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Abstract. In a market with a rough or Markovian mean-reverting stochastic volatility there
is no perfect hedge. Here it is shown how various delta-type hedging strategies perform and can
be evaluated in such markets. A precise characterization of the hedging cost, the replication cost
caused by the volatility fluctuations, is presented in an asymptotic regime of rapid mean reversion
for the volatility fluctuations. The optimal dynamic asset based hedging strategy in the considered
regime is identified as the so-called “practitioners” delta hedging scheme. It is moreover shown that
the performances of the delta-type hedging schemes are essentially independent of the regularity of
the volatility paths in the considered regime and that the hedging costs are related to a vega risk
martingale whose magnitude is proportional to a new market risk parameter.
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1. Introduction. We consider an incomplete market with stochastic volatility
model for the underlying. Our main objective is to characterize the performance
of option hedging schemes in such markets. The rather general class of stochastic
volatility models that we consider incorporates standard Markovian volatility models
and also rough volatility models that have received a lot of attention recently, see
[1, 15, 14, 17, 2, 10] and the literature reviews in [12, 13]. In the context of portfolio
optimization Markovian models have been considered for instance in [9], while recently
the non-Markovian case was considered in [4, 5, 6].

Here we model the volatility as a smooth function of a volatility factor that is
a stationary Volterra type Gaussian process. In the standard volatility model the
volatility factor is a mean-reverting Markov process such as an Ornstein-Uhlenbeck
process. In the rough volatility model the correlation function of the volatility factor
decays rapidly at the origin, faster than the decay associated with a Markov process,
producing rough paths. The decay rate is characterized by the Hurst exponent H.
The Gaussian volatility factor may be chosen for instance as a fractional Ornstein-
Uhlenbeck process with Hurst exponent H < 1/2. The main asymptotic context that
we consider is a rapidly mean-reverting volatility situation. The results presented
here build on and extend those presented in [12] regarding option pricing for such
models. Here we extend this framework to a more general class of volatility models
and analyze the performance of a large class of hedging strategies for European options
that we call dynamic asset (DA) based hedging schemes. A DA scheme is based on
a replicating portfolio made of some number of underlyings and some amount in the
bank account. In particular, this class contains the “delta”, δ, hedging strategies, in
which the number of underlyings in the portfolio is the δ of the price, that is, the
partial derivative of the option price with respect to the underlying price. For the
classic Black-Scholes model with a constant volatility this strategy makes it possible
to trade in a self-financing manner in the underlying and the bank account to perfectly
replicate the payoff of the option. In the situation when the volatility is stochastic
such a scheme accumulates extra cost during the lifetime of the option due to the
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fluctuations in the volatility. We consider here two main market situations: (I) the
option trades at the Black-Scholes option price at the “effective volatility” or a Black-
Scholes market, this is discussed in Section 5.1; (II) the market incorporates the effects
of rapid volatility fluctuations and trades at a corrected price or a corrected market,
this is discussed in Section 5.2. Here (I) the effective volatility refers to the root mean
square of the volatility process averaged with respect to the invariant distribution of
the volatility factor and (II) the corrected price refers to the Black-Scholes price at
the effective volatility with a correction which follows from an asymptotic analysis of
the rapidly mean-reverting situation, see Proposition 4.1. We assume that the mean
reversion time of the volatility factor is small relative to the diffusion time of the
underlying price. We remark that the distinction between the market situations (I)
and (II) is important in the case of early exercise. Note moreover that we consider
several canonical ways of computing the effective δ of the replication strategy. These
are described in more detail below. In the case that “vol-of-vol” is zero, that is
in the limit of small volatility fluctuations, these δs become the standard Black-
Scholes δ and the hedging strategies become the standard self-financing replicating
strategy. In the case of a fluctuating volatility we present here a novel and precise
characterization of the extra hedging cost that accumulates due to the fluctuations.
For the strategy (I) this extra cost is semimartingale with in general a non-zero mean
and variance that we quantify, while for the strategy (II) the extra cost is a true
martingale and we compute its variance. We compute the costs for the DA hedging
strategies and we identify the optimal hedging strategy within the DA class that
minimizes the variance of the hedging cost in our regime. We allow for early exercise
when evaluating the cost and we show how the cost depends on the relative exercise
time. It is important to note that our results are universal in that they hold for both
rough (H < 1/2) and classic Markovian stochastic volatility factors in the regime of
rapid mean reversion. However, in a regime of slow, rather than fast mean reversion, or
when H > 1/2, this picture changes qualitatively and results regarding these regimes
will be presented elsewhere. Note, moreover, that we here consider the case with
“leverage”, which means that the volatility factor is correlated with the Brownian
motion driving the underlying price. In fact, in the situation with zero correlation all
the hedging approaches coincide and the cost is characterized fully by the vega risk
martingale.

The role of stochastic volatility for delta hedging schemes in the uncorrelated
case has been discussed in [20]. Underhedged and overhedged situations are discussed
there and we revisit such a characterization here in the correlated case. Superheging
schemes provide an upper bound for the replication cost [23, 22]. Here we present
a statistical characterization of the hedging cost which can be used for a “value at
risk” type characterization of the hedging cost. When stochastic volatility is mixing
and rapidly mean-reverting the hedging cost was discussed in [21] in the case without
leverage and in [7] in the case with leverage. We extend here this discussion to get ex-
plicit expressions for the hedging cost and consider more general DA hedging schemes.
While we here consider hedging schemes with a view toward minimizing replication
cost, portfolio construction from the point of view of utility optimization is discussed
in [9] in the context of stochastic volatility in various asymptotic regimes. Our objec-
tive is indeed to characterize analytically the performance of classic (including delta)
hedging schemes which plays an important role in practical risk mitigation schemes
[19]. In [16] the importance of the leverage in determining risk in hedging schemes
is emphasized and explored from an empirical perspective. Here we give an analytic
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description of hedging risk (mean and variance of the hedging cost) in particular for
the delta hedging schemes discussed in [16] in the context of leverage and rapid mean
reversion.

Outline of paper: First, in Section 2 we summarize the main result of the paper.
Then, in Section 3, we discuss the details of the modeling of the market with a
fast mean-reverting stochastic volatility and in Section 4 we give the leading order
stochastic volatility price correction for a European option in this model. Note that
when we refer to “leading order” below we refer to terms of order

√
ε/T or larger with

ε being the mean reversion time of the volatility factor and T the time to maturity.
Then we present the main result of the paper in Section 5 on the characterization of
the hedging costs for the various hedging schemes that we consider. We discuss in
more detail the main effective parameters in Sections 6 and 7. We specialize to the
case of a call option in Section 8 and we present numerical illustrations. We finally
provide some concluding remarks in Section 9.

2. Summary of Main Results. We consider in this section hedging of a Eu-
ropean option with payoff h(XT ) with T the maturity and Xt the underlying. The
underlying is assumed to follow a diffusion process with a stochastic volatility as de-
scribed in Section 3, Eq. (3.1). In this paper we do not consider short rate effects,
corresponding to assuming as numeraire the zero coupon bond with maturity T . More-
over, we do not consider effects associated with dividends, market price of volatility
risk or transaction cost. An important assumption is, however, that we assume a
non-zero “leverage”, which means that the volatility factor is driven by a Brownian
motion that is correlated with the Brownian motion driving the underlying, see Eq.
(3.6) below. Our main objective is to identify analytically the hedging cost. We as-
sume a regime where the mean reversion time of the volatility factor is small relative
to the diffusion time of the underlying which is on the scale of the maturity T , that
is, we consider a rapidly mean-reverting stationary volatility. We present asymptotic
results in the regime of rapid mean reversion and below we make precise the sense of
the approximation. Our class of volatility models incorporates standard Markovian
volatility models and rough volatility models.

Let the root mean square or “historical” volatility be denoted by σ̄. Moreover, let
Q(0)(t, x;σ) be the standard Black-Scholes (European option) price at volatility level
σ evaluated at time t and current value x for the underlying. Then the price that
incorporates the leading order correction due to the rapidly mean-reverting stochastic
volatility is:

P (t, x) = Q(0)(t, x; σ̄) +D(T − t)
(
x∂x(x2∂2

x)
)
Q(0)(t, x; σ̄), (2.1)

see Section 4. Here D is an effective pricing parameter that can be calibrated from
observations of the implied volatility skew, see Section 6.

We construct a replicating portfolio so that at is the number of underlyings at
time t and bt is the amount in the bank account. The value of the portfolio is then

Vt = atXt + bt. (2.2)

The portfolio is required to replicate the price of the option so it replicates the payoff
at maturity VT = h(XT ). The net payment stream provided by the market over the
time interval (0, T ) due to changes in the price of the underlying is∫ T

0

asdXs.
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The change in the portfolio value that is not “financed” by the market has to be paid
by the portfolio holder and we call this the cost function:

ET = h(XT )−
∫ T

0

asdXs.

This hedging scheme is called a DA scheme if at is a function of t and Xt. The
general class of DA hedging schemes contains the delta hedging strategies, that is to
say, the strategies in which the number at = δ(t,Xt) of underlyings in the portfolio
at time t is the derivative of the price of the option with respect to the value of the
underlying. We consider first two main delta hedging strategies characterized by the
chosen “delta”:

(HW): The delta of the corrected price:

δHW(t, x) = ∂xP (t, x), (2.3)

with P given by (2.1).
(BS): The delta of the Black-Scholes price at the implied volatility:

δBS(t, x) = ∂xQ
(0)(t, x;σ)|σ=σ(t,x), (2.4)

with the implied volatility σ(t, x) solving

P (t, x) = Q(0)(t, x;σ(t, x)). (2.5)

In the case that the volatility is constant and equal to σ̄, corresponding to the
standard Black-Scholes model, these approaches coincide and the portfolios are self-
financing. In the case that the volatility is fluctuating, the model is incomplete and we
accumulate additional hedging cost during the lifetime of the option. We remark that
with no leverage effect (which means that the volatility factor is independent of the
Brownian motion driving the underlying price), then D = 0 and the two approaches
coincide and give the same hedging cost.

By (2.5), the delta of hedging approach (HW) corresponds to

δHW(t, x) = ∂xQ
(0)(t, x;σ(x, t)) + ∂σQ

(0)(t, x;σ(x, t))× ∂xσ(x, t).

This scheme is referred to as the minimum variance delta in the recent paper [16] by
Hull and White. They find by empirical comparison of a few strategies that this hedg-
ing approach is the one associated with minimum hedging risk or cost variance. In [16]
the minimum variance delta and enhanced performance is motivated by the presence
of leverage. Here we quantify the means and variances of the hedging costs analyti-
cally and correspondingly identify analytically the hedging approach with minimum
hedging cost variance in our setting, which is not the (HW) scheme.

The costs of the hedging strategies are characterized by the three market param-
eters

σ̄, D, Γ,

see Section 6. The first and second are sufficient to characterize the price as we have
remarked above, the third is a hedging risk parameter. Consider the situation when
we construct a hedging portfolio of value P (t,Xt) and write the total hedging cost at
maturity T by

EC
T = P (0, X0) + Y C

T , C = HW,BS, (2.6)
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for the two choices of hedging delta. Here X0 is the underlying value at initiation
time t = 0 and P (0, X0) the initiation cost of the portfolio. Then in a sense made
precise below the random part of the cost at maturity Y HW

T is

Y HW
T = Γ

∫ T

0

(
x2∂2

x

)2
Q(0)(s,Xs; σ̄)dBs = Γ

∫ T

0

∂σQ
(0)(s,Xs; σ̄)

T − s
dBs,

for B a standard Brownian motion. If the price sensitivity to volatility changes, the
vega, is small, then the vega risk is small as well. The sensitivity to vega in the
cost accumulation becomes larger as one approaches maturity. The cost does not
depend on the market pricing parameter D, and hence it does not depend on the
leverage correlation parameter ρ either (ρ is the correlation between the volatility
factor and the Brownian motion driving the underlying price, see Eq. (3.6) below).
However, it is proportional to the hedging risk parameter Γ which does not depend
on ρ and which is the central new parameter. Thus, the hedging approach is leverage
compensating in that it “immunizes” the portfolio with respect to “leverage risk”. In
the particular case of a European call option with strike K, i.e. h(x) = (x−K)+, we
have E[Y HW

T | F0] = 0 and

Var
(
Y HW
T | F0

)
=
(KΓ

σ̄

)2 1

2π

∫ 1

0

exp
(
−

d2
−

1 + s

) 1√
1− s2

ds, (2.7)

with the standard Black-Scholes parameter

d− =
log(X0/K)√

τ
−
√
τ

2
, τ = σ̄2T. (2.8)

Here the expectation and variance are taken conditionally on the information at time
zero. We show this hedging cost variance at maturity in Figure 2.1 as a function of
relative time to maturity, τ = σ̄2T , and moneyness, m = X0/K.

We next state the important result that leverage makes the “practitioners” hedg-
ing approach superior. We have explicitly E[Y BS

T | F0] = 0 and

Var
(
Y BS
T | F0

)
= Var

(
Y HW
T | F0

)(
1−

( D
σ̄Γ

)2
)
, with

∣∣∣∣ Dσ̄Γ

∣∣∣∣ ≤ |ρ| ≤ 1, (2.9)

which implies Var
(
Y BS
T | F0

)
≤ Var

(
Y HW
T | F0

)
. The main result of this paper is

then set forth in Section 8.3, Proposition 8.3: the (BS) hedging scheme minimizes
the hedging cost variance among all DA hedging schemes, thus is the true minimum
variance hedging scheme in the regime discussed here!

