s)
2 = σ2

ou

∫ s

t

Kε(u)2du. (B.4)

We thus have that the distribution of

1

σε0,s−t

((
Zεs −

∫ t

−∞
Kε(s− u)dWu

)∣∣Ft)

is standard normal. Therefore we have

E
[
G(Zεs )|Ft

]
=

∫
R
G
(
σou

∫ t

−∞
Kε(s− u)dWu + σε0,s−tz

)
p(z)dz,

where p(z) is the pdf of the standard normal distribution. As a random process in t

it is a continuous martingale. By Itô’s formula, for any t ≤ s:

E
[
G(Zεs )|Ft

]
=

∫
R
G
(
σou

∫ 0

−∞
Kε(s− v)dWv + σε0,sz

)
p(z)dz

+

∫ t

0

∫
R
G′
(
σou

∫ u

−∞
Kε(s− v)dWv + σε0,s−uz

)
zp(z)dz∂uσ

ε
0,s−udu

+σou

∫ t

0

∫
R
G′
(
σou

∫ u

−∞
Kε(s− v)dWv + σε0,s−uz

)
p(z)dzKε(s− u)dWu

+
σ2

ou

2

∫ t

0

∫
R
G′′
(
σou

∫ u

−∞
Kε(s− v)dWv + σε0,s−uz

)
p(z)dzKε(s− u)2du
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and

G(Zεs ) = G
(
σou

∫ s

−∞
Kε(s− v)dWv

)
=

∫
R
G
(
σou

∫ s

−∞
Kε(s− v)dWv + σε0,0z

)
p(z)dz

=

∫
R
G
(
σou

∫ 0

−∞
Kε(s− v)dWv + σε0,sz

)
p(z)dz

+

∫ s

0

∫
R
G′
(
σou

∫ u

−∞
Kε(s− v)dWv + σε0,s−uz

)
zp(z)dz∂uσ

ε
0,s−udu

+σou

∫ s

0

∫
R
G′
(
σou

∫ u

−∞
Kε(s− v)dWv + σε0,s−uz

)
p(z)dzKε(s− u)dWu

+
σ2

ou

2

∫ s

0

∫
R
G′′
(
σou

∫ u

−∞
Kε(s− v)dWv + σε0,s−uz

)
p(z)dzKε(s− u)2du.

Therefore

ψεt =

∫ t

0

G(Zεs )ds+

∫ T

t

E
[
G(Zεs )|Ft

]
ds

=
[ ∫

R

∫ T

0

G
(
σou

∫ 0

−∞
Kε(s− v)dWv + σε0,sz

)
dsp(z)dz

]
+

∫ t

0

[ ∫ T

u

∫
R
G′
(
σou

∫ u

−∞
Kε(s− v)dWv + σε0,s−uz

)
zp(z)dz∂uσ

ε
0,s−uds

]
du

+σou

∫ t

0

[ ∫ T

u

∫
R
G′
(
σou

∫ u

−∞
Kε(s− v)dWv + σε0,s−uz

)
p(z)dzKε(s− u)ds

]
dWu

+
σ2

ou

2

∫ t

0

[ ∫ T

u

∫
R
G′′
(
σou

∫ u

−∞
Kε(s− v)dWv + σε0,s−uz

)
p(z)dzKε(s− u)2ds

]
du.

This gives

d 〈ψε,W 〉t = ϑεtdt, (B.5)

with

ϑεt = σou

∫ T

t

∫
R
G′
(
σou

∫ t

−∞
Kε(s− v)dWv + σε0,s−tz

)
p(z)dzKε(s− t)ds, (B.6)

which can also be written as stated in the Lemma.

The important properties of the random process ϑεt are stated in the following

lemma.

Lemma B.2. For any t ∈ [0, T ], we have

ϑεt = ε1−Hθt + θ̃εt , (B.7)

where θt is deterministic

θt = θ(T − t)H− 1
2 , θ =

σou 〈G′〉
Γ(H + 1

2 )
, (B.8)
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and θ̃εt is random but smaller than ε1−H :

lim sup
ε→0

εH−1 sup
t∈[0,T ]

E
[
(θ̃εt )

2
]1/2

= 0. (B.9)

Proof. Recall first from Eq. (2.8)

Kε(t) =
1√
ε
K
( t
ε

)
, K(t) =

1

Γ(H + 1
2 )

[
tH−

1
2 −

∫ t

0

(t− s)H− 1
2 e−sds

]
.

