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WAVE PROPAGATION AND IMAGING IN MOVING RANDOM
MEDIA

LILIANA BORCEA* JOSSELIN GARNIER', AND KNUT SOLNA?

Abstract. We present a study of sound wave propagation in a time dependent random medium
and an application to imaging. The medium is modeled by small temporal and spatial random
fluctuations in the wave speed and density, and it moves due to an ambient flow. We develop a
transport theory for the energy density of the waves, in a forward scattering regime, within a cone
(beam) of propagation with small opening angle. We apply the transport theory to the inverse
problem of estimating a stationary wave source from measurements at a remote array of receivers.
The estimation requires knowledge of the mean velocity of the ambient flow and the second-order
statistics of the random medium. If these are not known, we show how they may be estimated from
additional measurements gathered at the array, using a few known sources. We also show how the
transport theory can be used to estimate the mean velocity of the medium. If the array has large
aperture and the scattering in the random medium is strong, this estimate does not depend on the
knowledge of the statistics of the random medium.
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1. Introduction. We study sound wave propagation in a time dependent medium
modeled by the wave speed c¢(¢, Z) and density p(t, &) that are random perturbations
of the constant values ¢, and p,. The medium is moving due to an ambient flow, with
velocity ¥(t, &) that has a constant mean ¥, and small random fluctuations. The
source is at a stationary location and emits a signal in the range direction denoted
henceforth by the coordinate z, as illustrated in Figure 1.1. The signal is typically a
pulse defined by an envelope function of compact support, modulated at frequency w,.
It generates a wave that undergoes scattering as it propagates through the random
medium. The goal of the paper is to analyze from first principles the net scattering at
long range, and to apply the results to the inverse problem of estimating the source
location and medium velocity from measurements of the wave at a remote, stationary
array of receivers.

Various models of sound waves in moving media are described in [16, Chapter
2] using the linearization of the fluid dynamics equations about an ambient flow, fol-
lowed by simplifications motivated by scaling assumptions. Here we consider Pierce’s
equations [16, Section 2.4.6] derived in [19] for media that vary at longer scales than
the central wavelength A\, = 27¢,/w, of the wave generated by the source. Pierce’s
model gives the acoustic pressure

p(t,:ﬁ) = _p(tvdf)Dt(ﬁ(tvi’)v (11)
in terms of the velocity quasi-potential ¢(t, &), which satisfies the equation
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Fic. 1.1. Illustration of the setup. A stationary source emits a wave in the range direction z, in
a moving medium with velocity U(t, &) that has small random fluctuations about the constant mean
Uo. The orientation of U, with respect to the range direction is arbitrary. The wave is recorded by
a stationary, remote array of receivers.

for spatial variable & = (x,z) € R¥*! and time ¢ € R, with natural number d > 1.
Here x € R? lies in the cross-range plane, orthogonal to the range axis z. Moreover,
Vs and Vg are the gradient and divergence operators in the variable & and

Dy =6, + 9(t, &) - Vg

is the material (Lagrangian) derivative, with ¢; denoting the partial derivative with
respect to time. The source is modeled by the function s(t, &) localized at the origin
of range and with compact support. Prior to the source excitation there is no wave

o(t, ) =0, t<«O0, (1.3)

but the medium is in motion due to the ambient flow.

Sound wave propagation in ambient flows due to wind in the atmosphere or ocean
currents arises in applications like the quantification of the effects of temperature
fluctuations and wind on the rise time and shape of sonic booms [4] or on radio-
acoustic sounding [12], monitoring noise near airports [21], acoustic tomography [14],
and so on.

Moving media also arise in optics, for example in Doppler velocimetry or anemom-
etry [6, 7] which uses lasers to determine the flow velocity ¥,. This has applications
in wind tunnel experiments for testing aircraft [10], in velocity analysis of water flow
for ship hull design [13], in navigation and landing [1], in medicine and bioengineering
[15]. A description of light propagation models used in this context can be found in
[8, Chapter 8].

Much of the applied literature on waves in moving random media considers either
discrete models with Rayleigh or Mie scattering by moving particles [8] or continuum
models described by the classic wave equation with wave speed ¢(0, & —¥t). These use
Taylor’s hypothesis [11, Chapter 19] where the medium is “frozen” over the duration
of the experiment and simply shifted by the uniform ambient flow. A transport theory
in such frozen-in media is obtained for example in [11, Chapter 20] and [16, Chapter
8], in the paraxial regime where the waves propagate in a narrow angle cone around
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the range direction. The formal derivation of this theory assumes that the random
fluctuations of the wave speed are Gaussian, and uses the Markov approximation,
where the fluctuations are d—correlated in range i.e, at any two distinct ranges, no
matter how close, the fluctuations are assumed uncorrelated.

In this paper we study the wave equation (1.2) with coefficients c¢(t, &), p(t, &)
and U(t, Z) that have random correlated fluctuations at spatial scale ¢ and temporal
scale T'. These fluctuations are not necessarily Gaussian. We analyze the solution
¢(t, &) and therefore the acoustic pressure p(t,&) in a forward scattering regime,
where the propagation is within a cone (beam) with axis along the range direction
z. The analysis uses asymptotics in the small parameter ¢ = X\,/L « 1, where L
is the range scale that quantifies the distance between the source and the array of
receivers. Pierce’s equations (1.1)—(1.2) are justified for small A\,/¢ « 1. By fixing A, /¢
or letting it tend to zero, independent of €, and by appropriate scaling of the spatial
support of the source s(t, &), we obtain two wave propagation regimes: The first is
called the wide beam regime because the cone of propagation has finite opening angle.
The second is the paraxial regime, where the cone has very small opening angle. We
use the diffusion approximation theory given in [9, Chapter 6] and [17, 18] to study
both regimes and obtain transport equations that describe the propagation of energy.
These equations are simpler in the paraxial case and we use them to study the inverse
problem of locating the source. Because the inversion requires knowledge of the mean
velocity U, of the ambient flow and the second-order statistics of the random medium,
we also discuss their estimation from additional measurements of waves generated by
known sources.

The paper is organized as follows: We begin in section 2 with the mathematical
formulation of the problem. Then we state in section 3 the transport equations. These
equations are derived in section 5 and we use them for the inverse problem in section
4. We end with a summary in section 6.

2. Formulation of the problem. We study the sound wave modeled by the
acoustic pressure p(t, &) defined in equation (1.1) in terms of the velocity quasi-
potential ¢(¢, &), the solution of the initial value problem (1.2)—(1.3). The problem is
to characterize the acoustic pressure p(t, &) in the scaling regime described in section
2.2 and then use the results for localizing the source and estimating the mean medium
velocity vU,.

2.1. Medium and source. The coefficients in equation (1.2) are random fields,
defined by

t E— Ut
Ht> L) = ﬂo Vv 04(7770)u 2.1
U(t, &) = U, + Vo, U T 7 (2.1)
S t & — Vot
p(t, &) = p,exp [prp(T,Tﬂ, (2.2)
t & — Uot\1-1/2
t, L) = 0[1 c c(*770)] ’ 2.3
c(t, &) = co|1 + oV, T 7 (2.3)

where c¢,, p, are the constant background wave speed and density, U, is the constant
mean velocity of the ambient flow, and V is a velocity scale (of the order of |¥,|)
that will be specified later. The fluctuations in (2.1)—(2.3) are given by the random
stationary processes ¥, v, and v, of dimensionless arguments and mean zero

E[p(r,7)] =0, E[v,(r,7)] =0, E[v(r,7)]=0. (2.4)
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We assume that U = (Vj)?;r%, v, and v, are twice differentiable, with bounded deriva-
tives almost surely, have ergodic properties in the z direction, and are correlated, with
covariance entries

E[VQ(T,T_')Z/B(T/,’F/)] = Rop(r—7,F— 7). (2.5)

Here the indices o and 3 are either 1,...,d + 1, or p, or ¢. The covariance is an even
and integrable symmetric matrix valued function, which is four times differentiable
and satisfies the normalization conditions

Hao(0,0) =1 or O(1), f d’TJ A7 Roo(7,7) =1 or O(1). (2.6)
R Jrett

The scale T in definitions (2.1)—(2.3) is the correlation time, the typical lifespan of
a spatial realization of the fluctuations, and ¢ is the correlation length, the typical
length scale of the fluctuations. The dimensionless positive numbers o,, o, and o
quantify the standard deviation of the fluctuations. They are of the same order and
small, so definitions (2.2) and (2.3) can be approximated by

8 <1 (0 E )] i ()]
with ¢, and p, close to the mean wave speed and density. The exponential in (2.2)
and the inverse of the square root in (2.3) are used for convenience because some
important effective properties of the medium are defined in terms of E[logp] and
E[c™?], which are equal to log p, and ¢ 2.

The origin of the coordinates is at the center of the source location, modeled by

s(t, @) = ase_i“’OtS(Ti, ;)6(2*), (2.7)

for & = (x, z), using the continuous function S of dimensionless arguments and com-
pact support. The length scale £ is the radius of the support of s(¢, &) in cross-range
and the time scale Ty is the duration of the emitted signal. Note that s(¢,&) is
modulated by the oscillatory exponential at the frequency w,. We call it the central
frequency because the Fourier transform of s(¢, &) with respect to time is supported
in the frequency interval |w — w,| < O(1/Ts). The solution ¢(¢, &) of (2.2) depends
linearly on the source, so we use o5 to control its amplitude.

To be able to set radiation conditions for the wave field resolved over frequencies,
we make the mathematical assumption that the random fluctuations of U(¢, &), p(¢, &)
and c(t, &) are supported in a domain of finite range that is much larger than L. In
practice this assumption does not hold, but the wave equation is causal and with
finite speed of propagation, so the truncation of the support of the fluctuations does
not affect the wave measured at the array up to time O(L/c,).

