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Abstract. We present an analysis of acoustic daylight imaging in an Earth-like model

assuming a random distribution of noise sources spatially supported in an annulus

located away from the surface. We assume a situation with scalar wave propagation

and that the measurements are of the wave field at the surface. Then, we obtain a

relation between the autocorrelation function of the measurements and the trace of the

scattered field generated by an impulsive source localized just below the surface. From

this relation it is, for example, clear that the eigenfrequencies can be recovered from the

autocorrelation. Moreover, the complete scattering operator can be extracted under

the additional assumption that the annulus is close to the surface and has a thickness

smaller than the typical wavelength.
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1. Introduction

The emergence of the Green’s function from cross correlations of noisy signals, in the

context of seismic exploration, was first pointed out by Claerbout [5, 6, 17]. He modeled

the Earth’s crust as a half-space and considered the situation when waves are generated

by unknown sources in the crust and recorded at the surface. He showed that the

autocorrelation function of the such signals is the same as the signal reflected by the

Earth’s crust when an impulsive source is used at the surface. The latter signal is indeed

the one recorded in reflection seismology. He thereby established a formal connection

between reflection seismology and wave field correlations. The process of autocorrelating

signals on the surface, signals that are generated by noise sources in the interior, has

come to be known as the daylight (imaging) configuration.

The physical explanation of why daylight imaging is equivalent to reflection

seismology was simple and based on flux conservation. It is possible to give a

mathematical proof in the case of a one-dimensional half space with radiation condition

[10, 11].

Imaging of the structure of the Earth, from the core to the surface, remains a

major challenge. On the one hand, the standard seismic methods using earthquake

signals are limited by the uneven spatial distribution of earthquakes, along the major

tectonic plate boundaries. On the other hand, seismic interferometry using ambient

noise records has been successful. We here refer to seismic interferometry as using cross

correlations of signals to gain useful information about the medium. Claerbout in his

book [4] asks the reader in an exercise to prove that the temporal autocorrelation of a

transmission seismogram for a layered model with a source underground is equivalent

to a reflection seismogram, a problem he treated in [4] for a Goupillaud medium. Such

a “daylight” imaging approach has been subsequently validated experimentally and

mathematically for more general microstructures than layered, see for instance [11].

Seismic interferometry in general has mostly been used to probe the uppermost layers

of the Earth through surface waves [2, 19]. However, recently, body-wave path responses

from probing the deepest part of the Earth were obtained from noise records [3]. This

motivates the question: can the daylight imaging approach as proposed by Claerbout

be extended to a global image procedure for the Earth? One caveat is that in global

seismology the model domain is a ball, whence the radiation condition that played a

crucial role in the analysis of daylight imaging cannot be used anymore. If the noise

sources were distributed uniformly, then we would have equipartition of energy amongst

the normal modes, and we could invoke this argument to establish the relation between

the autocorrelation function of the noise signals and the trace of the scattered field

generated by localized and impulsive sources just below the surface [22]. Unfortunately,

the noise source distribution is not uniform, and we cannot invoke the diffusion or

ergodicity properties of the Earth to claim that the observed field is equipartitioned as

in [1, 12] because the scattering is not strong enough. In fact, we will show below that

in the propagation regime of interest, the relation between the autocorrelation function
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of the noise signals and the mentioned scattered field is not as simple as in the case

of a one-dimensional half space. In the case of a spherically symmetric Earth model,

we show that the point spectrum of the Earth associated with the low angular orders

can be extracted from the correlation functions of the signals recorded at the surface

and emitted by unknown noise sources localized away from the surface. If the noise

sources satisfy some specific conditions in terms of their spatial localization then the

correlations of noisy signals can be used to extract the standard scattering operator.

These conditions, that the source distribution is spatially localized on a thin annulus

with thickness comparable to or smaller than the typical wavelength, could be satisfied in

practice. We also include weak angular variations of the wavespeed in the analysis, which

confirms that global acoustic daylight imaging is possible for an essentially spherically

symmetric Earth.

The paper is organized as follows. In Section 2 we give a summary of the main

results of the paper. In Section 3 we introduce the wavefield decomposition and coupling

in a radial Earth and the relevant asymptotic analysis. The scaling in our analysis

corresponds to modes that essentially propagate in the radial direction. In Section 4

we describe the scattering operator in a stratified spherically symmetric Earth. In

Section 5, we present global acoustic daylight imaging and we establish the relationship

between the scattering operator and the autocorrelation functions of the ambient noise

signals. We also consider the special case where the spatial support of the noise sources

is a thin annulus located below the surface with thickness smaller than the typical

wavelength, providing a simplified result. In Section 6, we show that our results are

robust with respect to the properties of source and receiver distributions, with respect

to small angular undulations in the Earth’s parameters (rather than a purely radial

Earth), and with respect to measurement noise. In particular, it follows that even with

small angular variations the observed point spectrum of the Earth can be reasonably

accurately explained by a radial model.

2. Summary of Modeling and Main Results

In this section we summarize the main modeling assumptions, quantities of interest,

and main result. We compare the symmetrized field (5) measured at the Earth’s surface

and transmitted by an impulsive point source just below the surface with the empirical

autocorrelation function (7) of the field measured at the Earth’s surface and generated

by a distributed noise source distribution. We establish a correspondence between them

and we briefly discuss aspects of robustness of the results to the modeling assumptions.

2.1. Wave Decomposition in the Radial Earth and Main Result

We consider here scalar wave propagation in the spherical Earth so that the harmonic

wave field p̂ = p̂(ω, r, θ, ϕ) satisfies

∂

∂r
r2
∂

∂r
p̂+

1

sin θ

∂

∂θ
sin θ

∂

∂θ
p̂+

1

sin2 θ

∂2

∂ϕ2
p̂+

ω2r2

c2(r)
p̂ = f̂(ω, r, θ, ϕ), (1)
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for (r, θ, ϕ) ∈ (0, Ro) × (0, π) × (0, 2π), where c(r) is the radial velocity model and

f̂(ω, r, θ, ϕ) is the source term in the frequency domain. We assume here that f̂ is

supported away from the origin in ω and a boundary condition at the surface r = Ro

that takes into account boundary dissipation, see Eq. (38). We moreover assume a

high-frequency situation, see Section 3.3 for a discussion of the WKB context that this

entails and which is central to our analysis. The wave field is then decomposed as

p̂(ω, r, θ, ϕ) =
∑
l,m

Yl,m(θ, ϕ)p̂l,m(ω, r), (2)

with the spherical harmonics Yl,m defined in Eq. (12) and

p̂l,m(ω, r) =

∫ π

0

∫ 2π

0

Yl,m(θ, ϕ)p̂(ω, r, θ, ϕ) sin θdϕdθ. (3)

We consider the two following source scenarios.

2.1.1. Point Source. This corresponds to a “classic” seismology configuration with

a point source just below the surface. Let R̂l(ω,Ro) be the fundamental scattering

function associated with Earth with no surface reflection, note that this is independent

of m as the velocity model is radial (see Proposition 1). Then the symmetrized surface

Earth response function is (see Proposition 2)

Ŝl(ω,Ro) =

∣∣∣∣∣ 1 + R̂l(ω,Ro)

1− ΓRoR̂l(ω,Ro)

∣∣∣∣∣
2

, (4)

and this is the function that encapsulates information about the Earth’s interior. The 1

in the numerator corresponds to a direct transmission from the source and the R̂l term

is the reflection from the Earth’s interior while the denominator produces multiples from

reflections at the Earth’s surface with a reflectivity of ΓRo .