In Section 7 we discuss the explicit expressions of the effective market parameters
when the volatility model is the exponential of a standard or fractional (with Hurst
exponent H < 1/2) Ornstein-Uhlenbeck process. In this case we have

D

σ̄Γ
≈ ρ. (2.10)

Note that the implementation of the delta hedging schemes (HW) and (BS) re-
quires the knowledge of the two effective market parameters σ̄ and D. Below we will
also discuss the case when we choose a “homogenized” or “historical” delta:

(H): The delta of the Black-Scholes price at the historical volatility:

δH(t, x) = ∂xQ
(0)(t, x; σ̄). (2.11)
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Fig. 2.1. The figure shows the normalized hedging cost standard deviation
St.Dev(Y HW

T )σ̄/(KΓ) as function of relative time to maturity τ = σ̄2T and moneyness m = X0/K.

This hedging scheme (H) can be implemented with only the knowledge of σ̄ and does
not require calibration based on pricing data. However, in all cases implementing
the hedging scheme and simultaneously characterizing the hedging cost mean and
variance requires the knowledge of all three market parameters (σ̄, D,Γ). For the
scheme (H) we can write as in Eq. (2.6) for the hedging cost at maturity:

EH
T = P (0, X0) + Y H

T , (2.12)

and it follows from Proposition 8.3 that Var
(
Y H
T | F0

)
≥ Var

(
Y BS
T | F0

)
. In particular

for a European call with strike K we have E
[
Y H
T | F0

]
= 0 and

Var
(
Y H
T | F0

)
= Var

(
Y HW
T | F0

)
+
(KD
σ̄2

)2

ŵH(d−), (2.13)

with d− given by (2.8) and

ŵH(d) =
2

π

∫ 1

0

exp

(
− d2

1 + s

)
1√

1− s2

[
d4 (1− s)2

(1 + s)4
+ d2 6s(1− s)

(1 + s)3
+

3s2

(1 + s)2
− 1

2

]
ds

−d
2 exp(−d2)

2π
. (2.14)

Below we will also present the results for the hedging costs in the case with
early exercise t < T . Before we present such hedging risk characterizations in cases
with general payoffs and exercise times in Section 5 we discuss the modeling of the
stochastic volatility in Section 3 and the asymptotic pricing formula in Section 4.

3. A Class of Fast Mean Reverting Rough Volatility Models. The price
of the risky asset follows the stochastic differential equation:

dXt = σεtXtdW
∗
t , (3.1)
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with W ∗t a standard Brownian motion. The stochastic volatility is

σεt = F (Zεt ), (3.2)

and is a stationary process. The volatility is not in general a Gaussian process and is
driven by the volatility factor Zεt that is a scaled stationary Gaussian process:

Zεt = σz

∫ t

−∞
Kε(t− s)dWs, (3.3)

with Wt a standard Brownian motion and where

Kε(t) =
1√
ε
K
( t
ε

)
. (3.4)

We have introduced the mean reversion time scale ε which will be the small time
scale in our problem. It means in particular that we consider contracts whose time to
maturity is long compared to the natural time scale of the volatility factor. Thus, we
refer to the volatility factor and associated volatility process as rapidly mean-reverting.

We make the following assumption regarding the volatility model:
(i) K ∈ L2(0,∞) with

∫∞
0
K2(u)du = 1 and K ∈ L1(0,∞).

(ii) There is a d > 1 so that:

|K(t)| = O(t−d) as t→∞. (3.5)

(iii) F is smooth increasing and bounded from below (away from zero) and from
above.

Under these conditions Zεt has mean zero and variance σ2
z . We assume that W ∗t

is a Brownian motion that is correlated to the stochastic volatility through

W ∗t = ρWt +
√

1− ρ2W ′t , (3.6)

where the Brownian motion W ′t is independent of Wt. The function F is assumed
to be one-to-one, positive-valued, smooth, bounded and with bounded derivatives.
Accordingly, the filtration Ft generated by (W ′t ,Wt) is also the one generated by Xt.
Indeed, it is equivalent to the one generated by (W ∗t ,Wt), or (W ∗t , Z

ε
t ). Since F is one-

to-one, it is equivalent to the one generated by (W ∗t , σ
ε
t ). Since F is positive-valued,

it is equivalent to the one generated by (W ∗t , (σ
ε
t )

2), or Xt.
The volatility may thus be a mixing process or a rough process with rapid decay

of correlations at the origin. In the latter case the volatility is neither a martingale
nor a Markov process. We discuss next some particular volatility models.

3.1. Standard Ornstein-Uhlenbeck Model. Here we discuss the standard
model where Zεt is the scaled Ornstein Uhlenbeck (OU) process. It has the form
(3.3-3.4) with K(t) =

√
2 exp(−t). The OU process Zεt is a centered Gaussian process

with covariance of the form

E[ZεtZ
ε
t+s] = σ2

zCZ
(s
ε

)
, (3.7)

with CZ(s) = exp(−|s|). It solves a Langevin equation driven by standard Brownian
motion. It is a martingale and a Markov process, which allows for the use of stochastic
calculus [7].
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Fig. 3.1. The dotted lines show the correlation functions CZ for H = .4 (top plot) and H = .1
(bottom plot). Note that for large lags the correlation function is slightly negative. Note also the
rapid decay of the correlations at the origin, increasingly so with smaller H. The dashed lines are
the approximations in Eqs. (3.9) and (3.10).

3.2. Rough Volatility Models. We discuss here the model where Zεt is the
scaled fractional Ornstein Uhlenbeck (fOU) process with Hurst exponent H ∈ (0, 1/2).
This process is described in more detail in Appendix B, it has the form (3.3-3.4) with

K(t) =

√
2 sin(πH)

Γ(H + 1
2 )

[
tH−

1
2 −

∫ t

0

(t− s)H− 1
2 e−sds

]
. (3.8)

The fOU process Zεt is a centered Gaussian process with covariance of the form (3.7)
with CZ(0) = 1, see Eq. (B.6). Compared to the standard OU process addressed in
the previous subsection, we allow here for more general volatility factors to capture
the situations discussed in a number of recent empirical findings that the volatility
process is rough corresponding to rapid decay of CZ at the origin [14]. We arrive at
such a situation by assuming that the OU process is driven by a fractional Brownian
motion with Hurst exponent H ∈ (0, 1/2) rather than a standard Brownian motion
[3]. As described in Appendix B this gives a volatility factor that is rough. We have
specifically now that the covariance function CZ is rough at zero in the sense:

CZ(s) = 1− 1

Γ(2H + 1)
s2H + o

(
s2H

)
, s� 1, (3.9)

while it is integrable and it decays as s2H−2 at infinity:

CZ(s) =
1

Γ(2H − 1)
s2H−2 + o

(
s2H−2

)
, s� 1, (3.10)

see Figure 3.1. This behavior of the covariance function is inherited by the volatility
process σεt itself, see Eqs. (B.13) and (B.14). For more details regarding this model
we refer to [13].
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4. Prices of European Options. We are interested in computing the option
price defined as the martingale

Mt = E
[
h(XT ) | Ft

]
, (4.1)

where h is a smooth function, 0 ≤ t ≤ T , and the price follows the equation (3.1) with
the volatility model described in Section 3. In fact weaker assumptions are possible

for h, as we only need to control the function Q
(0)
t (x) defined below rather than h,

as is discussed in [11, Section 4]. We here assume that the interest rate and market
price of risk are zero.

We introduce the standard Black-Scholes operator at zero interest rate and con-
stant volatility σ:

LBS(σ) = ∂t +
1

2
σ2x2∂2

x. (4.2)

We exploit the fact that the price process is a martingale to obtain an approximation,
via constructing an explicit function P (t, x) so that P (T, x) = h(x) and so that
P (t,Xt) is a martingale up to first order corrective terms in ε. Then, indeed P (t,Xt)
gives the approximation for Mt up to first order in ε. The leading order price is the
price at the homogenized or constant parameters. The following proposition gives the
first-order correction to the expression for the martingale Mt in the regime of ε small.

Proposition 4.1. We have

lim
ε→0

ε−1/2 sup
t∈[0,T ]

E
[
|Mt − P (t,Xt)|2

]1/2
= 0, (4.3)

where

P (t, x) = Q
(0)
t (x) +

√
ερQ

(1)
t (x), (4.4)

Q
(0)
t (x) is deterministic and given by the Black-Scholes formula with constant volatil-

ity σ̄,

LBS(σ̄)Q
(0)
t (x) = 0, Q

(0)
T (x) = h(x), (4.5)

with

σ̄2 =
〈
F 2
〉

=

∫
R
F (σzz)

2p(z)dz, (4.6)

p(z) the pdf of the standard normal distribution, Q
(1)
t (x) is the deterministic correction

solving

LBS(σ̄)Q
(1)
t (x) = −D

(
x∂x(x2∂2

x)
)
Q

(0)
t (x), Q

(1)
T (x) = 0. (4.7)

The deterministic correction is

Q
(1)
t (x) = (T − t)D

(
x∂x(x2∂2

x)
)
Q

(0)
t (x), (4.8)

where the coefficient D is defined by

D = σz

∫ ∞
0

[ ∫∫
R2

F (σzz)(FF
′)(σzz

′)pCK(s,0)(z, z
′)dzdz′

]
K(s)ds, (4.9)

9



with pC(z, z′) the pdf of the bivariate normal distribution with mean zero and covari-
ance matrix (

1 C
C 1

)
, (4.10)

and

CK(s, s′) =

∫ ∞
0

K(s+ v)K(s′ + v)dv. (4.11)

The mixing (Markov) case is addressed in [7, 8] and the rough case is derived in
[13]. The above statement concerns a generalization of the volatility model in [13]
and can be derived via a straightforward modification of the proof presented there.
Thus, we see that the effect of the volatility fluctuations gives a price modification
that is of the order of ε1/2 and which is determined by the effective parameter D only.
The main result of this paper is a precise statistical characterization of hedging cost
in the context of fast mean-reverting stochastic volatility. Our novel analysis uses the
analytic framework set forth in [13]. As for the case of option prices the hedging cost
results are for the general volatility model (3.2). Therefore they apply in particular
in a uniform way to the cases of Markov and rough volatility.

It is important to note, however, that the “long-memory’ case addressed in [12],
corresponding to H > 1/2, is different. In this case the volatility “history” plays a
crucial role and gives a qualitatively different picture from the point of view of pricing
and hedging. This is also the case for small volatility fluctuations as presented in [11].
These cases will be discussed elsewhere.

5. Hedging Cost Accumulation. In the following sections we derive the re-
sults for the cost associated with the hedging approaches introduced above in the
context of European options. We summarize in the next proposition these results.
We introduced the hedging approaches (H), (HW), (BS) in Section 2. In Section 5.4
we introduce the modified approach (H̃) where the delta is chosen to be δH as in
the (H) approach, however, the value of the portfolio is chosen to be P (t, x) rather

than Q
(0)
t (x) as in the (H) approach. The following proposition follows directly from

Propositions 5.3, 5.4, 5.6, 5.8 and Section 5.4. It gives the leading-order expressions
of the expectations and the variances of the hedging costs (the leading order is

√
ε for

the expectation and ε for the variance).

Proposition 5.1. If we write the hedging cost in the form

EC
t = P (0, X0) + Y C

t , for C = H,HW,BS, H̃, (5.1)

then we have

lim
ε→0

E

[(
ε−1/2E

[
Y H
t | F0

]
− (t− T )

T

ρD

σ̄2
g(X0, T )

)2
]1/2

= 0, (5.2)

lim
ε→0

E
[(
ε−1/2E

[
Y C
t | F0

])2
]1/2

= 0, for C = HW,BS, H̃, (5.3)
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and

lim
ε→0

E

[∣∣∣∣∣ε−1Var
(
Y HW
t | F0

)
− Γ

2

σ̄2
v(X0, t, T )

∣∣∣∣∣
]

= 0, (5.4)

lim
ε→0

E

[∣∣∣∣∣ε−1Var
(
Y C
t | F0

)
− Γ

2

σ̄2
v(X0, t, T )− ρ2D

2

σ̄4
wC(X0, t, T )

∣∣∣∣∣
]

= 0, (5.5)

for C = H,BS, H̃, where D and Γ are the parameters given by (4.9) and (5.41) and
g, v, wC are cost mean and variance functions that depend on the payoff function h.

The explicit forms of g, v, wC are given in Section 8, Proposition 8.1, in the case
of European call options h(x) = (x−K)+.

Remark. In the following we show that, up to terms of order o(
√
ε):

EHW
t − P (0, X0) =N

(1)
t ,

EBS
t − P (0, X0) =N

(1)
t +

√
ερN

(2)
t ,

EH̃
t − P (0, X0) =N

(1)
t +

√
ερÑ

(2)
t ,

where N (1), resp. N (2), Ñ (2), are the martingales defined in Eq. (5.13), resp.
Eq. (5.14), Eq. (5.57). It is in fact the negative correlation between N (1) and N (2)

that makes the (BS) approach superior, see Section 8.3. In the case of the approach
(H) the hedging cost is characterized by

EH
t −Q

(0)
0 (X0) = N

(1)
t +

√
ερD

∫ t

0

(
x∂x(x2∂2

x)
)
Q(0)
s (Xs)ds,

with

E
[√

ερD

∫ t

0

(
x∂x(x2∂2

x)
)
Q(0)
s (Xs)ds | F0

]
=

(
t

T

)(
P (0, X0)−Q(0)

0 (X0)
)
.

