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Abstract. We present a study of sound wave propagation in a time dependent random medium
and an application to imaging. The medium is modeled by small temporal and spatial random
fluctuations in the wave speed and density, and it moves due to an ambient flow. We develop a
transport theory for the energy density of the waves, in a forward scattering regime, within a cone
(beam) of propagation with small opening angle. We apply the transport theory to the inverse
problem of estimating a stationary wave source from measurements at a remote array of receivers.
The estimation requires knowledge of the mean velocity of the ambient flow and the second-order
statistics of the random medium. If these are not known, we show how they may be estimated from
additional measurements gathered at the array, using a few known sources. We also show how the
transport theory can be used to estimate the mean velocity of the medium. If the array has large
aperture and the scattering in the random medium is strong, this estimate does not depend on the
knowledge of the statistics of the random medium.
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1. Introduction. We study sound wave propagation in a time dependent medium
modeled by the wave speed cpt, ~xq and density ρpt, ~xq that are random perturbations
of the constant values co and ρo. The medium is moving due to an ambient flow, with
velocity ~vpt, ~xq that has a constant mean ~vo and small random fluctuations. The
source is at a stationary location and emits a signal in the range direction denoted
henceforth by the coordinate z, as illustrated in Figure 1.1. The signal is typically a
pulse defined by an envelope function of compact support, modulated at frequency ωo.
It generates a wave that undergoes scattering as it propagates through the random
medium. The goal of the paper is to analyze from first principles the net scattering at
long range, and to apply the results to the inverse problem of estimating the source
location and medium velocity from measurements of the wave at a remote, stationary
array of receivers.

Various models of sound waves in moving media are described in [16, Chapter
2] using the linearization of the fluid dynamics equations about an ambient flow, fol-
lowed by simplifications motivated by scaling assumptions. Here we consider Pierce’s
equations [16, Section 2.4.6] derived in [19] for media that vary at longer scales than
the central wavelength λo “ 2πco{ωo of the wave generated by the source. Pierce’s
model gives the acoustic pressure

ppt, ~xq “ ´ρpt, ~xqDtφpt, ~xq, (1.1)

in terms of the velocity quasi-potential φpt, ~xq, which satisfies the equation

Dt

” 1

c2pt, ~xq
Dtφpt, ~xq

ı

´
1

ρpt, ~xq
∇~x ¨

”

ρpt, ~xq∇~xφpt, ~xq
ı

“ spt, ~xq, (1.2)
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Fig. 1.1. Illustration of the setup. A stationary source emits a wave in the range direction z, in
a moving medium with velocity ~vpt, ~xq that has small random fluctuations about the constant mean
~vo. The orientation of ~vo with respect to the range direction is arbitrary. The wave is recorded by
a stationary, remote array of receivers.

for spatial variable ~x “ px, zq P Rd`1 and time t P R, with natural number d ě 1.
Here x P Rd lies in the cross-range plane, orthogonal to the range axis z. Moreover,
∇~x and ∇~x¨ are the gradient and divergence operators in the variable ~x and

Dt “ Bt ` ~vpt, ~xq ¨∇~x

is the material (Lagrangian) derivative, with Bt denoting the partial derivative with
respect to time. The source is modeled by the function spt, ~xq localized at the origin
of range and with compact support. Prior to the source excitation there is no wave

φpt, ~xq ” 0, t ! 0, (1.3)

but the medium is in motion due to the ambient flow.
Sound wave propagation in ambient flows due to wind in the atmosphere or ocean

currents arises in applications like the quantification of the effects of temperature
fluctuations and wind on the rise time and shape of sonic booms [4] or on radio-
acoustic sounding [12], monitoring noise near airports [21], acoustic tomography [14],
and so on.

Moving media also arise in optics, for example in Doppler velocimetry or anemom-
etry [6, 7] which uses lasers to determine the flow velocity ~vo. This has applications
in wind tunnel experiments for testing aircraft [10], in velocity analysis of water flow
for ship hull design [13], in navigation and landing [1], in medicine and bioengineering
[15]. A description of light propagation models used in this context can be found in
[8, Chapter 8].

Much of the applied literature on waves in moving random media considers either
discrete models with Rayleigh or Mie scattering by moving particles [8] or continuum
models described by the classic wave equation with wave speed cp0, ~x´~vtq. These use
Taylor’s hypothesis [11, Chapter 19] where the medium is “frozen” over the duration
of the experiment and simply shifted by the uniform ambient flow. A transport theory
in such frozen-in media is obtained for example in [11, Chapter 20] and [16, Chapter
8], in the paraxial regime where the waves propagate in a narrow angle cone around
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the range direction. The formal derivation of this theory assumes that the random
fluctuations of the wave speed are Gaussian, and uses the Markov approximation,
where the fluctuations are δ–correlated in range i.e, at any two distinct ranges, no
matter how close, the fluctuations are assumed uncorrelated.

In this paper we study the wave equation (1.2) with coefficients cpt, ~xq, ρpt, ~xq
and ~vpt, ~xq that have random correlated fluctuations at spatial scale ` and temporal
scale T . These fluctuations are not necessarily Gaussian. We analyze the solution
φpt, ~xq and therefore the acoustic pressure ppt, ~xq in a forward scattering regime,
where the propagation is within a cone (beam) with axis along the range direction
z. The analysis uses asymptotics in the small parameter ε “ λo{L ! 1, where L
is the range scale that quantifies the distance between the source and the array of
receivers. Pierce’s equations (1.1)–(1.2) are justified for small λo{` ! 1. By fixing λo{`
or letting it tend to zero, independent of ε, and by appropriate scaling of the spatial
support of the source spt, ~xq, we obtain two wave propagation regimes: The first is
called the wide beam regime because the cone of propagation has finite opening angle.
The second is the paraxial regime, where the cone has very small opening angle. We
use the diffusion approximation theory given in [9, Chapter 6] and [17, 18] to study
both regimes and obtain transport equations that describe the propagation of energy.
These equations are simpler in the paraxial case and we use them to study the inverse
problem of locating the source. Because the inversion requires knowledge of the mean
velocity ~vo of the ambient flow and the second-order statistics of the random medium,
we also discuss their estimation from additional measurements of waves generated by
known sources.

The paper is organized as follows: We begin in section 2 with the mathematical
formulation of the problem. Then we state in section 3 the transport equations. These
equations are derived in section 5 and we use them for the inverse problem in section
4. We end with a summary in section 6.

2. Formulation of the problem. We study the sound wave modeled by the
acoustic pressure ppt, ~xq defined in equation (1.1) in terms of the velocity quasi-
potential φpt, ~xq, the solution of the initial value problem (1.2)–(1.3). The problem is
to characterize the acoustic pressure ppt, ~xq in the scaling regime described in section
2.2 and then use the results for localizing the source and estimating the mean medium
velocity ~vo.

2.1. Medium and source. The coefficients in equation (1.2) are random fields,
defined by

~vpt, ~xq “ ~vo ` V σv~ν
´ t

T
,
~x´ ~vot

`

¯

, (2.1)

ρpt, ~xq “ ρo exp
”

σρνρ

´ t

T
,
~x´ ~vot

`

¯ı

, (2.2)

cpt, ~xq “ co

”

1` σcνc

´ t

T
,
~x´ ~vot

`

¯ı´1{2

, (2.3)

where co, ρo are the constant background wave speed and density, ~vo is the constant
mean velocity of the ambient flow, and V is a velocity scale (of the order of |~vo|)
that will be specified later. The fluctuations in (2.1)–(2.3) are given by the random
stationary processes ~ν, νρ and νc of dimensionless arguments and mean zero

E
“

~νpτ, ~rq
‰

“ 0, Erνρpτ, ~rqs “ 0, Erνcpτ, ~rqs “ 0. (2.4)
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We assume that ~ν “ pνjq
d`1
j“1 , νρ and νc are twice differentiable, with bounded deriva-

tives almost surely, have ergodic properties in the z direction, and are correlated, with
covariance entries

E
“

ναpτ, ~rqνβpτ
1, ~r1q

‰

“ Rαβpτ ´ τ
1, ~r ´ ~r1q. (2.5)

Here the indices α and β are either 1, . . . , d` 1, or ρ, or c. The covariance is an even
and integrable symmetric matrix valued function, which is four times differentiable
and satisfies the normalization conditions

Rααp0, 0q “ 1 or Op1q,

ż

R
dτ

ż

Rd`1

d~rRααpτ, ~rq “ 1 or Op1q. (2.6)

The scale T in definitions (2.1)–(2.3) is the correlation time, the typical lifespan of
a spatial realization of the fluctuations, and ` is the correlation length, the typical
length scale of the fluctuations. The dimensionless positive numbers σv, σρ and σc
quantify the standard deviation of the fluctuations. They are of the same order and
small, so definitions (2.2) and (2.3) can be approximated by

ρpt, ~xq « ρo

”

1` σρνρ

´ t

T
,
~x´ ~vot

`

¯ı

, cpt, ~xq « co

”

1´
σc
2
νc

´ t

T
,
~x´ ~vot

`

¯ı

,

with co and ρo close to the mean wave speed and density. The exponential in (2.2)
and the inverse of the square root in (2.3) are used for convenience because some
important effective properties of the medium are defined in terms of Erlog ρs and
Erc´2s, which are equal to log ρo and c´2

o .
The origin of the coordinates is at the center of the source location, modeled by

spt, ~xq “ σse
´iωotS

´ t

Ts
,
x

`s

¯

δpzq, (2.7)

for ~x “ px, zq, using the continuous function S of dimensionless arguments and com-
pact support. The length scale `s is the radius of the support of spt, ~xq in cross-range
and the time scale Ts is the duration of the emitted signal. Note that spt, ~xq is
modulated by the oscillatory exponential at the frequency ωo. We call it the central
frequency because the Fourier transform of spt, ~xq with respect to time is supported
in the frequency interval |ω ´ ωo| ď Op1{Tsq. The solution φpt, ~xq of (2.2) depends
linearly on the source, so we use σs to control its amplitude.

To be able to set radiation conditions for the wave field resolved over frequencies,
we make the mathematical assumption that the random fluctuations of ~vpt, ~xq, ρpt, ~xq
and cpt, ~xq are supported in a domain of finite range that is much larger than L. In
practice this assumption does not hold, but the wave equation is causal and with
finite speed of propagation, so the truncation of the support of the fluctuations does
not affect the wave measured at the array up to time OpL{coq.

2.2. Scaling regime. Because the fluctuations of the coefficients (2.1)–(2.2)
are small, they have negligible effect on the wave at short range, meaning that
φpt, ~xq « φopt, ~xq, the solution of (1.2)–(1.3) with constant wave speed co, density
ρo and velocity ~vo. We are interested in a long range L, where the wave undergoes
many scattering events in the random medium and φpt, ~xq is quite different from
φopt, ~xq. We model this long range regime with the small and positive, dimensionless
parameter

ε “
λo
L
! 1, (2.8)
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and use asymptotics in the limit εÑ 0 to study the random field φpt, ~xq.
The relation between the wavelength, the correlation length and the cross-range

support of the source is described by the positive, dimensionless parameters

γ “
λo
`
, γs “

λo
`s
, (2.9)

which are small, but independent of ε. The positive, dimensionless parameter

η “
T

TL
, (2.10)

determines how fast the medium changes on the scale of the travel time TL “ L{co.
The duration of the source signal is modeled by the positive, dimensionless pa-

rameter

ηs “
Ts
TL

, (2.11)

which is independent of ε. The Fourier transform of this signal is supported in the
frequency interval centered at ωo and of length (bandwidth) Op1{Tsq, where

1

Ts
“

1

ηsTL
!