The expectation of ϑεt is then equal to

E
[
ϑεt
]

= σou 〈G′〉
∫ T−t

0

Kε(s)ds = σou 〈G′〉
√
ε

∫ (T−t)/ε

0

K(s)ds.

Therefore the difference

E
[
ϑεt
]
− ε1−Hθt = σou 〈G′〉 ε1/2

∫ (T−t)/ε

0

K(s)− sH−
3
2

Γ(H − 1
2 )
ds

can be bounded by

∣∣E[ϑεt ]− ε1−Hθt
∣∣ ≤ Cε1/2, (B.10)

uniformly in t ∈ [0, T ], for some constant C, because K(s)− sH−
3
2

Γ(H− 1
2 )

is in L1.

We have

Var(ϑεt ) = σ2
ou

∫ T

t

ds

∫ T

t

ds′Kε(s− t)Kε(s′ − t)Cov
(
E
[
G′(Zεs )|Ft

]
,E
[
G′(Zεs′)|Ft

])
≤ σ2

ou

(∫ T

t

dsKε(s− t)Var
(
E
[
G′(Zεs )|Ft

])1/2)2

= σ2
ou

(∫ T−t

0

dsKε(s)Var
(
E
[
G′(Zεs )|F0

])1/2)2

.

The conditional distribution of Zεt given F0 is Gaussian with mean

E
[
Zεt |F0

]
= σou

∫ 0

−∞
Kε(t− u)dWu

and variance

Var
(
Zεt |F0

)
= (σε0,t)

2 = σ2
ou

∫ t

0

Kε(u)2du.

Therefore

Var
(
E
[
G′(Zεt )|F0

])
= Var

(∫
R
G′
(
E
[
Zεt |F0

]
+ σε0,tz

)
p(z)dz

)
.
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The random variable E
[
Zεt |F0

]
is Gaussian with mean zero and variance

(σεt,∞)2 = σ2
ou

∫ ∞
t

Kε(u)2du,

so that

Var
(
E
[
G′(Zεt )|F0

])
=

1

2

∫
R

∫
R
dzdz′p(z)p(z′)

∫
R

∫
R
dudu′p(u)p(u′)

×
[
G′
(
σεt,∞u+ σε0,tz

)
−G′

(
σεt,∞u

′ + σε0,tz
)]

×
[
G′
(
σεt,∞u+ σε0,tz

′)−G′(σεt,∞u′ + σε0,tz
′)]

≤ ‖G′′‖2∞(σεt,∞)2 1

2

∫
R

∫
R
dudu′p(u)p(u′)(u− u′)2

= ‖G′′‖2∞(σεt,∞)2. (B.11)

Therefore

Var(ϑεt )
1/2 ≤ ‖G′′‖∞σ2

ou

∫ T−t

0

dsKε(s)
(∫ ∞

s

duKε(u)2
)1/2

≤ ‖G′′‖∞σ2
ouε

1/2

∫ (T−t)/ε

0

dsK(s)
(∫ ∞

s

duK(u)2
)1/2

.

Since K(s) ≤ 1 ∧KsH− 3
2 , this gives

Var(ϑεt )
1/2 ≤ C


ε1/2 if H < 3/4,

ε1/2 ln(ε) if H = 3/4,

ε2−2H if H > 3/4,

(B.12)

uniformly in t ∈ [0, T ], for some constant C. This completes the proof of the lemma.

The random term φεt defined by (4.7) has the form

φεt,T = E
[ ∫ T

t

G(Zεs )ds
∣∣Ft]. (B.13)

Here we write explicitly the argument T (maturity) as we compute the correlations

of these random terms for different maturities.

Lemma B.3.