The symmetrized field measured at the Earth’s surface is then of the form

p̂syml,m (ω,Ro) = p̂l,m(ω,Ro)− p̂l,m(ω,Ro) = F̂ e1
l,m(ω)(1− ΓRo)

2Ŝl(ω,Ro), (5)

with F̂ e1
l,m the mode-dependent effective source trace and the factor (1 − ΓRo)

2 is an

effective transmittivity factor through the Earth’s surface (see Proposition 2).

2.1.2. Distributed Random Source Field. This is our main configuration and the main

result is that under “ideal” circumstances we can recreate the surface Earth response

function in Eq. (4) via forming correlations. Specifically, we model the source field as a

random field delta-correlated in space located below the surface:

E
[
f(t, r, θ, ϕ)f(t′, r′, θ′, ϕ′)] = F (t− t′)K(r)δ(r − r′) sin(θ)−1δ(θ − θ′)δ(ϕ− ϕ′). (6)

We then have for the empirical correlation

CT
l,m(t, Ro) =

1

T

∫ T

0

pl,m(t′, Ro)pl,m(t′ + t, Ro)dt
′,
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that for T large:

ĈT
l,m(ω,Ro) = F̂ e2

l,m(ω)(1 + ΓRo)
2Ŝl(ω,Ro), (7)

with again F̂ e2
l,m an effective source trace (see Proposition 3).

This generalizes the classic daylight imaging result to the context of the spherical

Earth. By looking at (7) we can immediately deduce that the eigenfrequencies -for

which Ŝl(ω,Ro) essentially blows up- can be extracted from the empirical correlation

ĈT
l,m(ω,Ro). Moreover, if one wants to reconstruct the Earth scattering operator

Ŝl(ω,Ro) quantitatively, then some additional assumptions have to be made on the noise

source distribution so that one can extract Ŝl(ω,Ro) from the product F e2
l,m(ω)Ŝl(ω,Ro).

Such an additional assumption is proposed and discussed at the end of Section 5: If

the spatial support of the noise source is localized in a small annulus below the surface,

then the autocorrelation is directly related to the scattering operator via a classical

seismic interferometry formula and one can extract Ŝl(ω,Ro) from ĈT
l,m(ω,Ro) up to a

multiplicative frequency-dependent function (see Proposition 4).

2.2. Robustness of Main Result with Random Source Field

The assumptions that the Earth is radial, that the noise source field is statistically

homogeneous in angles (Eq. (6)), and that the wave field is recorded over the whole

surface may seem quite restrictive. However, as we discuss in detail in Section 6

the analysis indicates that our results are surprisingly robust with respect to these

assumptions. These observations are consistent with the success of helioseismology

where the “source” waves are generated by the turbulence in the convection zone

immediately beneath the Sun’s surface [13] and the eigenfrequencies can be relatively

robustly observed and giving information about the radial variation of the Sun’s

parameters [15, 8].

We briefly comment on the robustness and refer to Section 6 for a detailed

discussion.

• Full surface measurement aperture: In fact, exploiting spherical symmetry our result

is essentially unchanged with very limited measurements, see Section 6.1.

• Full surface source aperture: The assumption of noise sources whose angular

distribution is uniform can be slightly relaxed, see Section 6.2.

• A radial Earth: We can allow for small undulations in the velocity model beyond

the radial case, see Section 6.3.

• Noisy measurements: The fact that we average the observations over different

locations makes the scheme robust with respect to additive measurement noise,

see Section 6.4.
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3. Wave Field Asymptotics in a Stratified Ball

3.1. Helmholtz Equation in the Ball

In this subsection we formulate the Helmholtz-type equation that the mode amplitudes

satisfy with the appropriate boundary conditions. In spherical coordinates (r, θ, ϕ), the

time-harmonic wave field

p̂(ω, r, θ, ϕ) =

∫
p(t, r, θ, ϕ)eiωtdt

satisfies Eq. (1) for (r, θ, ϕ) ∈ (0, Ro)× (0, π)× (0, 2π), where c(r) is the velocity model

and f̂(ω, r, θ, ϕ) is the source term in the frequency domain. If we consider the situation

when this model comes from the acoustic wave equation, then this means that the

density is constant and only the bulk modulus is heterogeneous so that we can view c(r)

as the independent variable as we do here. We consider two types of sources in this

paper:

- the source corresponding to seismology is point-like and located just below the surface:

f(t, r, θ, ϕ) = f(t)g(θ, ϕ)δ(r −Rs), (8)

where f(t) is a short pulse. We will discuss this case in detail in Section 4.

- the source corresponding to daylight imaging is localized in an annulus and emits

random noise that is uncorrelated in space and stationary in time:

E
[
f(t, r, θ, ϕ)] = 0, (9)

E
[
f(t, r, θ, ϕ)f(t′, r′, θ′, ϕ′)] = F (t− t′)K(r)δ(r − r′) sin(θ)−1δ(θ − θ′)δ(ϕ− ϕ′), (10)

where F (t−t′) is the time correlation function of the noise sources (its Fourier transform

is the power spectral density) and K(r) is a smooth function compactly supported in an

annulus r ∈ [Rs, Ro] below the surface. We will discuss this case in detail in Section 5.

We have Neumann (traction-free) boundary condition at the surface r = Ro, which

corresponds to a Robin-type boundary condition:(
∂rp̂− r−1p̂

)
r=Ro

= 0. (11)

In fact, we will consider in the following a modified version (see Eq. (38)) that takes into

account boundary dissipation [16, 20] so that when an interior wave hits the surface not

all energy is reflected back into the interior.

At the center r = 0 the condition is that the field should not have any singularity.

We expand the wave field in spherical harmonics as in Eq. (2). The spherical

harmonics

Yl,m(θ, ϕ) =

√
(2l + 1)(l −m)!

4π(l +m)!
Pm
l (cos θ)eimϕ, (12)

with Pm
l being the associated Legendre polynomials, form a complete orthonormal set
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in the space L2(sin θdθdϕ) and they satisfy:∫ π

0

∫ 2π

0

Yl,m(θ, ϕ)Yl′,m′(θ, ϕ) sin θdϕdθ = δll′δmm′ ,∑
l,m

Yl,m(θ, ϕ)Yl,m(θ′, ϕ′) sin θ′ = δ(θ − θ′)δ(ϕ− ϕ′).

