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RESOLUTION AND STABILITY ANALYSIS IN LINEARIZED
CONDUCTIVITY AND WAVE IMAGING. PART I: FULL

APERTURE CASE

HABIB AMMARI, JOSSELIN GARNIER, AND KNUT SØLNA

Abstract. In this paper we consider resolution estimates in both the lin-

earized conductivity problem and the wave imaging problem. Our purpose is
to provide explicit formulas for the resolving power of the measurements in

the presence of measurement noise. We show that the low-frequency regime in

wave imaging as well as the inverse conductivity problem are very sensitive to
measurement noise while high-frequencies increase stability in wave imaging.

1. Introduction

The main objective of this paper is to introduce the notion of resolution in solv-
ing the inverse conductivity problem. We discuss resolution estimates in the case
of conductivity data, and we contrast this process with resolution estimates based
on Helmholtz data. In our analysis we moreover make use of asymptotic charac-
terization of the measurements to get explicit results on their resolving power. For
both the conductivity and the wave problems, we consider the imaging of a per-
turbed disk. For the conductivity problem, the data are collected on the boundary
of a background medium containing the perturbed disk while for the Helmholtz
equation, they consist of multi-static measurements on coincident transmitter and
receiver arrays. The Born approximation is used in the wave propagation problem.

For the linearized conductivity problem, we first show that on the one hand, we
have “infinite resolution” in the near-field limit and on the other hand, the relative
resolution decreases rapidly with “depth” (the depth increases when the radius of
the inclusion decreases). We also give conditions on the signal-to-noise ratio (SNR)
and the radius of the inclusion in order to resolve the pth Fourier mode of the
perturbation and explicitly answer the question: for a fixed SNR and radius of
the unperturbed disk which modes can be resolved? We finally characterize the
smallest radius one can probe for a certain mode number p and a given SNR and
show that the linearized inverse conductivity problem is very sensitive to noise.

For the wave imaging problem under the Born approximation, we consider two
regimes: a high-frequency regime where the radius of the inclusion is much larger
than the wavelength and a low-frequency regime where it is smaller. We first show
that in the high-frequency regime the resolution estimates are relatively insensitive
to noise for modes that correspond to lengths larger than half a wavelength. High-
frequencies increase stability. On the other hand, the low-frequency regime is, as
the conductivity case, very sensitive to noise. We provide explicit formulas for the
modes that can be estimated for a given SNR and radius of the inclusion.
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In connection with our results, we refer in particular to the recent works by Isakov
[19] and Nagayasu-Uhlmann-Wang [20]. For further discussions on resolution for
conductivity and wave imaging, see [6, 8, 9, 10, 11, 12, 13, 15, 18]. In [19], an
evidence of increasing stability in wave imaging when frequency is growing was
given. In [20], a stability estimate for a linearized conductivity problem was derived.
Our results in this paper confirm these important observations and quantify them
precisely in terms of the SNR. As far as we know, our formulas for the resolving
power of the measurements in the presence of measurement noise are new. They
provide a deep understanding of the ill-posed nature of the considered imaging
problems and clarify the connection between the inverse conductivity problems and
the wave imaging problems. We emphasize that the conclusions of this paper hold
only under the assumption that the noise is in the measurements and not in the
medium. For medium noise, the whole picture is quite different. This would be the
subject of a forthcoming investigation. We will also consider consider the limited-
view case. Another challenging problem is to extend the present resolution analysis
to static and dynamic elasticity. In view of [2] similar resolution estimations may
be expected to hold in the elastic case.

2. Interface Estimation with Conductivity Data

In this section we discuss estimation in the case of conductivity data in the two-
dimensional case. We will contrast this process with estimation based on Helmholtz
data in Section 3.

2.1. Differential Measurements. The measurements are taken on a circle of unit
radius in our non-dimensionalized setting. The domain of interest, encapsulated by
the measurements, is thus

Ω =
{
x = reθ | r ≤ 1, 0 ≤ θ < 2π

}
,(1)

where eθ = (cos θ, sin θ). Imbedded in the domain there is a homogeneous inclusion
centered at the origin and with the shape of a perturbed circle. Our objective is to
estimate the rim of the inclusion. We denote the domain of the unperturbed disk
by D and the perturbed domain by Dε:

D =
{
x = reθ | r ≤ α, 0 ≤ θ < 2π

}
,(2)

Dε =
{
x = reθ | r ≤ α+ εh(θ), 0 ≤ θ < 2π

}
.(3)

We let here h be order one and assume that h is of class C1 and ε� 1.
The field for different source configurations are indexed by m = ±1,±2, · · · and

chosen to solve in the perturbed case:

(4) ∇ · (1 + (k − 1)χDε
)∇umε = 0 , x ∈ Ω ,

with the Neumann boundary conditions at the surface ∂Ω:

(5)
∂umε
∂ν

(eθ) = e−imθ , θ ∈ [0, 2π) ,
∫ 2π

0

umε (eθ)dθ = 0 .