1. For any t ≤ T , φεt,T is a zero-mean random variable with standard deviation

of order ε1−H :

ε2H−2E[(φεt,T )2]
ε→0−→ σ2

φ(T − t)2H , (B.14)

where σφ is defined by (4.10).
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2. The covariance function of φεt,T has the following limit for any t ≤ T , t′ ≤ T ′,

with t ≤ t′:

ε2H−2E[φεt,Tφ
ε
t′,T ′ ]

ε→0−→ σ2
φ(T − t)H(T ′ − t′)HCφ(t, t′;T, T ′), (B.15)

where the limit correlation is

Cφ(t, t′;T, T ′) =

∫∞
0
du
[
(u+ r)H−

1
2 − uH− 1

2

][
(u+ s)H−

1
2 − (u+ q)H−

1
2

]∫∞
0
du
[
(1 + u)H−

1
2 − uH− 1

2

]2 ,

(B.16)

with

q =
t′ − t√

(T − t)(T ′ − t′)
, r =

√
T − t√
T ′ − t′

, s =
T ′ − t√

(T − t)(T ′ − t′)
.

3. As ε→ 0, the random process εH−1φεt,T , t ≤ T , converges in distribution (in

the sense of finite-dimensional distributions) to a Gaussian random process

φt,T , t ≤ T , with mean zero and covariance ε2(H−1)E[φt,Tφt′,T ′ ] = σ2
φ(T −

t)H(T ′ − t′)HCφ(t, t′;T, T ′) for any t ∈ [0, T ], t′ ∈ [0, T ′], with t ≤ t′.

4. The fourth-order moments of εH−1φεt,T are uniformly bounded: there exists a

constant KT independent of ε such that

sup
t∈[0,T ]

E[(φεt,T )4]1/4 ≤ KT ε
1−H . (B.17)

Note that the mean square increment of the limit process φt,T satisfies for t, t + h ∈

[0, T ]:

E
[
(φt,T − φt+h,T )2

]
=

σ2
ou

Γ(H + 1
2 )2

∫ ∞
0

du
[
(T − t− h+ u)H−

1
2 − uH− 1

2

]2
−
[
(T − t+ u)H−

1
2 − (u+ h)H−

1
2

]2
+
[
(u+ h)H−

1
2 − uH− 1

2

]2
=
σ2

ou(T − t)2H−1

Γ(H + 1
2 )2

h+ o(h), h→ 0. (B.18)

This shows that the limit Gaussian process φt,T has the same local regularity (as a

function of t) as a standard Brownian motion. We also have for any t < T ≤ T + h:

E
[
(φt,T+h − φt,T )2

]
=

σ2
ou(T − t)2H−2

(2− 2H)Γ(H − 1
2 )2

h2 + o(h2), h→ 0. (B.19)

This shows that the limit Gaussian process φt,T is smooth (mean square differentiable)

as a function of the maturity T .
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Proof. Let us fix T0 > 0. For t ∈ [0, T ], t′ ∈ [0, T ′], with T, T ′ ≤ T0, and t ≤ t′,

the covariance of φεt,T is

Cov(φεt,T , φ
ε
t′,T ′) = E

[
E
[ ∫ T

t

G(Zεs )ds
∣∣Ft]E[ ∫ T ′

t′
G(Zεs )ds

∣∣Ft′]]
= E

[
E
[ ∫ T

t

G(Zεs )ds
∣∣Ft]E[ ∫ T ′

t′
G(Zεs )ds

∣∣Ft]]
=

∫ T−t

0

ds

∫ T ′−t

t′−t
ds′Cov

(
E
[
G(Zεs )|F0

]
,E
[
G(Zεs′)|F0

])
.

Then, proceeding as in the proof of the previous lemma,

Var(φεt,T ) ≤
(∫ T−t

0

dsVar
(
E
[
G(Zεs )|F0

])1/2)2

≤ ‖G′‖2∞
(∫ T−t

0

dsσεs,∞

)2

.