The mode amplitudes p̂l,m(ω, r) defined by (3) satisfy the system of second-order ODEs:

∂

∂r
r2
∂

∂r
p̂l,m − l(l + 1)p̂l,m +

ω2

c2(r)
r2p̂l,m = f̂l,m(ω, r), (13)

for r ∈ (0, Ro), where

f̂l,m(ω, r) =

∫ π

0

∫ 2π

0

Yl,m(θ, ϕ)f̂(ω, r, θ, ϕ) sin θdϕdθ. (14)

At the surface Ro the mode amplitudes satisfy the Robin condition:

∂rp̂l,m(ω,Ro)−R−1o p̂l,m(ω,Ro) = 0. (15)

At the center r = 0 the condition is that the mode amplitude p̂l,m should not have any

singularity. This condition can be made more explicit if we assume that the velocity is

homogeneous in a small ball with radius Rδ at the center. Then the mode amplitude

p̂l,m satisfies

∂

∂r
r2
∂

∂r
p̂l,m − l(l + 1)p̂l,m +

ω2

c2(0)
r2p̂l,m = 0,

for r ∈ (0, Rδ). Since the only regular solution of this second-order ODE is the spherical

Bessel function, we get that p̂l,m must be equal to jl
(
ωr/c(0)

)
, for r ∈ (0, Rδ), up

to multiplicative constant. We consider here ω > 0. Therefore an explicit boundary

condition is that the mode amplitude should satisfy the Robin condition at r = Rδ:

jl
( ω

c(0)
Rδ

) ∂
∂r
p̂l,m(ω,Rδ)−

ω

c(0)
j′l
( ω

c(0)
Rδ

)
p̂l,m(ω,Rδ) = 0. (16)

3.2. Radial Wavefield Decomposition

In this subsection we introduce a mode decomposition that turns out to be useful in the

forthcoming high-frequency analysis. Let co(r) be the smooth component of the speed

of propagation:

1

c2(r)
=

1

c2o(r)
+ V (r),

where V (r) contains the rapidly varying component responsible for scattering. We

introduce two linearly independent solutions Al(ω, r) and Bl(ω, r) of the second-order

ODE:

∂

∂r
r2
∂

∂r
Al − l(l + 1)Al +

ω2

c2o(r)
r2Al = 0, (17)
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for r ∈ (Rδ, Ro). We do not require the solutions to satisfy any boundary condition, but

we require these independent solutions to have a Wronskian equal to one:

r2
∂Al
∂r

Bl − r2Al
∂Bl

∂r
= 1, (18)

for r ∈ (Rδ, Ro), which is possible by (17) and indeed ensures linear independence. We

will determine the choice for solutions Al(ω, r) and Bl(ω, r) later on.

We define:

α̂l,m(ω, r) = r2
(
∂rp̂l,m(ω, r)

)
Bl(ω, r)− r2p̂l,m(ω, r)

(
∂rBl(ω, r)

)
, (19)

β̂l,m(ω, r) = − r2
(
∂rp̂l,m(ω, r)

)
Al(ω, r) + r2p̂l,m(ω, r)

(
∂rAl(ω, r)

)
. (20)

The mode amplitude p̂l,m can then be written in the form

p̂l,m(ω, r) = Al(ω, r)α̂l,m(ω, r) +Bl(ω, r)β̂l,m(ω, r). (21)

Differentiating (19) and (20) we get using (17):

∂rα̂l,m =
(
∂r
(
r2
(
∂rp̂l,m

)))
Bl − p̂l,m

(
∂r
(
r2
(
∂rBl

)))
(22)

=
(
∂r
(
r2
(
∂rp̂l,m

))
− l(l + 1)p̂l,m +

ω2

c2o(r)
r2p̂l,m

)
Bl,

∂rβ̂l,m = −
(
∂r
(
r2
(
∂rp̂l,m

)))
Al + p̂l,m

(
∂r
(
r2
(
∂rAl

)))
(23)

= −
(
∂r
(
r2
(
∂rp̂l,m

))
− l(l + 1)p̂l,m +

ω2

c2o(r)
r2p̂l,m

)
Al,

and thus the amplitudes α̂l,m and β̂l,m satisfy

Al(ω, r)∂rα̂l,m(ω, r) +Bl(ω, r)∂rβ̂l,m(ω, r) = 0. (24)

Therefore, using (13) the mode amplitudes α̂l,m and β̂l,m satisfy the system of first-

order ODEs:

∂α̂l,m
∂r

(ω, r) = − ω2V (r)r2Bl(ω, r)
[
Al(ω, r)α̂l,m(ω, r) +Bl(ω, r)β̂l,m(ω, r)

]
+Bl(ω, r)f̂l,m, (25)

∂β̂l,m
∂r

(ω, r) = ω2V (r)r2Al(ω, r)
[
Al(ω, r)α̂l,m(ω, r) +Bl(ω, r)β̂l,m(ω, r)

]
− Al(ω, r)f̂l,m, (26)

for r ∈ (Rδ, Ro).

At the surface Ro we find from Eq. (15) that the mode amplitudes satisfy the linear

relation: (
∂rAl(ω,Ro)−R−1o Al(ω,Ro)

)
α̂l,m(ω,Ro)

+
(
∂rBl(ω,Ro)−R−1o Bl(ω,Ro)

)
β̂l,m(ω,Ro) = 0. (27)

(note that this relation is not trivial as ∂rAl−R−1o Al and ∂rBl−R−1o Bl cannot both be

zero since the Wronskian of Al and Bl is one).
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At the surface r = Rδ we find from Eq. (16) that the mode amplitudes satisfy the linear

relation: (
jl
( ω

c(0)
Rδ

)
∂rAl(ω,Rδ)−

ω

c(0)
j′l
( ω

c(0)
Rδ

)
Al(ω,Rδ)

)
α̂l,m(ω,Rδ)

+
(
jl
( ω

c(0)
Rδ

)
∂rBl(ω,Rδ)−

ω

c(0)
j′l
( ω

c(0)
Rδ

)
Bl(ω,Rδ)

)
β̂l,m(ω,Rδ) = 0.(28)

(note that this relation is again not trivial since the two coefficients within the big

parentheses cannot both be zero since the Wronskian of Al and Bl is one and since

moreover jl and j′l cannot both be zero).

3.3. High-frequency Asymptotics

In this subsection we consider a frequency such that the radius of the Earth is much

larger than the corresponding wavelength and we carry out high-frequency asymptotic

expansions. More precisely, (in the assumed non-dimensionalized coordinates) we

assume that the surface radius Ro is an order one quantity and that the source

wavelength is small. We therefore here consider a high frequency of the form
ω

ε
,

and accordingly introduce a WKB type parameterization with respect to spherically

propagating waves. For any l we parametrize the solutions Aεl and Bε
l as

Aεl (ω, r) =
ε1/2√
ω
Ãl(r) exp

(
i
ωτ(r, Ro)

ε

)(
1 +O(ε)

)
, (29)

Bε
l (ω, r) =

ε1/2√
ω
B̃l(r) exp

(
− iωτ(r, Ro)

ε

)(
1 +O(ε)

)
, (30)

where τ(r, Ro) is the travel time (obtained from the eikonal equation):

τ(r, Ro) =

∫ Ro

r

1

co(r′)
dr′, (31)

and the amplitudes Ãl(r) and B̃l(r) satisfy the frequency-independent transport

equations:

2r2

co(r)
∂rÃl(r) + ∂r

( r2

co(r)

)
Ãl(r) = 0,

which can be integrated as

Ãl(r) = Ãl0

√
co(r)

r
, B̃l(r) = B̃l0

√
co(r)

r
. (32)

The mode Aεl is a down-going mode, while Bε
l is an up-going mode. In order to satisfy

the condition (18) that the Wronskian is one, we can take:

Ãl0 = B̃l0 =
ei
π
4

√
2
. (33)
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Remark 1 The mode profiles are independent of l to leading order in the regime ε→ 0

as long as l is of order one. There are, however, corrective terms in the WKB expansion

that depend on l. Indeed, by computing higher order terms in the WKB expansion, it is

easy to check that the modes can be expanded as

Aεl (ω, r) =
ε1/2√
ω
Ãl(r) exp

(
i
ωτ(r, Ro)

ε

)
×
(

1− ε

2iω

∫ Ro

r

√
co(r′)

r′

(
∂r′r

′2∂r′ − l(l + 1)
)(√co(r′)

r′

)
dr′ +O(ε2)

)
,

Bε
l (ω, r) =

ε1/2√
ω
B̃l(r) exp

(
− iωτ(r, Ro)

ε

)
×
(

1 +
ε

2iω

∫ Ro

r

√
co(r′)

r′

(
∂r′r

′2∂r′ − l(l + 1)
)(√co(r′)

r′

)
dr′ +O(ε2)

)
,

or equivalently

Aεl (r) =
ε1/2√
ω
Ãl(r) exp

(
i
ωτ εl (r, Ro, ω)

ε

)(
1 +O(ε2)

)
,

Bε
l (r) =

ε1/2√
ω
B̃l(r) exp

(
− iωτ

ε
l (r, Ro, ω)

ε

)(
1 +O(ε2)

)
,

with

τ εl (r, Ro, ω) = τ(r, Ro)−
ε2

2ω2

∫ Ro

r

√
co(r′)

r′

(
∂r′r

′2∂r′ − l(l + 1)
)(√co(r′)

r′

)
dr′.

It is indeed possible to carry out the forthcoming analysis with these refined expressions,

but below we shall continue with the leading order phase τ(r, Ro) as this is sufficient to

characterize the leading behavior for our quantities of interest, but note here that the

leading-order terms may take a different form when l = O(ε−1/2).

The rapidly varying component of the speed of propagation may vary at the scale

ε, so we denote it by V ε(r) so as to remember it may depend on ε. Then, substituting

the mode expressions (29-30) with (31-32-33) into the system (25-26), the system of

first-order ODEs for the mode amplitudes reads:

∂α̂εl,m
∂r

(ω, r) = − i ω
2ε
co(r)V

ε(r)
[
α̂εl,m(ω, r) + e−2iωτ(r,Ro)/εβ̂εl,m(ω, r)

]
, (34)

∂β̂εl,m
∂r

(ω, r) = i
ω

2ε
co(r)V

ε(r)
[
e2iωτ(r,Ro)/εα̂εl,m(ω, r) + β̂εl,m(ω, r)

]
, (35)

for r ∈ (Rδ, Rs).

The mode amplitudes also satisfy jump and boundary conditions:

At the surface Ro the mode amplitudes should satisfy the linear relation:

α̂εl,m(ω,Ro)− β̂εl,m(ω,Ro) = 0, (36)

which corresponds to a perfect traction-free boundary condition and a perfect reflection

condition β̂εl,m(ω,Ro)/α̂
ε
l,m(ω,Ro) = 1 at the surface. If we assume that there is some

attenuation or dissipation at the surface, then the reflection condition is not equal to
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one exactly, but to some number ΓRo ∈ (−1, 1), and the mode amplitudes satisfy the

linear relation:

α̂εl,m(ω,Ro)− ΓRo β̂
ε
l,m(ω,Ro) = 0. (37)

More exactly, if we consider the dissipation boundary condition [16, 20]:(
∂rp− r−1p

)
r=Ro

= −
(
κ∂tp

)
r=Ro

, (38)

instead of the traction free boundary condition (11), then we get the boundary condition

(37) with

ΓRo = (1− κco(Ro))/(1 + κco(Ro)). (39)

We will look at κ = 0 or ΓRo = 1 as a limiting case in the following.

At the surface r = Rδ the mode amplitudes satisfy the linear relation:

α̂εl,m(ω,Rδ)− β̂εl,m(ω,Rδ)e
−2iωτ(0,Ro)/ε = 0,

where we have used the asymptotic formulas for the spherical Bessel functions:

jl(x) ' 1

x
cos
(
x− (l + 1)π

2

)
, j′l(x) ' −1

x
sin
(
x− (l + 1)π

2

)
, x� 1.

Note that this condition is independent on the value of Rδ (which can be expected as

the mode amplitudes α̂εl,m and β̂εl,m are constant within the homogeneous central small

ball) and that we can take the limit Rδ → 0:

α̂εl,m(ω, 0)− β̂εl,m(ω, 0) exp
(
− 2i

ωτ(0, Ro)

ε

)
= 0. (40)

Remark 2 When there is no attenuation, i.e. when κ = 0 and ΓRo = 1, then there

is existence and uniqueness of the solution provided ω is not an eigenfrequency. A

frequency ω is an eigenfrequency if the linear system (34-35) for r ∈ (0, Ro) admits a

non-zero solution that satisfies the two boundary conditions (37-40) when there is no

source. When there is attenuation then there is existence and uniqueness of the solution

for any ω, this follows from the form of the propagator associated with (34-35), see

Chap. 7 in [9].

Across a source at depth Rs whose Fourier component at frequency ω/ε has the

form

f̂ εl,m(ω, r) = Fl,m(ω)δ(r −Rs), (41)

the mode amplitudes satisfy the jump source conditions:(
α̂εl,m(ω,R+

s )

β̂εl,m(ω,R+
s )

)
−

(
α̂εl,m(ω,R−s )

β̂εl,m(ω,R−s )

)

= ε1/2Fl,m(ω)
eiπ/4

√
co(Rs)

Rs

√
2ω

exp
(
− iωτ(Rs,Ro)

ε

)
− exp

(
iωτ(Rs,Ro)

ε

) . (42)



Global acoustic daylight imaging in a stratified Earth-like model 12

It is convenient to introduce the propagator of the system (34-35), that is, the 2×2

matrix Pε
l (ω, r

′, r) solution of

∂

∂r
Pε
l (ω, r

′, r) = i
ω

2ε
co(r)V

ε(r)

(
−1 −e−2iωτ(r,Ro)/ε

e2iωτ(r,Ro)/ε 1

)
Pε
l (ω, r

′, r), (43)

with Pε
l (ω, r

′, r = r′) = I. The matrix Pε
l (ω, r

′, r) has the symplectic form

Pε
l (ω, r

′, r) =

(
âεl (ω, r

′, r) b̂εl (ω, r
′, r)

b̂εl (ω, r
′, r) âεl (ω, r

′, r)

)
, (44)

where (âεl (ω, r
′, r), b̂εl (ω, r

′, r))T satisfies

∂

∂r

(
âεl (ω, r

′, r)

b̂εl (ω, r
′, r)

)
= i

ω

2ε
co(r)V

ε(r)

(
−1 −e−2iωτ(r,Ro)/ε

e2iωτ(r,Ro)/ε 1

)(
âεl (ω, r

′, r)

b̂εl (ω, r
′, r)

)
, (45)

starting from âεl (ω, r
′, r = r′) = 1, b̂εl (ω, r

′, r = r′) = 0. The solution satisfies the energy

conservation relation

|âεl (ω, r′, r)|2 − |b̂εl (ω, r′, r)|2 = 1. (46)