Here, ν denotes the outward normal to ∂Ω and k is the contrast in the conduc-
tivity between the inclusion and the background. The field corresponding to the
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unperturbed domain D is denoted by um = um0 . The differential measurements are
denoted by

ân,m =
∫ 2π

0

e−inθ(umε − um)(eθ)dθ .(6)

A central point of our analysis is to assess the resolving power of the measure-
ments in the presence of measurement or instrument noise. We thus introduce

(7) âmeas
n,m = ân,m + σŴn,m ,

with the noise terms Ŵn,m modeled as independent standard complex circularly
symmetric Gaussian random variables (such that E[|Ŵm,n|2] = 1) and σ thus mod-
eling the noise magnitude.

In our analysis we moreover make use of asymptotic characterization of the
wave field to get explicit results on the resolving power of the measurements. This
representation uses the results of [5]. In fact, for any |n|, |m| � (1/ε), we have the
representation

ân,m = (Qĥ)n,m + ε2V̂n,m ,(8)

where

(9) (Qĥ)n,m = εcn,m(α, k)ĥn+m ,

with the coefficients

(10) cn,m(α, k) = −8π(k − sign(nm))
α(k − 1)

1
(α−|n| k+1

k−1 + α|n|)(α−|m| k+1
k−1 + α|m|)

,

if nm 6= 0, and cn,m(α, k) = 0 if nm = 0. Here we have used the Fourier convention

(11) ĥp =
1

2π

∫ 2π

0

h(θ)e−ipθdθ , h(θ) =
∞∑

p=−∞
ĥpe

ipθ .

Thus, we have

(12) âmeas
n,m = (Qĥ)n,m + σŴn,m + ε2V̂n,m .

Note that (Qĥ)n,m = (Qĥ)m,n and (Qĥ)n,−m = (Qĥ)−n,m.

2.2. Short Range Sharp Resolving Power of Conductivity. Our objective
is now to identify the rim or perimeter perturbation of the inclusion, that is the
function h. Note that, from (8), only ĥp for 0 < |p| � 1/ε can be reconstructed
from boundary measurements. Therefore, let M � 1/ε be a positive integer and
suppose that ĥp = 0 for |p| ≥M .

The adjoint of the operator Q defined by (9) is

(13) (Q?â)p = ε

∞∑
j=−∞

cp−j,j(α, k)âp−j,j .

We moreover have

(14) (Q?Qĥ)p = ε2qp(α, k)ĥp , qp(α, k) =
∞∑

j=−∞
|cp−j,j(α, k)|2 .
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The least squares estimate of ĥp using âmeas is

ĥest
p =

(
(Q∗Q)−1Q∗âmeas

)
p

= ε−2qp(α, k)−1 (Q∗âmeas)p

= ĥp + ε−2qp(α, k)−1
(
Q∗(σŴ + ε2V̂ )

)
p
.(15)

We then have

(16) E
[∣∣ĥest

p − ĥp
∣∣2] ≤ qp(α, k)−1

[(σ
ε

)2

+ ε2
∞∑

j=−∞
|V̂p−j,j |2

]
,

using that

E
[∣∣(Q∗Ŵ )p

∣∣2] = ε2qp(α, k) ,

and ∣∣(Q∗V̂ )p
∣∣2 ≤ ε2qp(α, k)

∞∑
j=−∞

|V̂p−j,j |2 .

We assume here

Assumption 1. ε2 � σ.

Assumption 1 insures that indeed the instrument errors dominate the approx-
imation error. We remark that we below assume without loss of generality that
p ≥ 1. We can therefore conclude from (16) that to resolve the pth mode of h, ĥp,
we need the following resolving condition to be satisfied:

(17)
(σ
ε

)2

< qp(α, k) ,

assuming that indeed ĥp is of order one.
By substituting into (14) the following lower and upper bounds for cn,m(α, k)

(18)
(8π(k − 1)2

4α(k + 1)2

)
α|n|+|m| ≤ |cn,m(α, k)| ≤

(8π|k − 1|
α(k + 1)

)
α|n|+|m| ,

we find that

(19)
(8π(k − 1)2

4(k + 1)2

)2

≤ qp(α, k)
α2p−2

(
2α4

1−α4 + p− 1
) ≤ (8π(k − 1)

(k + 1)

)2

.