1

εTL
“

co
εL
“
co
λo
“ Opωoq. (2.12)

Thus, the source has a small bandwidth in the εÑ 0 limit.
Our asymptotic analysis assumes the order relation

ε ! mintγ, γs, η, ηsu, (2.13)

meaning that we take the limit ε Ñ 0 for fixed γ, γs, η, ηs. The standard deviations
of the fluctuations are scaled as

σc “
?
εγσ̄c, σρ “

?
εγσ̄ρ, σv “

?
εγσ̄v, (2.14)

with σ̄c, σ̄ρ, σ̄v “ Op1q to obtain a Op1q net scattering effect.
The ambient flow, due for example to wind, has much smaller velocity than the

reference sound speed co. We model this assumption with the scaling relation

|~vo|{V “ Op1q, where V “ εco. (2.15)

Although V ! co, the medium moves on the scale of the wavelength over the duration
of the propagation

V TL “ V
L

co
“ εL “ λo ă `, (2.16)

so the motion has a Op1q net scattering effect. Slower motion is negligible, whereas
faster motion gives different phenomena than those analyzed in this paper.

We scale the amplitude of the source as

σs “
1

εηsL

´γs
ε

¯d

, (2.17)

to obtain φpt, ~xq “ Op1q in the limit ε Ñ 0. Since equation (2.2) is linear, any other
source amplitude can be taken into account by multiplication of our wave field with
that given amplitude.
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Note that in section 3.2.2 we consider the secondary scaling relation

γ „ γS ! 1, (2.18)

corresponding to the paraxial regime, where the symbol “„” means of the same order.
Moreover, in section 4.3 we assume η{ηs ! 1 corresponding to a regime of statistical
stability. In this secondary scaling regime we let

|~vo| “ O

ˆ

εco
ηγ

˙

, (2.19)

to obtain the distinguished limit in which the medium velocity impacts the quantities
of interest.

3. Results of the analysis of the wave field. We show in section 5 that in
the scaling regime described in equations (2.8)–(2.17), the pressure is given by

ppt, ~xq « iωoρo

ż

O

dωdk

p2πqd`1

apω,k, zq
a

βpkq
e´ipωo`ωqt`i

~k¨~x, (3.1)

for ~x “ px, zq and O “ tω P Ru ˆ tk P Rd, |k| ă kou, where the approximation
error vanishes in the limit ε Ñ 0. This expression is a Fourier synthesis of forward
propagating time-harmonic plane waves (modes) at frequency ωo ` ω, with wave

vectors ~k defined by

~k “
`

k, βpkq
˘

, βpkq “
a

k2
o ´ |k|

2, ko “ 2π{λo. (3.2)

The scattering effects in the random medium are captured by the mode amplitudes,
which form a Markov process

`

apω,k, zq
˘

pω,kqPO that evolves in z, starting from

apω,k, 0q “ aopω,kq “
iσsTs`

d
s

2
a

βpkq
pSpωTs, `skq. (3.3)

This process satisfies the conservation relation
ż

O
dωdk

ˇ

ˇapω,k, zq
ˇ

ˇ

2
“

ż

O
dωdk

ˇ

ˇaopω,kq
ˇ

ˇ

2
, @z ą 0. (3.4)

The statistical moments of
`

apω,k, zq
˘

pω,kqPO are characterized explicitly in the

limit εÑ 0, as explained in section 5.7 and Appendix A. Here we describe the expec-
tation of the amplitudes, which defines the coherent wave, and the second moments
that define the mean Wigner transform of the wave i.e., the energy resolved over
frequencies and direction of propagation.

3.1. The coherent wave. The expectation of the acoustic pressure (the coher-
ent wave) is obtained from (3.1) using the mean amplitudes

Erapω,k, zqs “ aopω,kq exp riθpω,kqz `Dpkqzs . (3.5)

These are derived in Section 5.7.1, with aopω,kq given in (3.3). The exponential
describes the effect of the random medium, as follows:

The first term in the exponent is the phase

θpω,kq “
ko
βpkq

´ ω

co
´
vo
co
¨ k

¯

`
σ2
ρ

8βpkq`2
∆~rRρρp0, ~rq|~r“0, (3.6)
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and consists of two parts: The first part models the Doppler frequency shift and
depends on the cross-range component vo of the mean velocity ~vo “ pvo, vozq. It
comes from the expansion of the mode wavenumber

c

´

ko `
ω ´ vo ¨ k

co

¯2

´ |k|2 « βpkq `
kopω ´ vo ¨ kq

coβpkq
,

in the limit εÑ 0, using the scaling relation (2.15) and ω ! ωo obtained from (2.12).
The second part is due to the random medium and it is small when γ ! 1, i.e., λo ! `.

The second term in the exponent in (3.5) is

Dpkq “ ´
k4
o`
d`1

4

ż

|k1|ăko

dk1

p2πqd
1

βpkqβpk1q

ż

Rd
dr

ż 8

0

drz e
´i`p~k´~k1q¨~r

ˆ

”

σ2
cRccp0, ~rq `

σ2
ρ

4pko`q4
∆2
~rRρρp0, ~rq ´

σρσc
pko`q2

∆~rRcρp0, ~rq
ı

, (3.7)

where we used the notation ~r “ pr, rzq and definition (3.2). This complex exponent
accounts for the significant effect of the random medium, seen especially in the term
proportional to Rcc which dominates the other ones in the γ ! 1 regime. Because the
covariance is even, the real part of Dpkq derives from

ż

Rd`1

d~rRccp0, ~rqe
´i`p~k´~k1q¨~r “

ż

R

dΩ

2π
rRcc

`

Ω, `p~k ´ ~k1q
˘

, (3.8)

where

rRccpΩ, ~qq “

ż

R
dτ

ż

Rd`1

d~rRccpτ, ~rqe
iΩτ´i~q¨~r ě 0, (3.9)

is the power spectral density of νc. This is non-negative by Bochner’s theorem, so
Re

“

Dpkq
‰

ă 0 and the mean amplitudes decay exponentially in z, on the length scale

S pkq “ ´
1

Re
“

Dpkq
‰ , (3.10)

called the scattering mean free path. Note that |k|, |k1| “ Op1{`q in the support of
rRcc in (3.8) and that by choosing the standard deviation σc as in (2.14), we obtain

from (3.7)–(3.10) that S pkq “ OpLq in the εÑ 0 followed by the γ Ñ 0 limit. This
shows that the decay of the mean amplitudes in z is significant in our regime. It is
the manifestation of the randomization of the wave due to scattering in the medium.

3.2. The Wigner transform. The strength of the random fluctuations of the
mode amplitudes is described by the Wigner transform (energy density)

W pω,k,x, zq “

ż

dq

p2πqd
eiq¨p∇βpkqz`xqE

”

a
´

ω,k `
q

2
, z
¯

a
´

ω,k ´
q

2
, z
¯ı

, (3.11)

where the bar denotes complex conjugate and the integral is over all q P Rd such that
|k ˘ q{2| ă ko. The Wigner transform satisfies the equation

“

Bz ´∇βpkq ¨∇x
‰

W pω,k,x, zq “

ż

O

dω1dk1

p2πqd`1
Qpω, ω1,k,k1q

“

W pω1,k1,x, zq

´W pω,k,x, zq
‰

, (3.12)
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for z ą 0, with initial condition

W pω,k,x, 0q “ |aopω,kq|
2δpxq. (3.13)

The integral kernel in (3.12) is called the differential scattering cross-section. It is
defined by

Qpω, ω1,k,k1q “ k4
o`
d`1T

4βpkqβpk1q

”

σ2
c
rRcc `

σ2
ρ

4pko`q4
Č∆2
ÝÑrRρρ ´

σcσρ
pko`q2

Č∆ÝÑrRcρ

ı

, (3.14)

where the power spectral densities in the square bracket are evaluated as

rRcc “
rRcc

`

T pω ´ ω1 ´ p~k ´ ~k1q ¨ ~voq, `p~k ´ ~k1q
˘

, (3.15)

and similar for the other two terms, which are proportional to the Fourier transform
of ∆2

~rRρρ and ∆~rRcρ. The total scattering cross section is defined by the integral of
(3.14) and satisfies

Σpkq “

ż

O

dω1dk1

p2πqd`1
Qpω, ω1,k,k1q “ 2

S pkq
. (3.16)

Note that the last two terms in the square bracket in (3.14) are small in the γ ! 1
regime, because 1{pko`q “ γ{p2πq ! 1 and σρ{σc “ Op1q. If σρ{σc were large, of the
order γ´2, then these terms would contribute. However, this would only change the
interpretation of the differential scattering cross section and not its qualitative form.

3.2.1. The radiative transfer equation. The evolution equation (3.12) for
the Wigner transform is related to the radiative transfer equation [5, 20]. Indeed, we
show in Appendix D that W pω,k,x, zq is the solution of (3.12)-(3.13) if and only if

V pω, ~k, ~xq “
1

βpkq
W pω,k,x, zqδ

`

kz ´ βpkq
˘

, ~k “ pk, kzq, (3.17)

solves the radiative transfer equation

∇~kΩp~kq ¨∇~xV pω, ~k, ~xq “

ż

Rd`1

d~k1

p2πqd`1

ż

dω1

2π
S
`

ω, ω1, ~k, ~k1
˘“

V pω1, ~k1, ~xq

´V pω, ~k, ~xq
‰

, (3.18)

with Ωp~kq “ co|~k| and the scattering kernel

S
`

ω, ω1, ~k, ~k1
˘

“
2πc2o
k2
o

βpkqβpk1qQpω, ω1,k,k1qδ
`

Ωp~kq ´ Ωp~k1q
˘

. (3.19)

The initial condition is specified at ~x “ px, 0q by

V pω, ~k, px, 0qq “ |aopω,kq|
2δpxqδpkz ´ βpkqq, (3.20)

with aopω,kq defined in (3.3).
This result shows that the generalized (singular) phase space energy (3.17) evolves

as in the standard 3D radiative transfer equation, but it is supported on the phase
vectors with range component

kz “ βpkq, |k| ă ko. (3.21)
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Indeed, if ~k1 “ pk1, βpk1qq and ~k “ pk, kzq, then

δ
`

Ωp~kq ´ Ωp~k1q
˘

“
1

co
δ
`

|~k| ´ ko
˘

“
ko

coβpkq
δ
`

kz ´ βpkq
˘

,

so the evolution of V pω, ~k, ~xq is confined to the hypersurface in equation (3.21). Phys-
ically, this means that the wave energy is traveling with constant speed in a cone of
directions centered at the range axis z.

3.2.2. Paraxial approximation. The paraxial approximation of the Wigner
transform is obtained from (3.12)-(3.13) in the limit

γ “ λo{`Ñ 0, so that γ{γs “ finite,

as explained in section 5.8. In this case the phase space decomposition of the initial
wave energy given by (3.3) and (3.13) is supported in a narrow cone around the range
axis z, with opening angle scaling as

λo
`s
“ γs ! 1.

Moreover, from the expression (3.14) of the differential scattering cross-section and
(3.15) we see that the energy coupling takes place in a small cone of differential
directions whose opening angle is

λo
`
“ γ ! 1.