3.4. Wave Decomposition in the Radial Earth

In this subsection we summarize the basic high-frequency wave field decomposition in

the stratified sphere. We define the scaled Fourier transform f̂ ε(ω) of a function f(t) as

f̂ ε(ω) =
1

ε

∫
f(t)eiωt/εdt. (47)

In spherical coordinates (r, θ, ϕ), the time-harmonic wave field p̂ε(ω, r, θ, ϕ) satisfies

∂

∂r
r2
∂

∂r
p̂ε +

1

sin θ

∂

∂θ
sin θ

∂

∂θ
p̂ε +

1

sin2 θ

∂2

∂ϕ2
p̂ε +

ω2r2

ε2c2(r)
p̂ε = f̂ ε(ω, r, θ, ϕ), (48)

for (r, θ, ϕ) ∈ (0, Ro)× (0, π)× (0, 2π), where c(r) is the velocity model and f̂ ε(ω, r, θ, ϕ)

is the source term in the frequency domain. We assume here that f̂ ε is supported away

from the origin in ω. The radially dependent speed parameter c(r) is modeled by

1

c2(r)
=

1

c2o(r)
+ V ε(r). (49)

The wave field is then decomposed as

p̂ε(ω, r, θ, ϕ) =
∑
l,m

Yl,m(θ, ϕ)p̂εl,m(ω, r), (50)

p̂εl,m(ω, r) = ε1/2
√
co(r)e

iπ/4

r
√

2ω

(
α̂εl,m(ω, r) exp

(iωτ(r, Ro)

ε

)
+ β̂εl,m(ω, r) exp

(
− iωτ(r, Ro)

ε

))
, (51)

with Yl,m defined in Eq. (12).
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For 0 < r′ < r < Ro so that there is no source in the interval (r′, r), the mode

amplitudes are related by the propagator as(
α̂εl,m(ω, r)

β̂εl,m(ω, r)

)
= Pε

l (ω, r
′, r)

(
α̂εl,m(ω, r′)

β̂εl,m(ω, r′)

)
, (52)

with the propagator Pε
l defined by (43).

At the surface r = Ro the mode amplitudes satisfy the boundary condition (37).

At the center r = 0 the mode amplitudes satisfy the boundary condition (40).

Assume a source at depth r = Rs as

f̂ εl,m(ω, r) =

∫ π

0

∫ 2π

0

Yl,m(θ, ϕ)f̂ ε(ω, r, θ, ϕ) sin θdϕdθ (53)

= Fl,m(ω)δ(r −Rs), (54)

then the mode amplitudes satisfy the jump conditions in Eq. (42).

4. Scattering in Seismology

We consider a source of the form (8) just below the surface Rs = R−o whose emission

has a typical frequency of order ε−1:

f(t, r, θ, ϕ) = f
( t
ε

)
g(θ, ϕ)δ(r −Rs),

where f is a function whose Fourier transform is supported away from the origin.

Therefore the source term defined as in (47)-(53) reads

f̂ εl,m(ω, r) = Fl,m(ω)δ(r −Rs),

with

Fl,m(ω) = f̂(ω)gl,m, gl,m =

∫ π

0

∫ 2π

0

Yl,m(θ, ϕ)g(θ, ϕ) sin θdθdϕ.

The mode amplitudes satisfy the jump source conditions:[
α̂εl,m

]Ro
R−o
Al(ω,Ro) +

[
β̂εl,m

]Ro
R−o
Bl(ω,Ro) = 0, (55)[

α̂εl,m
]Ro
R−o
∂rAl(ω,Ro) +

[
β̂εl,m

]Ro
R−o
∂rBl(ω,Ro) =

Fl,m(ω)

R2
o

, (56)

We sum Eq. (55) multiplied by −R2
o∂rBl(ω,Ro) and Eq. (56) multiplied by R2

oBl(ω,Ro),

and we make use of the Wronskian relation (18) to get[
α̂εl,m

]Ro
R−o

= Fl,m(ω)Bl(ω,Ro), (57)

Similarly, we sum Eq. (55) multiplied by R2
o∂rAl(ω,Ro) and Eq. (56) multiplied by

−R2
oAl(ω,Ro) and we obtain[

β̂εl,m
]Ro
R−o

= −Fl,m(ω)Al(ω,Ro). (58)

At the surface we “measure” the spherical harmonics of the field:

pl,m(t, Ro) =
1

2π

∫
p̂εl,m(ω,Ro)e

−iωt/εdω.
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Proposition 1 The measured field is of the form

p̂εl,m(ω,Ro) = − iεco(Ro)

ωR2
o

Fl,m(ω)
1 + ΓRo

2

1 + R̂ε
l (ω,Ro)

1− ΓRoR̂ε
l (ω,Ro)

, (59)

where we have defined the modulus one function

R̂ε
l (ω,Ro) =

b̂εl (ω, 0, Ro) + âεl (ω, 0, Ro)e
2iωτ(0,Ro)/ε

âεl (ω, 0, Ro) + b̂εl (ω, 0, Ro)e2iωτ(0,Ro)/ε
. (60)

Proof. We have from Eq. (51):

p̂εl,m(ω,Ro) = ε1/2
√
co(Ro)e

iπ/4

Ro

√
2ω

(
α̂εl,m(ω,Ro) + β̂εl,m(ω,Ro)

)
. (61)

The mode amplitudes α̂εl,m and β̂εl,m satisfy the boundary condition (37) at r = Ro, the

source jump condition (42) at r = R−o , the propagation equation (52) from r = 0 to

r = R−o (using the form (44) of the propagator matrix), and the boundary condition

(37) at r = 0:

α̂εl,m(ω,Ro)− ΓRo β̂
ε
l,m(ω,Ro) = 0,(

α̂εl,m(ω,Ro)

β̂εl,m(ω,Ro)

)
=

(
α̂εl,m(ω,R−o )

β̂εl,m(ω,R−o )

)
+ ε1/2Fl,m(ω)

eiπ/4
√
co(Ro)

Ro

√
2ω

(
1

−1

)
,(

α̂εl,m(ω,R−o )

β̂εl,m(ω,R−o )

)
=

(
âεl (ω, 0, Ro) b̂εl (ω, 0, Ro)

b̂εl (ω, 0, Ro) âεl (ω, 0, Ro)

)(
α̂εl,m(ω, 0)

β̂εl,m(ω, 0)

)
,

α̂εl,m(ω, 0)− β̂εl,m(ω, 0) exp
(
− 2i

ωτ(0, Ro)

ε

)
= 0.

By solving this 6× 6 linear system for

(α̂εl,m(ω,Ro), β̂
ε
l,m(ω,Ro), α̂

ε
l,m(ω,R−o ), β̂εl,m(ω,R−o ), α̂εl,m(ω, 0), β̂εl,m(ω, 0))

we obtain the expression of (α̂εl,m(ω,Ro), β̂
ε
l,m(ω,Ro)) that we substitute into (61), which

gives the desired result (59). �

If we assume that the pulse is an even function and we consider the symmetrized

response function

psyml,m (t, Ro) = pl,m(t, Ro)− pl,m(−t, Ro), (62)

then its Fourier transform (47) is of the form

p̂ε,syml,m (ω,Ro) = −iεco(Ro)

R2
oω

Fl,m(ω)Re
{

(1 + ΓRo)
1 + R̂ε

l (ω,Ro)

1− ΓRoR̂ε
l (ω,Ro)

}
,

which is equal to

p̂ε,syml,m (ω,Ro) = −iεco(Ro)

R2
oω

Fl,m(ω)

(
1− |ΓRo|2

)
Re
{

1 + R̂ε
l (ω,Ro)

}∣∣1− ΓRoR̂ε
l (ω,Ro)

∣∣2 .