Here and below
(
x∂x(x2∂2

x)
)
Q

(0)
s (Xs) stands for

(
x∂x(x2∂2

x)
)
Q

(0)
s (x) evaluated at x =

Xs. We next derive these results.

5.1. Hedging Cost Process with (H) Hedging Strategy. Consider the (H)
hedging scheme. We assume that the effective volatility σ̄ is known and choose here
the number of underlyings in the replicating portfolio as the “δ” of the Black-Scholes
price evaluated at the effective volatility and the current price for the underlying.
Thus, we consider here the situation with “homogenized” or “historical” delta:

aH
t = δH(t,Xt), δH(t, x) = ∂xQ

(0)
t (x), (5.6)

as in Eq. (2.11). Moreover, in this section we choose the value of the portfolio V H
t to

replicate the Black-Scholes price Q
(0)
t (Xt) evaluated at the effective volatility:

V H
t = Q

(0)
t (Xt), 0 ≤ t ≤ T, (5.7)

and bHt = Q
(0)
t (Xt) − aH

t Xt. As mentioned this hedging scheme can then be imple-
mented knowing only σ̄. As we will show though in order to characterize the hedging
cost mean and variance we need to know also the effective market parameters (D,Γ).
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The portfolio replicates the payoff at maturity V H
T = Q

(0)
T (XT ) = h(XT ). The cost

function is:

EH
t = V H

t −
∫ t

0

aH
s dXs, (5.8)

with in particular EH
0 = Q

(0)
0 (X0). We aim to understand how this cost can be

characterized.
Using the fact that Q(0) solves the Black-Scholes equation we find

dEH
t = dV H

t − aH
t dXt =

(
∂t +

1

2
(σεt )

2
(
x2∂2

x

))
Q

(0)
t (Xt)dt+ ∂xQ

(0)
t (Xt)dXt − aH

t dXt

=
1

2

(
(σεt )

2 − σ̄2
) (
x2∂2

x

)
Q

(0)
t (Xt)dt. (5.9)

We remark that we can write

dEH
t =

1

2

(
(σεt )

2 − σ̄2
) νt(Xt)

σ̄(T − t)
dt,

where we introduced the “vega”:

νt(x) = ∂σ̄Q
(0)
t (x) = σ̄(T − t)

(
x2∂2

x

)
Q

(0)
t (x). (5.10)

Note that in the special case of constant volatility we have σεt ≡ σ̄ and thus dEH
t = 0,

which means that the cost is deterministic and given by the Black-Scholes price:

E
[
EH
t | F0

]
= Q

(0)
0 (X0), Var

(
EH
t | F0

)
= 0, 0 ≤ t ≤ T.

In the rapid stochastic volatility case (3.2), we can identify the leading-order terms of
the cost. Two equivalent expressions can be determined as shown in Lemma 5.2. They
will be useful to compute the mean and variance of the cost in the next propositions.

Lemma 5.2. The hedging cost satisfies

lim
ε→0

ε−1/2 sup
t∈[0,T ]

E
[
|EH
t − ÊH

t |2
]1/2

= 0, (5.11)

where

ÊH
t = Q

(0)
0 (X0) + ε1/2ρ

(
Q

(1)
0 (X0)−Q(1)

t (Xt)
)

+N
(1)
t + ε1/2ρN

(2)
t , (5.12)

N
(1)
t and N

(2)
t are the martingales starting at zero

N
(1)
t =

∫ t

0

(
x2∂2

x

)
Q(0)
s (Xs)dψ

ε
s , (5.13)

N
(2)
t =

∫ t

0

(
x∂x

)
Q(1)
s (Xs)σ

ε
sdW

∗
s , (5.14)

with

ψεt = E
[1

2

∫ T

0

(
(σεs)

2 − σ2
)
ds | Ft

]
. (5.15)
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We also have

lim
ε→0

ε−1/2 sup
t∈[0,T ]

E
[
|EH
t − ĚH

t |2
]1/2

= 0, (5.16)

where

ĚH
t = Q

(0)
0 (X0) + ε1/2ρD

∫ t

0

(
x∂x(x2∂2

x)
)
Q(0)
s (Xs)ds+N

(1)
t . (5.17)

Note that the difference in Eq (5.12) can be interpreted as the cost of trading the
correction over the interval (0, t) and N (2) is (minus) the martingale part of this cost
which gives Eq. (5.17) in view of the problems solved by Q(0) and Q(1) as stated in
Proposition 4.1. Moreover, we can write from (4.8):

lim
∆t↓0

E
[
ĚH
t+∆t − ĚH

t | Ft
]

∆t
=
ε1/2ρQ

(1)
t (Xt)

T − t
,

so that the current “coherent cost flux” corresponds to the accumulation of the cost
of the correction over the interval remaining until maturity.

Proof. Let φεt be defined as the expected accumulated square volatility deviation
in between the present and maturity:

φεt = E
[1

2

∫ T

t

(
(σεs)

2 − σ2
)
ds | Ft

]
. (5.18)

Then we have

φεt = ψεt −
1

2

∫ t

0

(
(σεs)

2 − σ2
)
ds,

where the martingale ψεt is defined by (5.15). (ψεt )t∈[0,T ] is a square-integrable mar-
tingale that satisfies the following properties:

• The quadratic covariation of ψε and W is

d 〈ψε,W 〉t = ϑεtdt, ϑεt = σz

∫ T

t

E
[
FF ′(Zεs ) | Ft

]
Kε(s− t)ds, (5.19)

with Kε of the form (3.4).
• There exists a constant KT such that we have almost surely

sup
t∈[0,T ]

∣∣ϑεt ∣∣ ≤ KT ε
1/2. (5.20)

The first part was proved in [12, Lemma B.1]. The second part follows from the fact
that Kε(t) = K(t/ε)/

√
ε, K ∈ L1(0,∞).

We define the martingales starting from zero at time zero:

dN
(0)
t = (x∂x)Q

(0)
t (Xt)σ

ε
t dW

∗
t , (5.21)

dN
(3)
t =

(
x∂x(x2∂2

x)
)
Q

(0)
t (Xt)σ

ε
tφ

ε
tdW

∗
t . (5.22)
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Then Eqs. (31) and (36) in [13] read:

1

2

(
(σεt )

2 − σ2
)(
x2∂2

x

)
Q

(0)
t (Xt)dt = dQ

(0)
t (Xt)− dN (0)

t , (5.23)

dQ
(0)
t (Xt) = −d

[
φεt
(
x2∂2

x

)
Q

(0)
t (Xt) + ε1/2ρQ

(1)
t (Xt)

]
+

1

2

(
x2∂2

x(x2∂2
x)
)
Q

(0)
t (Xt)

(
(σεt )

2 − σ2
)
φεtdt

+
ε1/2

2
ρ
(
x2∂2

x

)
Q

(1)
t (Xt)

(
(σεt )

2 − σ2
)
dt

+ρ
(
x∂x(x2∂2

x)
)
Q

(0)
t (Xt)

(
σεtϑ

ε
t − ε1/2D

)
dt

+dN
(0)
t + dN

(1)
t + ε1/2ρdN

(2)
t + dN

(3)
t . (5.24)

In [13] it is shown that the third, fourth, and fifth terms of the right-hand side of
(5.24) are smaller than ε1/2. That is, if we introduce for any t ∈ [0, T ]:

R
(1)
t,T =

∫ T

t

1

2

(
x2∂2

x(x2∂2
x)
)
Q(0)
s (Xs)

(
(σεs)

2 − σ2
)
φεsds, (5.25)

R
(2)
t,T =

∫ T

t

ε1/2

2
ρ
(
x2∂2

x

)
Q(1)
s (Xs)

(
(σεs)

2 − σ2
)
ds, (5.26)

R
(3)
t,T =

∫ T

t

ρ
(
x∂x(x2∂2

x)
)
Q(0)
s (Xs)

(
σεsϑ

ε
s − ε1/2D)ds, (5.27)

we have for j = 1, 2, 3,

lim
ε→0

ε−1/2 sup
t∈[0,T ]

E
[
(R

(j)
t,T )2

]1/2
= 0. (5.28)

From Proposition 4.1 we have that

−dQ(1)
t (Xt) = D

(
x∂x(x2∂2

x)
)
Q

(0)
t (Xt)dt− dN (2)

t

−1

2

(
x2∂2

x

)
Q

(1)
t (Xt)

(
(σεt )

2 − σ2
)
dt. (5.29)

It then follows from (5.9)-(5.23)-(5.24)-(5.29) that

dEH
t = ε1/2ρD

(
x∂x(x2∂2

x)
)
Q

(0)
t (Xt)dt+ dR

(1)
t,T + dR

(3)
t,T

− d
[
φεt
(
x2∂2

x

)
Q

(0)
t (Xt)

]
+ dN

(1)
t + dN

(3)
t . (5.30)

It follows from Lemma A.2 that the first term in the second line of Eq. (5.30) is small:

lim
ε→0

ε−1/2 sup
t∈[0,T ]

E

[∣∣∣∣∫ t

0

−d
[
φεs
(
x2∂2

x

)
Q(0)
s (Xs)

]∣∣∣∣2
]1/2

= 0, (5.31)

and the third term, i.e. the martingale N
(3)
t , is small as well:

lim
ε→0

ε−1/2 sup
t∈[0,T ]

E
[∣∣N (3)

t

∣∣2]1/2 = 0.
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We then get (5.16-5.17). Finally we remark from (5.26) and (5.29) that

ĚH
t = ÊH

t +R
(2)
0,T −R

(2)
t,T ,

so that (5.28) gives (5.11-5.12).
We next consider the expected hedging cost. We find that, if we exercise at some

time 0 ≤ t ≤ T , the extra hedging cost beyond the Black-Scholes price at the effective
volatility is the fraction t/T of the price correction at the initiation time:

Proposition 5.3. The mean hedging cost satisfies

lim
ε→0

E

[(
ε−1/2E

[
EH
t − EH

0 | F0

]
− t

T
ρQ

(1)
0 (X0)

)2
]1/2

= 0, (5.32)

with EH
0 = Q

(0)
0 (X0).

Therefore, we have

lim
ε→0

E

[(
ε−1/2

(
E
[
EH
t | F0

]
− P (0, X0)

)
− t− T

T
ρQ

(1)
0 (X0)

)2
]1/2

= 0, (5.33)

which gives (5.2).
Proof. From (5.17) we have

ε−1/2E
[
ĚH
t −Q

(0)
0 (X0) | F0

]
= ρD

∫ t

0

E
[(
x∂x(x2∂2

x)
)
Q(0)
s (Xs) | F0

]
ds. (5.34)

Using (5.16), Lemma A.11 (Eq. (A.17)), and dominated convergence theorem, it fol-
lows that

lim
ε→0

E

[(
ε−1/2E

[
EH
t − EH

0 | F0

]
− ρD

∫ t

0

E
[(
x∂x(x2∂2

x)
)
Q(0)
s (X̃s) | F0

]
ds

)2
]

= 0,

(5.35)

with

dX̃t = σ̄X̃tdW
∗
t , X̃0 = X0. (5.36)

On the one hand, from (4.7) we get

ρD

∫ t

0

E
[(
x∂x(x2∂2

x)
)
Q(0)
s (X̃s) | F0

]
ds = −ρE

[∫ t

0

LBS(σ̄)Q(1)
s (X̃s)ds | F0

]
= −ρE

[
Q

(1)
t (X̃t)−Q(1)

0 (X̃0) | F0

]
,

which is equal to 0 at t = 0 and equal to ρQ
(1)
0 (X0) at t = T .

On the other hand, we have by Itô’s formula and (4.5) that

E
[(
x∂x(x2∂2

x)
)
Q(0)
s (X̃s) | F0

]
=
(
x∂x(x2∂2

x)
)
Q

(0)
0 (X0),

which shows that the integral term in (5.35) is a linear function in t. Therefore it is

equal to (t/T )ρQ
(1)
0 (X0), which completes the proof of (5.32).
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We are also interested in the risk or uncertainty in the hedging cost if we exercise
at or before expiry. We find that the magnitude of the cost fluctuations is of order√
ε. We have an explicit integral expression for the variance of the hedging cost

fluctuations (to leading order ε) as explained in the following proposition:

Proposition 5.4. The asymptotic variance of the cost fluctuations satisfies

lim
ε→0

E
[∣∣∣ε−1Var

(
EH
t − EH

0 | F0

)
− V(1)

t (X0)− 2V(2)
t (X0)− V(3)

t (X0)
∣∣∣] = 0,(5.37)

with

V(1)
t (x0) = 2ρ2D

2
∫
R
dzp(z)

∫ t

0

ds(t− s)
((
x∂x(x2∂2

x)
)
Q(0)
s (x0e

σ̄
√
sz−σ̄2s/2)

)2

−
( t
T
ρQ

(1)
0 (x0)

)2

, (5.38)

V(2)
t (x0) = ρ2D

2
∫
R
dzp(z)

∫ t

0

ds(t− s)
((

(x∂x)2(x2∂2
x)
)
Q(0)
s (x0e

σ̄
√
sz−σ̄2s/2

)
×
(

(x2∂2
x)Q(0)

s (x0e
σ̄
√
sz−σ̄2s/2

)
, (5.39)

V(3)
t (x0) = Γ

2
∫
R
dzp(z)

∫ t

0

ds
(

(x2∂2
x)Q(0)

s (x0e
σ̄
√
sz−σ̄2s/2

)2

. (5.40)

Here p(z) is the pdf of the standard normal distribution, Γ is the parameter

Γ
2

= 2σ2
z

∫ ∞
0

∫ ∞
s

[∫∫
R2

FF ′(σzz)FF
′(σzz

′)pCK(s,s′)(z, z
′)dzdz′

]
K(s)K(s′)ds′ds,

(5.41)
and pC is the pdf of the bivariate normal distribution with covariance matrix (4.10)
and CK(s, s′) is defined by (4.11).