In the paraxial regime equation (3.12) simplifies to

„

Bz `
k

ko
¨∇x



W pω,k,x, zq “

ż

Rd

dk1

p2πqd

ż

R

dω1

2π
Qparpω

1,k1q

ˆW
`

ω ´ ω1 ´ k1 ¨ vo,k ´ k
1,x, z

˘

´ ΣparW pω,k,x, zq, (3.22)

where we obtained from definition (3.2) and the scaling relations (2.10), (2.15) that
in the limit γ Ñ 0,

βpkq Ñ ko, `
ˇ

ˇβpkq ´ βpk1q
ˇ

ˇÑ 0, T
ˇ

ˇvozpβpkq ´ βpk
1qq
ˇ

ˇÑ 0.

The differential scattering cross-section becomes

Qparpω,kq “
k2
oσ

2
c `
d`1T

4
rRcc

`

Tω, `k, 0
˘

, (3.23)

and the total scattering cross-section is

Σpar “

ż

Rd

dk1

p2πqd

ż

R

dω1

2π
Qparpω

1,k1q “
σ2
c `k

2
o

4
Rp0,0q “

2

Spar
, (3.24)

where Spar is the scattering mean free path in the paraxial regime and

Rpτ, rq “

ż

R
drz Rccpτ, ~rq, ~r “ pr, rzq. (3.25)
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The initial condition is as in (3.13), with ao defined in (3.3),

W pω,k,x, 0q “
σ2
sT

2
s `

2d
s

4ko

ˇ

ˇ pSpTsω, `skq
ˇ

ˇ

2
δpxq. (3.26)

Note that the right-hand side of equation (3.22) is a convolution, so we can write
the Wigner transform explicitly using Fourier transforms, as explained in Appendix C.
The result is

W pω,k,x, zq “
σ2
sTs`

d
s

4ko

ż

R

dΩ

2π

ż

Rd

dK

p2πqd
|pSpΩ,Kq|2

ż

R
dt

ż

Rd
dy

ˆ

ż

Rd

dq

p2πqd
exp

"

i
´

ω ´
Ω

Ts

¯

t´ iy ¨
´

k ´
K

`s

¯

` iq ¨
´

x´
K

ko

z

`s

¯

`
σ2
c `k

2
o

4

ż z

0

dz1
”

R
´ t

T
,
y ´ q

ko
pz ´ z1q ´ vot

`

¯

´Rp0,0q
ı

+

, (3.27)

and we use it next in the inverse problem of estimating the source location and the
mean flow velocity ~vo.

4. Application to imaging. In this section we use the transport theory in the
paraxial regime, stated in section 3.2.2, to localize a stationary in space time-harmonic
source in a moving random medium with smooth and isotropic random fluctuations,
from measurements at a stationary array of receivers. The case of a time-harmonic
source is interesting because it shows the beneficial effect of the motion of the random
medium for imaging. In the absence of this motion, the wave received at the array
is time-harmonic, it oscillates at the frequency ωo, and it is impossible to determine
from it the range of the source. The random motion of the medium causes broadening
of the frequency support of the wave field, which makes the range estimation possible.

We consider a strongly scattering regime, where the wave received at the array is
incoherent. This means explicitly that the range L is much larger than the scattering
mean free path Spar or, equivalently, from (3.24),

σ2
c `k

2
oL

4
Rp0,0q " 1. (4.1)

We also suppose that

η

ηs
“

T

Ts
! 1, (4.2)

to ensure that the imaging functions are statistically stable with respect to the real-
izations of the random medium. We begin in section 4.1 with the approximation of
the Wigner transform (3.27) for a time-harmonic source, in the strongly scattering
regime. This Wigner transform quantifies the time-space coherence properties of the
wave, as described in section 4.2. Then, we explain in section 4.3 how we can estimate
the Wigner transform from the measurements at the array. The source localization
problem is discussed in section 4.4 and the estimation of the mean medium velocity
is discussed in section 4.5.

4.1. Wigner transform for time-harmonic source and strong scattering.
To derive the Wigner transform for a time-harmonic source, we take the limit Ts Ñ8

in (3.27), after rescaling the source amplitude as

σs “ σ{
a

Ts, σ “ Op1q. (4.3)
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We assume for convenience∗ that the source has a Gaussian profile,

ż

R
dΩ

ˇ

ˇ pSpΩ,Kq
ˇ

ˇ

2
“ p2πqde´|K|

2

, (4.4)

so we can calculate explicitly the integral overK in (3.27). We obtain after the change
of variables y “ ξ ` pq{koqz, that

W pω,k,x, zq “
σ2`dsπ

d{2

4kop2πqd

ż

R
dt

ż

Rd
dξ

ż

Rd
dq exp

"

iωt´
|ξ|2

4`2s
´ iξ ¨ k ` iq ¨

´

x´
k

ko
z
¯

`
σ2
c `k

2
o

4

ż z

0

dz1
”

R
´ t

T
,
ξ ` q

ko
z1 ´ vot

`

¯

´Rp0,0q
ı

+

. (4.5)

Note that the last term in the exponent in (4.5) is negative, because R is maximal
at the origin. Moreover, the relation (4.1) that defines the strongly scattering regime
implies that the integrand in (4.5) is negligible for t{T ě 1 and |ξ`q{koz

1´vot|{` ě 1.
Thus, we can restrict the integral in (4.5) to the set

!

pt, ξ, qq P R2d`1 : |t| ! T,
ˇ

ˇξ `
q

ko
z1 ´ vot

ˇ

ˇ ! `
)

,

and approximate

Rpτ, rq « Rp0,0q ´
αo
2
τ2 ´

ϑo
2
|r|2, (4.6)

with αo, ϑo ą 0. Here we used that the Hessian of R evaluated at the origin is negative
definite and because the medium is statistically isotropic, it is also diagonal, with the
entries ´αo and ´ϑo. We obtain that

σ2
c `k

2
o

4

«

R
´ t

T
,
ξ ` q

ko
z1 ´ vot

`

¯

´Rp0,0q

ff

« ´
α

2

´ t

T

¯2

´
ϑ

2

ˆ

|ξ ` q
ko
z1 ´ vot|

`

˙2

with the positive parameters

α “ αo
σ2
c `k

2
o

4
, ϑ “ ϑo

σ2
c `k

2
o

4
. (4.7)

Substituting in (4.5) and integrating in z1 we obtain

W pω,k,x, zq «
σ2`dsπ

d{2

4kop2πqd

ż

R
dt

ż

Rd
dξ

ż

Rd
dq exp

"

iωt´
αz

2

´ t

T

¯2

´
ϑz

2`2
ˇ

ˇξ ´ vot
ˇ

ˇ

2

´
|ξ|2

4`2s
´ iξ ¨ k ´

ϑz2

2`2
pξ ´ votq ¨

q

ko
´
ϑz3

6`2

ˇ

ˇ

ˇ

q

ko

ˇ

ˇ

ˇ

2

` iq ¨
´

x´
k

ko
z
¯

*

. (4.8)

The imaging results are based on this expression. Before we present them, we study
the coherence properties of the transmitted wave and define the coherence parameters
which affect the performance of the imaging techniques.

∗The results extend qualitatively to other profiles but the formulas are no longer explicit.
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4.2. Time-space coherence. Let us define the time-space coherence function

Cp∆t,∆x,x, zq “
λo

2πpcoρoq2

ż

R
dt ppt`∆t,x`∆x{2, zqppt,x´∆x{2, zqeiωo∆t,

(4.9)
and obtain from (3.1) that in the paraxial regime

Cp∆t,∆x,x, zq «

ż

R

dω

2π

ż

Rd

dk

p2πqd

ż

Rd

dq

p2πqd
apω,k ` q{2, zqapω,k ´ q{2, zq

ˆ exp
!

iq ¨ rz∇βpkq ` xs ` i∆x ¨ k ´ iω∆t
)

. (4.10)

Moreover, in view of (3.11) and the fact that we average in time so that the statistical
fluctuations of C are small (see Remark 4.1) we have

Cp∆t,∆x,x, zq « E
”

Cp∆t,∆x,x, zq
ı

«

ż

R

dω

2π

ż

Rd

dk

p2πqd
W pω,k,x, zqe´iω∆t`i∆x¨k. (4.11)

This shows formally that we can characterize the Wigner transform as the Fourier
transform of the coherence function

W pω,k,x, zq «

ż

R
d∆t

ż

Rd
d∆xCp∆t,∆x,x, zqeiω∆t´i∆x¨k. (4.12)

Using the expression (4.5) of the Wigner transform in (4.11) we find after evalu-
ating the integrals that

Cp∆t,∆x,x, zq «
σ2`ds

22`d{2koRdz
exp

“

iϕp∆t,∆x,x, zqs

ˆ exp

„

´
∆t2

2T 2
z

´
|x|2

2R2
z

´
|∆x|2

2D2
1z

´
|Hz∆x´ vo∆t|

2

2D2
2z



, (4.13)

with phase

ϕp∆t,∆x,x, zq “
kox ¨

”´

1` ϑz
´

`s
`

¯2¯

∆x´ ϑz
´

`s
`

¯2

vo∆t
ı

z
”

1` 2
3ϑz

´

`s
`

¯2ı , (4.14)

and coefficients

Tz “
T
?
αz
, Rz “

z
?

2`sko

ˆ

1`
2`2s
3D2

z

˙1{2

, Dz “
`
?
ϑz
, (4.15)

D1z “2Dz
„

3
´

1`
`2s

6D2
z

¯

1{2

, D2z “ Dz

¨

˝

1`
2`2s
3D2

z

1`
`2s

6D2
z

˛

‚

1{2

, Hz “ 1´
1

2
´

1`
`2s

6D2
z

¯ .

(4.16)

The decay of the coherence function in ∆x models the spatial decorrelation of
the wave on the length scale corresponding to the characteristic speckle size. This is
quantified by the length scales D1z and D2z, which are of the order of Dz. We call
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Dz the decoherence length and obtain from (2.14) and (4.7) that it is of the order of
the typical size ` of the random fluctuations of the medium,

Dz “
`
?
ϑz
“

`

π
?
ϑo

c

L

z
“ Op`q. (4.17)

The decay of the coherence function in ∆t models the temporal decorrelation of
the wave, on the time scale

Tz “
T
?
αz
“

T

π
?
αo

c

L

z
“ OpT q, (4.18)

where we used definitions (2.14) and (4.7). We call Tz the decoherence time and note
that it is of the order of the life span T of the random fluctuations of the medium.

The decay of the coherence function in |x| means that the waves propagate in a
beam with radius Rz, which evolves in z as described in (4.15) and satisfies

Rz «

$

’

&

’

%

z
?

2`sko
for `s ! Dz,

c

ϑ

3

z3{2

ko`
for `s " Dz.

(4.19)

This shows that the transition from diffraction based beam spreading to scattering
based beam spreading happens around the critical propagation distance

z˚ “
1

ϑ

´ `

`s

¯2

“ L
´γs
γ

¯2 1

π2ϑo
. (4.20)

This expression is derived from equation `s “ Dz‹ and definitions (2.14) and (4.7),
and it shows that z‹{L is finite in our regime†.

Note that when z " z˚ i.e., Dz ! `s, the coefficients (4.16) become

D1z «
?