Using |1 + R̂ε
l (ω,Ro)|2 = 2Re

{
1 + R̂ε

l (ω,Ro)
}

, we finally establish the main result of

this section.
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Proposition 2 The symmetrized response function is of the form:

p̂ε,syml,m (ω,Ro) = −iεco(Ro)

2R2
oω

Fl,m(ω)
(
1− |ΓRo |2

) ∣∣1 + R̂ε
l (ω,Ro)

∣∣2∣∣1− ΓRoR̂ε
l (ω,Ro)

∣∣2 , (63)

where R̂ε
l (ω,Ro) is defined by (60).

The scattering operator∣∣1 + R̂ε
l (ω,Ro)

∣∣2
|1− ΓRoR̂ε

l (ω,Ro)|2
(64)

is the quantity of interest that characterizes the medium and that can be extracted

from standard seismology. Recall that R̂ε
l (ω,Ro) has modulus one. Frequencies such

that R̂ε
l (ω,Ro) = 1 correspond to the eigenmodes, and we remark that then(

1− |ΓRo |2
) ∣∣1 + R̂ε

l (ω,Ro)
∣∣2∣∣1− ΓRoR̂ε

l (ω,Ro)
∣∣2 ' 4

κco(Ro)
,

as κ→ 0 in view of the relation (39).

5. Daylight Imaging

We consider a noise source as in (9) and (10) with a correlation function of the form

E
[
f(t, r, θ, ϕ)f(t′, r′, θ′, ϕ′)] = F

(t− t′
ε

)
K(r)δ(r − r′) sin(θ)−1δ(θ − θ′)δ(ϕ− ϕ′), (65)

which means that the power spectrum of the noise source contains frequencies of the

order of ε−1. Under these conditions the source term f̂ εl,m(ω, r) defined by (47) and (53)

is a random process with mean zero and covariance function

E
[
f̂ εl,m(ω, r)f̂ εl′,m′(ω

′, r′)
]

= 2πF̂ (ω)K(r)δ(r − r′)δ(ω − ω′)δll′δmm′ . (66)

The field at the surface is p(t, Ro, θ, ϕ) and we compute its empirical autocorrelation

components associated with the spherical harmonics:

CT
l,m(t, Ro) =

1

T

∫ T

0

pl,m(t′, Ro)pl,m(t′ + t, Ro)dt
′, (67)

for

pl,m(t, Ro) =

∫ π

0

∫ 2π

0

p(t, Ro, θ, ϕ)Yl,m(θ, ϕ) sin θdϕdθ. (68)

In practice, the signals pl,m(t, Ro) are computed from the signals (p(t, Ro, θj, ϕj))j=1,...,N ,

recorded by a collection of N receivers located at ((Ro, θj, ϕj))j=1,...,N at the surface of

the Earth via a quadrature formula. We comment in more detail on robustness with

respect to sampling in Section 6.1.

As T → ∞ the correlations converges in probability towards the statistical

autocorrelation defined by

Cl,m(t, Ro) = E
[
pl,m(0, Ro)pl,m(t, Ro)

]
. (69)
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In the following proposition we study its scaled Fourier transform:

Ĉε
l,m(ω,Ro) =

1

ε

∫
Cl,m(t, Ro)e

−iωt/εdt.

Proposition 3 The statistical autocorrelation is of the form

Ĉε
l,m(ω,Ro) = ε2F̂ (ω)

co(Ro)

4R2
oω

2

|1 + ΓRo|2∣∣1− ΓRoR̂ε
l (ω,Ro)

∣∣2
×
[ ∫ Ro

0

co(Rs)

R2
s

K(Rs)
∣∣Ŝεl (ω,Rs) + T̂ εl (ω,Rs)e

−2iωτ(Rs,Ro)/ε
∣∣2dRs

]
, (70)

with

Ŝεl (ω,Rs) =
âεl (ω, 0, Rs) + b̂εl (ω, 0, Rs)e

2iωτ(0,Ro)/ε

âεl (ω, 0, Ro) + b̂εl (ω, 0, Ro)e2iωτ(0,Ro)/ε
, (71)

T̂ εl (ω,Rs) =
b̂εl (ω, 0, Rs) + âεl (ω, 0, Rs)e

2iωτ(0,Ro)/ε

âεl (ω, 0, Ro) + b̂εl (ω, 0, Ro)e2iωτ(0,Ro)/ε
. (72)

Proof. We have

p̂εl,m(ω,Ro) =

∫ Ro

0

ε1/2
√
co(Ro)e

iπ/4

Ro

√
2ω

f̂ εl,m(ω,Rs)
(
α̂εl,m(ω,Ro;Rs) + β̂εl,m(ω,Ro;Rs)

)
dRs,

where α̂εl,m(ω, r;Rs) and β̂εl,m(ω, r;Rs) are the mode amplitudes corresponding to a unit-

amplitude spherical harmonic point source at r = Rs. We get then in view of (66)

and (69):

Ĉε
l,m(ω,Ro) = E

[
p̂εl,m(ω,Ro)

1

2π

∫
p̂εl,m(ω′, Ro)dω

′
]

= εF̂ (ω)
co(Ro)

2R2
o|ω|

∫ Ro

0

K(Rs)
∣∣α̂εl,m(ω,Ro;Rs) + β̂εl,m(ω,Ro;Rs)

∣∣2dRs.

The mode amplitudes α̂εl,m(ω, r;Rs) and β̂εl,m(ω, r;Rs) satisfy the boundary, propagation,

and source jump conditions:

α̂εl,m(ω,Ro;Rs)− ΓRo β̂
ε
l,m(ω,Ro;Rs) = 0,(

α̂εl,m(ω,Ro;Rs)

β̂εl,m(ω,Ro;Rs)

)
=

(
âεl (ω,Rs, Ro) b̂εl (ω,Rs, Ro)

b̂εl (ω,Rs, Ro) âεl (ω,Rs, Ro)

)(
α̂εl,m(ω,R+

s ;Rs)

β̂εl,m(ω,R+
s ;Rs)

)
,(

α̂εl,m(ω,R+
s ;Rs)

β̂εl,m(ω,R+
s ;Rs)

)
=

(
α̂εl,m(ω,R−s ;Rs)

β̂εl,m(ω,R−s ;Rs)

)
+ ε1/2

eiπ/4
√
co(Rs)

Rs

√
2ω

(
exp

(
− iωτ(Rs,Ro)

ε

)
− exp

(
iωτ(Rs,Ro)

ε

)) ,(
α̂εl,m(ω,R−s ;Rs)

β̂εl,m(ω,R−s ;Rs)

)
=

(
âεl (ω, 0, Rs) b̂εl (ω, 0, Rs)

b̂εl (ω, 0, Rs) âεl (ω, 0, Rs)

)(
α̂εl,m(ω, 0;Rs)

β̂εl,m(ω, 0;Rs)

)
,

α̂εl,m(ω, 0;Rs)− β̂εl,m(ω, 0;Rs) exp
(
− 2i

ωτ(0, Ro)

ε

)
= 0.