2.2. Scaling regime. Because the fluctuations of the coefficients (2.1)-(2.2)
are small, they have negligible effect on the wave at short range, meaning that
d(t, &) ~ ¢o(t, &), the solution of (1.2)—(1.3) with constant wave speed c¢,, density
po and velocity v,. We are interested in a long range L, where the wave undergoes
many scattering events in the random medium and ¢(¢, &) is quite different from
@o(t, &). We model this long range regime with the small and positive, dimensionless
parameter

Ao
=—x«1 2.
e=7«l, (2.8)
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and use asymptotics in the limit € — 0 to study the random field ¢(t, &).
The relation between the wavelength, the correlation length and the cross-range
support of the source is described by the positive, dimensionless parameters
A A
v= 707 Vs = 707 (29)

S

which are small, but independent of . The positive, dimensionless parameter
(2.10)

determines how fast the medium changes on the scale of the travel time Ty, = L/c,.
The duration of the source signal is modeled by the positive, dimensionless pa-
rameter

S= 2 2.11
= (2.11)

which is independent of e. The Fourier transform of this signal is supported in the
frequency interval centered at w, and of length (bandwidth) O(1/T), where
1 1 1 Co  Co

R R TRy 2.12
7. Ty e, " eL o, W) (2.12)

Thus, the source has a small bandwidth in the & — 0 limit.
Our asymptotic analysis assumes the order relation

e « min{vy,vs, 7, s}, (2.13)

meaning that we take the limit ¢ — 0 for fixed v, vs,n,7s. The standard deviations
of the fluctuations are scaled as

Oc = A€V, Op = \[EYT)p, Oy = /€70y, (2.14)

with &.,5,,5, = O(1) to obtain a O(1) net scattering effect.
The ambient flow, due for example to wind, has much smaller velocity than the
reference sound speed ¢,. We model this assumption with the scaling relation

|U,|/V = O(1), where V = ec,. (2.15)

Although V « ¢,, the medium moves on the scale of the wavelength over the duration
of the propagation

L
VIp,=V—=¢cL =X, </, (2.16)
Co
so the motion has a O(1) net scattering effect. Slower motion is negligible, whereas
faster motion gives different phenomena than those analyzed in this paper.

We scale the amplitude of the source as

Lo\
s = —, 2.17
7 EnsL( € ) ( )

to obtain ¢(t,€) = O(1) in the limit € — 0. Since equation (2.2) is linear, any other
source amplitude can be taken into account by multiplication of our wave field with
that given amplitude.



Note that in section 3.2.2 we consider the secondary scaling relation
v~ ys <1 (2.18)

corresponding to the paraxial regime, where the symbol “~” means of the same order.
Moreover, in section 4.3 we assume 7/1s < 1 corresponding to a regime of statistical
stability. In this secondary scaling regime we let

o] = O (ECO) ; (2.19)

my

to obtain the distinguished limit in which the medium velocity impacts the quantities
of interest.

3. Results of the analysis of the wave field. We show in section 5 that in
the scaling regime described in equations (2.8)—(2.17), the pressure is given by

o dwdk a(w,k,2) _i +u)iriks
t, %) x iwypo e HWoTw)tmi® 3.1
p(t, T) p L @0 3R (3.1)

for £ = (x,2) and O = {w € R} x {k € RY, |k| < k,}, where the approximation
error vanishes in the limit € — 0. This expression is a Fourier synthesis of forward
propagating time-harmonic plane waves (modes) at frequency w, + w, with wave
vectors k defined by

F=(kBkK). Bk)=vE kP, K, =21/A,. (3:2)

The scattering effects in the random medium are captured by the mode amplitudes,
which form a Markov process (a(o.), k, z)) o that evolves in z, starting from

(w,k)e
iasTeed o

a(w, k,0) = a,(w, k) = WS(MTS,&’C)- (3.3)

This process satisfies the conservation relation

J dwdk |a(w, k, 2)[* =J dwdk |a,(w, k)|, ¥z > 0. (3.4)
o O

The statistical moments of (a(w, k, z)) are characterized explicitly in the

(w,k)eO
limit € — 0, as explained in section 5.7 and Appendix A. Here we describe the expec-
tation of the amplitudes, which defines the coherent wave, and the second moments
that define the mean Wigner transform of the wave i.e., the energy resolved over

frequencies and direction of propagation.

3.1. The coherent wave. The expectation of the acoustic pressure (the coher-
ent wave) is obtained from (3.1) using the mean amplitudes

Ela(w, k, 2)] = ao(w, k) exp [i0(w, k)z + D(k)z] . (3.5)

These are derived in Section 5.7.1, with a,(w, k) given in (3.3). The exponential
describes the effect of the random medium, as follows:
The first term in the exponent is the phase

O(w, k) =

ko ) 2 )
B(k) (K - ’“) + w?ﬁﬁﬁ%’pp@,ﬂlko, (3.6)

Co Co
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and consists of two parts: The first part models the Doppler frequency shift and
depends on the cross-range component v, of the mean velocity v, = (v,,v,,). It
comes from the expansion of the mode wavenumber

w— v, - k\2 N ko(w — v, - k)
\/(’%+ o) Ik Bl + ==

in the limit € — 0, using the scaling relation (2.15) and w « w, obtained from (2.12).
The second part is due to the random medium and it is small when v « 1, i.e., A\, « /.
The second term in the exponent in (3.5) is

k4€d+1‘[ a1 J‘ ‘[m o
D(k) = —=¢ ——— | dr| dr,e k)T
W) = =20 e, @07 BB S T ),

o Op0c i
2R, (0,7) = TN, (07|, (37)

: %
X I:O'CQCC(Oa T) + M (koé)2

where we used the notation ¥ = (r,r,) and definition (3.2). This complex exponent
accounts for the significant effect of the random medium, seen especially in the term
proportional to Z.. which dominates the other ones in the v « 1 regime. Because the
covariance is even, the real part of D(k) derives from

N A Q ~ I
J‘ dF&ﬂAOJﬁe‘”w_k)r::J‘ggf%w(ﬂ,ak——kﬁ), (3.8)
Rd+1 R 27'('
where
@m@L@::JdTJ AF Boo (7, 7)1 27107 > (3.9)
R Jra+

is the power spectral density of v.. This is non-negative by Bochner’s theorem, so
Re [D(k:)] < 0 and the mean amplitudes decay exponentially in z, on the length scale

1

k) = R

(3.10)

called the scattering mean free path. Note that |k|, |k'| = O(1/¢) in the support of
Ree in (3.8) and that by choosing the standard deviation o, as in (2.14), we obtain
from (3.7)—(3.10) that (k) = O(L) in the ¢ — 0 followed by the v — 0 limit. This
shows that the decay of the mean amplitudes in z is significant in our regime. It is

the manifestation of the randomization of the wave due to scattering in the medium.

3.2. The Wigner transform. The strength of the random fluctuations of the
mode amplitudes is described by the Wigner transform (energy density)

W(w, k,x,z) = f(Qqu)d eiq'(vﬂ(k)”m)E[a(w,k + g,z)a(o.)JC — g,z)], (3.11)

where the bar denotes complex conjugate and the integral is over all ¢ € R? such that
|k + q/2| < k,. The Wigner transform satisfies the equation

dw'dk’

@it Qs R K[ K 2 2)

[0. — VB(k) - Vo [W(w, k, @, 2) = JO

~W(w, k,x,2)], (3.12)



for z > 0, with initial condition
W (w, k, z,0) = |ay(w, k)|*6(x). (3.13)

The integral kernel in (3.12) is called the differential scattering cross-section. It is
defined by

pApd1 N o) T 00
, A R P A2 _ __cp
Qs ki k') = g5ty 8% + g 5w ~ G

where the power spectral densities in the square bracket are evaluated as

Ao, (314)

Koo = Ree(T(w —w' — (k—K)-T,), 0k — k'), (3.15)

and similar for the other two terms, which are proportional to the Fourier transform
of A2%,, and AzZ,,. The total scattering cross section is defined by the integral of
(3.14) and satisfies

dw'dk’ 2
Sk)=| ——— koK)= ——. 3.16
( ) JO (27.r)d+1 Q(W,OJ » Y ) y(k) ( )

Note that the last two terms in the square bracket in (3.14) are small in the v « 1
regime, because 1/(ko¢) = v/(27) « 1 and o,/0. = O(1). If 0,/0. were large, of the
order v~ 2, then these terms would contribute. However, this would only change the
interpretation of the differential scattering cross section and not its qualitative form.

3.2.1. The radiative transfer equation. The evolution equation (3.12) for
the Wigner transform is related to the radiative transfer equation [5, 20]. Indeed, we
show in Appendix D that W (w, k, x, z) is the solution of (3.12)-(3.13) if and only if

—

LW, k@, )5 (k. — BR), E = (k. k), (3.17)

Bk)

solves the radiative transfer equation

V(w, k, &) =

- = d’;;, dw/ o I =
VEQ(,{:) . V5V(w, k, 33) = J]Rd+1 W J ? (w,w ,k, k )[V(w ,k ,w)
—V(w,k,®)], (3.18)
with Q(k) = ¢.|k| and the scattering kernel
ot 271—02 ’ ’ / 7 M
S(w,w' k. k') = B(k)B(K)Q(w,w' k, k)5 (Q(k) — Q(E)). (3.19)

k3
The initial condition is specified at & = (x,0) by
V(w, k. (2,0)) = lao(w, k)[*3(x)d (k= — 5(K)), (3.20)

with a,(w, k) defined in (3.3).

This result shows that the generalized (singular) phase space energy (3.17) evolves
as in the standard 3D radiative transfer equation, but it is supported on the phase
vectors with range component

ke = B(R), [k < k. (3.21)
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Indeed, if k' = (K', 3(k")) and k = (k, k.), then

3(00F) —F) = 0 (F| k) = 5o

5(kz - ﬂ(k))7

so the evolution of V(w, E, &) is confined to the hypersurface in equation (3.21). Phys-
ically, this means that the wave energy is traveling with constant speed in a cone of
directions centered at the range axis z.