Since K(s) ≤ 1 ∧KsH− 3
2 , this gives

Var(φεt,T ) ≤ CT0
ε2−2H ,

uniformly in t ≤ T ≤ T0, for some constant CT0 . More precisely, for t ∈ [0, T ],

t′ ∈ [0, T ′], with T, T ′ ≤ T0, and t ≤ t′, we have

Cov(φεt,T , φ
ε
t′,T ′) =

∫ T−t

0

ds

∫ T ′−t

t′−t
ds′
∫
R

∫
R
dzdz′p(z)p(z′)

×E
[
G
(
σou

∫ 0

−∞
Kε(s− u)dWu + σε0,sz

)
G
(
σou

∫ 0

−∞
Kε(s′ − u′)dWu′ + σε0,s′z

′
)]
.

Using the fact that 〈G〉 = 0, we can write

Cov(φεt,T , φ
ε
t′,T ′) =

∫ T−t

0

ds

∫ T ′−t

t′−t
ds′
∫
R

∫
R
dzdz′p(z)p(z′)

×E
[(
G
(
σou

∫ 0

−∞
Kε(s− u)dWu + σε0,sz

)
−G(σouz)

)
×
(
G
(
σou

∫ 0

−∞
Kε(s′ − u′)dWu′ + σε0,s′z

′
)
−G(σouz

′)
)]
.

Therefore

Cov(φεt,T , φ
ε
t′,T ′) =

∫ T−t

0

ds

∫ T ′−t

t′−t
ds′
∫
R

∫
R
dzdz′p(z)p(z′)G′(σouz)G

′(σouz
′)

×E
[(
σou

∫ 0

−∞
Kε(s− u)dWu + (σε0,s − σou)z

)
×
(
σou

∫ 0

−∞
Kε(s′ − u′)dWu′ + (σε0,s′ − σou)z′

)]
+ V ε3 ,
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up to a term V ε3 which is of order ε3−3H :

V ε3 ≤ 2‖G′‖∞‖G′′‖∞
∫ T−t

0

ds

∫ T ′−t

0

ds′
∫
R

∫
R
dzdz′p(z)p(z′)

×E
[(
σou

∫ 0

−∞
Kε(s− u)dWu + (σε0,s − σou)z

)2

×
∣∣∣σou

∫ 0

−∞
Kε(s′ − u′)dWu′ + (σε0,s′ − σou)z′

∣∣∣]
≤ C‖G′‖∞‖G′′‖∞

∫ T0−t

0

ds

∫ T0−t

0

ds′
∫
R

∫
R
dzdz′p(z)p(z′)

×
(
σ2

ou

∫ 0

−∞
Kε(s− u)2du+ (σε0,s − σou)2z2

)
×
(
σ2

ou

∫ 0

−∞
Kε(s′ − u′)2du′ + (σε0,s′ − σou)2z′2

)1/2

≤ C ′‖G′‖∞‖G′′‖∞
[ ∫ T0−t

0

ds

∫
R
dzp(z)

(
(σεs,∞)2 + (σε0,s − σou)2z2

)]3/2
≤ C ′‖G′‖∞‖G′′‖∞

[ ∫ T0−t

0

ds(σεs,∞)2 + (σε0,s − σou)2
]3/2

.

Using (σεs,∞)2 + (σε0,s)
2 = σ2

ou and

|σou − σε0,s| = σou

(
1−

(∫ s/ε

0

K(u)2du
)1/2)

= σou

(
1−

(
1−

∫ ∞
s/ε

K(u)2du
)1/2)

≤ σou

∫ ∞
s/ε

K(u)2du ≤ σou

(
1 ∧K

(s
ε

)2H−2
)
, (B.20)

where the fist inequality follows from
√

1− x > 1− x for 0 ≤ x ≤ 1, we get

V ε3 ≤ C ′‖G′‖∞‖G′′‖∞
[ ∫ T0−t

0

ds2σou(σou − σε0,s)
]3/2

≤ C ′′‖G′‖∞‖G′′‖∞ε3−3H .