Proof. From (5.11) and (5.17), we can write

ε−1Var
(
EH
t − EH

0 | F0

)
= V ε1 + 2V ε2 + V ε3 + o(1), (5.42)

V ε1 = Var

(
ρD

∫ t

0

(
x∂x(x2∂2

x)
)
Q(0)
s (Xs)ds | F0

)
, (5.43)

V ε2 = ε−1/2Cov

(
ρD

∫ t

0

(
x∂x(x2∂2

x)
)
Q(0)
s (Xs)ds,N

(1)
t | F0

)
, (5.44)

V ε3 = ε−1Var
(
N

(1)
t | F0

)
. (5.45)

Note that we have x2∂2
x = (x∂x)

2 − x∂x. It follows that

LBS(σ̄)
(

(x∂x)
j

(x2∂2
x)
)
Q

(0)
t (x) = 0, j = 0, 1, . . . .

Then one can show that V ε1 converges in L1 to V(1)
t (X0) (given by Eq. (5.38)) by

Lemma A.13-Eq. (A.21) and Proposition 5.3. Similarly, using the expression (5.13) of

N (1), one can show that V ε2 and V ε3 converge in L1 to V(2)
t (X0) and V(3)

t (X0) (given
by Eqs. (5.39) and (5.40)) by Lemma A.2 and by Lemma A.13-Eqs. (A.22-A.23)
respectively.

We illustrate the above result in the case of a European call option in Section 8.
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5.2. Hedging Cost Process using (HW) Hedging Strategy. In this section
we analyze the situation when we use the hedging scheme (HW) described by Eq. (2.3)
where we use a “corrected delta” to construct the portfolio. That is, we now use
the corrected Black-Scholes price in Proposition 4.1 and associated delta and value
function.

Thus, we construct a replicating portfolio so that aHW
t is the number of underly-

ings at time t and bHW
t the amount in the bank account according to the corrected

strategy. The value of the portfolio is now

V HW
t = aHW

t Xt + bHW
t , (5.46)

and we choose

aHW
t = δHW(t,Xt), δHW(t, x) = ∂xP (t, x) = ∂x

(
Q

(0)
t + ε1/2ρQ

(1)
t

)
(x). (5.47)

We moreover require the portfolio to replicate the corrected option price so that the
value of the portfolio is

V HW
t = P (t,Xt), 0 ≤ t ≤ T, (5.48)

and bHW
t = P (t,Xt) − aHW

t Xt. Again the portfolio replicates the payoff at maturity
V HW
T = P (T,XT ) = h(XT ). The financing cost of the portfolio is

EHW
t = V HW

t −
∫ t

0

aHW
s dXs, (5.49)

with in particular EHW
0 = P (0, X0). We aim to understand how the cost is affected

by using the corrected strategy. The following lemma shows that, by using the cor-
rected hedging strategy, we have in the incomplete market restored the situation with
existence of a self-financing replicating portfolio to the order of the approximation in
the mean. Moreover the hedging cost is characterized by the martingale N (1) defined
by (5.13).

Lemma 5.5. The cost of the corrected hedging strategy satisfies

lim
ε→0

ε−1/2 sup
t∈[0,T ]

E
[(
EHW
t − P (0, X0)−N (1)

t

)2]1/2
= 0, (5.50)

where N
(1)
t is the martingale defined in Lemma 5.2, Eq. (5.13).

Proof. In view of Eqs. (4.5) and (4.7) we find

dEHW
t = dV HW

t − aHW
t dXt

=
(
∂t +

1

2
(σεt )

2x2∂2
x

)
P (t,Xt)dt+ ∂xP (t,Xt)dXt − aHW

t dXt

=
1

2

(
(σεt )

2 − σ̄2
) (
x2∂2

x

)
P (t,Xt)dt− ε1/2ρD

(
x∂x(x2∂2

x)
)
Q

(0)
t (Xt)dt.

We define ẼHW by

dẼHW
t =

1

2

(
(σεt )

2 − σ̄2
) (
x2∂2

x

)
Q

(0)
t (Xt)dt− ε1/2ρD

(
x∂x(x2∂2

x)
)
Q

(0)
t (Xt)dt, (5.51)

starting from ẼHW
0 = P (0, X0). Therefore

EHW
t − ẼHW

t = ρε1/2

∫ t

0

1

2

(
(σεs)

2 − σ̄2
) (
x2∂2

x

)
Q(1)
s (Xs)ds,
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and we get from Lemma A.12:

lim
ε→0

ε−1/2 sup
t∈[0,T ]

E
[
(EHW

t − ẼHW
t )2

]1/2
= 0. (5.52)

We have from (5.9) and (5.51):

dẼHW
t − dEH

t = −ε1/2ρD
(
x∂x(x2∂2

x)
)
Q

(0)
t (Xt)dt.

Using (5.17) we get

ẼHW
t − EH

t + ĚH
t = ẼHW

0 − EH
0 + ĚH

0 +N
(1)
t

= P (0, X0)−Q(0)
0 (X0) +Q

(0)
0 (X0) +N

(1)
t = P (0, X0) +N

(1)
t .

Using (5.16) we find that

lim
ε→0

ε−1/2 sup
t∈[0,T ]

E
[(
ẼHW
t − P (0, X0)−N (1)

t

)2
]1/2

= lim
ε→0

ε−1/2 sup
t∈[0,T ]

E
[
(EH

t − ĚH
t )2
]1/2

= 0,

which gives the desired result with Eq. (5.52).
This lemma allows us to characterize the mean and variance of the cost of the

corrected hedging strategy.
Proposition 5.6. The mean extra hedging cost beyond the corrected price is

zero:

lim
ε→0

E
[(
ε−1/2E

[
EHW
t − EHW

0 | F0

])2
]1/2

= 0, (5.53)

with EHW
0 = P (0, X0). The variance of the cost fluctuations satisfies

lim
ε→0

E
[∣∣∣ε−1Var

(
EHW
t − EHW

0 | F0

)
− V(3)

t (X0)
∣∣∣] = 0, (5.54)

where V(3)
t is given by (5.40).

Proof. The result on the mean follows from Lemma 5.5 and the fact that N
(1)
t is

a zero-mean martingale. The result on the variance follows from Lemma 5.5 and the

formula for the asymptotic variance of N
(1)
t obtained in Proposition 5.4.

5.3. Hedging Cost with (BS) Hedging Strategy. Consider here the hedging
approach (BS) described in Section 2, that is using the delta δBS and as value function

P . Here Q(j)(t, x;σ), j = 0, 1 stands for Q
(j)
t (x) with the constant volatility σ instead

of σ̄. Using a similar technique as in the derivation of Lemma 5.2 and Proposition 5.4
we find

Lemma 5.7. The cost for the hedging scheme (BS), EBS, satisfies

lim
ε→0

ε−1/2 sup
t∈[0,T ]

E
[(
EBS
t − ÊBS

t

)2]1/2
= 0, (5.55)

where

ÊBS
t = P (0, X0) +N

(1)
t + ε1/2ρÑt, (5.56)
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N
(1)
t is the martingale defined by (5.13), and Ñt is the martingale defined by

Ñt = D

∫ t

0

H̃s(Xs)σ
ε
sdW

∗
s , (5.57)

H̃s(x) =
1

D

((
x∂x

)
−
(x∂x∂σQ(0)(s, x; σ̄)

∂σQ(0)(s, x; σ̄)

))
Q(1)(s, x; σ̄). (5.58)

Proof. The implied volatility σ(t, x) is such that

Q(0)(t, x;σ(t, x)) = P (t, x) = Q(0)(t, x; σ̄) +
√
ερQ(1)(t, x; σ̄).

so that we have:

σ(t, x)− σ̄ =

√
ερQ(1)(t, x; σ̄)

∂σQ(0)(t, x; σ̄)
+ o(
√
ε).

The (BS) delta is:

δBS(t, x) =
(
∂xQ

(0)(t, x;σ)
)∣∣∣
σ=σ(t,x)

=
(
∂x
(
Q(0)(t, x; σ̄) + ∂σQ

(0)(t, x; σ̄)(σ − σ̄)
))∣∣∣

σ=σ(t,x)
+ o(
√
ε),

so that we can write:

δBS(t, x) = δH(t, x) +
√
ερQ(1)(t, x; σ̄)

(
∂x∂σQ

(0)(t, x; σ̄)

∂σQ(0)(t, x; σ̄)

)
+ o(
√
ε).

Then it follows from Eqs. (5.8) and (5.12) that the cost is

EBS
t = P (t,Xt)−

∫ t

0

δBS(s,Xs)ds

= EH
t +
√
ερQ

(1)
t (Xt)−

√
ερ

∫ t

0

(
x∂x∂σQ

(0)(s,Xs; σ̄)

∂σQ(0)(s,Xs; σ̄)

)
Q(1)(s,Xs; σ̄)σεsdW

∗
s

= P (0, X0) +N
(1)
t +

√
ερN

(2)
t

−
√
ερ

∫ t

0

(
x∂x∂σQ

(0)(s,Xs; σ̄)

∂σQ(0)(s,Xs; σ̄)

)
Q(1)(s,Xs; σ̄)σεsdW

∗
s + o(

√
ε)

= P (0, X0) +N
(1)
t +

√
ερÑt + o(

√
ε),

with Ñt defined by (5.57).

This lemma allows us to characterize the mean and variance of the cost of the
(BS) hedging scheme.

Proposition 5.8. The mean and variance of the cost fluctuations satisfy

lim
ε→0

E
[(
ε−1/2E

[
EBS
t − EBS

0 | F0

])2
]1/2

= 0, (5.59)

lim
ε→0

E
[∣∣∣ε−1Var

(
EBS
t − EBS

0 | F0

)
− Ṽ(1)

t (X0)− 2Ṽ(2)
t (X0)− Ṽ(3)

t (X0)
∣∣∣] = 0, (5.60)
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with EBS
0 = P (0, X0),

Ṽ(1)
t (x0) = ρ2D

2
σ̄2

∫
R
dzp(z)

∫ t

0

ds
(
H̃s(x0e

σ̄
√
sz−σ̄2s/2)

)2

, (5.61)

Ṽ(2)
t (x0) = ρ2D

2
∫
R
dzp(z)

∫ t

0

ds H̃s(x0e
σ̄
√
sz−σ̄2s/2)

×
(
x2∂2

xQ
(0)
s (x0e

σ̄
√
sz−σ̄2s/2

)
, (5.62)

Ṽ(3)
t (x0) = Γ

2
∫
R
dzp(z)

∫ t

0

ds
(
x2∂2

xQ
(0)
s (x0e

σ̄
√
sz−σ̄2s/2

)2

, (5.63)

where Γ is defined by (5.41) and H̃s(x) is defined by (5.58).

5.4. Hedging Cost with a Modified (H) Hedging Strategy. To facilitate
comparison of the schemes at early exercise times we here consider the hedging scheme
(H) using the delta at the Black-Scholes price at the effective volatility, δH, however,
modified in that the portfolio value is chosen to be the corrected price P (t, x) rather

than the price Q
(0)
t (x) at the effective volatility. We label this approach (H̃).

Note that using Eq. (5.12) we can write that the accumulated asymptotic hedging
cost until time t has the form:

EH̃
t = P (t,Xt)−

∫ t

0

δH(s,Xs)dXs = P (0, X0) +N
(1)
t + ε1/2ρN

(2)
t + o(ε1/2). (5.64)

We then find that the hedging cost is characterized by Lemma 5.7 and Proposition
5.8 upon the replacements:

Ñ 7→ N (2), DH̃t(x) 7→
(
x∂x

)
Q

(1)
t (x).

6. On Estimation of Effective Market Parameters. For the above results
to be useful we must be able to estimate the three market parameters discussed in
Section 2

σ̄, D =
√
ερD, Γ =

√
εΓ. (6.1)

We refer to D =
√
ερD as an effective pricing parameter with the price correction

being scaled by this parameter. The effective pricing parameter can together with
the effective or historical volatility, σ̄, be calibrated from observation of vanilla option
prices and the associated implied volatility skew, see for instance the discussions in
[7, 8].