3.2.2. Paraxial approximation. The paraxial approximation of the Wigner
transform is obtained from (3.12)-(3.13) in the limit

v =X/l — 0, sothat y/ys = finite,

as explained in section 5.8. In this case the phase space decomposition of the initial
wave energy given by (3.3) and (3.13) is supported in a narrow cone around the range
axis z, with opening angle scaling as

A

70 =7 « L.

S

Moreover, from the expression (3.14) of the differential scattering cross-section and
(3.15) we see that the energy coupling takes place in a small cone of differential
directions whose opening angle is

o

— =<« 1.
,6 ’y

In the paraxial regime equation (3.12) simplifies to

k Ak’ [ dw’ o
|:az + kio . Vm] W(w, k, €T, Z) = fRd W JR ? Qpar(w ,k )
W (w—w —k v,k — k., ,2) = SpuW(w k,x,2), (3.22)

where we obtained from definition (3.2) and the scaling relations (2.10), (2.15) that
in the limit v — 0,

6(’6) - koa Z’ﬂ(k) - B(kl)’ - Oa T’Uoz(ﬁ(k) - ﬁ(k/))} — 0.
The differential scattering cross-section becomes

2 _2gd+1
ksos 00T ~

Qpar(w, k) = 1 Ree(Tw, lk,0), (3.23)
and the total scattering cross-section is
dk’ duw’ o2 0k? 2
Ypar = — | — (W E) = 2—2%(0,0) = , 3.24
= [ oy [, B Qo) = EERO.0 = S (2

where .7}, is the scattering mean free path in the paraxial regime and

H(T,T) = JR dry Bee(T,7), T =(r,r,). (3.25)
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The initial condition is as in (3.13), with a, defined in (3.3),

22 p2d
JSTS gs

i |8(Tow, £.k)| 5 (). (3.26)

W(w, k,z,0) =

Note that the right-hand side of equation (3.22) is a convolution, so we can write
the Wigner transform explicitly using Fourier transforms, as explained in Appendix C.
The result is

2T£d 9
W(w, k,x,z) = 2 |S (Q, K)| dt dy

Rd R4

dq ) Q ) K ) K -z
LI P it A 222

“Jou oy exp{l(w TS) v (k=7) +ia- (o= 7)
o2k2 (7, t Y=tz —2) — vt
TLdz [%(T, ; )—%(0,0)] , (3.27)

and we use it next in the inverse problem of estimating the source location and the
mean flow velocity .

4. Application to imaging. In this section we use the transport theory in the
paraxial regime, stated in section 3.2.2, to localize a stationary in space time-harmonic
source in a moving random medium with smooth and isotropic random fluctuations,
from measurements at a stationary array of receivers. The case of a time-harmonic
source is interesting because it shows the beneficial effect of the motion of the random
medium for imaging. In the absence of this motion, the wave received at the array
is time-harmonic, it oscillates at the frequency w,, and it is impossible to determine
from it the range of the source. The random motion of the medium causes broadening
of the frequency support of the wave field, which makes the range estimation possible.

We consider a strongly scattering regime, where the wave received at the array is
incoherent. This means explicitly that the range L is much larger than the scattering
mean free path %, or, equivalently, from (3.24),

20k2L
JCTD%(O,O) > 1. (4.1)
We also suppose that
n T
— = — K1, 4.2
ns T 4.2)

to ensure that the imaging functions are statistically stable with respect to the real-
izations of the random medium. We begin in section 4.1 with the approximation of
the Wigner transform (3.27) for a time-harmonic source, in the strongly scattering
regime. This Wigner transform quantifies the time-space coherence properties of the
wave, as described in section 4.2. Then, we explain in section 4.3 how we can estimate
the Wigner transform from the measurements at the array. The source localization
problem is discussed in section 4.4 and the estimation of the mean medium velocity
is discussed in section 4.5.

4.1. Wigner transform for time-harmonic source and strong scattering.
To derive the Wigner transform for a time-harmonic source, we take the limit Ts — oo
n (3.27), after rescaling the source amplitude as

oy = a/\/Ts, o =0(1). (4.3)
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We assume for convenience® that the source has a Gaussian profile,
f S K[ = (2m)te KT, (4.4)
R

so we can calculate explicitly the integral over K in (3.27). We obtain after the change
of variables y = € + (q/k,)z, that

2£d d/2 ' |£|2 . ‘ kZ
W(w, k,x, 2) JdtJRddf Rddqexp{zwt—%—z§~k+zq-(sc—koz)

+024€k?;J0 1 W(%W) %(0,0)]}. (4.5)

Note that the last term in the exponent in (4.5) is negative, because # is maximal
at the origin. Moreover, the relation (4.1) that defines the strongly scattering regime
implies that the integrand in (4.5) is negligible for t/T" > 1 and |€+q/k,2' —v,t|/¢ = 1.
Thus, we can restrict the integral in (4.5) to the set

{(t,{,q) eR™H: |t < T, [€+ kgz’ — vot| « 3}7

and approximate

a0219

H(r.r) ~ #(0.0) — 5

5 Il (4.6)

with a,, 9, > 0. Here we used that the Hessian of &% evaluated at the origin is negative
definite and because the medium is statistically isotropic, it is also diagonal, with the
entries —a, and —1,. We obtain that

o2lk? t E+ L2 — vt o/ ty2 1§ + £ 2" — vt
8 | SR | -5 () - 5 (Y

with the positive parameters

o2lk? o2lk?
1 9 =1, 1

(4.7)

a = a,

Substituting in (4.5) and integrating in 2’ we obtain

o204 d/2 N2 9
W(w, k@, 2) ~ g f dt J d¢ | dqexp {iwt - 2(5) - ol vt
R R 20

|€|2 : 022 q 2,T k
k —Efvotyk—o 622‘16‘ +zq'(mkoz)}. (4.8)

The imaging results are based on this expression. Before we present them, we study
the coherence properties of the transmitted wave and define the coherence parameters
which affect the performance of the imaging techniques.

gz ek ol

*The results extend qualitatively to other profiles but the formulas are no longer explicit.
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4.2. Time-space coherence. Let us define the time-space coherence function

C(At, Az, x,2) = Wf dt p(t + At,x + Ax/2, 2)p(t, © — Ax /2, z)eoRt,
(4.9)
and obtain from (3.1) that in the paraxial regime
dg -
C(At, Az, z, 2) a(w, k+q/2,2)a(w, k —q/2,2)
]Rd 277)
X exp {iq : [zVB( )+ ] +idx -k — z'wAt}. (4.10)

Moreover, in view of (3.11) and the fact that we average in time so that the statistical
fluctuations of C' are small (see Remark 4.1) we have

C(At,Ax,x,z) ~ E[C(At Az, x z)]

J J 2 W(w, k, x, z)e wAtTitzk, (4.11)
Rd 7T

This shows formally that we can characterize the Wigner transform as the Fourier
transform of the coherence function

W(w, k,x,z) ~ ‘[ dAtJ dAz C(At,Aw,w,z)ei“At_m""k. (4.12)
R R

Using the expression (4.5) of the Wigner transform in (4.11) we find after evalu-
ating the integrals that

o2l _
C(At,Ax,x,z) ~ m exp [up(At,Am,m,z)]
At? |z |Az)?  |H. Az —v,At]?
o= - 413
<o - 57~ omz ~ o el IC
with phase
o - [(14—19,2(78) )az - 192(%) v,At |
o(At, Az, x,2) = 5 , (4.14)
z[l + %ﬁz(%) ]
and coeflicients
T 2 202\ '/? i
- R. = 1 5 D, = 4.15
e Rrme(tm) o Ptum 1)
1/2
- Ly 1
Dy, =2D [3( +652)] L Dp=D.|— | . Hi=1-——
: o 2(1+ g2

(4.16)

The decay of the coherence function in Az models the spatial decorrelation of
the wave on the length scale corresponding to the characteristic speckle size. This is
quantified by the length scales D1, and Ds,, which are of the order of D,. We call

12



D, the decoherence length and obtain from (2.14) and (4.7) that it is of the order of
the typical size ¢ of the random fluctuations of the medium,

¢ ¢ /L
D= = m/ﬁf,\/: = 0(0). (4.17)

The decay of the coherence function in At models the temporal decorrelation of
the wave, on the time scale

T T L
T o=\ = o) (4.18)

where we used definitions (2.14) and (4.7). We call T, the decoherence time and note
that it is of the order of the life span T of the random fluctuations of the medium.

The decay of the coherence function in |x| means that the waves propagate in a
beam with radius R,, which evolves in z as described in (4.15) and satisfies

z
———  for ¢, «D,,
20k
R, ~ ﬁzsﬁ (4.19)
3 "ol for ¢, >» D,.

This shows that the transition from diffraction based beam spreading to scattering
based beam spreading happens around the critical propagation distance

o* = %(;)2 - L(%)zﬂ%o. (4.20)

This expression is derived from equation ¢; = D,« and definitions (2.14) and (4.7),
and it shows that z*/L is finite in our regime!.
Note that when z » z* i.e., D, « £, the coefficients (4.16) become

D1, ~V20,, Dy, ~2D,, H,~1, (4.21)

and the coherence function satisfies

|C(At, Az, x, 2)| xp( At?z* Az? Aac—'voAt|2)

1C(0,0,0, 2)| 272 2RZ A2 8D?

(4.22)

Thus, the spatial spreading and decorrelation of the wave field for z » z* are governed
by the parameters R,, {5 and D,, with R, given by the second case in (4.19) and D,
given in (4.17). These parameters scale with the propagation distance z < L as
R, ~ 2%?2 and D, ~ 2~ %/2. The temporal decorrelation is on the scale T, ~ z~1/2.