This gives

Cov(φεt,T , φ
ε
t′,T ′) =

∫ T−t

0

ds

∫ T ′−t

t′−t
ds′
∫
R

∫
R
dzdz′p(z)p(z′)G′(σouz)G

′(σouz
′)

×
(
σ2

ou

∫ ∞
0

Kε(s+ u)Kε(s′ + u)du+ (σε0,s − σou)(σε0,s′ − σou)zz′
)

+ V ε3

= V ε1 〈G′〉
2

+ V ε2 σ
2
ou 〈G′′〉

2
+ V ε3 ,

with

V ε1 = σ2
ou

∫ ∞
0

du
(∫ T−t

0

dsKε(s+ u)
)(∫ T ′−t

t′−t
ds′Kε(s′ + u)

)
,

V ε2 =
(∫ T−t

0

ds(σε0,s − σou)
)(∫ T ′−t

t′−t
ds′(σε0,s′ − σou)

)
.
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Using again (B.20) we find that

V ε2 ≤ Cε4−4H ,

while

V ε1 =
σ2

ou

Γ(H + 1
2 )2

∫ ∞
0

(
(T − t+ u)H−

1
2 − uH− 1

2

)
×
(
(T ′ − t+ u)H−

1
2 − (u+ t′ − t)H− 1

2

)
du ε2−2H

+o(ε2−2H).

Applying the change of variable

u→ (T − t) 1
2 (T ′ − t′) 1

2u

gives the first and second items of the lemma with

σ2
φ =

σ2
ou 〈G′〉

2

Γ(H + 1
2 )2

∫ ∞
0

(
(1 + u)H−

1
2 − uH− 1

2

)2
du,

which is equivalent to (4.10).

In order to prove the third item we introduce

φ̌εt,T = E
[ ∫ T

t

Zεsds
∣∣Ft], (B.21)

which is a Gaussian random process with mean zero and covariance, for t ∈ [0, T ],

t′ ∈ [0, T ′], with t ≤ t′:

Cov
(
φ̌εt,T , φ̌

ε
t′,T ′

)
=

∫ T

t

ds

∫ T ′

t′
ds′E

[
E[Zεs |Ft]E[Zεs |Ft′ ]

]
=

∫ T

t

ds

∫ T ′

t′
ds′E

[
E[Zεs |Ft]E[Zεs |Ft]

]
= σ2

ou

∫ T−t

0

ds

∫ T ′−t

t′−t
ds′E

[( ∫ 0

−∞
Kε(s− u)dWu

)(∫ 0

−∞
Kε(s′ − u)dWu

)]
= σ2

ou

∫ ∞
0

du
(∫ T−t

0

dsKε(s+ u)
)(∫ T ′−t

t′−t
ds′Kε(s′ + u)

)
.

Therefore, for tj ∈ [0, Tj ], with t1 ≤ · · · ≤ tn, the random vector

(εH−1 〈G′〉 φ̌εt1,T1
, . . . , εH−1 〈G′〉 φ̌εtn,Tn

) converges to a Gaussian random vector with

mean 0 and covariance matrix (σ2
φ(Tj − tj)H(Tl − tl)HCφ(tj , tl;Tj , Tl))

n
j,l=1. In other

words, the random process εH−1 〈G′〉 φ̌εt,T , t ≤ T , converges in the sense of finite-

dimensional distributions to a Gaussian process φt,T , t ≤ T , with mean 0 and co-

variance function E[φt,Tφt′,T ′ ] = σ2
φ(T − t)H(T ′ − t′)HCφ(t, t′;T, T ′), for t ∈ [0, T ],

t′ ∈ [0, T ′], with t ≤ t′.
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Moreover, we have

Var
(
φ̌εt,T

)
=

σ2
ou

Γ(H + 1
2 )2

∫ ∞
0

(
(1 + u)H−

1
2 − uH− 1

2

)2
du (T − t)2Hε2−2H + o(ε2−2H).

Similarly,

E
[
φ̌εt,Tφ

ε
t,T

]
=

σ2
ou 〈G′〉

Γ(H + 1
2 )2

∫ ∞
0

(
(1 + u)H−

1
2 − uH− 1

2

)2
du (T − t)2Hε2−2H + o(ε2−2H).

As a result,

ε2H−2E
[
(φεt,T − 〈G′〉 φ̌εt,T )2

] ε→0−→ 0,

and the random process εH−1 〈G′〉 φ̌εt,T , t ≤ T , converges in the sense of finite-

dimensional distributions to a Gaussian process φt,T , t ≤ T , with mean 0 and co-

variance function E[φt,Tφt′,T ′ ] = σ2
φ(T − t)H(T ′ − t′)HCφ(t, t′;T, T ′) for t ∈ [0, T ],

t′ ∈ [0, T ′], with t ≤ t′. This gives the third item of the lemma.