The parameter Γ =
√
εΓ is a hedging risk parameter and the magnitude of vega

risk martingale N (1) scales with this parameter. The hedging cost parameter can be
calibrated from historical data. Indeed, by constructing the (HW) hedge for instance
and recording the accumulated cost over times ti, i = 0, . . . , n say, we will have an
estimate of the martingale N (1) at these times from which the parameter

√
εΓ can

be estimated via a least squares procedure that fits the empirical variance of the

martingale N (1) with the formula (5.45)-(5.40) in which only εΓ
2

is unknown. Then
this “historical” hedging risk parameter estimate can be used to project future hedging
cost (mean and variance), thus, the theory provides a bridge from historical to future
hedging cost.

We remark also that in more complex market situations and modeling, incorpo-
rating for instance (random) market price of volatility risk and interest rate, there
will be additional parameters to estimate.
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Fig. 7.1. Market parameters α, β in ExpOU case.

7. Effective Market Parameters Deriving from ExpfOU. We discuss here
the exponential fractional Ornstein-Uhlenbeck process or ExpfOU model. We then
define the volatility by σεt = F (Zεt ) with

F (z) = σ̄ exp
(ωz
σz
− ω2

)
,

which is such that
〈
F 2
〉

= σ̄2. Here, ω > 0 is a fluctuation parameter that measures
the typical amplitude of the relative fluctuations of the volatility:〈

F 4
〉
−
〈
F 2
〉2

〈F 2〉2
= e4ω2

− 1.

We introduce two parameters that summarize the information contained in K as
defined in (3.4) (and the function CK defined in terms of K by (4.11)):

α =
D

σ̄3
= ωe−

ω2

2

∫ ∞
0

e2ω2CK(s,0)K(s)ds, (7.1)

β =
Γ

σ̄2
=

(
ω2

∫ ∞
0

∫ ∞
0

e4ω2CK(s,s′)K(s)K(s′)dsds′
)1/2

. (7.2)

These two parameters (with σ̄) are necessary and sufficient to compute the cor-
rected price and hedging cost. In the case of a “classic” ExpOU model with
K(t) =

√
2 exp(−t) they are given explicitly by:

α = e−ω
2/2 e

2ω2 − 1√
2ω

, β =

√
1

2
E1(4ω2)− γ

2
− ln(2ω),

with E1(z) =
∫∞
z

e−t

t dt the exponential integral function and γ ' 0.577 the Euler
constant. We plot α and β as function of ω in the ExpOU case in Figure 7.1. Note
that α/β ≤ 1 is nearly independent of ω and approximately equal to 1 for ω ≤ 1.

8. Hedging Cost Statistics for European Call Options.
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Fig. 8.1. The figure shows the European call option price relative to strike: Q
(0)
0 /K. It is

plotted as a function of Log relative maturity, log10(τ) = log10(T σ̄2), and moneyness, m = X0/K.
For short maturities we see the call payoff while there is a transition regime to the large maturity
limit, the identity, for relative maturity roughly around unity.

8.1. Price and its Delta and their Corrected Versions. In Figure 8.2 we

show the normalized hedging cost correction σ̄2Q
(1)
0 /(KD) and in Figure 8.1 we show

the Black-Scholes price relative to strike Q
(0)
0 /K for comparison. Note that for small

maturities and moneyness the mean correction is relatively more important. In Figure
8.3 we show the delta for the Black-Scholes price and in Figure 8.4 we show the delta
for the normalized price correction. Note that for short maturities and around the
money the Black-Scholes delta at the effective volatility gives an overhedged situation
in that the delta associated with the correction is negative. We also see that for short
maturities and moneyness the Black-Scholes delta gives an underhedged situation in
that the delta associated with the correction is positive.

8.2. Call Hedging Risk. In Proposition 5.1 we gave the expressions of the
means and variances of the hedging costs in the case of a general payoff. The explicit
expressions for the normalized functions g, v, wC, for C = H,BS, H̃, follow from the
propositions in the Section 5. Here we consider the situation with a European call.
Then we can use the results in Appendix C, Eqs. (C.1-C.8), to get explicit expressions
for the normalized functions g, v, wC.

Proposition 8.1. In the case of a European call option h(x) = (x −K)+ and
using the notation in Proposition 5.1, the normalized functions g, v, wC depend on
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Fig. 8.2. The figure shows the mean normalized hedging cost correction for the European call

option: σ̄2Q
(1)
0 /(KD) = −d− exp(−d2−/2)/

√
2π. It is plotted as a function of Log relative maturity,

log10(τ) = log10(T σ̄2), and moneyness, X0/K relative to the same domain as in Figure 8.1. We
see that the correction is large in the price transition zone and that its maximal value is rather
insensitive to the moneyness. We see moreover that when the time to maturity T is large relative to
the diffusion time σ̄−2 then the correction plays a minor role. The red dashed line corresponds to

d− = 0, or τ = 2 ln(m), so that Q
(1)
0 = 0. The blue and red crosses are asymptotic approximations,

in ln(m), for the partial derivative of Q
(1)
0 with respect to maturity being zero. The blue crosses in

the figure are τ = 4 + 4 ln(m), the red crosses are τ = ln2(m).

d− and θ = t/T only:

g(d−)

K
= −

d− exp(−d2
−
/2)

√
2π

,

v(θ; d−)

K2
=

1

2π

∫ θ

0

exp
(
−

d2
−

1 + s

) ds√
1− s2

,

wH(θ; d−)

K2
=

1

π

∫ θ

0

exp
(
−

d2
−

1 + s

) (θ − s)
(1− s)2

[
2f4(s, d−)− f0(s)

]
ds− θ2

d2
−

exp(−d2
−

)

2π
,

wBS(θ; d−) = −v(θ; d−),

wH̃(θ; d−)

K2
=

1

2π

∫ θ

0

exp
(
−

d2
−

1 + s

) 1

(1− s)
[
f4(s, d−)− f0(s)

]
ds,

with fj , j = 0, 2, 4 defined in Proposition C.1 and

d− =
log(X0/K)√

τ
−
√
τ

2
, τ = σ̄2T.

It then follows that, as ε→ 0,

Var
(
Y BS
t | F0

)
= ε

(
Γ

2

σ̄2
− ρ2D

2

σ̄4

)
v(θ; d−) =

(
Γ2

σ̄2
− D2

σ̄4

)
v(θ; d−),

which gives Eq. (2.9). In Figure 8.5 we plot v as a function of normalized maturity
and moneyness. We see that v is large for large exercise times and small values of d− .
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Fig. 8.3. The figure shows the Black-Scholes delta at the effective volatility, that is ∂xQ
(0)
0 . It

is plotted as a function of log relative maturity, log10(T σ̄2), and moneyness, X0/K. Relatively far
away from the strike this is close to unity corresponding to holding a unit of the underlying in the
replicating portfolio. As seen from Figure 8.2 the price correction is small here also.
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Fig. 8.4. The figure shows the delta of the correction, that is σ̄2∂xQ
(1)
0 /D. It is plotted as a

function of Log relative maturity, log10(T σ̄2), and moneyness, X0/K.

In Figures 8.6 and 8.7 we show respectively wH and wH̃. In the regime of large exercise
times and small values of d− these schemes offer a slight advantage relative to the
(HW) scheme in terms of cost variance. Note that at maturity the two schemes (H)
and (H̃) have the same cost. Recall however that for the scheme (H) it is assumed
that the option can be traded at the price Q(0) so the schemes cannot be compared

directly other than at maturity when Q
(1)
T = 0. In Figure 8.8 we show the function

g/K which describes the coherent cost correction as a function of d− , we see that this
correction is maximal for d− around unity.
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Fig. 8.5. The figure shows the hedging cost variance function v(θ; d− )/K2.
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Fig. 8.6. The figure shows the hedging cost variance function wH(θ; d− )/K2.

8.3. Optimality of Practitioners Scheme. The practitioners scheme (BS)
has the lowest risk (i.e. cost variance) among the schemes that we have considered
(H,HW,BS, H̃). Here, we show that in fact the practitioners approach is the optimal
scheme amongst all DA hedging strategies.

Definition 8.2. A DA hedging scheme is based on a replication portfolio of value
P of the form (2.2) with the number of underlyings at being a smooth function of t
and Xt.

Proposition 8.3. Let A(t, x) be a smooth and bounded function. Let at =
A(t,Xt) be the number of underlyings in a replication portfolio of value P (t,Xt). Let

E∗t = P (t,Xt)−
∫ t

0

asdXs (8.1)
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Fig. 8.7. The figure shows the hedging cost variance function wH̃(θ; d− )/K2.
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Fig. 8.8. The figure shows the coherent cost correction function g(d− )/K.

be the cost associated to the hedging strategy at. Then we have to leading order

E[E∗t | F0] = P (0, X0), Var(E∗t | F0) ≥ Var(EBS
t | F0), t ∈ [0, T ]. (8.2)

This proposition shows that there is one scheme, the (BS) approach, that is the
optimal DA scheme for any exercise time t ≤ T .

Proof. We write the cost as

E∗t = P (t,Xt)−
∫ t

0

δHW(s,Xs)dXs +

∫ t

0

(
δHW(s,Xs)− as

)
dXs.

We first address the most interesting case consistent with the regime addressed here,

that is, the case when A(t, x)− ∂xQ(0)
t (x) is of order

√
ε:

A(t, x) = ∂xQ
(0)
t (x) +

√
εA1(t, x).
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Then

E∗t = P (0, X0) +N
(1)
t + Ňt + o(

√
ε),

with (using Eq. (5.47))

Ňt =
√
ε

∫ t

0

Ǎs(Xs)σ
ε
sdW

∗
s , Ǎs(x) =

(
ρQ(1)

s (x)−A1(s, x)
)
x.

The two martingales N (1) and Ň have amplitudes of order
√
ε. Using Eq. (A.14) we

get

E
[
(N

(1)
t )2 | F0

]
= E

[ ∫ t

0

(x2∂2
xQ

(0)
s )(Xs)

2(ϑεs)
2ds | F0

]
= εΓ

2E
[ ∫ t

0

(x2∂2
xQ

(0)
s )(Xs)

2ds | F0

]
+ o(ε),

in the sense that

lim
ε→0

E
[∣∣∣∣ε−1E

[
(N

(1)
t )2 | F0

]
− Γ

2E
[ ∫ t

0

(x2∂2
xQ

(0)
s )(Xs)

2ds | F0

]∣∣∣∣] = 0.

Similarly, using Eqs. (A.13) and (A.19),

E
[
(Ňt)

2 | F0

]
= εE

[ ∫ t

0

Ǎs(Xs)
2(σεs)

2ds | F0

]
= εσ̄2E

[ ∫ t

0

Ǎs(Xs)
2ds | F0

]
+ o(ε),

E
[
N

(1)
t Ňt | F0

]
=
√
ερE

[ ∫ t

0

(
(x2∂2

xQ
(0)
s )Ǎs

)
(Xs)σ

ε
sϑ
ε
sds | F0

]
= ερDE

[ ∫ t

0

(
(x2∂2

xQ
(0)
s )Ǎs

)
(Xs)ds | F0

]
+ o(ε).

Therefore, we find to leading order

ρ̌t = Corr
(
N

(1)
t , Ňt | F0

)
=

ρDE
[ ∫ t

0

(
(x2∂2

xQ
(0)
s )Ǎs

)
(Xs)ds | F0

]
σ̄Γ

√
E
[ ∫ t

0
(x2∂2

xQ
(0)
s )(Xs)2ds | F0

]
E
[ ∫ t

0
Ǎs(Xs)2ds | F0

] ,
so that by Cauchy-Schwarz inequality |ρ̌t| ≤ ρ, where

ρ =
ρD

σ̄Γ
=

D

σ̄Γ
. (8.3)

Thus, using Proposition 8.1 and denoting

αt =

√
Var(Ňt | F0)

Var(N
(1)
t | F0)

,

we have

Var
(
E∗t | F0

)
= Var

(
N

(1)
t | F0

)(
1 + 2ρ̌tαt + α2

t

)
≥ Var

(
N

(1)
t | F0

)(
1− 2ραt + α2

t

)
≥ Var

(
N

(1)
t | F0

)(
1− ρ2

)
= Var

(
EBS
t | F0

)
,
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which proves the desired result.

If we assume that A(t, x)−∂xQ(0)
t (x) is smaller than

√
ε, then we easily find that

E∗t = P (0, X0) + N
(1)
t + o(

√
ε), and therefore Var

(
E∗t | F0

)
= Var

(
N

(1)
t | F0

)
up to

terms of order o(ε).

If we assume that A(t, x)− ∂xQ(0)
t (x) is larger than

√
ε:

A(t, x) = ∂xQ
(0)
t (x) + εpA1(t, x),

with p ∈ [0, 1/2), then

E∗t = P (0, X0) + N̂t + o(εp),

with

N̂t = εp
∫ t

0

Âs(Xs)σ
ε
sdW

∗
s , Âs(x) = −A1(s, x)x.

We then have

E
[
(N

(1)
t )2 | F0

]
= O(ε), E

[
(N̂t)

2 | F0

]
= σ̄2ε2pE

[ ∫ t

0

Âs(Xs)
2ds | F0

]
(1 + o(1)),

which shows that

Var
(
E∗t | F0

)
= Var

(
N̂t | F0

)
(1 + o(1))� Var

(
N

(1)
t | F0

)
≥ Var

(
EBS
t | F0

)
.