4.3. Estimation of the Wigner transform. Suppose that we have a receiver
array centered at (x,,z), with aperture in the cross-range plane modeled by the
appodization function

o (x) = exp (-'””“"2) . (4.23)

TRecall from section 3.2.2 that the paraxial regime is obtained in the limit v — 0 so that
v/vs = £s/f remains finite. Here we allow the ratio £s/¢ to be large or small, but independent of v
which tends to zero.

13



The linear size of the array is modeled by the standard deviation s/k,, with dimen-
sionless s¢ > 0 defining the diameter of the array expressed in units of \,.

Recalling the wave decomposition (3.1) and that 5(k) ~ k, in the paraxial regime,
we define the estimated mode amplitudes by

k, —if(k)z ) )
Qost (w, k, 2) ¢ J dtf dx of (x)p(t, , z)ez(“””"o)te_““':c
Rd

iWopo

22 \ Y2 ~ ~ L i[B(kAR)—B(k)]ztikm,— AR
= <2ﬂ'k§> fRd dka(w, k + k, 2)e k3 (4.24)

With these amplitudes we calculate the estimated Wigner transform

dg .
West (w, k, @, 2) = J idelq'(vﬁ(k)“m)aest (w, k+ g, z) Qest (w, k— g, z) (4.25)
i (27) 2 2

and obtain after carrying out the integrals and using the approximation

i+ 2) (- D))o ~a- 00

that
R AL M _=2K12
West(w, k, @, 2) ~ (—) e” T =2 dKe * W(w,k+ K,z,2). (4.26)
7Tk2 R4
We can now use the expression (4.8) in this equation, to obtain an explicit approx-
imation for Wes. Equivalently, we can substitute (4.12) in (4.26) and obtain after
integrating in K that

k2 \Am\

k2|m mowz
West (w, b, 2, 2) ~ e f dAtf dAx C(At, Az, @, z)e At A k=
Rd
(4.27)

with C' given in (4.13).

REMARK 4.1. Note from (4.9) that the time integration that defines the coherence
function is over a time interval determined by the pulse duration Ts, which is larger
than the coherence time T of the medium by assumption (4.2). If we interpret the
wave as a train of Ts/T pulses of total duration T', each individual pulse travels through
uncorrelated layers of medium because the correlation radius of the medium £ is much
smaller than ¢, T. This follows from the fact that £/(c,T) = €/(ny) and € < yn. Thus,
C(At, Az, x, z) is the superposition of approzimately Ts/T uncorrelated components
and its statistical fluctuations are small by the law of large numbers. Moreover, we
conclude from (4.27) that the estimated Wigner transform is approximately equal to
its expectation, up to fluctuations of relative standard deviation that is smaller than

T/Ts.

4.4. Source localization. We now show how we can use the estimated Wigner
transform to localize the source. Recall that we use the system of coordinates with
origin at the center of the source. Thus, the location (x,,z) of the center of the
array relative to the source is unknown and the goal of imaging is to estimate it.
We begin in section 4.4.1 with the estimation of the direction of arrival of the waves
at the array, and then describe the localization in range in section 4.4.2. These two
estimates determine the source location in the cross-range plane, as well.

14



4.4.1. Direction of arrival estimation. We can estimate the direction of ar-
rival of the waves from the peak (maximum) in k of the imaging function

Onor(k,2) = | S Wess (e, ko ), (4.28)
R 2T
determined by the estimated Wigner transform at the center of the array of receivers.
If the medium were homogeneous, the maximum of k — Opea (k, z) would be at the
cross-range wave vector k* = k, %2, and the width of the peak (the resolution) would
be 1/(v/2). However, cumulative scattering in the random medium gives a different
result, as we now explain:
Substituting (4.27) in (4.28) and using the expression (4.13), we obtain after
evaluating the integrals that

2
1 _
Opoa (k. 2) =exp{ —so k — k(z) , (4.29)
maxg Opoa (K, 2) 207 A (2) k,
with

02 1/2 02

1 L+ 552 1 x, [ 1+ 3
Ipoa(2) = = |+ — , k(z)=k,— | —=%|. (4.30)

3D2k2 \ 1 + 32% 2522 z \ 14 32%

Therefore, the maximum of k — Opoa(k,2) is at the cross-range wave vector k(z)
and the width of the peak (the resolution) is determined by ¥poa (z). This resolution
improves for larger array aperture (i.e., ) and deteriorates as z increases. Depending
on the magnitude of z relative to the critical range z* defined in (4.20), we distinguish
three cases:

1. In the case z « z* i.e., £, « D,, the intensity travels along the deterministic
characteristic, meaning that Opoa (k, z) peaks at

k(z) ~ k% (4.31)

However, the resolution is worse than in the homogeneous medium,
1 1 )2
Ipo X ———rt+ —= , 4.32
Doa(2) {3D§k3 * 2%2} (432)

with D, defined in (4.17).
2. In the case z » z*, i.e., £; » D,, the peak of Opoa(k, z) is at the cross-range
wave vector

3
k(z) ~ iko%, (4.33)
and the resolution is
1 1 )12
Ypoa(z) ~ { + } . (4.34)
AD2k2 2522

Here the peak corresponds to a straight line characteristic, but with a different slope
than in the homogeneous medium. The resolution is also worse than in the homoge-
neous medium.
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3. In the case z = O(z*), the characteristic can no longer be approximated by
a straight line, as seen from (4.30). Nevertheless, we can still estimate the source
position from the observed peak k(z), provided that we have an estimate of the
range z. The resolution of the estimate of k(z) is ¥Upoa(z) given by (4.30) that is
bounded from below by (4.34) and from above by (4.32).

REMARK 4.2. Note that (4.30) is a decreasing function of the array diameter
»%/ko, as long as this satisfies »x/k, < +/2D,. Thus, increasing the aperture size
beyond the critical value /2D, does not bring any resolution improvement.

4.4.2. Range estimation. The results of the previous section show that the
direction of arrival estimation is coupled with the estimation of the range z in general,
with the exception of the two extreme cases 1. and 2. outlined above.

To estimate the range z, we use the imaging function

dicu
2

. dk
Orango(ts 2) = f ot f W (@, b, @0, 2) ~ C(£,0,20,2),  (4.35)
R R4

(2m)

derived from (4.27). Substituting the expression (4.13) of the coherence function in
this equation we obtain

‘Orange (ta Z)| t2
= -, 4.36
maxy: [Orange (5 2)] P\ 20%m50(2) (4.36)

with
1 02 —-1/2

|v0‘27;2 + 653
ﬂrange(z) = 7; 1+ D2 1 202 (437)

2 + 350

As a function of ¢, this peaks at ¢ = 0 and its absolute value decays as a Gaussian, with
standard deviation Yyange(2). If we know the statistics of the medium (the decoherence
time 7, and length D,) and the magnitude of the cross-range velocity |v,|, then we
can determine the range z by estimating the rate of decay of Orange(t,2). Note that
the array dimameter s/k, plays no role for the range estimation.

REMARK 4.3. We can also estimate the mean velocity U, = (Vo,Voz) from (4.36),
by considering different beam orientations in the case that the sources and also the
medium statistics (the decoherence time T, and length D, ) are known. That is to say,
with three known beams we can get the vector v,, and then we can use it to localize the
unknown source using the direction of arrival and range estimation described above.
See also section 4.5 for a more detailed analysis of the velocity estimation.

REMARK 4.4. If the decoherence time T, and length D, are not known, they can
also be estimated using additional known sources. Definitions (4.17)~(4.18) show that
D.2'/? and T,z'/? are constant with respect to z. Once estimated, these constants can
be used in the imaging of the unknown source.

4.5. Single beam lateral velocity estimation. We observe from (4.29) and
(4.36)—(4.37) that the source localization depends only on the Euclidian norm |v,| of
the cross-range component of the mean velocity of the medium. We show here that v,
can be obtained with only one beam and, when the receiver array is large and z » z*
i.e., £y » D,, the velocity estimate is independent of the medium statistics and the
source location.
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The estimation of v, is based on the imaging function

dw _, dk |
Ov t = —e Wt —— ek J dx Wes ) ka )
(y,t,2) JR 5 € J}Rd (27r)de » T West (w, k, x, 2)

kolyl? kylx — o/
~ exp ( L2 ) JRd dx exp ( — T) Ct,y,x, z). (4.38)

Substituting the expression (4.13) of the coherence function and carrying out the
integrals we obtain that

2w 2 (50,4 2 Yy — s,1v,[? to,|? |2
IOv(y,t,z)\%iL1 ) P =5 | 5 2' —|2 |2 _| |2 . (4.39)
22+dk0 .Ag 27; szAz nz'Az 4Az
with the effective apperture
IR AK: z \2 202
2 s
- -[(= 1 )] 4.40
A 4[(k0) + (koes) ( T 3p2 (4.40)
and dimensionless parameters
5 8
e = 2 2 02 2 202 ko2 2 202\’
1+ 25 (55) " (1+ o) + (2) (1 + 38) + (2)° ()" (1 + %)
2
n2 — mz

* sa(g. — 52/2)’

Sz

2 2 2
N Lz _(B) (&) (1+om)
_41923[( ) +2<koés) <1+32;§)]’ qz_2(]:)2+(kl)2<1+3§2>'

ko
These depend on the radii s/k, of the array and ¢, of the source, the decoherence
length D, and the ratio z/(k.¢s) that quantifies the cross-range resolution of focusing
of a wave using time delay beamforming at a source of radius /.

To estimate v, we can proceed as follows: First, we estimate for each time ¢ the
position Ymax(t) that maximizes y — Oy (y;t, z). Second, we note from (4.39) that
Ymax (t) should be a linear function in ¢, of the form ymax(t) = s,v,t. Therefore,
we can estimate s,v, with a weighted linear least squares regression of ymax (t) with
respect to t. In practice s, is likely unknown. However, in the case of a large receiver
array with radius satisfying

x z z
kfo > max { kogs y ]{;O'Dz} , (441)

and for z » z*, so that 5, » D,, we obtain that s, ~ 1. Thus, the least squares
regression gives an unbiased estimate of v,.