We introduce the signal to noise ratio SNR and the contrast adjusted signal to noise
ratio SNRk:

(20) SNR =
( ε
σ

)2

, SNRk =
4π2(k − 1)4

(k + 1)4
SNR .

The mode resolving sufficient condition is therefore:

(21) SNR−1
k < α2p−2

( 2α4

1− α4
+ p− 1

)
.

We can see that we have “infinite resolution” in the limit α ↑ 1 in the sense that
we can estimate all modes ĥp in this limit. We correspondingly have the following
necessary condition associated with the lower bound in (19):

(22) S̃NR
−1

k < α2p−2
( 2α4

1− α4
+ p− 1

)
,
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Figure 1. Maximal mode number p(α,SNRk) (see (24)) as func-
tion of radius α and signal to noise ratio SNRk.

for

(23) S̃NRk =
64π2(k − 1)2

(k + 1)2
SNR ,

which has exactly the same behavior as the sufficient condition (21). Therefore we
will now only work with (21).

We can now answer the question: for a fixed SNR and radius α which modes
can be resolved? From the previous analysis the answer is that it is possible to
estimate the pth mode up to p = p(α,SNRk), where p(α,SNRk) is the resolving
mode number bound defined by

(24) p(α,SNRk) = sup
{
p ≥ 1

∣∣∣∣ inf
1≤p′≤p

α2p′−2
( 2α4

1− α4
+ p′ − 1

)
> SNR−1

k

}
.

If the set in the sup is empty, then p(α,SNRk) = 0, which means that estimation
is not possible. In Figure 1 we show the maximal mode number p(α,SNRk). It is
seen that the relative resolution decreases rapidly with “depth” (decreasing radius
α). Figure 2 shows the resolution bound as defined by

(25) λ(α,SNRk) = 2π
α

p(α,SNRk)
.

We remark that the resolution measured in this way actually improves for very
small radius due to reduction in scale for fixed p with reduced radius. In fact, for
large SNRk, the function α→ λ(α,SNRk) is approximately −4πα ln(α)/ ln(SNRk),
it has a maximum whose value is 4π/(e ln(SNRk)) for the argument α = e−1. We
will revisit this observation in the next subsection.

2.3. Probing in Depth with Conductivity. We now revisit the question ad-
dressed in the previous subsection by considering the alternative question: for a
fixed SNR and mode p, what is the minimal radius α of the inclusion that can be
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Figure 2. Resolution λ(α,SNRk) (see (25)) as function of radius
α and signal to noise ratio SNRk.

probed? We find from (21) that a resolving condition is α ≥ α?(p, SNRk) where we
have defined the “resolving radius” by

(26) α?(p, SNRk) = F−1
p

( 1
SNRk

)
.

Here F−1
p is the inverse of the function α → Fp(α) = α2p−2

(
2α4

1−α4 + p − 1
)

that
is increasing and one-to-one from [0, 1) to [0,∞). The quantity α?(p,SNRk) has
the interpretation of being the smallest radius one can probe for a certain mode
number p and signal to noise ratio SNRk. The probing depth is of course limited
by SNRk. By reducing the mode number one can however probe deeper. We can
correspondingly define

(27) λ?(p,SNRk) =
2πα?(p,SNRk)

p
,

which has the interpretation of being the resolution at the maximum probing depth.
In Figures 3 and 4 respectively we show the resolving radius α? and the associated
resolution λ?.

In fact, for large SNRk, p 7→ λ?(p,SNRk) has a maximum. The argument at the
extremal, p?, satisfies

p?(SNRk)
SNRk↑∞∼ 1

2
ln(SNRk) .

We also have

α?(p?(SNRk),SNRk)
SNRk↑∞∼ e−1 ,

which conforms with the behavior seen in Figure 2. We then have the following
asymptotic characterization of the resolution:

λ?(p?(SNRk),SNRk)
SNRk↑∞∼ 4π

e ln(SNRk)
.
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Figure 3. Resolving radius α?(p,SNRk) (see (26)) as function of
mode number p and signal to noise ratio SNRk.
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Figure 4. Resolution λ?(p, SNRk) (see (27)) as function of mode
number p and signal to noise ratio SNRk.