By solving this linear system we get the desired result. To get the desired expression

(70), we use the energy conservation relation (46):

|âεl (ω,Rs, Ro)|2 − |b̂εl (ω,Rs, Ro)|2 = 1,
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and we also make use of the propagation relation Pε
l (ω, 0, Ro) = Pε

l (ω,Rs, Ro)P
ε
l (ω, 0, Rs)

which gives

âεl (ω, 0, Ro) = âεl (ω,Rs, Ro)â
ε
l (ω, 0, Rs) + b̂εl (ω,Rs, Ro)b̂

ε
l (ω, 0, Rs),

b̂εl (ω, 0, Ro) = b̂εl (ω,Rs, Ro)â
ε
l (ω, 0, Rs) + âεl (ω,Rs, Ro)b̂

ε
l (ω, 0, Rs).

�

Although the autocorrelation function (70) is related to the scattering operator of

interest (64), it also depends on the source distribution in a non-trivial way, which

may complicate the extraction of the scattering operator from the autocorrelation

of the measured data, compared to the standard daylight imaging configuration

addressed in [5, 6, 11, 17], in which the bottom condition is a radiating condition.

However, with arbitrary noise source distributions, the autocorrelation function (70)

and the symmetrized response function (63) have the same denominator, so that the

identification of the eigenfrequencies can be carried out with both sets of data with the

same accuracy. Moreover, in a realistic source configuration the relationship between the

autocorrelation function (70) and the scattering operator (64) becomes much simpler. In

fact, as we show in Eq. (73), the autocorrelation may produce the scattering operator up

to a frequency-dependent modulation function that depends on the temporal spectrum

of the noise source trace. This is the case if we assume that the support of the noise

sources (that is to say, the support of the function K) is localized below the surface,

and its thickness is smaller than the typical wavelength. Then for any Rs in the support

of K, we have Ŝεl (ω,Rs) ' 1 by (71), T̂ εl (ω,Rs) ' R̂ε
l (ω,Ro) by (60) and (72), and

τ(Rs, Ro) ' 0, so the square brackets in (70) can be simplified as[ ∫ Ro

0

co(Rs)

R2
s

K(Rs)
∣∣Ŝεl (ω,Rs) + T̂ εl (ω,Rs)e

−2iωτ(Rs,Ro)/ε
∣∣2dRs

]
'
∣∣1 + R̂ε

l (ω,Ro)
∣∣2[ ∫ Ro

0

co(Rs)

R2
s

K(Rs)dRs

]
.

As a consequence we get the following result.

Proposition 4 If the spatial support of the noise source is localized in a small annulus

below the surface, then the statistical autocorrelation is of the form

Ĉε
l,m(ω,Ro) ' ε2F̂ (ω)

co(Ro)

2R2
oω

2

[ ∫ Ro

0

co(Rs)

R2
s

K(Rs)dRs

]
|1 + ΓRo |2

∣∣1 + R̂ε
l (ω,Ro)

∣∣2∣∣1− ΓRoR̂ε
l (ω,Ro)

∣∣2 .(73)

This result shows that the autocorrelation of the noise signals (70) is directly related to

the scattering operator (64). More precisely, the time derivative of the autocorrelation

function is proportional to the symmetrized response function (62), provided F̂ (ω) =

f̂(ω) (which imposes in particular that the pulse profile f should be an even function):

∂tCl,m(t) ∝ psyml,m (t). (74)

We recover the classical seismic interferometry formula that has been established in

many other configurations [11, 18, 21].
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6. On Robustness

6.1. Robustness with Respect to Sampling Configuration

In the previous Section 5 we studied the autocorrelation function Cl,m(t, Ro). Note

that this is the autocorrelation function of the (l,m)-th component associated with the

spherical harmonics, so that it is a linear transform of the cross correlation of the field

observed at the surface:

Cl,m(t, Ro) =

∫ π

0

∫ 2π

0

∫ π

0

∫ 2π

0

E
[
p(0, Ro, θ, ϕ)p(t, Ro, θ

′, ϕ′)
]
Yl,m(θ, ϕ)Yl,m(θ′, ϕ′)

× sin θdϕdθ sin θ′dϕ′dθ′.

From this it may seem that we need to observe the field everywhere at the surface

to estimate this quantity (by further substituting a time average for the expectation).

However, we do not need such extensive data and we can relax the hypothesis that we

observe the field everywhere at the surface of the Earth. Indeed we have shown that

Cl,m(t, Ro) does not depend on m. This is due to the spherical symmetry of the Earth

model and the noise source distribution. Therefore we can consider

Cl(t, Ro) =
1

2l + 1

l∑
m=−l

Cl,m(t, Ro)

where actually all terms are equal and given by the expression in Proposition 3. Using

the addition theorem of spherical harmonics, we have

Cl(t, Ro) =

∫ π

0

∫ 2π

0

∫ π

0

∫ 2π

0

E
[
p(0, Ro, θ, ϕ)p(t, Ro, θ

′, ϕ′)
] 1

4π
Pl(cos Ω)

× sin θdϕdθ sin θ′dϕ′dθ′,

where Pl is the Legendre polynomial and cos Ω is the angle between two unit vectors

oriented at the polar coordinates (θ, ϕ) and (θ′, ϕ′). The expectation

C(t,Ω) = E
[
p(0, Ro, θ, ϕ)p(t, Ro, θ

′, ϕ′)
]

depends only on cos Ω and it can be expanded as

C(t,Ω) =
∞∑
l=0

Cl(t, Ro)Pl(cos Ω).

The quantity of interest Cl(t, Ro) is given by

Cl(t, Ro) =
2l + 1

2

∫ π

0

C(t,Ω)Pl(cos Ω) sin ΩdΩ. (75)

This shows that observation points at the surface of the Earth that are such that the

angles Ω between pairs of points cover the interval (0, π) are sufficient to estimate

the Earth spectrum (and the scattering operator under the additional hypothesis in

Proposition 4): this data set gives estimates of C(t,Ω) for a sufficiently dense grid of

Ω; then the quantity of interest Cl(t, Ro) can be obtained by a numerical evaluation

(a quadrature formula) of the integral (75); the Earth point spectrum can then be

obtained by inspection of the Fourier transform Ĉl(ω,Ro) whose peaks correspond to

eigenfrequencies.
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6.2. Robustness with Respect to Source Configuration

Consider the case when the assumption in (6) is generalized as

E
[
f(t, r, θ, ϕ)f(t′, r′, θ′, ϕ′)] = F (t− t′)K(r)G(θ, ϕ)δ(r − r′) sin(θ)−1δ(θ − θ′)δ(ϕ− ϕ′),

thus allowing for general lateral source distribution with density function G(θ, ϕ). Then

E
[
f̂l,m(ω, r)f̂l′,m′(ω′, r′)

]
= 2πF̂ (ω)K(r)Gl,mδ(r − r′)δ(ω − ω′)δll′δmm′ ,

with

Gl,m =

∫ π

0

∫ 2π

0

|Ylm(θ, ϕ)|2G(θ, ϕ) sin θdϕdθ.