In view of (4.39), the least squares regression can be carried out over a time
interval with length of the order of min(7,,n..A,/|v,|). Beyond this critical time the
function O vanishes. Therefore, as long as |v,| < n,.A./T,, the velocity resolution is
mZ'AZ ~ DZ
s:T. T.
where the approximation is for a large array and £5 » D,. If |v,| is larger than
n,A./T., then the resolution is reduced to

mz-Az ~ % |'Uo‘7—z

Sznz~/42/|’vo| - 7—2 nszz-
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res, =

(4.43)

res, =



5. Analysis of the wave field. To derive the results stated in section 3, we
begin in section 5.1 with a slight reformulation, which transforms equation (1.2) into
a form that is more convenient for the analysis. We scale the resulting equation in
section 5.2, in the regime defined in section 2.2, and then we change coordinates to
a moving frame in section 5.3. In this frame we write the wave as a superposition of
time-harmonic, plane waves with random amplitudes that model the net scattering in
the random medium, as described in section 5.4. We explain in section 5.5 that the
backward going waves are negligible, and use the diffusion approximation theory in
section 5.6 to analyze the amplitudes of the forward going waves, in the limit ¢ — 0.
We end in section 5.8 with the paraxial limit.

5.1. Transformation of the wave equation. Let us define the new potential

5 VALT)
z/)(tw)—im o(t, ), (5.1)

and substitute it in (1.2) to obtain the wave equation

Dy(t, &) Dy 1 7
Dy c?(tlanDtW’f)] - DOLAPIED - Aep(t. ) + o(t. D)0,
_ p(taf) —iwe t x
_Usﬁe tS(i,Z)(s(Z), (52)

for t e R and & = (x,2) € R4, where Az is the Laplacian operator and

o(t,@) = 22V ed) ] {Df”’)(t’ﬁ)—1[Dtlnp<t,£)]2}

p(t, &)  AtT) p(t, @) 2
—%Dtc_Q(t, Z)D,Inp(t, X). (5.3)
The initial condition (1.3) becomes
Y, E) =0, t<«—Ts. (5.4)

5.2. Scaled wave equation. We use the scaling regime defined in section 2.2
and denote with primes the dimensionless, order one variables

T=Lx, t=Tyt. (5.5)

We also let

/
! e = wele (5.6)

— —
U, = VU, ¢, =coC 05

0
where the constants ¢/, = 1 and w/, = 27 are introduced so that the scaled equation is
easier to interpret.

In the scaled variables, and using the source amplitude (2.17), the right-hand side
n (5.2) becomes

O_Sﬂef’iwots(i E)(;(z) _ m<k>d6,i%t's(ﬂ ’Ys$l>5(z’).

/Do T, 44 ensL? € N €
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We also have from definitions (2.1)—(2.3) that the random coefficients take the form

H(EE) (t’ 7 sﬁ;t'>
&) = Lol T % 5.8
IR ANC LA (s 6.9
p(t, @) [ _ (t’ T — 5vot’)]
=exp |\/EYO, Vp| — ———F—— ) |, 5.9
Do PP n 6/’)/ ( )
c? 1 [ t B — vt
-2 = 1+ 'yocuc( ,0)], 5.10
2w @r| Y o (510)

with scaled standard deviations &, &,,5, defined in (2.14).

The solution ¢ of (5.2) must have variations in ¢’ and @’ on the same scale as the
source term and the coefficients (5.8)—(5.10), meaning that dpy) ~ 1/e, [Vg1h| ~ 1/e.
From equations (2.8)—(2.15) we obtain that in the scaled variables we have

1
Dy = ——D5, with DS = 0y + et (t, &) - Va. (5.11)
TLCI

o

Equation (5.9) gives

= R
Dy n plt, &) = AEY o'pD5 (t x Evt):O(\/E),
noey T

and
Dt2 p(t, &) _ ,/m&p( 6)21/ (i’ ;E;’/_gﬁgt’) N 8’)/53 [DEV (t/ fl_gﬁgt’)]2
o(t, %) 212 “H TP\t gy 4T | /vy
0()
T

From equation (5.10) we get

b [(tl:w] = oo e (4 ) - S

and ¢ defined in (5.3) takes the form

5/2= - V)
- o, (U T — et 9
q(t, &) = 2:3/2] 2 [Q <77’ ey ) +0(e )] ) (5.12)
with
. o
Q@ (7.7 = Ayl 7) + Y |90 (7,7 (519)

Substituting in (5.2) and multiplying both sides by eL?, we obtain that the po-
tential denoted by ¢’ (', &’) in the scaled variables satisfies

[1 + \/aacyc(%’ z _ajj()t )] 52 2e

— A -
€ A o+ (Co) Vg oy —Dg V't &)
= ~5/2 VA= Y /
907 € vtz E':'Uot e 1 Vs —t T /
2 Qr (=, ()~ — () e 5 14
taE Y <77’ e/ )1/}( ) ns<€) S<m 6/%) SO
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with initial condition obtained from (1.3) and (5.1),
Yt E)=0, t' < —n;. (5.15)

The approximation in equation (5.14) is because we neglect O(4/€) terms that tend
to zero in the limit € — 0. Note in particular that the random perturbations U of the
velocity of the flow appear in these terms and are negligible in our regime.

All variables are assumed scaled in the remainder of the section and we simplify
notation by dropping the primes.

5.3. Moving frame. Let us introduce the notation ¥, = (v, v,,) for the scaled
mean velocity of the ambient flow, and change the range coordinate z to

C = 2z — EUpt. (516)
We denote the potential in this moving frame by
’LLE(t,CE7C) = ¢(ta$»4 +Evozt); (517)

and obtain from (5.14) that it satisfies the wave equation

[1+ﬂacyv<tvm e t7’YC>:| 2

2
Co

o

T (e P N O

S(ni BE)5(C + 2v0st),
’ (5.18)

where again we neglect the terms that become negligible in the limit ¢ — 0. The
gradient V, and Laplacian A, are in the cross-range variable x € R4,

5.4. Wave decomposition. The interaction of the waves with the random
medium depends on the frequency and direction of propagation, so we decompose
uf(t, x, () using the Fourier transform

% (w ke, €) — f at [ deus(t,m, o)t (22 +0)iite, (5.19)
R Jre
with inverse
“(tx, () = f f w,k, Qe () trit e (5.20)
Rd 27'('6
The Fourier transform of equation (5.18) is
3 (k) w vk - 7771/2 I J dk’
_2M 9 A fiE
|: - ko(co o ) 58( (W k C) Rd
!
W0 | (= — k’) = ”é)

%G, A / ’ k—k
_%Qs(n(w—w—(k—k).vo), 5 ,’yf)]

i N
~ & S( __¢ 77)’ (5.21)
EnSvOZ EnSUOZ 75
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where
Blk) = VK2 — [k[2, ko= "2, (5.22)

Co

and

S(r, k) = f dr S(r,7)e” ™",
Rd

Note that the right-hand side in (5.21) is supported at |k| = O(~;), so by keeping
vs small, we ensure that S(k) remains real valued in our regime. Physically, this
means that u°(w, k, {) is a propagating wave, not evanescent.

Note also that if the mean velocity v, is orthogonal to the range direction, the
source term satisfies

lim e_“ﬁzé(_ By LS %)5(4),

Voz—0 ENsVoz ENsVoz Vs

in the sense of distributions, where

§(W,K,) = f dTJ dr S(7,r)e T imT,
R Jre

We introduce

Bk) £ ~ _iB(k) <
af(w, k, () = u (w,k, () + ———0cu(w, k, Blk)e 5.23
(w0.ke0) = [ 5700k ) + st (@ k. O Je (5.23)
Bk) . i6(k) <
€ — € K € .24
0 (.. Q) = | VG .k ) — o \/—5& wk, Q)PP (5.00)
so that we have the decomposition
1 . .
as(w’ ka C) = T o I:as(wa k7 C)elﬁ(k)g + as_ (wv ka C)eilﬁ(k)g] ’ (525)
B(k)
and the complex amplitudes a® and a® satisfy the relation
6‘40L‘3(w,k:,C)eiB(k)g + 6¢ai(w,k7§)e_w(k)g = 0. (5.26)
This gives that
~e G ﬁ k 5 7 < 5 —1 <
0" (w, ki, €) = E( ) |07 (@, Q)P ME — a2 (w,k, Qe WE | (5.27)
and moreover, that
2(k 2i k ,
03" (w, k, €) = f%m,k?o + %Wa<af<w,k,c>elﬁ<k>%. (5:28)

The decomposition in (5.25) and (5.20) is a decomposition of u®(t,x, () into a
superposition of plane waves with wave vectors

—

ki = (k,£8(k)), (5.29)
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where the plus sign denotes the waves propagating in the positive range direction
and the negative sign denotes the waves propagating in the negative range direction.
The amplitudes a® and a® of these waves are random fields, which evolve in range
according to (5.26) and the equation

Oca® (w,k, () ~ W |0 (., ) + a2 (w0, k, Qe 2P )¢
mfﬂdj de[ﬁ%%@@—d—%—yf%%kgwﬁg
s 122 5)
. Wj)ﬁ(k/) [af(w/, L) e k/,g)ei[a(k'wa(k)]i]
T B(ki)ensvof( - fnfvoz ’ vﬁ)e_ TR, (5.30)

derived by substituting (5.25)—(5.28) into (5.21).

5.5. Forward scattering approximation. Equation (5.30) shows that the am-
plitudes a® are coupled to each other and to a® . In our scaling regime, where the cone
of directions of propagation has small opening angle controlled by the parameter ~,
and where the covariance (2.5) of the fluctuations is smooth, the coupling between a®
and a® becomes negligible in the limit ¢ — 0. We refer to [2, Section C.2] and [3,
Section 5.2] for a more detailed explanation of this fact.