2`s, D2z « 2Dz, Hz « 1, (4.21)

and the coherence function satisfies

|Cp∆t,∆x,x, zq|

|Cp0,0,0, zq|
« exp

ˆ

´
∆t2

2T 2
z

´
|x|2

2R2
z

´
|∆x|2

4`2s
´
|∆x´ vo∆t|

2

8D2
z

˙

. (4.22)

Thus, the spatial spreading and decorrelation of the wave field for z " z˚ are governed
by the parameters Rz, `s and Dz, with Rz given by the second case in (4.19) and Dz
given in (4.17). These parameters scale with the propagation distance z ă L as
Rz „ z3{2 and Dz „ z´1{2. The temporal decorrelation is on the scale Tz „ z´1{2.

4.3. Estimation of the Wigner transform. Suppose that we have a receiver
array centered at pxo, zq, with aperture in the cross-range plane modeled by the
appodization function

A pxq “ exp

ˆ

´
|x´ xo|

2

2pκ{koq2

˙

. (4.23)

†Recall from section 3.2.2 that the paraxial regime is obtained in the limit γ Ñ 0 so that
γ{γs “ `s{` remains finite. Here we allow the ratio `s{` to be large or small, but independent of γ
which tends to zero.
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The linear size of the array is modeled by the standard deviation κ{ko, with dimen-
sionless κ ą 0 defining the diameter of the array expressed in units of λo.

Recalling the wave decomposition (3.1) and that βpkq „ ko in the paraxial regime,
we define the estimated mode amplitudes by

aestpω,k, zq “
koe

´iβpkqz

iωoρo

ż

R
dt

ż

Rd
dxA pxqppt,x, zqeipω`ωoqte´ik¨x

“

ˆ

κ2

2πk2
o

˙d{2 ż

Rd
drk apω,k ` rk, zqe

irβpk`rkq´βpkqsz`irk¨xo´
κ2|rk|2

2k2
o . (4.24)

With these amplitudes we calculate the estimated Wigner transform

Westpω,k,x, zq “

ż

Rd

dq

p2πqd
eiq¨p∇βpkqz`xqaest

´

ω,k `
q

2
, z
¯

aest

´

ω,k ´
q

2
, z
¯

(4.25)

and obtain after carrying out the integrals and using the approximation

”

β
´

k `
q

2

¯

´ β
´

k ´
q

2

¯ı

z « q ¨∇βpkqz,

that

Westpω,k,x, zq «
´ κ2

πk2
o

¯d{2

e´
k2
o|x´xo|

2

κ2

ż

Rd
dK e

´
κ2|K|2

k2
o W pω,k `K,x, zq. (4.26)

We can now use the expression (4.8) in this equation, to obtain an explicit approx-
imation for West. Equivalently, we can substitute (4.12) in (4.26) and obtain after
integrating in K that

Westpω,k,x, zq « e´
k2
o|x´xo|

2

κ2

ż

R
d∆t

ż

Rd
d∆xCp∆t,∆x,x, zqeiω∆t´i∆x¨k´

k2
o|∆x|2

4κ2 ,

(4.27)

with C given in (4.13).
Remark 4.1. Note from (4.9) that the time integration that defines the coherence

function is over a time interval determined by the pulse duration Ts, which is larger
than the coherence time T of the medium by assumption (4.2). If we interpret the
wave as a train of Ts{T pulses of total duration T , each individual pulse travels through
uncorrelated layers of medium because the correlation radius of the medium ` is much
smaller than coT . This follows from the fact that `{pcoT q “ ε{pηγq and ε ! γη. Thus,
Cp∆t,∆x,x, zq is the superposition of approximately Ts{T uncorrelated components
and its statistical fluctuations are small by the law of large numbers. Moreover, we
conclude from (4.27) that the estimated Wigner transform is approximately equal to
its expectation, up to fluctuations of relative standard deviation that is smaller than
a

T {Ts.

4.4. Source localization. We now show how we can use the estimated Wigner
transform to localize the source. Recall that we use the system of coordinates with
origin at the center of the source. Thus, the location pxo, zq of the center of the
array relative to the source is unknown and the goal of imaging is to estimate it.
We begin in section 4.4.1 with the estimation of the direction of arrival of the waves
at the array, and then describe the localization in range in section 4.4.2. These two
estimates determine the source location in the cross-range plane, as well.
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4.4.1. Direction of arrival estimation. We can estimate the direction of ar-
rival of the waves from the peak (maximum) in k of the imaging function

ODoApk, zq “

ż

R

dω

2π
Westpω,k,xo, zq, (4.28)

determined by the estimated Wigner transform at the center of the array of receivers.
If the medium were homogeneous, the maximum of k ÞÑ ODoApk, zq would be at the
cross-range wave vector k˚ “ ko

xo
z , and the width of the peak (the resolution) would

be 1{p
?

2κq. However, cumulative scattering in the random medium gives a different
result, as we now explain:

Substituting (4.27) in (4.28) and using the expression (4.13), we obtain after
evaluating the integrals that

ODoApk, zq

maxk1 ODoApk1, zq
“ exp

#

´
1

2ϑ2
DoApzq

ˇ

ˇ

ˇ

ˇ

k ´ kpzq

ko

ˇ

ˇ

ˇ

ˇ

2
+

, (4.29)

with

ϑDoApzq “

$

&

%

1

3D2
zk

2
o

¨

˝

1`
`2s

2D2
z

1`
2`2s
3D2

z

˛

‚`
1

2κ2

,

.

-

1{2

, kpzq “ ko
xo
z

¨

˝

1`
`2s
D2
z

1`
2`2s
3D2

z

˛

‚. (4.30)

Therefore, the maximum of k ÞÑ ODoApk, zq is at the cross-range wave vector kpzq
and the width of the peak (the resolution) is determined by ϑDoApzq. This resolution
improves for larger array aperture (i.e., κ) and deteriorates as z increases. Depending
on the magnitude of z relative to the critical range z˚ defined in (4.20), we distinguish
three cases:

1. In the case z ! z˚ i.e., `s ! Dz, the intensity travels along the deterministic
characteristic, meaning that ODoApk, zq peaks at

kpzq « ko
xo
z
. (4.31)

However, the resolution is worse than in the homogeneous medium,

ϑDoApzq «

"

1

3D2
zk

2
o

`
1

2κ2

*1{2

, (4.32)

with Dz defined in (4.17).
2. In the case z " z˚, i.e., `s " Dz, the peak of ODoApk, zq is at the cross-range

wave vector

kpzq «
3

2
ko
xo
z
, (4.33)

and the resolution is

ϑDoApzq «

"

1

4D2
zk

2
o

`
1

2κ2

*1{2

. (4.34)

Here the peak corresponds to a straight line characteristic, but with a different slope
than in the homogeneous medium. The resolution is also worse than in the homoge-
neous medium.
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3. In the case z “ Opz˚q, the characteristic can no longer be approximated by
a straight line, as seen from (4.30). Nevertheless, we can still estimate the source
position from the observed peak kpzq, provided that we have an estimate of the
range z. The resolution of the estimate of kpzq is ϑDoApzq given by (4.30) that is
bounded from below by (4.34) and from above by (4.32).

Remark 4.2. Note that (4.30) is a decreasing function of the array diameter
κ{ko, as long as this satisfies κ{ko ď

?
2Dz. Thus, increasing the aperture size

beyond the critical value
?

2Dz does not bring any resolution improvement.

4.4.2. Range estimation. The results of the previous section show that the
direction of arrival estimation is coupled with the estimation of the range z in general,
with the exception of the two extreme cases 1. and 2. outlined above.

To estimate the range z, we use the imaging function

Orangept, zq “

ż

R

dω

2π
e´iωt

ż

Rd

dk

p2πqd
Westpω,k,xo, zq « Cpt,0,xo, zq, (4.35)

derived from (4.27). Substituting the expression (4.13) of the coherence function in
this equation we obtain

|Orangept, zq|

maxt1 |Orangept1, zq|
“ exp

"

´
t2

2ϑ2
rangepzq

*

, (4.36)

with

ϑrangepzq “ Tz

$

&

%

1`
|vo|

2T 2
z

D2
z

¨

˝

1`
`2s

6D2
z

1`
2`2s
3D2

z

˛

‚

,

.

-

´1{2

. (4.37)

As a function of t, this peaks at t “ 0 and its absolute value decays as a Gaussian, with
standard deviation ϑrangepzq. If we know the statistics of the medium (the decoherence
time Tz and length Dz) and the magnitude of the cross-range velocity |vo|, then we
can determine the range z by estimating the rate of decay of Orangept, zq. Note that
the array dimameter κ{ko plays no role for the range estimation.

Remark 4.3. We can also estimate the mean velocity ~vo “ pvo, vozq from (4.36),
by considering different beam orientations in the case that the sources and also the
medium statistics (the decoherence time Tz and length Dz) are known. That is to say,
with three known beams we can get the vector ~vo, and then we can use it to localize the
unknown source using the direction of arrival and range estimation described above.
See also section 4.5 for a more detailed analysis of the velocity estimation.

Remark 4.4. If the decoherence time Tz and length Dz are not known, they can
also be estimated using additional known sources. Definitions (4.17)–(4.18) show that
Dzz1{2 and Tzz1{2 are constant with respect to z. Once estimated, these constants can
be used in the imaging of the unknown source.

4.5. Single beam lateral velocity estimation. We observe from (4.29) and
(4.36)–(4.37) that the source localization depends only on the Euclidian norm |vo| of
the cross-range component of the mean velocity of the medium. We show here that vo
can be obtained with only one beam and, when the receiver array is large and z " z˚

i.e., `s " Dz, the velocity estimate is independent of the medium statistics and the
source location.
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The estimation of vo is based on the imaging function

Ovpy, t, zq “

ż

R

dω

2π
e´iωt

ż

Rd

dk

p2πqd
eik¨y

ż

Rd
dxWestpω,k,x, zq

« exp
´

´
k2
o |y|

2

4κ2

¯

ż

Rd
dx exp

´

´
k2
o |x´ xo|

2

κ2

¯

Cpt,y,x, zq. (4.38)

Substituting the expression (4.13) of the coherence function and carrying out the
integrals we obtain that

|Ovpy, t, zq| «
σ2πd{2pκ`sqd

22`dkd`1
o Ad

z

exp

"

´
t2

2T 2
z

´
|y ´ sztvo|

2

2m2
zA2

z

´
|tvo|

2

n2
zA2

z

´
|xo|

2

4A2
z

*

, (4.39)

with the effective apperture

A2
z “

1

4

”´ κ
ko

¯2

`

´ z

ko`s

¯2´

1`
2`2s
3D2

z

¯ı

, (4.40)

and dimensionless parameters

m2
z “

8

1` 2
3D2

z

`

z
ko`s

˘2
´

1`
`2s

2D2
z

¯

`
` κ
ko`s

˘2
´

1`
2`2s
D2
z

¯

`
`

ko
κ
˘2` z

ko`s

˘2
´

1`
2`2s
3D2

z

¯ ,

n2
z “

m2
z

szpqz ´ sz{2q
,

sz “
m2
z

4D2
z

”´ κ
ko

¯2

`
1

2

´ z

ko`s

¯2´

1`
`2s

3D2
z

¯ı

, qz “

´

κ
ko

¯2

`

´

z
ko`s

¯2´

1`
`2s

6D2
z

¯

2
´

κ
ko

¯2

`

´

z
ko`s

¯2´

1`
`2s

3D2
z

¯

.