To prove the fourth item of the lemma, we note that

φεt,T =
1

2
E
[
IεT |Ft

]
− 1

2
Iεt ,

where Iεt is defined by (A.6). Therefore

sup
t∈[0,T ]

E
[
(φεt,T )4

]
≤ sup
t∈[0,T ]

E
[
(Iεt )4

]
,

and the result follows from Lemma A.1, Eq. (A.7).

Lemma B.4. Let us define for any t ∈ [0, T ]:

γεt =
1

2

∫ t

0

(
(σεs)

2 − σ2
)
φεsds, (B.22)

as in (4.20). We have

lim sup
ε→0

εH−1 sup
t∈[0,T ]

E
[
(γεt )2

]1/2
= 0. (B.23)

Proof. Let us define for any t ∈ [0, T ]:

Γεt =

∫ T

t

(
(σεs)

2 − σ2
)
φεsds. (B.24)

By the definition (4.12) of φεs, we have

Γεt = 2

∫ T

t

ds

∫ T

s

duE
[
G(Zεs )G(Zεu)|Fs

]
.
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Therefore

E
[
(Γεt )

2
]

= 2

∫ T

t

ds

∫ T

s

du

∫ T

s

ds′
∫ T

s′
du′E

[
E
[
G(Zεs )G(Zεu)|Fs

]
E
[
G(Zεs′)G(Zεu′)|Fs′

]]
= 2

∫ T

t

ds

∫ T

s

du

∫ T

s

ds′
∫ T

s′
du′E

[
G(Zεs )G(Zεu)E

[
G(Zεs′)G(Zεu′)|Fs

]]
=

∫ T

t

ds

∫ T

s

duE
[
G(Zεs )G(Zεu)E

[( ∫ T

s

G(Zεs′)ds
′)2∣∣Fs]]

=

∫ T

t

dsE
[
G(Zεs )E

[ ∫ T

s

G(Zεu)du
∣∣Fs]E[( ∫ T

s

G(Zεs′)ds
′)2∣∣Fs]]

≤ ‖G‖∞
∫ T

t

dsE
[∣∣∣E[( ∫ T

s

G(Zεs′)ds
′)2∣∣Fs]∣∣∣3/2]

≤ ‖G‖∞
∫ T

t

dsE
[∣∣∣ ∫ T

s

G(Zεs′)ds
′
∣∣∣3]

≤ ‖G‖∞
∫ T

t

dsE
[( ∫ T

s

G(Zεs′)ds
′
)4]3/4

,

where we in the first inequality used that∣∣∣E[ ∫ T

s

G(Zεu)du
∣∣Fs]∣∣∣ ≤ ∣∣∣E[( ∫ T

s

G(Zεu)du
)2∣∣Fs]∣∣∣1/2,

which follows from the conditional version of Jensen’s inequality. It follows by Lemma

A.1 that E
[
(Γεt )

2
]

is smaller than K ′ε3−3H for some constant K ′. This proves

lim sup
ε→0

εH−1 sup
t∈[0,T ]

E
[
(Γεt )

2
]1/2

= 0. (B.25)

Note that γεt defined by (4.20) is related to Γεt through

γεt = 2 (Γε0 − Γεt ) ,

therefore Eq. (B.25) also implies

lim sup
ε→0

εH−1 sup
t∈[0,T ]

E
[
(γεt )2

]1/2
= 0,

which is the desired result.