We conclude that indeed the conductivity is sensitive to noise with a high resolution
requiring a very high signal to noise ratio.

3. Detection with Helmholtz Data

We now change the focus to the wave propagation problem. That is, we con-
sider the case when the data are time-harmonic observations, the solutions of the
Helmholtz equation and we consider the analogous estimation problem as that dis-
cussed in the previous section.
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3.1. Differential Measurements. The measurements are taken on a circle of unit
radius in a non-dimensionalized setting. The domain of interest and the perturba-
tion domain is as before characterized by (1) and (2). Following [3] we model the
estimation problem below. Suppose first that the inclusion Dε is illuminated by an
array of N elements {y1, . . . ,yN}. In polar coordinates the points of the transmit-
ter array are yn = (cos θn, sin θn). In this case, the field perturbed in the presence
of the inclusion is the solution u(·,ym) to the following transmission problem:

(28)



∆u+
ω2

c20
u = −δym

, in R2 \Dε ,

∆u+
ω2

c2
u = 0 , in Dε ,

u
∣∣
+
− u
∣∣
− = 0 , on ∂Dε ,

∂u

∂ν

∣∣∣
+
− ∂u

∂ν

∣∣∣
−

= 0 , on ∂Dε ,

u satisfies the outgoing radiation condition,

where ω/c0 and ω/c are the wavenumbers associated with the free space and the
inclusion respectively.

Suppose also that the receiver array used to detect the inclusion coincides with
the transmitter array. The data consists of the multi-static response (MSR) matrix
A = (An,m)n,m=1,...,N which describes the transmit-receive process performed by
this array. In the presence of the inclusion the scattered field induced on the nth
receiving element, yn, from the scattering of an incident wave generated at ym can
be expressed as follows:

(29) An,m = u(yn,ym)− Γq0(yn − ym) .

Here q0 = ω/c0 is the homogeneous wavenumber, Γq0 is the associated free space
Green’s function:

(30) Γq0(x) =
i

4
H

(1)
0

(
q0|x|

) q0|x|�1
' eiπ/4

2
√

2πq0|x|
eiq0|x|,

and H
(1)
0 is the Hankel function of the first kind of order zero.

The problem we consider is to image the inclusion D from the MSR matrix. We
assume that the target is extended, i.e., its characteristic size is much larger than
half the wavelength π/q0.

Let us define the contrast parameter

(31) C =
c20
c2
− 1 .

As shown in [3] (see also [16, 17, 23]) the response matrix is given asymptotically
when c ∼ c0 by

(32) Am,n[D] =
iq0C
8π

∫
D

eiq0[|yn−x|+|ym−x|]dx .

Using the Taylor series expansion

(33) |yn − x| = |yn| −
yn · x
|yn|

+O
( |x|2
|yn|

)
,
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we find that, in polar coordinates x = (r cos θ, r sin θ),

(34) Am,n[D] = ei(2q0+π/2) q0C
8π

∫ 2π

0

dθ

∫ α

0

rdre−iq0r[cos(θ−θm)+cos(θ−θn)] ,

which is valid if q0diam2(D) is smaller than the distance from the target D to the
array (this is the Fraunhofer regime). Thus, we make the assumption

Assumption 2. α2q0 � 1.

Similarly, we have for the case of measurements from the perturbed domain

(35) Am,n[Dε] = ei(2q0+π/2) q0C
8π

∫ 2π

0

dθ

∫ α+εh(θ)

0

rdre−iq0r[cos(θ−θm)+cos(θ−θn)] .

Expansions (32) and (35) are known as the Born approximations.
In the continuum approximation the response matrix of the unperturbed domain

then corresponds to the operator whose kernel is

(36) A[D](θ1, θ2) =
q0C
8π

∫ 2π

0

dθ

∫ α

0

rdre−iq0r[cos(θ−θ1)+cos(θ−θ2)] .

The kernel of the operator corresponding to the perturbed domain has a similar
expression with α+ εh(θ) instead of α. Therefore the kernel associated with differ-
ential measurements can be written as

(37) H[D](θ1, θ2) =
q0Cαε

8π

∫ 2π

0

dθe−iq0α[cos(θ−θ1)+cos(θ−θ2)]h(θ) .