These depend on the radii κ{ko of the array and `s of the source, the decoherence
length Dz and the ratio z{pko`sq that quantifies the cross-range resolution of focusing
of a wave using time delay beamforming at a source of radius `s.

To estimate vo we can proceed as follows: First, we estimate for each time t the
position ymaxptq that maximizes y ÞÑ Ovpy; t, zq. Second, we note from (4.39) that
ymaxptq should be a linear function in t, of the form ymaxptq “ szvot. Therefore,
we can estimate szvo with a weighted linear least squares regression of ymaxptq with
respect to t. In practice sz is likely unknown. However, in the case of a large receiver
array with radius satisfying

κ
ko
" max

"

z

ko`s
,

z

koDz

*

, (4.41)

and for z " z‹, so that `s " Dz, we obtain that sz « 1. Thus, the least squares
regression gives an unbiased estimate of vo.

In view of (4.39), the least squares regression can be carried out over a time
interval with length of the order of minpTz, nzAz{|vo|q. Beyond this critical time the
function Ov vanishes. Therefore, as long as |vo| ă nzAz{Tz, the velocity resolution is

resv “
mzAz

szTz
«

Dz
Tz
, (4.42)

where the approximation is for a large array and `s " Dz. If |vo| is larger than
nzAz{Tz, then the resolution is reduced to

resv “
mzAz

sznzAz{|vo|
«

Dz
Tz
|vo|Tz
nzAz

. (4.43)
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5. Analysis of the wave field. To derive the results stated in section 3, we
begin in section 5.1 with a slight reformulation, which transforms equation (1.2) into
a form that is more convenient for the analysis. We scale the resulting equation in
section 5.2, in the regime defined in section 2.2, and then we change coordinates to
a moving frame in section 5.3. In this frame we write the wave as a superposition of
time-harmonic, plane waves with random amplitudes that model the net scattering in
the random medium, as described in section 5.4. We explain in section 5.5 that the
backward going waves are negligible, and use the diffusion approximation theory in
section 5.6 to analyze the amplitudes of the forward going waves, in the limit εÑ 0.
We end in section 5.8 with the paraxial limit.

5.1. Transformation of the wave equation. Let us define the new potential

ψpt, ~xq “

a

ρpt, ~xq
?
ρo

φpt, ~xq, (5.1)

and substitute it in (1.2) to obtain the wave equation

Dt

„

1

c2pt, ~xq
Dtψpt, ~xq



´
Dtψpt, ~xqDt ln ρpt, ~xq

c2pt, ~xq
´∆~xψpt, ~xq ` qpt, ~xqψpt, ~xq

“ σs

a

ρpt, ~xq
?
ρo

e´iωotS
´ t

Ts
,
x

`s

¯

δpzq, (5.2)

for t P R and ~x “ px, zq P Rd`1, where ∆~x is the Laplacian operator and

qpt, ~xq “
∆~x

a

ρpt, ~xq
a

ρpt, ~xq
´

1

c2pt, ~xq

#

D2
t

a

ρpt, ~xq
a

ρpt, ~xq
´

1

2
rDt ln ρpt, ~xqs

2

+

´
1

2
Dtc

´2pt, ~xqDt ln ρpt, ~xq. (5.3)

The initial condition (1.3) becomes

ψpt, ~xq ” 0, t ! ´Ts. (5.4)

5.2. Scaled wave equation. We use the scaling regime defined in section 2.2
and denote with primes the dimensionless, order one variables

~x “ L~x1, t “ TLt
1. (5.5)

We also let

~vo “ V ~v1o, co “ coc
1
o, ωo “ ωo

ω1o
2π
, (5.6)

where the constants c1o “ 1 and ω1o “ 2π are introduced so that the scaled equation is
easier to interpret.

In the scaled variables, and using the source amplitude (2.17), the right-hand side
in (5.2) becomes

σs

a

ρpt, ~xq
?
ρo

e´iωotS
´ t

Ts
,
x

`s

¯

δpzq “

“

1`Op
?
εq
‰

εηsL2

´γs
ε

¯d

e´i
ω1o
ε t
1

S
´ t1

ηs
,
γsx

1

ε

¯

δpz1q.

(5.7)
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We also have from definitions (2.1)–(2.3) that the random coefficients take the form

~vpt, ~xq

V
“ ~v1pt1, ~x1q “ ~v1o `

?
εγ σ̄v ~ν

´ t1

η
,
~x1 ´ ε~v1ot

1

ε{γ

¯

, (5.8)

ρpt, ~xq

ρo
“ exp

„

?
εγ σ̄ρ νρ

´ t1

η
,
~x1 ´ ε~v1ot

1

ε{γ

¯



, (5.9)

c2o
c2pt, ~xq

“
1

pc1oq
2

„

1`
?
εγ σ̄c νc

´ t1

η
,
~x1 ´ ε~v1ot

1

ε{γ

¯



, (5.10)

with scaled standard deviations σ̄c, σ̄v, σ̄ρ defined in (2.14).
The solution ψ of (5.2) must have variations in t1 and ~x1 on the same scale as the

source term and the coefficients (5.8)–(5.10), meaning that Bt1ψ „ 1{ε, |∇~x1ψ| „ 1{ε.
From equations (2.8)–(2.15) we obtain that in the scaled variables we have

Dt “
1

TLc1o
Dε
t1 , with Dε

t1 “ Bt1 ` ε~v
1pt1, ~x1q ¨∇~x1 . (5.11)

Equation (5.9) gives

Dt ln ρpt, ~xq “

?
εγσ̄ρ

TL
Dε
t1νρ

´ t1

η
,
~x1 ´ ε~v1ot

1

ε{γ

¯

“
Op
?
εq

TL
,

and

D2
t

a

ρpt, ~xq
a

ρpt, ~xq
“

?
εγσ̄ρ

2T 2
L

pDε
t1q

2νρ

´ t1

η
,
~x1 ´ ε~v1ot

1

ε{γ

¯

`
εγσ̄2

ρ

4T 2
L

„

Dε
t1νρ

´ t1

η
,
~x1 ´ ε~v1ot

1

ε{γ

¯

2

“
Op
?
εq

T 2
L

.

From equation (5.10) we get

Dt

„

1

c2pt, ~xq



“

?
εγσ̄c

pcoc1oq
2TL

Dε
t1νc

´ t1

η
,
~x1 ´ ε~v1ot

1

ε{γ

¯

“
Op
?
εq

coL
,

and q defined in (5.3) takes the form

qpt, ~xq “
γ5{2σ̄ρ
2ε3{2L2

„

Qε
´ t1

η
,
~x1 ´ ε~v1ot

1

ε{γ

¯

`Opε2q



, (5.12)

with

Qεpτ, ~rq “ ∆~rνρpτ, ~rq `

?
εγσ̄ρ

2
|∇~rνρpτ, ~rq|

2
. (5.13)

Substituting in (5.2) and multiplying both sides by εL2, we obtain that the po-
tential denoted by ψ1pt1, ~x1q in the scaled variables satisfies

ε

$

&

%

”

1`
?
εγ σ̄cνc

`

t1

η ,
~x1´ε~v1ot

1

ε{γ

˘

ı

pc1oq
2

B2
t1 `

2ε

pc1oq
2
~v1o ¨∇~x1Bt1 ´∆~x1

,

.

-

ψ1pt1, ~x1q

`
σ̄ργ

5{2

2
?
ε
Qε

´ t1

η
,
~x1 ´ ε~v1ot

1

ε{γ

¯

ψ1pt1, ~x1q «
1

ηs

´γs
ε

¯d

e´i
ω1o
ε t
1

S
´ t1

ηs
,
x1

ε{γs

¯

δpz1q, (5.14)
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with initial condition obtained from (1.3) and (5.1),

ψ1pt1, ~x1q ” 0, t1 ! ´ηs. (5.15)

The approximation in equation (5.14) is because we neglect Op
?
εq terms that tend

to zero in the limit εÑ 0. Note in particular that the random perturbations ~ν of the
velocity of the flow appear in these terms and are negligible in our regime.

All variables are assumed scaled in the remainder of the section and we simplify
notation by dropping the primes.

5.3. Moving frame. Let us introduce the notation ~vo “ pvo, vozq for the scaled
mean velocity of the ambient flow, and change the range coordinate z to

ζ “ z ´ εvozt. (5.16)

We denote the potential in this moving frame by

uεpt,x, ζq “ ψpt,x, ζ ` εvoztq, (5.17)

and obtain from (5.14) that it satisfies the wave equation

ε

$

&

%

”

1`
?
εγ σ̄cνc

´

t
η ,
x´εvot
ε{γ , γζε

¯ı

c2o
B2
t `

2ε

c2o
vo ¨∇xBt ´∆x ´ B

2
ζ

,

.

-

uεpt,x, ζq

`
σ̄ργ

5{2

2
?
ε
Qε

´ t

η
,
x´ εvot

ε{γ
,
γζ

ε

¯

uεpt,x, ζq «
´γs
ε

¯d e´i
ωo
ε t

ηs
S
´ t

ηs
,
γsx

ε

¯

δpζ ` εvoztq,

(5.18)

where again we neglect the terms that become negligible in the limit ε Ñ 0. The
gradient ∇x and Laplacian ∆x are in the cross-range variable x P Rd.

5.4. Wave decomposition. The interaction of the waves with the random
medium depends on the frequency and direction of propagation, so we decompose
uεpt,x, ζq using the Fourier transform

puεpω,k, ζq “

ż

R
dt

ż

Rd
dxuεpt,x, ζqei

`

ωo
ε `ω

˘

t´ikε ¨x, (5.19)

with inverse

uεpt,x, ζq “

ż

R

dω

2π

ż

Rd

dk

p2πεqd
puεpω,k, ζqe´i

`

ωo
ε `ω

˘

t`ikε ¨x. (5.20)

The Fourier transform of equation (5.18) is

„

´
β2pkq

ε
´ 2ko

´ ω

co
´
vo ¨ k

co

¯

´ εB2
ζ



puεpω,k, ζq ´
ηγ1{2´d

?
ε

ż

R

dω1

2π

ż

Rd

dk1

p2πqd

puεpω1,k1, ζq

„

k2
oσ̄cpνc

´

η
`

ω ´ ω1 ´ pk ´ k1q ¨ vo
˘

,
k ´ k1

γ
,
γζ

ε

¯

´
γ2σ̄ρ

2
pQε
´

η
`

ω ´ ω1 ´ pk ´ k1q ¨ vo
˘

,
k ´ k1

γ
,
γζ

ε

¯



«
e´i

ωζ
εvoz

εηsvoz
qS
´

´
ζ

εηsvoz
,
k

γs

¯

, (5.21)
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where

βpkq “
a

k2
o ´ |k|

2, ko “
ωo
co
, (5.22)

and

qSpτ,κq “

ż

Rd
dr Spτ, rqe´iκ¨r.

Note that the right-hand side in (5.21) is supported at |k| “ Opγsq, so by keeping
γs small, we ensure that βpkq remains real valued in our regime. Physically, this
means that puεpω,k, ζq is a propagating wave, not evanescent.

Note also that if the mean velocity ~vo is orthogonal to the range direction, the
source term satisfies

lim
vozÑ0

e´i
ωζ
εvoz

εηsvoz
qS
´

´
ζ

εηsvoz
,
k

γs

¯

Ñ pS
´

ηsω,
k

γs

¯

δpζq,

in the sense of distributions, where

pSpω,κq “

ż

R
dτ

ż

Rd
dr Spτ, rqeiωτ´iκ¨r.