Using the assumption that the random fluctuations are supported at finite range
(see section 2), we require that the wave be outgoing at || — oo. This radiation
condition and the negligible coupling between a® and a° in the limit ¢ — 0 imply
that we can neglect the backward going waves, and we can write

as(w, k7 C) eiﬁ(k)g
p(k)
The starting value of a®(w, k, ¢) is determined by the source term in (5.30), which

contributes only for { = v,,0(g). For such small ¢, we can change variables ¢ = &¢
n (5.30) and obtain that

1 (w, k, ) ~ ¢ > 0(e). (5.31)

2 V 5(k)nsvoz NsVoz ’ Vs

Integrating in £ and using that a® (w k, ¢) vanishes for ¢ « 70(5), we obtain that
. ¢k

e S( - , 7) e
2«/ ns'Uoz f NsVoz Vs

= 57 (1o BEe), 1)

We use this expression as the initial condition for the forward going amplitudes

59 (o 8k, 7). (532

Oca® (w, k,e€) =

)eﬂ'fﬂﬂ(k)& + O(Ve).

a®(w, k,ef) ~

w, k,0+)
@ 2«/
and drop the source term and the backward going amplitudes a® in equation (5.30)

for range ¢ > 0.
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5.6. The acoustic pressure field in the Markovian limit. By definitions
(1.1), (5.1), (5.17) and the scaling relations (5.5), the acoustic pressure is

p(Tpt, Le, Lz) ~ ——0u® (t, @, 2 — €v,,t).

Furthermore, equation (5.31) and the Fourier decomposition (5.20) give that

p(Trt, Lz, Lz) J J (w, k z)e, (22 4ot BlR)v,s ) 14 EEE0D. (g 1)
C 2mCopo/Ne re (2mE)® L /B(k)

where we have used equation (5.30) to write a®(w, k, z — v,.t) = a(w, k, 2) + O(1/€).

The shifted scaled frequency w + S(k)v,, appears in the initial condition (5.32),
and the random processes 7, and @5 in equation (5.30) depend on k/v. Thus, it is
convenient to introduce the variables

Q=nlw+Bk)v..|, K=k, (5.33)
and rewrite the expression of the pressure as

p(Trt, Lz, Lz) J J dK A*(Q, K z)e,i(%”r%)tﬂmx‘iwx)).(m_yz)
WoPo 271 Jga (2me/7)? ﬁ(ryK)

)

)

(5.34)
with redefined amplitude

Q
A*(Q, K, 2) = ias(ﬁ — B(vYK)v,,, 7K, z) + o(1). (5.35)
The o(1) term, which tends to zero as € — 0, is used in this definition so that we have

an equal sign in the evolution equation for A°, derived from (5.30), after neglecting
the backward going amplitudes,

AN K 5 = e [T

B(K)Lne, o (VK,ﬂ(vK))]AE(Q,K,Z)
d

\[J dQ’J K’ AV K 2) sk -s0m)] 2
ke (2m) \/B(vK)B(vK')

LA n(vK ~ 7K', B(7K) ~ BOK) 50, K~ K, )

27
YT, A S 0z
— 17207 (2 - = n(K —yK'. B(GK) = BGK) -5, K — K, ) |, (5.30)
for z > 0. The initial condition (5.32) becomes

AS(Q, K, 0+4) = Ay (2, K) = (”SQ 2 K) (5.37)

2«/
5.7. The Markovian limit. Let L?(0, (C) be the space of complex-valued,
square-integrable functions defined on the set

= {QeR} x {K eR y|K| < k,} (5.38)

and denote A°(z) = (A°(Q, K, 2))(0,k)ce for z = 0. From equation (5.36) we obtain
the conservation of energy relation

azf A0AK [A5(Q, K, 2)[2 = 0, (5.39)
(7
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so the Markov process A°(z) € L?(0,C) lives on the surface of the ball with center
at the origin and ¢ independent radius R 4 defined by

R% = J dQAK |A°(Q, K, 2)|? = J dQAK |A,(Q, K)[2. (5.40)
7 o
We describe the Markovian limit € — 0 in Appendix A. The result is that the
process of A®(z) converges weakly in C([0,0), L?) to a Markov process whose in-
finitesimal generator can be identified. The first and second moments of the limit
process are described below.

5.7.1. The mean amplitude. The expectation of A%(2, K, z) in the limit ¢ —
0 is given by

lim E[A°(Q, K, 2)] = 4,(2, K)e (L K)z+D(K)z (5.41)
E—>
where
0(0, K) — — [ﬁ_@ (WK, B( K))]+ % Az 0,7)] (5.42)
I - 6(’)/K) 7760 Co 'Y I '7 86(’)/K) ™ PP ) 7=0’ .
is a real phase and
dK’ 1 * - ! BOK)-B(KN =
D(K =7J J drj dr, o1 (K-K', D) 5
(K) K’ |<ko/vy (2m)d 4AB(VK)B(YK') Jpa 0 -
Ai52
x { k252 R0 (0,7) + 4PA§%pp(o,F)—k(%y?acapAﬁ%’cp(o,F) . (5.43)

with 7 = (7,7.). Moreover, Re[D(K)| < 0, because

L 452
JM dre BT {k;‘afﬂ’cc(of) + 2 1 LAZR p(0,7) — k27258 A%y (0, F)} >0,
R

is the power spectral density of the process

= A2

X(t,7) = k25 .vo(t, 7) — "p; A, (t,7), (5.44)
in the variable 7 (for fixed t), which is non-negative by Bochner’s theorem. Thus, the
mean amplitude decays on the range scale

1

7 (K) = " Re[D(K)]’

(5.45)

called the scattering mean free path. In the relatively high frequency regime the
damping is mainly due to the fluctuations of the wave speed, while in the relatively
low frequency regime the damping is mainly due to the fluctuations of the density.
This damping is the mathematical manifestation of the randomization of the wave
due to cumulative scattering.

Recall that we have assumed &, = O(1). Therefore, in the regime v « 1, the Z..
term dominates in (5.43).
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5.7.2. The mean intensity. The expectation of the intensity
I(Q,K,z) = 111%1E[|A8(Q,K,z)|2] (5.46)
£—
satisfies

dQY dK’

o a7 QO KK 1K)~ 1K 7)), (647)

01 K, z) = J
o
for z > 0, with initial condition obtained from equation (5.37):
10, K,0) = |4, K)P* (5.48)
Denoting the power spectrum of X (¢,7) in (5.44) by P(€, K), and letting

B(WVK))’

(LK) - (ﬂ — (7K, B(1K)) - ¥, K.
the kernel in (5.47) isgiven by

PO-O K- K

Q0 K, K') = ,
“ )= T BORBOR)
that is explicitly
N 422 B N2l
Q9 K, K') = {kﬁafﬂw - 740" [K—K'2 i (5(7K) 7ﬁ(vK )) ] @,

+k2y25.5, [IK _K'P2 4 (5(7K) ;5(’YK’) )2] R e (5.49)

1
} AB(VK)B(VK')’
where @ce is the power spectral density (3.9), evaluated as

~

%cc = @CC(Q_Q/_W(’YK_’YK/76(7K)_B<’7K/))'607K_K/7 ﬁ

(vK) —/5(7K/)>

v
and similar for @pc and ,@pp.
Note that the kernel satisfies
dQ dK’ 2
——— Q0,0 K,K') = —2Re[2(K)] = 5.50
Jﬁ 3 (amyt QOO KK = 2R 2(K)] = (5.50)

where .(K) is the scattering mean free path defined in (5.45).
5.7.3. The Wigner transform. The wave amplitudes decorrelate at distinct
frequencies € # ' and wave vectors K # K', meaning that

lin(l)IE[AE(Q,K,Z)F(Q/,K',z)] = hII(l)E[AE(Q,K,Z)] liI%E[F(Q/,K/,z)]. (5.51)

The right-hand side is the product of the means of the mode amplitudes, which decay
on the range scale defined by the scattering mean free path (5.45).

However, the amplitudes are correlated for |2 —Q'| = O(e) and | K — K'| = O(g).
We are interested in the second moment

E[AE(Q,K+ %,Z)AE(Q,K— %z)]
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whose Fourier transform in g gives the energy density resolved over frequencies and
directions of propagation. This is the Wigner transform defined by

dg . v £q €q
€ — iq(VB(vK)z+x) € e _
We(Q, K, x, z) J}Rd (27r)de IE[A (Q,K—i— 2,z)A (Q,K 2,z)].

(5.52)
We show in Appendix A.3 that the Wigner transform converges in the limit € — 0 to
W(Q, K,x, z), the solution of the transport equation

[8Z—VB(7K)~V:B]W(Q,K,:U,Z)=f d¥ dK" 0.0 K, K7

o 2m (2m)?
x (W, K @, 2) - W(Q,K,z,2)|, (553)

for z > 0, with initial condition
W(Q, K,z,0) = |A,(Q, K)|*0(x) (5.54)

The transport equation (3.12) in the physical scales is obtained from (5.54) as
explained in Appendix B. In the next section we will show how this equation simplifies
in the paraxial regime, when v « 1. This is the result used for the imaging applications
discussed in section 4.