It is convenient to express the data in the continuum approximation and in the
Fourier domain as the singular vectors of the kernel indeed constitute the Fourier
basis. This moreover corresponds to the measurement configuration of the conduc-
tivity case discussed in the previous section. We then have the response matrix
observations

(38) b̂n,m =
1

(2π)2

∫ 2π

0

∫ 2π

0

H[D](θ1, θ2)e−i(nθ1+mθ2)dθ1dθ2 ,

and they are given by

(39) b̂n,m =
εq0Cα

4
Jn(q0α)Jm(q0α)i−(n+m)ĥn+m ,

where the Jn’s are the Bessel functions of the first kind. The coefficients b̂n,m are
the analogue of ân,m for the conductivity case. If we incorporate instrument noise
and again assume that the effect of approximation error is relatively small, then we
can write

(40) b̂meas
n,m = b̂n,m + σŴn,m ,

with again Ŵn,m being modeled as standard and independent circularly symmetric
Gaussian entries. The analogue of (9) then becomes

(41) b̂n,m = (Rĥ)n,m , (Rĥ)n,m =
εq0Cα

4
Jn(q0α)Jm(q0α)i−(n+m)ĥn+m .
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We then get the least squares estimate

ĥest,p = ĥp + σ
(
(R∗R)−1R∗Ŵ

)
p

= ĥp +
4σ

εq0Cα

∑∞
l=−∞ Jl(q0α)Jp−l(q0α)ipŴl,p−l∑∞

l=−∞ J2
l (q0α)J2

p−l(q0α)
,(42)

which shows that the estimation is unbiased with the variance

Var(ĥest,p) = E
[∣∣ĥest,p − ĥp

∣∣2] =
( 4σ
εq0Cα

)2 1∑∞
l=−∞ J2

l (q0α)J2
p−l(q0α)

=
( 4σ
εq0Cα

)2 2π∫ 2π

0
J2
p (2q0α cos θ)dθ

.(43)

Here we have used of the formula

(44)
∞∑

l=−∞

J2
l (q0α)J2

p−l(q0α) =
1

2π

∫ 2π

0

J2
p (2q0α cos θ)dθ ,

which follows from Neumann’s formula [14, Formula 7.7.2(11)] and Parseval’s for-
mula.

We consider in the next two subsections the high- and low-frequency regimes.

3.2. High-frequency regime. We consider the high-frequency regime defined by:

Assumption 3. q0α� 1.

We remark that assumptions 2 and 3 imply α� 1 and q0 � 1. In this asymptotic
framework, when p is smaller than 2q0α, then we have [22, Eq. 4]

1
2π

∫ 2π

0

J2
p (2q0α cos θ)dθ =

1
π2q0α

[
log q0α+ 5 ln 2 + γ − 2

(
1 +

1
3

+ · · ·+ 1
2p− 1

)
+O
(
(q0α)−1/2

)]
,(45)

where γ is the Euler’s constant, while when p is larger than 2q0α, then the integral
is exponentially close to zero [1, Eq. 9.3.2]:

(46)
1

2π

∫ 2π

0

J2
p (2q0α cos θ)dθ ∼ exp

[
− 4q0αR

( p

2q0α

)]
,

with R(s) = s
[
cosh−1(s) − tanh

(
cosh−1(s)

)]
and cosh−1 is the inverse hyperbolic

cosine.
We introduce the signal to noise ratio SNR and the contrast adjusted signal to

noise ratio SNRC :

(47) SNR =
( ε
σ

)2

, SNRC = C2SNR .

The stability condition that allows for the estimation of the pth mode is:

(48) Var(ĥest,p) < 1 ,

with Var(ĥest,p) given by (43). For p < 2q0α, this condition reads:

SNR−1
C <

q0αlog(q0α)
(4π)2

.(49)

For p > 2q0α the condition (48) means that SNR−1
C should be exponentially large

in q0α. Therefore we need p < 2q0α, otherwise the signal is exponentially small
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Figure 5. Relative minimal radius α?(SNRC)/λ0 (see (51)) as
function of SNRC in the high-frequency regime.

and the constraint on the signal to noise ratio is prohibitive. This corresponds to
the “global” resolution constraint:

p ≤ p(α) ,
2πα
p(α)

=
λ0

2
,(50)

where λ0 = 2π/q0 is the homogeneous wavelength. Thus, this constraint limits the
resolution to half the wavelength.