We introduce

aεpω,k, ζq “
”

a

βpkq

2
puεpω,k, ζq `

ε

2i
a

βpkq
Bζpu

εpω,k, ζq
ı

e´iβpkq
ζ
ε , (5.23)

aε´pω,k, ζq “
”

a

βpkq

2
puεpω,k, ζq ´

ε

2i
a

βpkq
Bζpu

εpω,k, ζq
ı

eiβpkq
ζ
ε , (5.24)

so that we have the decomposition

puεpω,k, ζq “
1

a

βpkq

”

aεpω,k, ζqeiβpkq
ζ
ε ` aε´pω,k, ζqe

´iβpkq ζε

ı

, (5.25)

and the complex amplitudes aε and aε´ satisfy the relation

Bζa
εpω,k, ζqeiβpkq

ζ
ε ` Bζa

ε
´pω,k, ζqe

´iβpkq ζε “ 0. (5.26)

This gives that

Bζpu
εpω,k, ζq “

i
a

βpkq

ε

”

aεpω,k, ζqeiβpkq
ζ
ε ´ aε´pω,k, ζqe

´iβpkq ζε

ı

, (5.27)

and moreover, that

B2
ζpu
εpω,k, ζq “ ´

β2pkq

ε2
puεpω,k, ζq `

2i
a

βpkq

ε
Bζa

εpω,k, ζqeiβpkq
ζ
ε . (5.28)

The decomposition in (5.25) and (5.20) is a decomposition of uεpt,x, ζq into a
superposition of plane waves with wave vectors

~k˘ “ pk,˘βpkqq, (5.29)
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where the plus sign denotes the waves propagating in the positive range direction
and the negative sign denotes the waves propagating in the negative range direction.
The amplitudes aε and aε´ of these waves are random fields, which evolve in range
according to (5.26) and the equation

Bζa
εpω,k, ζq «

ikopω ´ vo ¨ kq

coβpkq

”

aεpω,k, ζq ` aε´pω,k, ζqe
´2iβpkq ζε

ı

`
iηγ1{2´d

2
?
ε

ż

R

dω1

2π

ż

dk1

p2πqd

„

k2
oσ̄cpνc

´

η
`

ω ´ ω1 ´ pk ´ k1q ¨ vo
˘

,
k ´ k1

γ
,
γζ

ε

¯

´
γ2σ̄ρ

2
pQε
´

η
`

ω ´ ω1 ´ pk ´ k1q ¨ vo
˘

,
k ´ k1

γ
,
γζ

ε

¯



ˆ
1

a

βpkqβpk1q

„

aεpω1,k1, ζqei
“

βpk1q´βpkq
‰

ζ
ε ` aε´pω

1,k1, ζqe´i
“

βpk1q`βpkq
‰

ζ
ε



`
i

2
a

βpkqεηsvoz
qS
´

´
ζ

εηsvoz
,
k

γs

¯

e´i
ωζ
εvoz

´iβpkq ζε , (5.30)

derived by substituting (5.25)–(5.28) into (5.21).

5.5. Forward scattering approximation. Equation (5.30) shows that the am-
plitudes aε are coupled to each other and to aε´. In our scaling regime, where the cone
of directions of propagation has small opening angle controlled by the parameter γs,
and where the covariance (2.5) of the fluctuations is smooth, the coupling between aε

and aε´ becomes negligible in the limit ε Ñ 0. We refer to [2, Section C.2] and [3,
Section 5.2] for a more detailed explanation of this fact.

Using the assumption that the random fluctuations are supported at finite range
(see section 2), we require that the wave be outgoing at |ζ| Ñ 8. This radiation
condition and the negligible coupling between aε and aε´ in the limit ε Ñ 0 imply
that we can neglect the backward going waves, and we can write

puεpω,k, ζq «
aεpω,k, ζq
a

βpkq
eiβpkq

ζ
ε , ζ ą Opεq. (5.31)

The starting value of aεpω,k, ζq is determined by the source term in (5.30), which
contributes only for ζ “ vozOpεq. For such small ζ, we can change variables ζ “ εξ
in (5.30) and obtain that

Bξa
εpω,k, εξq “

i

2
a

βpkqηsvoz
qS
´

´
ξ

ηsvoz
,
k

γs

¯

e´i
ωξ
voz

´iβpkqξ
`Op

?
εq.

Integrating in ξ and using that aεpω,k, ζq vanishes for ζ ! ´Opεq, we obtain that

aεpω,k, εξq «
i

2
a

βpkqηsvoz

ż

R
dξ qS

´

´
ξ

ηsvoz
,
k

γs

¯

e´i
ωξ
voz

´iβpkqξ

“
i

2
a

βpkq
pS
´

ηspω ` βpkqvozq,
k

γs

¯

.

We use this expression as the initial condition for the forward going amplitudes

aεpω,k, 0`q «
i

2
a

βpkq
pS
´

ηspω ` βpkqvozq,
k

γs

¯

, (5.32)

and drop the source term and the backward going amplitudes aε´ in equation (5.30)
for range ζ ą 0.
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5.6. The acoustic pressure field in the Markovian limit. By definitions
(1.1), (5.1), (5.17) and the scaling relations (5.5), the acoustic pressure is

ppTLt, Lx, Lzq « ´
ρo
TL
Btu

εpt,x, z ´ εvoztq.

Furthermore, equation (5.31) and the Fourier decomposition (5.20) give that

ppTLt, Lx, Lzq

2πcoρo{λo
«

ż

R

dω

2π

ż

Rd

dk

p2πεqd
iaεpω,k, zq
a

βpkq
e´i

`

ωo
ε `ω`βpkqvoz

˘

t`i
pk,βpkqq

ε ¨px,zq,

where we have used equation (5.30) to write aεpω,k, z´ εvoztq “ aεpω,k, zq`Op
?
εq.

The shifted scaled frequency ω ` βpkqvoz appears in the initial condition (5.32),

and the random processes pνc and pQε in equation (5.30) depend on k{γ. Thus, it is
convenient to introduce the variables

Ω “ η
“

ω ` βpkqvoz
‰

, K “ k{γ, (5.33)

and rewrite the expression of the pressure as

ppTLt, Lx, Lzq

ωoρo
«

ż

R

dΩ

2πη

ż

Rd

dK

p2πε{γqd
AεpΩ,K, zq
a

βpγKq
e´i

`

ωo
ε `

Ω
η

˘

t`i
pγK,βpγKqq

ε ¨px,zq,

(5.34)
with redefined amplitude

AεpΩ,K, zq “ iaε
´Ω

η
´ βpγKqvoz, γK, z

¯

` op1q. (5.35)

The op1q term, which tends to zero as εÑ 0, is used in this definition so that we have
an equal sign in the evolution equation for Aε, derived from (5.30), after neglecting
the backward going amplitudes,

BzA
εpΩ,K, zq “

iko
βpγKq

” Ω

ηco
´
~vo
co
¨
`

γK, βpγKq
˘

ı

AεpΩ,K, zq

`
i

2

c

γ

ε

ż

R

dΩ1

2π

ż

Rd

dK 1

p2πqd
AεpΩ1,K 1, zq

a

βpγKqβpγK 1q
ei
“

βpγK1
q´βpγKq

‰

z
ε

ˆ

”

k2
oσ̄cpνc

´

Ω´ Ω1 ´ η
`

γK ´ γK 1, βpγKq ´ βpγK 1qq ¨ ~vo,K ´K 1,
γz

ε

¯

´
γ2σ̄ρ

2
pQε
´

Ω´ Ω1 ´ η
`

γK ´ γK 1, βpγKq ´ βpγK 1qq ¨ ~vo,K ´K 1,
γz

ε

¯ı

, (5.36)

for z ą 0. The initial condition (5.32) becomes

AεpΩ,K, 0`q “ AopΩ,Kq “ ´
1

2
a

βpγKq
pS
´ηs
η

Ω,
γ

γs
K
¯

. (5.37)

5.7. The Markovian limit. Let L2pO,Cq be the space of complex-valued,
square-integrable functions defined on the set

O “ tΩ P Ru ˆ tK P Rd, γ|K| ă kou (5.38)

and denote Aεpzq “ pAεpΩ,K, zqqpΩ,KqPO for z ě 0. From equation (5.36) we obtain
the conservation of energy relation

Bz

ż

O

dΩdK |AεpΩ,K, zq|2 “ 0, (5.39)
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so the Markov process Aεpzq P L2pO,Cq lives on the surface of the ball with center
at the origin and ε independent radius RA defined by

R2
A “

ż

O

dΩdK |AεpΩ,K, zq|2 “

ż

O

dΩdK |AopΩ,Kq|
2. (5.40)

We describe the Markovian limit ε Ñ 0 in Appendix A. The result is that the
process of Aεpzq converges weakly in Cpr0,8q, L2q to a Markov process whose in-
finitesimal generator can be identified. The first and second moments of the limit
process are described below.

5.7.1. The mean amplitude. The expectation of AεpΩ,K, zq in the limit εÑ
0 is given by

lim
εÑ0

E
“

AεpΩ,K, zq
‰

“ AopΩ,Kqe
iθpΩ,Kqz`DpKqz, (5.41)

where

θpΩ,Kq “
ko

βpγKq

” Ω

ηco
´
~vo
co
¨ pγK, βpγKqq

ı

`
γ3σ̄2

ρ

8βpγKq
∆~rRρρp0, ~rq

ˇ

ˇ

~r“0
, (5.42)

is a real phase and

DpKq “ ´

ż

|K1|ăko{γ

dK 1

p2πqd
1

4βpγKqβpγK 1q

ż

Rd
dr

ż 8

0

drz e
´i
`

K´K1,
βpγKq´βpγK1q

γ

˘

¨~r

ˆ

#

k4
oσ̄

2
cRccp0, ~rq `

γ4σ̄2
ρ

4
∆2
~rRρρp0, ~rq ´ k

2
oγ

2σ̄cσ̄ρ∆~rRcρp0, ~rq

+

, (5.43)

with ~r “ pr, rzq. Moreover, Re
“

DpKq
‰

ă 0, because

ż

Rd`1

dr e´i
~K¨~r

#

k4
oσ̄

2
cRccp0, ~rq `

γ4σ̄2
ρ

4
∆2
~rRρρp0, ~rq ´ k

2
oγ

2σ̄cσ̄ρ∆~rRcρp0, ~rq

+

ě 0,

is the power spectral density of the process

Xpt, ~rq “ k2
0σ̄cνcpt, ~rq ´

σ̄ργ
2

2
∆~rνρpt, ~rq, (5.44)

in the variable ~r (for fixed t), which is non-negative by Bochner’s theorem. Thus, the
mean amplitude decays on the range scale

S pKq “ ´
1

Re
“

DpKq
‰ , (5.45)

called the scattering mean free path. In the relatively high frequency regime the
damping is mainly due to the fluctuations of the wave speed, while in the relatively
low frequency regime the damping is mainly due to the fluctuations of the density.
This damping is the mathematical manifestation of the randomization of the wave
due to cumulative scattering.