In this general setting we find that Propositions 3 and 4 still hold true but Ĉε
l,m(ω,Ro)

is now multiplied by Gl,m compared to Eqs. (70) and (73). Since these new expressions

depend on m only though Gl,m, we can sum over m = −l, . . . , l to get rid of the

dependence with respect to m of the source distribution, and there remains only a

dependence with respect to l via a positive multiplicative factor
∑l

m=−lGl,m. This

shows that, as long as the main objective is to extract the eigenfrequencies, we have

robustness with respect to the assumption of angular homogeneity in the random source

distribution. However, the quantitative estimation of the Earth scattering operator is

sensitive to the angular source distribution through the multiplicative factor
∑l

m=−lGl,m

that affects the amplitude of the estimation.

6.3. Robutsness with Respect to Medium Noise or Model Error

We have assumed in the previous sections that the speed of propagation has only radial

variations. Here we want to show that the result is robust with respect to certain angular

variations of the velocity model. More exactly, we consider an Earth-model with slow

angular variations, whose velocity model has the form:

1

c2(r, θ, ϕ)
=

1

c2o(r)
+ V ε

1 (r) + V ε
2 (r, θ, ϕ), (76)

in which there are small and slow angular velocity fluctuations V ε
2 . We call them slow

because they vary at the scale one with respect to the angles θ and ϕ, while they

may vary slowly or rapidly in the radial coordinate r. We want to clarify under which

circumstances the perturbation V ε
2 can be neglected.

The field has the form (50-51) and the coupled system of first-order ODEs for the

mode amplitudes now reads:

∂α̂εl,m
∂r

(ω, r) = − i ω
2ε
co(r)V

ε
1 (r)

[
α̂εl,m(ω, r) + e−2i

ωτ(r,Ro)
ε β̂εl,m(ω, r)

]
− iω

2
co(r)

∑
l′,m′

qεl,m,l′,m′(r)
[
α̂εl′,m′(ω, r) + e−2i

ωτ(r,Ro)
ε β̂εl′,m′(ω, r)

]
, (77)

∂β̂εl,m
∂r

(ω, r) = i
ω

2ε
co(r)V

ε
1 (r)

[
e2i

ωτ(r,Ro)
ε α̂εl,m(ω, r) + β̂εl,m(ω, r)

]
+ i

ω

2
co(r)

∑
l′,m′

qεl,m,l′,m′(r)
[
e2i

ωτ(r,Ro)
ε α̂εl′,m′(ω, r) + β̂εl′,m′(ω, r)

]
, (78)
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for r ∈ (0, Ro), instead of (34-35), with

qεl,m,l′,m′(r) =
1

ε

∫ π

0

∫ 2π

0

Yl,m(θ, ϕ)V ε
2 (r, θ, ϕ)Yl′,m′(θ, ϕ) sin θdϕdθ.

We consider the case in which the fluctuation term V ε
2 may have slow and fast

components:

V ε
2 (r, θ, ϕ) = εaV21(r, θ, ϕ) + εbV22

(r
ε
, θ, ϕ

)
+ εcV23

( r
ε2
, θ, ϕ

)
, (79)

where V21 and V22 can be arbitrary functions and V23 is a zero-mean random process,

that is stationary and mixing in r.

We have the following results:

- Provided a > 1, the term V21 gives rise to terms in (77-78) that vanish in the limit

ε→ 0.

- Provided b > 1, the term V22 gives rise to terms in (77-78) that vanish in the limit

ε→ 0.

- Provided c > 0, the term V23 gives rise to terms in (77-78) that vanish in the limit

ε→ 0.

The first two assertions are trivial by direct inspection of the amplitude of the

coupling terms εa−1q(r) and εb−1q(r/ε), respectively, but the third assertion is not so

trivial as it involves coupling terms of the form εc−1q(r/ε2) for a mixing and zero-mean

process q. However, diffusion approximation theory reveals that this coupling becomes

effective only when c = 0 [9]. Therefore all crossed terms in the equations (77-78) cancel

and we get a system similar to (34-35). The energy conservation equation (46), which is

the key property, holds true and the conclusion of the previous section holds including

robustness with respect to partial source and measurement aperture.

6.4. Robustness with Respect to Measurement Noise

The results presented in the previous sections are based on the behavior of the statistical

autocorrelation function Cl,m(t, Ro). In this section we want to explain that this function

can be estimated by the empirical autocorrelation of the recorded signals and that it is

quite robust with respect to additive measurement noise.

The statistical autocorrelation function Cl,m(t, Ro) defined by (69) is the one that

is related to the scattering operator. The empirical autocorrelation function CT
l,m(t, Ro)

defined by (67) is the one that is computed from the recorded data. It is easy

to check that the expectation of CT
l,m(t, Ro) is exactly Cl,m(t, Ro) for any T . By a

detailed fluctuation analysis it is also possible to show that the variance of CT
l,m(t, Ro)

is proportional to 1/T [11, Chapter 2]. This ensures that the empirical autocorrelation

function is a good estimate of the statistical autocorrelation function provided the

recording time window T is large enough. As noticed in [11, Chapter 2], the required

recording time is all the longer as lower frequency components are being investigated.

When the recorded signals are polluted by additive measurement noise, which is

independent from the noise sources, the empirical autocorrelation function in Eq. (67),
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computed via a discretization of Eq. (68), is the sum of the statistical autocorrelation

function Cl,m(t, Ro) and of the autocorrelation function Cn
l,m(t) that comes from the

additive noise at the N receivers. Measurement noise is independent from one receiver

to the other one, so that, if the N receivers are distributed uniformly at the surface of

the Earth and the measurement noise statistics is the same at each receiver we have:

Cn
l,m(t) =

1

N
F n(t),

where F n(t) is the autocorrelation function of the measurement noise (F̂ n(ω) is the

power spectral density of the measurement noise). This shows that the impact of the

measurement noise decays with the number of receivers. Moreover, measurement noise

usually has higher frequencies than the spectral band that is of interest for global

seismology. However, if the spectrum of the additive noise intersects the spectral

band over which we look for eigenfrequencies and/or the scattering operator, then

measurement noise may corrupt the estimation. The estimation of the eigenfrequencies

should be quite robust as measurement noise is very unlikely to have spectral peaks

similar to the ones that are investigated. The estimation of the scattering operator

(which is more sensitive to the estimated amplitude) may be affected.

7. Concluding Remarks

We have shown that global acoustic daylight imaging is possible. The point spectrum

of the Earth can be extracted from the correlation functions of the signals recorded

at the surface and emitted by unknown noise sources localized away from the surface.

Under an additional realistic assumption of the spatial support of the noise sources, the

complete scattering operator can be extracted from the correlation functions. The first

result (on the extraction of the point spectrum) is robust to receiver distribution, source

distribution, and medium and measurement noise, but one should be careful to interpret

the second result when the noise sources are not evenly distributed as this may perturb

the amplitudes of the recovered signals.

In this paper we have only considered low angular modes (with Legendre number l

of the order of one). Indeed we do not need to analyze the high angular modes because

there is no coupling between low and high angular modes in our setting. We could

consider high angular modes, but then a non-trapping condition would be necessary,

such as the Herglotz [14] and Wiechert and Zoeppritz [23] conditions.

We have here, in Eq. (10), considered the situation that the noise sources are delta-

correlated in space. This assumption simplifies the analysis but can be relaxed provided

the correlation radius is small by using stationary phase methods [11] or semi-classical

analysis [7].
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