In order to estimate the coefficients ĥp for all p ≤ 2q0α we need (49) to be
satisfied. Note that a large parameter q0α actually allows for the estimation of the
coefficients ĥp for a small SNRC since the high frequency q0 amplifies the returns
as shown in (37). This shows that in this high-frequency regime the estimation is
relatively insensitive to noise. From (49) we have for the probing constraint

(51) α ≥ α?(SNRC) , α?(SNRC) =
λ0

2π
F−1

(
(4π)2SNR−1

C
)
.

where F(x) = x log x is an increasing one-to-one function from [1,∞) to [0,∞). The
radius α? is the minimal radius of the inclusion that can be probed and estimated
with a signal to noise ratio SNRC in the high-frequency regime. In Figure 5 we
show the relative minimal resolving radius α?/λ0 as function of SNRC . We remark
that Assumption 3 means that 2πα/λ0 � 1.

3.3. Low-frequency regime. We consider the low-frequency regime defined by:

Assumption 4. q0α� 1.

In the asymptotic framework when q0α� 1, using that Jp(z)
z→0∼ (z/2)p/p!, we

have

(52)
1

2π

∫ 2π

0

J2
p (2q0α cos θ)dθ ∼ (q0α)2pH(p) ,
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Figure 6. Maximal mode number p(α/λ0,SNRC) (see (55)) as
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the low-frequency regime.

with

(53) H(p) =
1

2π(p!)2

∫ 2π

0

cos2p(θ)dθ =
1
4

(2p)!
22p(p!)4

.

We then get (as in (48)) the stability condition that allows for the estimation of
the pth mode:

(54) SNR−1
C <

(q0α)2p+2H(p)
4

=
(2πα
λ0

)2p+2H(p)
4

.

Note the qualitative different dependence on the mode number in the high- and
low-frequency regimes (compare with (49)). We can now answer the question: for
a fixed SNRC and α which modes can be resolved? The answer is that it is possible
to estimate modes up to p = p(α/λ0,SNRC) with

(55) p(α/λ0,SNRC) = sup
{
p ≥ 1

∣∣∣∣ inf
1≤p′≤p

(2πα
λ0

)2p′+2H(p′)
4

> SNR−1
C

}
.

We plot in Figure 6 the maximal mode number p(α/λ0,SNRC) as function of the
relative radius α/λ0 and signal to noise ratio SNRC . We remark that Assumption
4 means that 2πα/λ0 � 1. Note that a high signal to noise ratio is needed in this
low-frequency regime even to get estimates of relatively low modes. Figure 7 shows
the resolution bound as defined by (25):

(56)
λ(α/λ0,SNRC)

λ0
= 2π

α/λ0

p(α/λ0,SNRC)
,

with p(α/λ0,SNRC) given by (55).
In terms of the radial dependence we can contrast (54) with the corresponding

condition in (21). The low-frequency limit is very sensitive to the noise conforming
with the discussion of the conductivity case in the previous section. From (54) we
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Figure 7. Relative resolution λ(α/λ0,SNRC)/λ0 (see (56)) as
function of relative radius α/λ0 and signal to noise ratio SNRC
in the low-frequency regime.
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Figure 8. Relative minimal radius α?(p,SNRC)/λ0 (see (57)) as
function of SNRC and mode number p in the low-frequency regime.

have the probing constraint

(57) α ≥ α?(p,SNRC) , α?(p, SNRC) =
λ0

2π

( 4
H(p)SNRC

)1/(2p+2)

,

which is the low-frequency version of (51). This answers the question: for the mode
number p that we want to resolve and a given signal to noise ratio SNRC , what is
the minimum radius α? that we can probe? We plot the relative minimal radius
α?/λ0 in Figure 8.
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Figure 9. Relative resolution measure λ?(p,SNRC)/λ0 (see (58))
as function of SNRC and mode number p in the low-frequency
regime.

We can next associate the relative minimum radius with the resolution measure
λ?(p,SNRC) = 2πα?(p,SNRC)/p. Thus, we introduce the p- and SNR-dependent
resolution constraint by:

λ?(p,SNRC) =
λ0

p

( 4
H(p)SNRC

)1/(2p+2)

.(58)

Using Stirling’s formula, it follows from (58) that

λ?(p,SNRC)
p→∞∼ λ0

e
.(59)

We plot the resolution measure λ?(p,SNRC)/λ0 in Figure 9. Note that this measure
is very sensitive to the mode number and SNR in this low-frequency regime, a
relatively high signal to noise ratio is needed. However, with a very high signal to
noise ratio the relative resolution can then be very high.
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Lions, Université Paris VII, 75205 Paris Cedex 13, France.

E-mail address: garnier@math.jussieu.fr

Department of Mathematics, University of California, Irvine, CA 92697

E-mail address: ksolna@math.uci.edu