Recall that we have assumed σ̄ρ “ Op1q. Therefore, in the regime γ ! 1, the Rcc

term dominates in (5.43).
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5.7.2. The mean intensity. The expectation of the intensity

IpΩ,K, zq “ lim
εÑ0

E
“

|AεpΩ,K, zq|2
‰

(5.46)

satisfies

BzIpΩ,K, zq “

ż

O

dΩ1

2π

dK 1

p2πqd
QpΩ,Ω1,K,K 1q

“

IpΩ1,K 1, zq ´ IpΩ,K, zq
‰

, (5.47)

for z ą 0, with initial condition obtained from equation (5.37):

IpΩ,K, 0q “ |AopΩ,Kq|
2. (5.48)

Denoting the power spectrum of Xpt, ~rq in (5.44) by P pΩ, ~Kq, and letting

´

rΩ, ~K
¯

“

ˆ

Ω´ η
`

γK, βpγKqq ¨ ~vo,K,
βpγKq

γ

˙

,

the kernel in (5.47) isgiven by

QpΩ,Ω1,K,K 1q “
P prΩ´ rΩ1, ~K ´ ~K 1q

4βpγKqβpγK 1q
,

that is explicitly

QpΩ,Ω1,K,K 1q “

#

k4
oσ̄

2
c
rRcc `

γ4σ̄2
ρ

4

„

|K ´K 1|2 `

´βpγKq ´ βpγK 1q

γ

¯2
2

rRρρ

`k2
oγ

2σ̄cσ̄ρ

„

|K ´K 1|2 `

´βpγKq ´ βpγK 1q

γ

¯2


rRρc

*

1

4βpγKqβpγK 1q
, (5.49)

where rRcc is the power spectral density (3.9), evaluated as

rRcc “
rRcc

´

Ω´Ω1´η
`

γK´γK 1, βpγKq´βpγK 1qq ¨~vo,K´K 1,
βpγKq ´ βpγK 1q

γ

¯

,

and similar for rRρc and rRρρ.
Note that the kernel satisfies

ż

O

dΩ1

2π

dK 1

p2πqd
QpΩ,Ω1,K,K 1q “ ´2RerQpKqs “

2

S pKq
, (5.50)

where S pKq is the scattering mean free path defined in (5.45).

5.7.3. The Wigner transform. The wave amplitudes decorrelate at distinct
frequencies Ω ‰ Ω1 and wave vectors K ‰K 1, meaning that

lim
εÑ0

E
“

AεpΩ,K, zqAεpΩ1,K 1, zq
‰

“ lim
εÑ0

E
“

AεpΩ,K, zqs lim
εÑ0

ErAεpΩ1,K 1, zq
‰

. (5.51)

The right-hand side is the product of the means of the mode amplitudes, which decay
on the range scale defined by the scattering mean free path (5.45).

However, the amplitudes are correlated for |Ω´Ω1| “ Opεq and |K´K 1| “ Opεq.
We are interested in the second moment

E
”

Aε
´

Ω,K `
εq

2
, z
¯

Aε
´

Ω,K ´
εq

2
, z
¯ı

,
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whose Fourier transform in q gives the energy density resolved over frequencies and
directions of propagation. This is the Wigner transform defined by

W εpΩ,K,x, zq “

ż

Rd

dq

p2πqd
eiq¨p∇βpγKqz`xqE

„

Aε
´

Ω,K `
εq

2
, z
¯

Aε
´

Ω,K ´
εq

2
, z
¯



.

(5.52)
We show in Appendix A.3 that the Wigner transform converges in the limit εÑ 0 to
W pΩ,K,x, zq, the solution of the transport equation

rBz ´∇βpγKq ¨∇xsW pΩ,K,x, zq “

ż

O

dΩ1

2π

dK 1

p2πqd
QpΩ,Ω1,K,K 1q

ˆ
“

W pΩ1,K 1,x, zq ´W pΩ,K,x, zq
‰

, (5.53)

for z ą 0, with initial condition

W pΩ,K,x, 0q “ |AopΩ,Kq|
2δpxq (5.54)

The transport equation (3.12) in the physical scales is obtained from (5.54) as
explained in Appendix B. In the next section we will show how this equation simplifies
in the paraxial regime, when γ ! 1. This is the result used for the imaging applications
discussed in section 4.

5.8. The paraxial limit. Equation (5.53) shows that the energy is transported
on the characteristic

x “ ´γ
K

βpγKq
z, (5.55)

parametrized by z, and depending on the wave-vectorK. Here |x|{z “ Opγq quantifies
the opening angle of the cone (beam) of propagation with axis z. We write this
explicitly as

X “ x{γ, where |X| “ Op1q. (5.56)

The paraxial regime corresponds to a narrow beam, modeled by γ Ñ 0 and

Γ “ γ{γs “ Op1q. (5.57)

At the range z “ 0 of the source we have from (5.54) and (5.37) that

W pΩ,K,x, 0q “

ˇ

ˇ pS
`

ηs
η Ω,ΓK

˘
ˇ

ˇ

2

4γdko
δpXq, (5.58)

and to obtain a finite limit as γ Ñ 0 we rescale the Wigner transform as

WpΩ,K,X, zq “ γdW pΩ,K, γX, zq. (5.59)

We also change variables in (5.53),

Ω´ Ω1 ´ η
`

γpK ´K 1q, βpγKq ´ βpγK 1q
˘

¨ ~vo  Ω1, K ´K 1  K 1,
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and obtain the transport equation

„

Bz `
K

βpγKq
¨∇X



WpΩ,K,X, zq “
k4
o

4

ż

O

dΩ1

2π

dK 1

p2πqd
1

βpγKqβpγK 1q

ˆ

”

σ̄2
c
rRcc

´

Ω1,K 1,
βpγKq ´ βpγK ´ γK 1q

γ

¯

`Opγ2q

ı

ˆ

”

W
`

Ω´ Ω1 ´ ηγvo ¨K
1 ´ ηvozpβpγKq ´ βpγK ´ γK 1qq,K ´K 1,X, z

˘

´WpΩ,K,X, zq
ı

, (5.60)

for z ą 0 and a finite γ ! 1, where Opγ2q denotes the rRρc and rRρρ terms in the
kernel (5.49).

Recall that γ ! 1 so, in order to observe a significant effect of the ambient motion,
we rescale the transversal speed as

vo “
Vo
ηγ
, with |Vo| “ Op1q. (5.61)

With a similar scaling of the range velocity

voz “
Voz
ηγ

, with |Voz| “ Op1q, (5.62)

we obtain that the range motion plays no role in equation (5.60) as γ Ñ 0, because

βpγKq “ ko `Opγ
2q, βpγKq ´ βpγK ´ γK 1q “ Opγ2q.

The transport equation satisfied by the Wigner transform WpΩ,K,X, zq in the
paraxial limit γ Ñ 0 is

”

Bz `
K

ko
¨∇X

ı

WpΩ,K,X, zq “
k2
o

4

ż

Rd

dK 1

p2πqd

ż

R

dΩ1

2π
σ̄2
c
rRccpΩ

1,K 1, 0q

ˆ
“

W
`

Ω´ Ω1 ´K 1 ¨ Vo,K ´K 1,X, z
˘

´WpΩ,K,X, zq
‰

, (5.63)

for z ą 0, with initial condition

WpΩ,K,X, 0q “

ˇ

ˇ pS
`

ηs
η Ω,ΓK

˘
ˇ

ˇ

2

4ko
δpXq. (5.64)

The transport equation (3.22) in the physical scales is obtained from (5.63) using the
scaling relations explained in Appendix B.

6. Summary. We introduced an analysis of sound wave propagation in a time
dependent random medium which moves due to an ambient flow at speed ~vpt, ~xq,
and is modeled by the wave speed cpt, ~xq and mass density ρpt, ~xq. The random
fields ~vpt, ~xq, cpt, ~xq and ρpt, ~xq have small, statistically correlated fluctuations about
the constant values ~vo, co and ρo, on the length scale ` and time scale T . The
analysis starts from Pierce’s equation, which is obtained from the linearization of the
fluid dynamics equations about an ambient flow, and applies to waves with central
wavelength λo ! `. The excitation is from a stationary source with radius `s, which
emits a narrowband signal of duration Ts.
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The analysis is in a forward wave propagation regime to a large distance (range)
L " `, within a cone with small opening angle. Using the diffusion approximation
theory, we showed that the coherent part (the expectation) of the wave decays expo-
nentially in L{S , and quantified the frequency- and wavevector-dependent scattering
mean free path S . We also derived transport equations for the energy density (Wigner
transform) of the wave, which show explicitly the effect of the ambient flow and net
scattering in the time dependent random medium.

We used the wave propagation theory to study the inverse problem of localizing
(imaging) the source from measurements at a stationary array of receivers located at
range L. This study is in the regime of paraxial wave propagation, where the Wigner
transform can be computed explicitly, and assumes a large range L " S , so that the
wave is incoherent due to strong scattering in the random medium. The temporal
variation of the medium is at time scale T ! Ts, and it has two beneficial effects for
imaging: First, it causes broadening of the bandwidth of the recorded waves, which
leads to improved travel time estimation and consequently, better range resolution.
Second, it allows a robust (statistically stable) estimation of the Wigner transform
from the array measurements. We presented an explicit analysis of imaging based
on this Wigner transform and showed how one can estimate the source location, the
mean velocity ~vo and the statistics of the random medium.
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by the U.S. Office of Naval Research under award number N00014-17-1-2057. Knut
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Appendix A. The Markovian limit theorem. In this appendix we obtain
the ε Ñ 0 limit of the Markov process Aεpzq “ pAεpΩ,K, zqqpΩ,KqPO , which lies on
the surface of the sphere with radius RA given in equation (5.40). The set O is defined
by (5.38). The process Aεpzq starts from

Aεp0q “

˜

´
1

2
a

βpγKq
pS
´ηs
η

Ω,
γ

γs
K
¯

¸

pΩ,KqPO

, (A.1)

which is independent of ε, and evolves at z ą 0 according to the stochastic equation

dAε

dz
“ G

´z

ε
,
z

ε

¯

Aε `
1
?
ε
F
´z

ε
,
z

ε

¯

Aε. (A.2)

Here G and F are integral operators

rGpz, ζqAspΩ,Kq “
ż

O

dΩ1dK 1Gpz, ζ,Ω,Ω1,K,K 1qApΩ1,K 1q,

rFpz, ζqAspΩ,Kq “
ż

O

dΩ1dK 1 F pz, ζ,Ω,Ω1,K,K 1qApΩ1,K 1q,

with kernels depending on the random processes νcpτ, ~rq and Qεpτ, ~rq. Recall the
definition (5.13) of Qεpτ, ~rq. We rewrite it here as

Qεpτ, ~rq “ Qp0qpτ, ~rq `

?
εγσ̄ρ

2
Qp1qpτ, ~rq, (A.3)
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with

Qp0qpτ, ~rq “ ∆~rνρpτ, ~rq and Qp1qpτ, ~rq “ |∇~rνρpτ, ~rq|
2
. (A.4)

The kernel G has a deterministic part supported at Ω1 “ Ω and K 1 “ K, and a
random part determined by Qp1q,

Gpz, ζ,Ω,Ω1,K,K 1q “
iko

βpγKq

” Ω

ηco
´
~vo
co
¨
`

γK, βpγKq
˘

ı

δpΩ1 ´ ΩqδpK 1 ´Kq

´
iγ3σ̄2

ρ

8p2πqd`1
a

βpγKqβpγK 1q
exp

 

i
“

βpγK 1q ´ βpγKq
‰

ζ
(

ˆ pQp1q
´

Ω´ Ω1 ´ η
`

γK ´ γK 1, βpγKq ´ βpγK 1qq ¨ ~vo,K ´K 1, γz
¯

. (A.5)