For completeness (and to prove the last inequality in (2.9)), we also remark that,
by using Eq. (6.1) and Lemma A.6, we have

|ρ| = |ρ|
σ̄

lim
ε→0

E [ϑεtσ
ε
t ]√

E [(ϑεt )
2]
≤ |ρ| 1

σ̄
lim
ε→0

√
E [(σεt )

2] = |ρ|.

9. Conclusions. Classic price replicating delta hedging strategies are important
in hedging practice. We present here a novel analysis of the extra hedging cost asso-
ciated with such schemes that follows from a stochastic volatility situation and thus
an incomplete market context. We model the volatility as a stationary stochastic
process that is rapidly mean-reverting relative to the diffusion time of the underlying.
Specifically, the volatility is a smooth function of a Volterra type Gaussian process
(an integral of a standard Brownian motion with respect to a deterministic integral
kernel). We incorporate leverage in our modeling so that the Brownian motion driving
the volatility is correlated with the Brownian motion driving the underlying.

In this context we identify the correction to the price that is produced by the
stochastic volatility. The two market parameters that determine this correction are
the effective volatility or root mean square volatility and a market pricing parameter.
The hedging cost incurred due to the stochastic nature of the volatility is characterized
by a vega risk martingale. The amplitude of this martingale is proportional to a
market risk parameter that needs to be calibrated to the market in order to quantify
the hedging cost (mean and variance). It is interesting to observe that this market
risk parameter cannot be identified from the implied volatility skew.

We consider specifically hedging of a European option and then we get explicit
expressions for the hedging cost. We consider a large class of dynamic asset based
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hedging schemes (which contains all delta hedging strategies) and we find that the
optimal scheme is the delta hedging scheme where the delta is the Black-Scholes
delta when evaluated at the implied volatility, the so-called “practitioners delta”. All
the hedging schemes that we consider can be implemented without knowledge of the
market risk parameter, only the quantitative evaluation of the hedging cost requires
the knowledge of the market risk parameter. In the case of no leverage, the market
pricing parameter referred to above is zero, all schemes coincide, and the hedging cost
is determined by the vega risk martingale. For general leverage and for each choice of
delta we identify the hedging risk surface which characterizes the variance of the cost.

Note that we have assumed a smooth bounded payoff in the proofs of our results,
although the formulas can be applied with a more general payoff. The proofs for
nonsmooth payoff functions are more involved than the corresponding ones dedicated
to pricing as presented in [11], they should involve a payoff regularization scheme and
they will be presented elsewhere.

Finally, let us remark that we have considered a simplified market situation. In
order to capture a more general market context other effects, like transaction cost,
discreteness, market price of volatility risk and non-zero interest rate need to be taken
into account. Here, we wanted to characterize in a rigorous way the effect of market
incompleteness in the simple albeit practically important context of delta hedging
schemes leaving for future work more sophisticated hedging schemes incorporating in
particular other derivatives.
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Appendix A. Effective Market Lemmas.
We denote

G(z) =
1

2

(
F (z)2 − σ2

)
. (A.1)

The random term φεt defined by (5.18) has the form

φεt = E
[ ∫ T

t

G(Zεs )ds | Ft
]
. (A.2)

The martingale ψεt defined by (5.15) has the form

ψεt = E
[ ∫ T

0

G(Zεs )ds | Ft
]
. (A.3)

Lemma A.1. For any smooth function f with bounded derivative, we have

Var
(
E
[
f(Zεt )|F0

])
≤ ‖f ′‖2∞(σεt,∞)2, (A.4)

where we have defined for any 0 ≤ t ≤ s ≤ ∞:

(σεt,s)
2 = σ2

z

∫ s

t

Kε(u)2du. (A.5)

Proof. The conditional distribution of Zεt given F0 is Gaussian with mean

E
[
Zεt |F0

]
= σz

∫ 0

−∞
Kε(t− u)dWu (A.6)
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and variance

Var
(
Zεt | F0

)
= (σε0,t)

2 = σ2
z

∫ t

0

Kε(u)2du. (A.7)

Therefore

Var
(
E
[
f(Zεt ) | F0

])
= Var

(∫
R
f
(
E
[
Zεt | F0

]
+ σε0,tz

)
p(z)dz

)
,

where p(z) is the pdf of the standard normal distribution. By (A.6) the random
variable E

[
Zεt | F0

]
is Gaussian with mean zero and variance (σεt,∞)2 so that

Var
(
E
[
f(Zεt ) | F0

])
=

1

2

∫
R

∫
R
dzdz′p(z)p(z′)

∫
R

∫
R
dudu′p(u)p(u′)

×
[
f
(
σεt,∞u+ σε0,tz

)
− f

(
σεt,∞u

′ + σε0,tz
)]

×
[
f
(
σεt,∞u+ σε0,tz

′)− f(σεt,∞u′ + σε0,tz
′)]

≤ ‖f ′‖2∞(σεt,∞)2 1

2

∫
R

∫
R
dudu′p(u)p(u′)(u− u′)2

= ‖f ′‖2∞(σεt,∞)2,

which is the desired result.
Lemma A.2. For any t ≤ T , φεt is a zero-mean random variable with standard

deviation of order ε(d− 1
2 )∧1:

sup
ε∈(0,1]

sup
t∈[0,T ]

ε(2d−1)∧2E[(φεt )
2] <∞. (A.8)

Proof. For t ∈ [0, T ] the second moment of φεt is:

E
[
(φεt )

2
]

= E
[
E
[ ∫ T

t

G(Zεs )ds | Ft
]2]

=

∫ T−t

0

ds

∫ T−t

0

ds′Cov
(
E
[
G(Zεs ) | F0

]
,E
[
G(Zεs′) | F0

])
.

We have by Lemma A.1

E
[
(φεt )

2
]
≤
(∫ T−t

0

ds
(
Var
(
E
[
G(Zεs ) | F0

]))1/2)2

≤ ‖G′‖2∞
(∫ T−t

0

dsσεs,∞

)2

.

In view of Lemma A.10 we then have

E
[
(φεt )

2
]
≤ CT

(
ε+ εd−

1
2

)2 ≤ 4CT ε
(2d−1)∧2,

uniformly in t ≤ T and ε ∈ (0, 1] for some constant CT .
Lemma A.3. Let Yt be a bounded adapted process, we have

lim
ε→0

ε−1/2 sup
t∈[0,T ]

E

[∣∣∣∣∫ t

0

Ysφ
ε
sdW

∗
s

∣∣∣∣2 | F0

]1/2

= 0. (A.9)
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Proof. We have by the Itô isometry

E

[∣∣∣∣∫ t

0

Ysφ
ε
sdW

∗
s

∣∣∣∣2 | F0

]
= E

[∫ t

0

|Ysφεs|
2
ds | F0

]
,

and the result then follows from Lemma A.2 noting that we consider the case d > 1.

We next present a result regarding the quadratic variation of ψε.

Lemma A.4. (ψεt )t∈[0,T ] is a square-integrable martingale and

d 〈ψε,W 〉t = ϑεtdt, d 〈ψε, ψε〉t = (ϑεt )
2dt, (A.10)

with

ϑεt = σz

∫ T

t

E
[
G′(Zεs ) | Ft

]
Kε(s− t)ds. (A.11)

An alternative expression of ϑεt is given in (A.12).

Proof. This follows from [12, Lemma B.1] and its proof. For t < s, the conditional
distribution of Zεs given Ft is Gaussian with mean

E
[
Zεs | Ft

]
= σz

∫ t

−∞
Kε(s− u)dWu

and deterministic variance given by

Var
(
Zεs | Ft

)
= (σε0,s−t)

2,

where σεs,t is defined by (A.5). Therefore we have

E
[
G(Zεs ) | Ft

]
=

∫
R
G
(
σz

∫ t

−∞
Kε(s− u)dWu + σε0,s−tz

)
p(z)dz,

where p(z) is the pdf of the standard normal distribution. As a random process in t
it is a continuous martingale. By Itô’s formula, for any t < s:

E
[
G(Zεs ) | Ft

]
=

∫
R
G
(
σz

∫ 0

−∞
Kε(s− v)dWv + σε0,sz

)
p(z)dz

+

∫ t

0

∫
R
G′
(
σz

∫ u

−∞
Kε(s− v)dWv + σε0,s−uz

)
zp(z)dz∂uσ

ε
0,s−udu

+σz

∫ t

0

∫
R
G′
(
σz

∫ u

−∞
Kε(s− v)dWv + σε0,s−uz

)
p(z)dzKε(s− u)dWu

+
σ2

z

2

∫ t

0

∫
R
G′′
(
σz

∫ u

−∞
Kε(s− v)dWv + σε0,s−uz

)
p(z)dzKε(s− u)2du.

Note that we have from Eq. (A.5) that

2σε0,s−u∂uσ
ε
0,s−u = −∂s(σε0,s−u)2 = −σ2

zKε(s− u)2.
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The martingale representation then follows explicitly via integration by parts (with
respect to z, using zp(z) = −∂zp(z)):

E
[
G(Zεs ) | Ft

]
=

∫
R
G
(
σz

∫ 0

−∞
Kε(s− v)dWv + σε0,sz

)
p(z)dz

+σz

∫ t

0

∫
R
G′
(
σz

∫ u

−∞
Kε(s− v)dWv + σε0,s−uz

)
p(z)dzKε(s− u)dWu.

We also have

G(Zεs ) = G
(
σz

∫ s

−∞
Kε(s− v)dWv

)
=

∫
R
G
(
σz

∫ u

−∞
Kε(s− v)dWv + σε0,s−uz

)
p(z)dz |u=s

=

∫
R
G
(
σz

∫ 0

−∞
Kε(s− v)dWv + σε0,sz

)
p(z)dz

+

∫ s

0

∫
R
G′
(
σz

∫ u

−∞
Kε(s− v)dWv + σε0,s−uz

)
zp(z)dz∂uσ

ε
0,s−udu

+σz

∫ s

0

∫
R
G′
(
σz

∫ u

−∞
Kε(s− v)dWv + σε0,s−uz

)
p(z)dzKε(s− u)dWu

+
σ2

z

2

∫ s

0

∫
R
G′′
(
σz

∫ u

−∞
Kε(s− v)dWv + σε0,s−uz

)
p(z)dzKε(s− u)2du

=

∫
R
G
(
σz

∫ 0

−∞
Kε(s− v)dWv + σε0,sz

)
p(z)dz

+σz

∫ s

0

∫
R
G′
(
σz

∫ u

−∞
Kε(s− v)dWv + σε0,s−uz

)
p(z)dzKε(s− u)dWu.

Therefore

ψεt =

∫ t

0

G(Zεs )ds+

∫ T

t

E
[
G(Zεs ) | Ft

]
ds

=
[ ∫

R

∫ T

0

G
(
σz

∫ 0

−∞
Kε(s− v)dWv + σε0,sz

)
dsp(z)dz

]
+σz

∫ t

0

[ ∫ T

u

∫
R
G′
(
σz

∫ u

−∞
Kε(s− v)dWv + σε0,s−uz

)
p(z)dzKε(s− u)ds

]
dWu.

This gives (A.10) with

ϑεt = σz

∫ T

t

∫
R
G′
(
σz

∫ t

−∞
Kε(s− v)dWv + σε0,s−tz

)
p(z)dzKε(s− t)ds, (A.12)

which can also be written as stated in the Lemma.
Lemma A.5. Let Yt be a bounded adapted process. Then we have

sup
ε∈(0,1]

ε−1/2 sup
t∈[0,T ]

E
[∣∣∣ ∫ t

0

Ysdψ
ε
s

∣∣∣2 | F0

]1/2

<∞.
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Proof. There exists K̃ <∞ such that, for t ∈ (0, T ),

E

[∣∣∣∣∫ t

0

Ysdψ
ε
s

∣∣∣∣2 | F0

]
≤ K̃E

[
〈ψε, ψε〉T − 〈ψ

ε, ψε〉0 | F0

]
,

and the result follows from (A.10) and (5.20).
Lemma A.6. Let f(t, x) be smooth bounded and with bounded derivatives and let

Xt be defined by Eq. (3.1). Then for any t ∈ [0, T ] we have

lim
ε→0

E
[(∫ t

0

f(s,Xs)
(
ε−1/2σεsϑ

ε
s −D

)
ds
)2
]

= 0, (A.13)

lim
ε→0

E
[(∫ t

0

f(s,Xs)
(
ε−1
(
ϑεs
)2 − Γ

2)
ds
)2
]

= 0. (A.14)

Proof. The result in Eq. (A.13) follows via an argument as in the proof of Eq.
(5.28) for j = 3 as given in [13] (note that, by (5.20), ε−1/2ϑεt is uniformly bounded
almost surely). The result in Eq. (A.14) follows via an argument as in the proof of
Eq. (5.28) for j = 2 as given in [13]. To complete that proof it remains to show that

lim
ε→0

sup
t∈[0,T ]

E
[
(κεt )

2
]

= 0, for κεt =

∫ t

0

(
ε−1 (ϑεs)

2 − Γ
)
ds.

We show this in Lemma A.7.
Lemma A.7. Let

κεt =

∫ t

0

(
ε−1 (ϑεs)

2 − Γ
)
ds,

then

lim
ε→0

sup
t∈[0,T ]

E
[
(κεt )

2
]

= 0.