5.8. The paraxial limit. Equation (5.53) shows that the energy is transported
on the characteristic

K

f'ymz, (5.55)

parametrized by z, and depending on the wave-vector K. Here |x|/z = O(y) quantifies
the opening angle of the cone (beam) of propagation with axis z. We write this
explicitly as

X =x/vy, where | X|=0(1). (5.56)
The paraxial regime corresponds to a narrow beam, modeled by v — 0 and
I'=7/v = O(1). (5.57)

At the range z = 0 of the source we have from (5.54) and (5.37) that

/. 2
S(0.0K)

W(Q,K,:L‘,O) = 4’)/dki

5(X), (5.58)

and to obtain a finite limit as v — 0 we rescale the Wigner transform as
WL K, X, 2) =+W(Q, K, vX, 2). (5.59)
We also change variables in (5.53),

Q—Q/—n(w(K—K’),ﬁ(vK) —B(VK’)) STy K- K ~ K/,
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and obtain the transport equation

KA [ dQY dK 1
'VX] WL KX, 2) = L 2 (2m)8 BK)BOK)

y [53 NCC(Q’,K’, B(YK) — B(vK — vK’)> N O(,yz)]
[

Y
x (W (Q—=Q =y, K' = o (B(VK) — B(vK —7K')), K — K', X, z)

- W(Q,K,X,z)], (5.60)

for 2 > 0 and a finite v « 1, where O(y?) denotes the .@pc and @pp terms in the
kernel (5.49).

Recall that v « 1 so, in order to observe a significant effect of the ambient motion,
we rescale the transversal speed as

v, = ~2,  with [V,| = O(1). (5.61)

With a similar scaling of the range velocity

Vo .
Vor = —=, with |V,.| = O(1), (5.62)
my

we obtain that the range motion plays no role in equation (5.60) as v — 0, because
BOYK) =ko +0(1%),  B(YK) —B(yK —vK') = O(v?).

The transport equation satisfied by the Wigner transform W(Q, K, X, z) in the
paraxial limit v — 0 is

K K2 dK' [ dQY
2. 0K X,2) = o
[az s VX]W( K, X, 2) =7 fRd (2 JR o

xW(@Q-9-K -V, K-K' X,2) -W(Q,K,X,2)], (563)

52 Ree (Y, K',0)

for z > 0, with initial condition

o/ Ms 2
|S(5 2 IK))|

WK, X,0) = —

0(X). (5.64)
The transport equation (3.22) in the physical scales is obtained from (5.63) using the
scaling relations explained in Appendix B.

6. Summary. We introduced an analysis of sound wave propagation in a time
dependent random medium which moves due to an ambient flow at speed ¥(t, ),
and is modeled by the wave speed c(t,#) and mass density p(¢,Z). The random
fields ¥(t, €), c(t, &) and p(t, £) have small, statistically correlated fluctuations about
the constant values ¥,, ¢, and p,, on the length scale ¢ and time scale T. The
analysis starts from Pierce’s equation, which is obtained from the linearization of the
fluid dynamics equations about an ambient flow, and applies to waves with central
wavelength A, « £. The excitation is from a stationary source with radius ¢, which
emits a narrowband signal of duration T.
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The analysis is in a forward wave propagation regime to a large distance (range)
L » /¢, within a cone with small opening angle. Using the diffusion approximation
theory, we showed that the coherent part (the expectation) of the wave decays expo-
nentially in L/.#, and quantified the frequency- and wavevector-dependent scattering
mean free path .. We also derived transport equations for the energy density (Wigner
transform) of the wave, which show explicitly the effect of the ambient flow and net
scattering in the time dependent random medium.

We used the wave propagation theory to study the inverse problem of localizing
(imaging) the source from measurements at a stationary array of receivers located at
range L. This study is in the regime of paraxial wave propagation, where the Wigner
transform can be computed explicitly, and assumes a large range L » .¥, so that the
wave is incoherent due to strong scattering in the random medium. The temporal
variation of the medium is at time scale T' « T, and it has two beneficial effects for
imaging: First, it causes broadening of the bandwidth of the recorded waves, which
leads to improved travel time estimation and consequently, better range resolution.
Second, it allows a robust (statistically stable) estimation of the Wigner transform
from the array measurements. We presented an explicit analysis of imaging based
on this Wigner transform and showed how one can estimate the source location, the
mean velocity v, and the statistics of the random medium.
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Appendix A. The Markovian limit theorem. In this appendix we obtain
the ¢ — 0 limit of the Markov process A®(z) = (A°(Q, K, 2))(0,k)ce, Which lies on
the surface of the sphere with radius R4 given in equation (5.40). The set & is defined
by (5.38). The process A®(z) starts from

AE(O):< S Is g, 7K ) , (A1)
2V < ) (2,K)e0

which is independent of €, and evolves at z > 0 according to the stochastic equation

s ) e o

Here G and F are integral operators
G 04N K) = | dVAK’ G-, ¢, 0.9 K, KA, K)
o
[F(z,Q)Al(Q, K) = J dYdK' F(2,(,9,9, K, K')A(Q, K'),
o

with kernels depending on the random processes v.(7,7) and Q°(7,7). Recall the
definition (5.13) of Q° (7, 7). We rewrite it here as

@ () = QU7 + Y QU (s, ), (A3)
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with
QO(r,#) = Ay, (r,7) and QW (1,7) = |Vav,(r, 7). (A.4)

The kernel G has a deterministic part supported at Q' = Q and K’ = K, and a
random part determined by Q™)

ﬁgvk;f) [ﬂ - (7K>5(7K))]5(Q’ ~Q)J(K’' ~ K)

TCo Co
3=2

3 in’o,
82m) 11 /BHK)IOK)
x QU (2= — (1K — yK', B K) — B(K)) - 50, K — K',72). (A5)

G(Z7 C?Q7 QI? K’ K/) =

exp {i[f(vK") — B(vK)]¢}

The kernel F is determined by v, and Q(©),

i/ ,
F(23C7QaQ/7K>K/) = exp Z[ﬁ(’YK') _5(7‘[{)](
2(2m) 41 /B(K)B(vK') { }
x [K20.00(Q = @ = y(yK — 7K', B(K) ~ B(K')) - 50, K ~ K',72)
2_ ~
—%Q(O) (Q — Q' —n(vK =K', B(vK) = B(7K")) - o, K — K’,VZ)] . (A6)
The random process A¢(z) is Markov with generator
LEf(A,A) 7J LF(f Z 0,9, K, K) O g, K'Y K d0dK
’ NG SAQLK) VT
1
Jﬁz % SA(Q, K)
+ f G(E 0,0 K K’) A, K'Y AK d9dK
o2 \e SAQK) VT

22, Q.0 K, K') O Fr, KA dK d0dK

o \g’ SA(Q, K)

where 0f/JA(Q2, K) denotes the variational derivative, defined as follows. If ¢ is a
smooth function and

n
f J Ql;--- n+maK17~--aKn+m)nA(QJ K
j=1
n+m o n+m
< | Ay, K;) || ddK
j=n+1 Jj=1

then we have

5‘][‘ n n
T - ZJ...Jgp(Ql,...,Q,Hm,Kl,...,Kner) ooz e | ] A K))

=1 j=1,j#l
n+m n+m

x [T4A@ K;) ] d9,dK;
j=n+1 J=1,j#l
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and

5 n+m n
Qla”- n+m7K1a--'aKn+m) ‘leﬂ,KlzK HA(ijK])
SA(Q, K)
= n+1 j=1
n+m o n+m
< ] AQ k) ] ddk,;.
j=n+1,j#1 J=1,5#l

The linear combinations of such functions f form an algebra that is dense in C(L?)
and is convergence determining. We can also extend the class of functions to include
generalized functions ¢ of the form

(p(Ql,...’QQr,“Kl’.. -7K2n) :(I)(Ql,...,Qn,Kh...,Kn)

X H 5(Qn+j - Qj)é(Kn-f-j - Kj)a

where @ is a smooth function.
Applying the diffusion-approximation theory described in [9, Chapter 6] and [18
17], we obtain the limit generator

f d¢ lim — J dh | dQdK]dQ,dK,dQ dK, dQyd K,
ﬁ4

Z—w J
x{ [£(0, 0, 9%, Ky KDF(G,C + by 02, 0, Ko, K)]
X 52f
SA(, K1)6A(Qs, Ko)
+IE[F(03 h79179117K17K1)F(Cﬂ<+h7QQ7Q/27K23Ké)]
X 52f
SA(Qy, K1)0A(Qs, K2)
+EF(Oa hyﬂhQ/hKl?Ki)F(CvC+h7QZ7Q/27K2aKé)]
2
N A, KA, KY)
§A(Q, K1)0A(Qe, K>)
+EF(Oah,leinKlaKi>F(ga<+h7927Ql27K2aKé)]
X 62f
SA(Q, K1)0A(Qs, K)

A, KA, K3)

A, K1) A, K3)

A0, KA, K) |

+J d¢ hm —J th dQ)dK dQdK;dQYdK’
0 o3

of
SA(Q, K1)

of
5Z(Q17 Kl)

x {B[F(0,h, 9,0, K', KDF(C,C+ 9,2, Ky, K)] A%, K7)

+E[F(0,h,Q, Q) K, K})F(C,C +h, 0, @, Ky, K] A0, K |

¥ lim - J dhf AQAKdQ dK’{ [G(0,h, 9,9, K, K")]
62

Z—w J
of

of
_ Y A K+ E[GO.hQ.Q K K] —2
x ( )+ E[G( )]5A(Q,K)

SA(Q, K) A, K| (A7)
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The expectations in the expression of the generator can be computed with

E[0:(Q, K,Q)Pe(2, K',0)] =2m) T 10(K + K)3(Q + Q) %ee(Q, K, C),  (A8)
E[7.(Q K, O)D.(2, K',0)] =(2m) 1 0(K — K')6(Q — Q) %ee (L K, €), (A.9)
E[0:.(Q, K,)p.(, K',0)] =(2m)* 1 6(K — K')5( — VN%..(Q,K,C), (A.10)
E[7.(Q, K, C)pe(2, K',0)] =2m) 10(K + K')0(Q + Q) Zee(Q, K, ), (A11)

and similar for 7,. Note here that both v. and @cc are real. We also have
QO K, 2) = (—|K|? + 2)D,( K, 2), (A.12)

and

E[QW(Q, K, 2)] = —(2m) 1 8(Q)5(K) Arpp(0,7)| ._,- (A.13)

A.1. The mean amplitude. To calculate the mean of the limit process, we let
FAZD) = | 40K o(0 K) A K)
o

so that

of of
et = (K, e =0,
A Iy - P Ky SA(Q, K1)

and all second variational derivatives are zero.
From the expression (A.7), definitions (A.5)—(A.6) and the expectations (A.8)-
(A.13) we obtain

Lf(AA) = Jﬁ dQdK [i0(0, K) + D(K)]p(Q, K)A(Q, K), (A.14)

with 6 and D given in (5.42) and (5.43). This gives the result (5.41).