Lemma B.5. Let us define for any t ∈ [0, T ]:

ηεt = ε1−H
∫ t

0

(
σεs − σ̃

)
ds, (B.26)

as in (4.22). We have

lim sup
ε→0

εH−1 sup
t∈[0,T ]

E
[
(ηεt )

2
]1/2

= 0. (B.27)
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Proof. By Lemma 3.1,

E
[
(ηεt )

2
]

= ε2−2HE
[( ∫ t

0

(
σεs − σ̃

)
ds
)2]

= ε2−2H

∫ t

0

∫ t

0

Cov
(
F (Zεs ), F (Zεs′)

)
dsds′

= ε2−2H
( 〈
F 2
〉
− 〈F 〉2

) ∫ t

0

∫ t

0

Cσ
(s− s′

ε

)
dsds′

≤ Kε2−2H

∫ T

0

∫ T

0

( |s− s′|
ε

)2H−2
dsds′

≤ K ′ε4−4H ,

for some constants K,K ′, because s2H−2 in integrable over (0, T ), which gives the

desired result.

Lemma B.6. Let us define for any t ∈ [0, T ]:

κεt =
ε1−H

2

∫ t

0

(
(σεs)

2 − σ2
)
ds, (B.28)

as in (4.21). We have

lim sup
ε→0

εH−1 sup
t∈[0,T ]

E
[
(κεt )

2
]1/2

= 0. (B.29)

Proof. The proof is similar to the one of Lemma B.5.
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Fig. 2.1. The top plot shows a realization, Zεt , t ∈ (0, 10), of the fractional OU process with

Hurst index H = 0.6 and correlation time ε = 1 (blue solid line) and a realization of the standard

OU process with H = 1/2 and ε = 1 (red dashed line). The trajectories are more regular when H is

larger. The bottom plot shows the corresponding correlation functions, CZ(s), and the “heavy” tail

of the blue solid line of the case H = 0.6 gives the long-range property.
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Fig. 5.1. Price correction as function of relative time to maturity τ/τ̄ . The three solid

lines correspond (from bottom to top) to the mean price correction for K/X = 0.9, 1.0, and 1.1

respectively. The dashed/dotted lines correspond to the mean ± one standard deviation. Here

H = 0.6, aF = 0.1, and
(
(ε/τ̄)(1−H)τ̄σφ

)
= 0.04.
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Fig. 5.2. The price correction surface as function of relative time to maturity τ/τ̄ and

moneyness K/X. The parameters are as in Figure 5.1.

10
-2

10
-1

10
0

10
1

10
2

RELATIVE  MATURITY

-0.5

0

0.5

C
O

R
R

E
C

T
IO

N

IMPLIED VOLATILITY

K/X=.9

      =1.0

      =1.1

Fig. 5.3. The implied volatility correction as function of relative time to maturity τ/τ̄ . The

three solid lines correspond (from bottom to top) to the mean implied volatility correction for K/X =

0.9, 1.0, and 1.1 respectively. The dashed/dotted lines correspond to the mean ± one standard

deviation.
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Fig. 5.4. The mean implied volatility correction surface as function of relative time to maturity

τ/τ̄ and moneyness K/X. The parameters are as in Figure 5.3.
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Fig. 6.1. Autocovariance function of the t-T process ψ1(τ ; 1) as function of relative time to

maturity separation ∆1 = (τ − τ ′)/|τ + τ ′| with H = 0.6. The correlation decays approximately

linearly at the origin and rapidly as one of the times to maturity goes to zero.
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Fig. 6.2. Realizations of the process ψ1(τ ; 1) as function of time to maturity τ for fixed maturity

T = 1 with H = 0.6.
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Fig. 6.3. Autocovariance function of the t-T process ψ2(t; 1) as function of time t′ − t for

fixed time to maturity τ = 1 with H = 0.6. On the short scales the process decorrelates as a Markov

process and on the long scales it exhibits long-range correlations.
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Fig. 6.4. Autocovariance function of the t-T process ψ2(t; 1) as in Figure 6.3, but on a log-log

scale with the dashed line showing the decay |t′ − t|2H−2.
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Fig. 6.5. Realizations of the process ψ2(t; 1) with H = 0.6.
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Fig. 6.6. Autocovariance function of the t-T process ψ3(τ ; 1) as function of the relative time

to maturity separation ∆3 = (τ − τ ′)/(τ ∧ τ ′) with H = 0.6. Note that the correlation function

exhibits slow decay.
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Fig. 6.7. Realizations of the process ψ3(τ ; 1) for fixed current time t = 1 and H = 0.6, with

the smooth and slow decay of the correlations giving a smooth time to maturity dependence.
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