Proof. As (a+ b)2 ≤ 2a2 + 2b2 we have

E
[
(κεt )

2
]
≤ 2ε−2

∫ t

0

ds

∫ t

0

ds′Cov
(

(ϑεs)
2
, (ϑεs′)

2
)

+ 2

(∫ t

0

(
ε−1E [ϑεs]

2 − Γ
)
ds

)2

.

The results then follows from Lemmas A.8 and A.9 and the bound in Eq. (5.20) using
dominated convergence theorem.

Lemma A.8. Let ϑεt be defined by (A.11). We have for any t ∈ [0, T ):

lim
ε→0

ε−1E
[
(ϑεt )

2
]

= Γ
2
,

where Γ is defined by (5.41).
Proof. We consider

E
[
(ϑεt )

2
]
σ−2

z = E
[
E
[ ∫ T

t

G′(Zεs )Kε(s− t)ds | Ft
]
E
[ ∫ T

t

G′(Zεs )Kε(s− t)ds | Ft
]]

= 2

∫ T−t

0

ds

∫ T−t

s

ds′E
[
E
[
G′(Zεs ) | F0

]
E
[
G′(Zεs′) | F0

]]
Kε(s)Kε(s′).
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We can then write

E
[
(ϑεt )

2
]
σ−2

z = 2

∫ T−t

0

ds

∫ T−t

s

ds′

× E
[[ ∫

R
G′(σz

∫ 0

−∞
Kε(s− v)dWv + σε0,sz)p(z)dz

]
×
[ ∫

R
G′(σz

∫ 0

−∞
Kε(s′ − v)dWv + σε0,s′z

′)p(z′)dz′
]]
Kε(s)Kε(s′)

= 2

∫ T−t

0

ds

∫ T−t

s

ds′
∫
R2

dudu′
[ ∫

R
G′(σεs,∞u+ σε0,sz)p(z)dz

]
×
[ ∫

R
G′(σεs′,∞u

′ + σε0,s′z
′)p(z′)dz′

]
pC̃εK(s,s′)(u, u

′)Kε(s)Kε(s′),

where p(z) is the pdf of the standard normal distribution, pC is the pdf of the (stan-
dardized) bivariate normal distribution with mean zero and covariance matrix as in
Lemma 4.1, and

C̃εK(s, s′) =
σ2

z

∫ 0

−∞K
ε(s′ − v)Kε(s− v)dv

σεs,∞σ
ε
s′,∞

.

By remarking that (σεs,∞)2 + (σε0,s)
2 = σ2

z and σεs,∞σ
ε
s′,∞C̃εK(s, s′) = σ2

zCεK(s, s′),
with CεK(s, s′) = CK(s/ε, s′/ε), we can see that, if (Z,Z ′, U, U ′) is a four-dimensional
Gaussian vector with pdf p(z)p(z′)pC̃εK(s,s′)(u, u

′), then (σεs,∞U + σε0,sZ, σ
ε
s′,∞U

′ +

σε0,s′Z
′) = (σzY, σzY

′) where (Y, Y ′) is a two-dimensional Gaussian vector with pdf
pCεK(s,s′)(y, y

′). This gives

E
[
(ϑεt )

2
]

= 2σ2
z

∫ T−t

0

ds

∫ T−t

s

ds′
∫
R2

dydy′G′(σzy)G′(σzy
′)pCεK(s,s′)(y, y

′)Kε(s)Kε(s′),

or

E
[
(ϑεt )

2
]

= 2εσ2
z

∫ T−t
ε

0

ds

∫ T−t
ε

s

ds′
∫
R2

dydy′G′(σzy)G′(σzy
′)pCK(s,s′)(y, y

′)K(s)K(s′).

By using the fact that K ∈ L1(0,∞) we finally get

lim
ε→0

ε−1E
[
(ϑεt )

2
]

= Γ
2
,

with the expression (5.41) of Γ, which completes the proof of the Lemma.
Lemma A.9. For any 0 ≤ t < t′ < T we have

lim
ε→0

ε−2
∣∣∣Cov

(
(ϑεt )

2
, (ϑεt′)

2
)∣∣∣ = 0.

Proof. Let us consider 0 ≤ t′ < t ≤ T . We have

E
[

(ϑεt )
2

(ϑεt′)
2 ]

= σ4
z

∫ T

t

dsKε(s− t)
∫ T

t

ds′Kε(s′ − t)
∫ T

t′
duKε(u− t′)

×
∫ T

t′
du′Kε(u′ − t′)E

[
E
[
G′(Zεs )|Ft

]
E
[
G′(Zεs′)|Ft

]
E
[
G′(Zεu)|Ft′

]
E
[
G′(Zεu′)|Ft′

]]
,
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so we can write

Cov
(
(ϑεt )

2, (ϑεt′)
2
)

= σ4
z

∫ T

t

dsKε(s− t)
∫ T

t

ds′Kε(s′ − t)

×
∫ T

t′
duKε(u− t′)

∫ T

t′
du′Kε(u′ − t′)

{
E
[
E
[
G′(Zεs )|Ft

]
E
[
G′(Zεs′)|Ft

]
× E

[
G′(Zεu)|Ft′

]
E
[
G′(Zεu′)|Ft′

]]
− E

[
E
[
G′(Zεs )|Ft

]
E
[
G′(Zεs′)|Ft

]]
× E

[
E
[
G′(Zεu)|Ft′

]
E
[
G′(Zεu′)|Ft′

]]}
= σ4

z

∫ T

t

dsKε(s− t)
∫ T

t

ds′Kε(s′ − t)

×
∫ T

t′
duKε(u− t′)

∫ T

t′
du′Kε(u′ − t′)

{
E
[
E
[
E
[
G′(Zεs )|Ft

]
E
[
G′(Zεs′)|Ft

]
|Ft′

]
× E

[
G′(Zεu)|Ft′

]
E
[
G′(Zεu′)|Ft′

]]
− E

[
E
[
E
[
G′(Zεs )|Ft

]
E
[
G′(Zεs′)|Ft

]]
× E

[
G′(Zεu)|Ft′

]
E
[
G′(Zεu′)|Ft′

]]}
,

and therefore∣∣Cov
(
(ϑεt )

2, (ϑεt′)
2
)∣∣ ≤ σ4

z‖G′‖2∞
∫ T

t

ds|Kε(s− t)|
∫ T

t

ds′|Kε(s′ − t)|

×
∫ T

t′
du|Kε(u− t′)|

∫ T

t′
du′|Kε(u′ − t′)|E

[(
E
[
E
[
G′(Zεs )|Ft

]
E
[
G′(Zεs′)|Ft

]
|Ft′

]
− E

[
E
[
G′(Zεs )|Ft

]
E
[
G′(Zεs′)|Ft

]])2]1/2
.

We can write for any τ > t > t′:

Zετ = Aεt′,τ +Bεt′,t,τ + Cεt,τ , Aεt′,τ = σz

∫ t′

−∞
Kε(τ − u)dWu,

Bεt′,t,τ = σz

∫ t

t′
Kε(τ − u)dWu, Cεt,τ = σz

∫ τ

t

Kε(τ − u)dWu,

with Aεt′,τ , B
ε
t′,t,τ , C

ε
t,τ being independent and in particular Aεt′,τ is Ft′ adapted.

Therefore, with s′ ≥ s ≥ t > t′, we have

E
[(
E
[
E
[
G′(Zεs )|Ft

]
E
[
G′(Zεs′)|Ft

]
|Ft′

]
− E

[
E
[
G′(Zεs )|Ft

]
E
[
G′(Zεs′)|Ft

]])2]
= E

[
E
[
E
[
G′(Zεs )|Ft

]
E
[
G′(Zεs′)|Ft

]
|Ft′

]2]− E
[
E
[
G′(Zεs )|Ft

]
E
[
G′(Zεs′)|Ft

]]2
= E

[
G′(Aεt′,s +Bεt′,t,s + Cεt,s)G

′(Aεt′,s′ +Bεt′,t,s′ + C̃εt,s′)G
′(Aεt′,s + B̃εt′,t,s + ˜̃Cεt,s)

×G′(Aεt′,s′ + B̃εt′,t,s′ +
˜̃̃
Cεt,s′)−G′(Aεt′,s +Bεt′,t,s + Cεt,s)G

′(Aεt′,s′ +Bεt′,t,s′ + C̃εt,s′)

×G′(Ãεt′,s + B̃εt′,t,s + ˜̃Cεt,s)G
′(Ãεt′,s′ + B̃εt′,t,s′ +

˜̃̃
Cεt,s′)

]
,

where each additional “tilde” refers to a new independent copy of Aεt′,s, B
ε
t′,t,s, C

ε
t,s.
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We can then write

E
[(
E
[
E
[
G′(Zεs )|Ft

]
E
[
G′(Zεs′)|Ft

]
|Ft′

]
− E

[
E
[
G′(Zεs )|Ft

]
E
[
G′(Zεs′)|Ft

]])2]
≤ ‖G′‖2∞E

[(
G′(Aεt′,s + B̃εt′,t,s + ˜̃Cεt,s)G

′(Aεt′,s′ + B̃εt′,t,s′ +
˜̃̃
Cεt,s′)

−G′(Ãεt′,s + B̃εt′,t,s + ˜̃Cεt,s)G
′(Ãεt′,s′ + B̃εt′,t,s′ +

˜̃̃
Cεt,s′)

)2]1/2
≤ 2‖G′‖2∞‖G′G′′‖∞

(
E
[
(Aεt′,s − Ãεt′,s)2

]1/2
+ E

[
(Aεt′,s′ − Ãεt′,s′)2

]1/2)
≤ 2
√

2‖G′‖2∞‖G′G′′‖∞
(
E
[
(Aεt′,s)

2
]1/2

+ E
[
(Aεt′,s′)

2
]1/2)

≤ 2
√

2‖G′‖2∞‖G′G′′‖∞
[(
σ2

z

∫ t′

−∞
Kε(s− u)2du

)1/2

+
(
σ2

z

∫ t′

−∞
Kε(s′ − u)2du

)1/2]
≤ 4
√

2‖G′‖2∞‖G′G′′‖∞σεt′−t,∞ ≤ C1

(
1 ∧ (ε/(t′ − t))d− 1

2

)
,

where we used Lemma A.10 in the last inequality. Then, using the fact that K ∈ L1,
this gives

∣∣Cov
(
(ϑεt )

2, (ϑεt′)
2
)∣∣ ≤ C2

(∫ T

t

ds|Kε(s− t)|
∫ T

t′
du|Kε(u− t)|

)2 (
1 ∧ (ε/(t′ − t))) d

2−
1
4

)
≤ C3ε

2
(
1 ∧ (ε/(t′ − t))) d

2−
1
4

)
,

from which the lemma follows.
Lemma A.10. Let σεt,∞ be defined by (A.5). Then there exists C > 0 such that

σεt,∞ ≤ C
(
1 ∧ (ε/t)d−

1
2

)
. (A.15)

Proof. By assumption there exists K, t0 > 0 so that |K(t)| ≤ Kt−d for t ≥ t0 with
d > 1. Therefore, for t ≥ εt0:∫ ∞

t

Kε(s)2ds ≤ ε2d−1

∫ ∞
t

K2s−2dds =
K2

2d− 1

(ε
t

)2d−1

.

For t < εt0 we have
∫∞
t
Kε(s)2ds ≤ 1 since K ∈ L2(0,∞) with a L2-norm equal to

one. This gives the desired result.
Let X̃t be defined by (5.36). Then we have

Q
(0)
t (X̃t) = E

[
h(X̃T ) | Ft

]
. (A.16)

We finish this appendix with three effective market lemmas:
Lemma A.11. Let f(t, x) be smooth bounded and with bounded derivatives. Let

Xt be defined by Eq. (3.1) and X̃t be defined by Eq. (5.36). For t, t′ ∈ [0, T ] we have

sup
ε∈(0,1]

ε−1/2E
[∣∣∣E[f(t,Xt)− f(t, X̃t) | F0]

∣∣∣2]1/2

<∞, (A.17)

sup
ε∈(0,1]

ε−1/2E
[∣∣∣E[f(t,Xt)f(t′, Xt′)− f(t, X̃t)f(t′, X̃t′) | F0]

∣∣∣2]1/2

<∞. (A.18)
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Proof. The first result follows from Proposition 4.1: take h(x) = f(t, x), T = t,
and look at M0 = E[h(Xt) | F0] = E[f(t,Xt) | F0]. Then Proposition 4.1 states

that limε→0 ε
−1/2E[|M0−Qε0(X0)|2]1/2 = 0 with Qε0(x) = Q

(0)
0 (x) + ε1/2ρQ

(1)
0 (x) and

Q
(0)
0 (X0) = E[h(X̃t) | F0] = E[f(t, X̃t) | F0]. This gives (A.17). The second result

follows from the first part noting that (ab− ãb̃) = b(a− ã) + ã(b− b̃).
Lemma A.12. Let f(t, x) be smooth bounded and with bounded derivatives. Then

we have for 0 ≤ t ≤ T :

lim
ε→0

E

[(∫ t

0

f(s,Xs)
(
(σεs)

2 − σ̄2
)
ds

)2
]

= 0. (A.19)

Proof. This follows via an argument as in the proof of Eq. (5.28) for j = 2 as
given in [13].