A.2. The mean intensity. To characterize the mean intensity of the limit pro-
cess, we let

f(AA) = jﬁd@dmm?mm(n,mﬁ
- J AQAKAQAK’ o(Q, K)§(Q — V)5(K — K')AQ, K)A(Y, K'),
6’2

so that

of = of
SAQLKy) Alfh, Kr)o(Sh, Ka), SA(M, Ky)

5% f
a — (Do, K2)0(Q — 0)0(Ks — K
A KA Iy P K2)0(02 — )oK — K,

= A(Ql,Kl)@(QlaK1)7

and all other second variational derivatives are zero.
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Using the expectation (A.13) and definition (A.5) in (A.7), we obtain that the G
dependent terms make no contribution. Furthermore, using the expectations (A.8)—
(A.11) and (A.12) we get

— dQdK

J dQd K,
5 (2m)d+T ¥

(O, ) A, K jﬁd@&dK;le,m,Kl,Ki)
(. K)) L A dK | A, K)PQ, 0, K K,

with kernel defined in (5.49). This gives the equation satisfied by the mean intensity.

A.3. Wave decorrelation and the Wigner transform. To study the second
moments at distinct frequencies €2, 0’ and wave vectors K and K’, we let

f(AA) = J AQAKAYAK o(Q, 9, K, K')A(Q, K)A(Y, K').
62

Then, we have

of _

YA AVAK A . KNo(9:. Q' K. K’
(SA(Ql,Kl) J; ( ’ )80( 1 s X1, )7
5f f / ’ ’ , , ,
———— = | dQdK A(Q, K" )p(QV, 0, K', K,),
§A(, K1) Jo ( ), 1)

52f
SA(Q1, K1)6A(Qs, Ko)

= ()0(917 QQ) K17 K2)7

and all other second variational derivatives are zero.
Substituting in (A.7) and using the expectations (A.8)—(A.13) we obtain that

Lf(AA) =J dQdK dK' o(Q,9, K, K')
6 |K’|<ko

x [i0(9, K) —i6(, K') + D(K) + D(K")]A(Q, K)A(Y, K'), (A.15)

with 6(Q, K) and D(K) defined in (5.42) and (5.43). This gives the decorrelation
result (5.51).

Finally, to study the Wigner transform, we use (5.36) to obtain an evolution
equation for

R

™ Jp (2m)9
ew €q  \—e ew eq
AE(Q Y rk+H9 )A (Q——,K——, )
8 TRt 2 2%

and then analyze the limit ¢ — 0 of #¢ with the same approach as described in this
appendix. The Wigner transform (5.52) is

We(Q, K,z z) =J AE[7(Q, K, t,x,2)],
R

and this converges in the limit to the solution W (2, K, x, z) of (5.53)—(5.54).

Appendix B. The transport equation in the physical scales.
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To distinguish between the scaled and unscaled variables, we resurrect the nota-
tion of section 5.2 with the unscaled variables denoted by primes.
We begin with the pressure field (5.34),

’ s’ -T2 AV AR NN/
p(Tot' L L) ~ zwopoJ f dk: a® (W' — Bk, K, 2)
B (k)

Xefi(?”+w')t'+i%-m'+i@z’. (B.1)

The scaling relations (2.8)—(2.15) and (5.5)—(5.6) give

W't 2t

o

=N 7= = ota
e LT
t
W't = w'T—L =wt, ie.,w =wly,
K, K x K
_ — - —_ = — . :k ...k/:Aok,
- €T O/L 7 AO xr T, L.e.,

= V()2 = [K']2 = A/KZ — |k = A\ B(Kk
w/ - 6 (k/)v;z = TLw Oﬂ( )( o/L TL[ ﬂ(k)voz]a

B'E) , _ ABk) z _
7= Wi Z—ﬂ(k)z

Equation (B.1) becomes (3.1), with amplitudes

T, L?
Vo

satisfying the initial conditions

a(w, k,z) = ac’ (TL(OJ — B(k)voz), Aok, %) , (B.2)

TLL ) w, 0sk) — 10T, ES
Xo 24/B(k) “ 2¢/B(k)

derived from (2.17) and (5.32).
It remains to write the transport equation (3.12) for the Wigner transform. To
do so, we obtain from definitions (5.33) and the scaling relations above that

O = o + B'(K")v.] = Tlw + B(k)voz],
, K Ak

Y a Ao/t

We also recall the definition (5.35) of A® in terms of a, and obtain that
[ dq . q q
W(w.k,x,z) = J @n)? exp [zq- (VB(k)z + a:)]E [a(w,k + §)a<w,k - 2)]
. TpL? ? 1 dq’ . q 1IN ’
- () el /L'(W("’)Z il

E[AE(Q’—W'(VK’) osz'+5 Z)A5<Q’—n6(vK’) ész’—‘g,Z’)y

a(w, k,0) =

S(Tyw, 6,k), (B.3)

= (k.
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with £ and K’ defined as above in terms of w and k, and 2’ = z/L. Since € = \,/L,
we can change the variable of integration as ¢’ ~ ¢’e, and obtain

W(w, k _ Tng e (O _ R AW, 1o
W, ,.’D,Z)— W (Q nﬂ(’yK)’Uoz7K7m7z)
Ao
~ o TI W = 0B (VK ), K &' 7). (B.4)

Here the approximation is for ¢ « 1, where we have replaced we' by its e — 0
limit W'

Using the initial conditions (5.37) and (5.54) and the scaling relations between
', K’ and w and k, we have

2a Ao 6(z/L)
° LA 4p' (k)
_ _2m2,2d §(zx)
=oiTi0% 13(k)

as stated in (3.13) and (3.3). The transport equation (3.12) follows from (5.53), using

22 q ls 2
W(w, k,z,0) = o T S(nsw’, —K’)

14

‘g(Tsw,ESk)‘z,

0 — VB (YK') Vg = L[0, — VB(K) - V] .

Appendix C. Solution of the transport equation in the paraxial regime.
To deal with the convolution in (3.22), we Fourier transform in w, k and x,

. dw . dk . .
W (t = Zewt| — ¢ky f de e 92 W(w, k ) C.1
( 7y7q7z) JR 27_[_ € JRd (27T)d € ]Rd .’136 (w7 ?m7z) ( )

Using definition (3.23) of the scattering kernel and the expression (3.9) of the power

~

spectral density Z.., we write

k2020417

Qpar(wak) _ 7J dg eintN’J‘ dyl efiék.ylj dZ/ %CC(;vyl’Zl)
4 R R4 R

kgazﬁ iwt —ik- t Y
_ tetw ik-y - g
4 fRd © JRddye %(T’f)’

with Z defined in (3.25). Substituting into (3.22), we obtain

[82 N kgo . Vy]W(t,y,q,Z) _ afikﬁ [%(%’ y%/vt) f,%((L())]VvV(t,y,q,z), (C.2)

for z > 0, with initial condition obtained from (3.26) and (C.1)

W(tayaq70) = Wo(tay) =

0272021 [ dw _Mf dk
— €
4k0 R 2w R4 (27T)d
2T [ dQ e
= — - e Ts

dK iK-YX 145 2
b N [ —— ¢ FL IS, K. (C.
4k, R 2T J]Rd (27T)d € ’ |S( ’ )| (C 3)

eik'y|§(TSw,€Skz)|2

Note that this condition is independent of q.
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Equation (C.2) can be solved by integrating along the characteristic y = yo + kioz,
stemming from yy at z = 0,

W(t,yo + k%z,q,z) =Wo(t7y0)
cem{ 8 [ (7. ) 00

Substituting yo = y — q/koz in this equation, and inverting the Fourier transform,

: ik dq gy q
k _ dt iwt d zkyf gz (¢ 1
W(Wa ,$,Z) J]R € J‘]Rd ye R (27T)d € ()( Y koz)
o20k2 r . t Y—(z—2) —vot
xexpy <=2 | d'|Z| =, s —Z%(0,0)]¢. (C.4)
=, @z ) I}

The result (3.27) follows after substituting the expression (C.3) into this equation.

Appendix D. Proof of radiative transfer connection.
We prove here the result involving Eqgs. (3.17) and (3.18). We start by computing
the different terms in equation (3.18): The first term is

VeQk) - VeV (w, k, &) = % (k. — B(k)) [(az — ViB(k) - Vw)W(w,k,:c,z)].

For the second term we use that if k& = (k/, 8(k’)) and k = (k, k), then

ko
cof(k)

S(OUR) — () = 3~ ko) = 23k — B0).

and

dk’ dw’ e ' 7o Co
J-Rd+1 WJ%G(W’M ’k7k )V(w ’k 7CB> B 1?06(]{;2 - B(k))

dw'dk’
X J JWQ(W, Wk EYW (WK T, 2).
o m

Similarly, for the third term we have that if k = (k, 3(k)) and k' = (K/, k), then

S(6R) — OEY) = Lo (ks — IF) = e

(K, — B(K")),
and

dk' [ dw’ L B .
- _ / k kl kj o Co kz _ k
JRd+1 (2m)d+1 J 2 G(W,w » )V(w, , ) koé( B( ))

dw'dk’
X J;j (;)TWQ(W, wlv k7 k/)W(wv ka Zz, Z)

Gathering the results and using equation (3.12), we obtain (3.18).
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