Lemma A.13. Let fj(t, x), j = 1, 2 be smooth bounded functions and with
bounded derivatives and satisfying:

LBS(σ̄)fj(t, x) = 0, j = 1, 2. (A.20)

Let Xt be defined by Eq. (3.1) and X̃t be defined by Eq. (5.36). Then we have for
t ∈ (0, T ):

lim
ε→0

E
[∣∣∣∣E[∣∣∣ ∫ t

0

f1(s,Xs)ds
∣∣∣2 | F0

]
− 2E

[ ∫ t

0

f1(s, X̃s)
2(t− s)ds | F0

]∣∣∣∣] = 0, (A.21)

lim
ε→0

E
[∣∣∣∣ε−1/2E

[ ∫ t

0

f1(s,Xs)ds

∫ t

0

f2(s,Xs)dψ
ε
s | F0

]
−ρDE

[ ∫ t

0

(t− s)
(

(x∂x)f1(s, X̃s)
)
f2(s, X̃s)ds | F0

]∣∣∣∣] = 0, (A.22)

lim
ε→0

E
[∣∣∣∣ε−1E

[( ∫ t

0

f1(s,Xs)dψ
ε
s

)2

| F0

]
− Γ

2E
[ ∫ t

0

f1(s, X̃s)
2ds | F0

]∣∣∣∣] = 0.

(A.23)

Proof. Proof of (A.21): Note first that in view of Lemma A.11, Eq. (A.18), we
have

lim
ε→0

E
[∣∣∣∣E[∣∣∣ ∫ t

0

f1(s,Xs)ds
∣∣∣2 | F0

]
− E

[∣∣∣ ∫ t

0

f1(s, X̃s)ds
∣∣∣2 | F0

]∣∣∣∣] = 0.

Note next that in view of Eq. (A.20) f1(s, X̃s) is a martingale so that

E
[∣∣∣ ∫ t

0

f1(s, X̃s)ds
∣∣∣2 | F0

]
= E

[
2

∫ t

0

f1(s, X̃s)

∫ t

s

f1(u, X̃u)duds | F0

]
= E

[
2

∫ t

0

f1(s, X̃s)
2(t− s)ds | F0

]
,

which gives Eq. (A.21).
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Proof of (A.22): It follows from the fact that
∫ t

0
f2(u,Xu)dψεu is a martingale

and Itô’s Lemma that

E
[∫ t

0

f1(s,Xs)ds

∫ t

0

f2(s,Xs)dψ
ε
s | F0

]
=

∫ t

0

E
[
E
[ ∫ t

0

f2(u,Xu)dψεu | Fs
]
f1(s,Xs) | F0

]
ds

=

∫ t

0

E
[∫ s

0

f2(u,Xu)dψεuf1(s,Xs) | F0

]
ds

=

∫ t

0

E
[∫ s

0

f2(u,Xu)dψεu

∫ s

0

(x2∂2
x)f1(u,Xu)

1

2

(
(σεu)2 − σ̄2

)
du | F0

]
ds

+

∫ t

0

E
[∫ s

0

f2(u,Xu)dψεu

∫ s

0

(x∂x)f1(u,Xu)σεudW
∗
u | F0

]
ds

+

∫ t

0

E
[∫ s

0

f2(u,Xu)dψεuf1(0, X0) | F0

]
ds. (A.24)

The last term of Eq. (A.24) is zero because
∫ t

0
f2(u,Xu)dψεu is a zero-mean martingale.

It follows from Lemmas A.5 and A.12 that

E
[∣∣∣∣E[ε−1/2

∫ s

0

f2(u,Xu)dψεu

∫ s

0

(x2∂2
x)f1(u,Xu)

1

2

(
(σεu)2 − σ̄2

)
du | F0

]∣∣∣∣]

≤ E

[
ε−1

(∫ s

0

f2(u,Xu)dψεu

)2
]1/2

E

[(∫ s

0

(x2∂2
x)f1(u,Xu)

1

2

(
(σεu)2 − σ̄2

)
du

)2
]1/2

= E
[
ε−1

∫ s

0

f2(u,Xu)(ϑεu)2du

]1/2

E

[(∫ s

0

(x2∂2
x)f1(u,Xu)

1

2

(
(σεu)2 − σ̄2

)
du

)2
]1/2

ε→0−→ 0. (A.25)

By Lemma A.4 we have

E
[
ε−1/2

∫ s

0

f2(u,Xu)dψεu

∫ s

0

(x∂x)f1(u,Xu)σεudW
∗
u | F0

]
− ρE

[ ∫ s

0

f2(u,Xu)(x∂x)f1(u,Xu)Ddu | F0

]
= ρE

[ ∫ s

0

f2(u,Xu)(x∂x)f1(u,Xu)
(
ε−1/2σεuϑ

ε
u −D

)
du | F0

]
.

By Lemma A.6, Eq. (A.13), we get

E
[∣∣∣∣E[ ∫ s

0

f2(u,Xu)(x∂x)f1(u,Xu)
(
ε−1/2σεuϑ

ε
u −D

)
du | F0

]∣∣∣∣]
≤ E

[(∫ s

0

f2(u,Xu)(x∂x)f1(u,Xu)
(
ε−1/2σεuϑ

ε
u −D

)
du
)2
]1/2

ε→0−→ 0.

By Lemma A.11, Eq. (A.17), we find

lim
ε→0

E
[∣∣∣∣E[ ∫ s

0

f2(u,Xu)(x∂x)f1(u,Xu)du | F0

]
−E
[ ∫ s

0

f2(u, X̃u)(x∂x)f1(u, X̃u)du | F0

]∣∣∣∣] = 0.
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Therefore

E
[∣∣∣∣E[ε−1/2

∫ s

0

f2(u,Xu)dψεu

∫ s

0

(x∂x)f1(u,Xu)σεudW
∗
u | F0

]
−ρDE

[ ∫ s

0

f2(u, X̃u)(x∂x)f1(u, X̃u)du | F0

]∣∣∣∣] = 0. (A.26)

We substitute (A.25-A.26) into (A.24) and we invoke Lebesgue’s dominated conver-
gence theorem (because ε−1/2ϑεu is uniformly bounded) to prove (A.22).

Proof of (A.23): The result follows from Lemmas A.4, A.6 and A.11.

Appendix B. The fOU Volatility Factor.
We use a rapid fractional Ornstein-Uhlenbeck (fOU) process as the volatility

factor and describe here how this process can be represented in terms of a fractional
Brownian motion. Since fractional Brownian motion can be expressed in terms of
ordinary Brownian motion we also arrive at an expression for the rapid fOU process
as a filtered version of Brownian motion.

A fractional Brownian motion (fBM) is a zero-mean Gaussian process (WH
t )t∈R

with the covariance

E[WH
t W

H
s ] =

σ2
H

2

(
|t|2H + |s|2H − |t− s|2H

)
, (B.1)

where σH is a positive constant. We use the following moving-average stochastic
integral representation of the fBM [18]:

WH
t =

1

Γ(H + 1
2 )

∫
R

(t− s)H−
1
2

+ − (−s)H−
1
2

+ dWs, (B.2)

where (Wt)t∈R is a standard Brownian motion over R. Then indeed (WH
t )t∈R is a

zero-mean Gaussian process with the covariance (B.1) and we have

σ2
H =

1

Γ(2H + 1) sin(πH)
. (B.3)

We introduce the ε-scaled fractional Ornstein-Uhlenbeck process (fOU) as

Zεt =
√

2 sin(πH)σzε
−H
∫ t

−∞
e−

t−s
ε dWH

s . (B.4)

The fractional OU process can be seen as a fractional Brownian motion with a restor-
ing force towards zero. It is a zero-mean, stationary Gaussian process, with variance

E[(Zεt )2] = σ2
z , (B.5)

that is independent of ε, and covariance:

E[ZεtZ
ε
t+s] = σ2

zCZ
(s
ε

)
, (B.6)

that is a function of s/ε only, with

CZ(s) =
1

Γ(2H + 1)

[1

2

∫
R
e−|v||s+ v|2Hdv − |s|2H

]
=

2 sin(πH)

π

∫ ∞
0

cos(sx)
x1−2H

1 + x2
dx. (B.7)
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This shows that ε is the natural scale of variation of the fOU Zεt . Note that the
random process Zεt is not a martingale, neither a Markov process. For H ∈ (0, 1/2) it
possesses short-range correlation properties in the sense that its correlation function
is rough at zero as seen in (3.9) while it is integrable and it decays as s2H−2 at infinity
as seen in (3.10).

Using Eqs. (B.2) and (B.4) we arrive at the moving-average integral representa-
tion of the scaled fOU as:

Zεt = σz

∫ t

−∞
Kε(t− s)dWs, (B.8)

where Kε is of the form (3.4)-(3.8). The kernel K satisfies the assumptions set forth in
Section 3 and the main properties are the following ones (valid for any H ∈ (0, 1/2)):

(i) K ∈ L2(0,∞) with
∫∞

0
K2(u)du = 1 and K ∈ L1(0,∞).

(ii) For small times t� 1:

K(t) =

√
2 sin(πH)

Γ(H + 1
2 )

(
tH−

1
2 +O

(
tH+ 1

2

))
. (B.9)

(iii) For large times t� 1:

K(t) =

√
2 sin(πH)

Γ(H − 1
2 )

(
tH−

3
2 +O

(
tH−

5
2

))
. (B.10)

The volatility process σεt defined by (3.2) inherits the short-range correlation
properties of the volatility driving process Zεt . This follows from the following lemma
proved in [13]:

Lemma B.1. We denote, for j = 1, 2:〈
F j
〉

=

∫
R
F (σzz)

jp(z)dz,
〈
F ′

j
〉

=

∫
R
F ′(σzz)

jp(z)dz, (B.11)

where p(z) is the pdf of the standard normal distribution.
1. The process σεt is a stationary random process with mean E[σεt ] = 〈F 〉 and

variance Var(σεt ) =
〈
F 2
〉
− 〈F 〉2, independently of ε.

2. The covariance function of the process σεt is of the form

Cov
(
σεt , σ

ε
t+s

)
=
( 〈
F 2
〉
− 〈F 〉2

)
Cσ
(s
ε

)
, (B.12)

where the correlation function Cσ satisfies Cσ(0) = 1 and

Cσ(s) = 1− 1

Γ(2H + 1)

σ2
z

〈
F ′

2
〉

〈F 2〉 − 〈F 〉2
s2H + o

(
s2H

)
, for s� 1, (B.13)

Cσ(s) =
1

Γ(2H − 1)

σ2
z 〈F ′〉

2

〈F 2〉 − 〈F 〉2
s2H−2 + o

(
s2H−2

)
, for s� 1.(B.14)

Consequently, the process σεt has short-range correlation properties and its co-
variance function is integrable.

Appendix C. Call Option Hedging Cost and Risk.
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We use below the following “Greek” identities for the European call case:

x2∂2
xQ

(0)
t (x)

K
=

∂σQ
(0)
t (x)

Kσ̄(T − t)
=

(x/K)e−d
2
+(x,t)/2

√
2πτt

=
e
−d2
−

(x,t)/2

√
2πτt

, (C.1)

x∂xx
2∂2
xQ

(0)
t (x)

K
= −

d−(x, t)e
−d2
−

(x,t)/2

√
2πτt

, (C.2)

(x∂x)2x2∂2
xQ

(0)
t (x)

K
=

(
d2
−

(x, t)− 1
)
e
−d2
−

(x,t)/2

√
2πτ

3/2
t

, (C.3)

with τt = (T − t)σ̄2 and

d±(x, t) =
log(x/K)
√
τt

±
√
τt
2
.

We will also use the following lemma:
Lemma C.1.

E
[
e
−d2
−

(X̃Ts,Ts) | F0

]
= exp

(
−
d2
−

(X0, 0)

1 + s

)
f0(s), (C.4)

f0(s) =

√
1− s
1 + s

, (C.5)

E
[
d2
−

(X̃Ts, T s)e
−d2
−

(X̃Ts,Ts) | F0

]
= exp

(
−
d2
−

(X0, 0)

1 + s

)
f2

(
s, d−(X0, 0)

)
, (C.6)

f2(s, d) = d2

√
(1− s)3

(1 + s)5
+ s

√
1− s

(1 + s)3
, (C.7)

E
[
d4
−

(X̃Ts, T s)e
−d2
−

(X̃Ts,Ts) | F0

]
= exp

(
−
d2
−

(X0, 0)

1 + s

)
f4

(
s, d−(X0, 0)

)
, (C.8)

f4(s, d) = d4

√
(1− s)5

(1 + s)9
+ 6d2s

√
(1− s)3

(1 + s)7
+ 3s2

√
1− s

(1 + s)5
. (C.9)

Proof. By (5.36), for any t, we have in distribution

X̃t = X0 exp
(
σ̄W ∗t −

1

2
σ̄2t
)

= X0 exp
(
σ̄
√
tZ − 1

2
σ̄2t
)
,

with Z having the standard normal distribution, and therefore

d−(X̃t, t) =
log(X̃t/K)
√
τt

−
√
τt
2

=
d−(X0, 0) + Z

√
t/T√

1− t/T
.

One can then carry out the resulting Gaussian integral upon a completion of the
square in the exponential.
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