The kernel F is determined by νc and Qp0q,

F pz, ζ,Ω,Ω1,K,K 1q “
i
?
γ

2p2πqd`1
a

βpγKqβpγK 1q
exp

 

irβpγK 1q ´ βpγKqsζ
(

ˆ

”

k2
oσ̄cpνc

´

Ω´ Ω1 ´ η
`

γK ´ γK 1, βpγKq ´ βpγK 1qq ¨ ~vo,K ´K 1, γz
¯

´
γ2σ̄ρ

2
pQp0q

´

Ω´ Ω1 ´ η
`

γK ´ γK 1, βpγKq ´ βpγK 1qq ¨ ~vo,K ´K 1, γz
¯



. (A.6)

The random process Aεpzq is Markov with generator

LεfpA,Aq “
ż

O2

1
?
ε
F
´z

ε
,
z

ε
,Ω,Ω1,K,K 1

¯ δf

δApΩ,Kq
ApΩ1,K 1qdΩ1dK 1dΩdK

`

ż

O2

1
?
ε
F
´z

ε
,
z

ε
,Ω,Ω1,K,K 1

¯ δf

δApΩ,Kq
ApΩ1,K 1qdΩ1dK 1dΩdK

`

ż

O2

G
´z

ε
,
z

ε
,Ω,Ω1,K,K 1

¯ δf

δApΩ,Kq
ApΩ1,K 1qdΩ1dK 1dΩdK

`

ż

O2

G
´z

ε
,
z

ε
,Ω,Ω1,K,K 1

¯ δf

δApΩ,Kq
ApΩ1,K 1qdΩ1dK 1dΩdK,

where δf{δApΩ,Kq denotes the variational derivative, defined as follows. If ϕ is a
smooth function and

fpA,Aq “

ż

¨ ¨ ¨

ż

ϕpΩ1, . . . ,Ωn`m,K1, . . . ,Kn`mq

n
ź

j“1

ApΩj ,Kjq

ˆ

n`m
ź

j“n`1

ApΩj ,Kjq

n`m
ź

j“1

dΩjdKj ,

then we have

δf

δApΩ,Kq
“

n
ÿ

l“1

ż

¨ ¨ ¨

ż

ϕpΩ1, . . . ,Ωn`m,K1, . . . ,Kn`mq |Ωl“Ω,Kl“K

n
ź

j“1,j‰l

ApΩj ,Kjq

ˆ

n`m
ź

j“n`1

ApΩj ,Kjq

n`m
ź

j“1,j‰l

dΩjdKj
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and

δf

δApΩ,Kq
“

n`m
ÿ

l“n`1

ż

¨ ¨ ¨

ż

ϕpΩ1, . . . ,Ωn`m,K1, . . . ,Kn`mq |Ωl“Ω,Kl“K

n
ź

j“1

ApΩj ,Kjq

ˆ

n`m
ź

j“n`1,j‰l

ApΩj ,Kjq

n`m
ź

j“1,j‰l

dΩjdKj .

The linear combinations of such functions f form an algebra that is dense in CpL2q

and is convergence determining. We can also extend the class of functions to include
generalized functions ϕ of the form

ϕpΩ1, . . . ,Ω2n,K1, . . . ,K2nq “ΦpΩ1, . . . ,Ωn,K1, . . . ,Knq

ˆ

n
ź

j“1

δpΩn`j ´ ΩjqδpKn`j ´Kjq,

where Φ is a smooth function.
Applying the diffusion-approximation theory described in [9, Chapter 6] and [18,

17], we obtain the limit generator

LfpA,Aq “
ż 8

0

dζ lim
ZÑ8

1

Z

ż Z

0

dh

ż

O4

dΩ11dK 1
1dΩ12dK 1

2dΩ1dK1dΩ2dK2

ˆ

!

E
“

F p0, h,Ω1,Ω
1
1,K1,K

1
1qF pζ, ζ ` h,Ω2,Ω

1
2,K2,K

1
2q
‰

ˆ
δ2f

δApΩ1,K1qδApΩ2,K2q
ApΩ11,K

1
1qApΩ

1
2,K

1
2q

` E
“

F p0, h,Ω1,Ω
1
1,K1,K

1
1qF pζ, ζ ` h,Ω2,Ω

1
2,K2,K

1
2q
‰

ˆ
δ2f

δApΩ1,K1qδApΩ2,K2q
ApΩ11,K

1
1qApΩ

1
2,K

1
2q

` E
“

F p0, h,Ω1,Ω
1
1,K1,K

1
1qF pζ, ζ ` h,Ω2,Ω

1
2,K2,K

1
2q
‰

ˆ
δ2f

δApΩ1,K1qδApΩ2,K2q
ApΩ11,K

1
1qApΩ

1
2,K

1
2q

` E
“

F p0, h,Ω1,Ω
1
1,K1,K

1
1qF pζ, ζ ` h,Ω2,Ω

1
2,K2,K

1
2q
‰

ˆ
δ2f

δApΩ1,K1qδApΩ2,K2q
ApΩ11,K

1
1qApΩ

1
2,K

1
2q

)

`

ż 8

0

dζ lim
ZÑ8

1

Z

ż Z

0

dh

ż

O3

dΩ11dK 1
1dΩ1dK1dΩ1dK 1

ˆ

!

E
“

F p0, h,Ω1,Ω11,K
1,K 1

1qF pζ, ζ ` h,Ω1,Ω
1,K1,K

1q
‰ δf

δApΩ1,K1q
ApΩ11,K

1
1q

` E
“

F p0, h,Ω1,Ω11,K
1,K 1

1qF pζ, ζ ` h,Ω1,Ω
1,K1,K

1q
‰ δf

δApΩ1,K1q
ApΩ11,K

1
1q

)

` lim
ZÑ8

1

Z

ż Z

0

dh

ż

O2

dΩdKdΩ1dK 1
!

E
“

Gp0, h,Ω,Ω1,K,K 1q
‰

ˆ
δf

δApΩ,Kq
ApΩ1,K 1q ` E

“

Gp0, h,Ω,Ω1,K,K 1q
‰ δf

δApΩ,Kq
ApΩ1,K 1q

)

. (A.7)
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The expectations in the expression of the generator can be computed with

E
“

pνcpΩ,K, ζqpνcpΩ
1,K 1, 0q

‰

“p2πqd`1δpK `K 1qδpΩ` Ω1q pRccpΩ,K, ζq, (A.8)

E
“

pνcpΩ,K, ζqpνcpΩ
1,K 1, 0q

‰

“p2πqd`1δpK ´K 1qδpΩ´ Ω1q pRccpΩ,K, ζq, (A.9)

E
“

pνcpΩ,K, ζqpνcpΩ
1,K 1, 0q

‰

“p2πqd`1δpK ´K 1qδpΩ´ Ω1q pRccpΩ,K, ζq, (A.10)

E
“

pνcpΩ,K, ζqpνcpΩ
1,K 1, 0q

‰

“p2πqd`1δpK `K 1qδpΩ` Ω1q pRccpΩ,K, ζq, (A.11)

and similar for pνρ. Note here that both νc and pRcc are real. We also have

pQp0qpΩ,K, zq “
`

´ |K|2 ` B2
z

˘

pνρpΩ,K, zq, (A.12)

and

E
“

pQp1qpΩ,K, zq
‰

“ ´p2πqd`1δpΩqδpKq∆~rRρρp0, ~rq
ˇ

ˇ

~r“0
. (A.13)

A.1. The mean amplitude. To calculate the mean of the limit process, we let

fpA,Aq “

ż

O

dΩdK ϕpΩ,KqApΩ,Kq,

so that

δf

δApΩ1,K1q
“ ϕpΩ1,K1q,

δf

δApΩ1,K1q
“ 0,

and all second variational derivatives are zero.
From the expression (A.7), definitions (A.5)–(A.6) and the expectations (A.8)–

(A.13) we obtain

LfpA,Aq “
ż

O

dΩdK
“

iθpΩ,Kq `DpKq
‰

ϕpΩ,KqApΩ,Kq, (A.14)

with θ and D given in (5.42) and (5.43). This gives the result (5.41).

A.2. The mean intensity. To characterize the mean intensity of the limit pro-
cess, we let

fpA,Aq “

ż

O

dΩdK ϕpΩ,Kq|ApΩ,Kq|2

“

ż

O2

dΩdKdΩ1dK 1 ϕpΩ,KqδpΩ´ Ω1qδpK ´K 1qApΩ,KqApΩ1,K 1q,

so that

δf

δApΩ1,K1q
“ ApΩ1,K1qϕpΩ1,K1q,

δf

δApΩ1,K1q
“ ApΩ1,K1qϕpΩ1,K1q,

δ2f

δApΩ1,K1qδApΩ2,K2q
“ ϕpΩ2,K2qδpΩ2 ´ Ω1qδpK2 ´K1q,

and all other second variational derivatives are zero.
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Using the expectation (A.13) and definition (A.5) in (A.7), we obtain that the G
dependent terms make no contribution. Furthermore, using the expectations (A.8)–
(A.11) and (A.12) we get

LfpA,Aq “ ´
ż

O

dΩ1dK1

p2πqd`1
ϕpΩ1,K1q|ApΩ1,K1q|

2

ż

O

dΩ11dK 1
1QpΩ1,Ω

1
1,K1,K

1
1q

`

ż

O

dΩ1dK1

p2πqd`1
ϕpΩ1,K1q

ż

O

dΩ11dK 1
1 |ApΩ

1
1,K

1
1q|

2QpΩ1,Ω
1
1,K1,K

1
1q,

with kernel defined in (5.49). This gives the equation satisfied by the mean intensity.

A.3. Wave decorrelation and the Wigner transform. To study the second
moments at distinct frequencies Ω, Ω1 and wave vectors K and K 1, we let

fpA,Aq “

ż

O2

dΩdKdΩ1dK 1 ϕpΩ,Ω1,K,K 1qApΩ,KqApΩ1,K 1q.

Then, we have

δf

δApΩ1,K1q
“

ż

O

dΩ1dK 1ApΩ1,K 1qϕpΩ1,Ω
1,K1,K

1q,

δf

δApΩ1,K1q
“

ż

O

dΩ1dK 1ApΩ1,K 1qϕpΩ1,Ω1,K
1,K1q,

δ2f

δApΩ1,K1qδApΩ2,K2q
“ ϕpΩ1,Ω2,K1,K2q,

and all other second variational derivatives are zero.
Substituting in (A.7) and using the expectations (A.8)–(A.13) we obtain that

LfpA,Aq “
ż

O

dΩdK

ż

|K1|ăko

dK 1 ϕpΩ,Ω1,K,K 1q

ˆ
“

iθpΩ,Kq ´ iθpΩ1,K 1q `DpKq `DpK 1q
‰

ApΩ,KqApΩ1,K 1q, (A.15)

with θpΩ,Kq and DpKq defined in (5.42) and (5.43). This gives the decorrelation
result (5.51).

Finally, to study the Wigner transform, we use (5.36) to obtain an evolution
equation for

W εpΩ,K, t,x, zq “

ż

R

dw

2π

ż

R

dq

p2πqd
e´iwt`iq¨rx`∇βpKqzs

ˆAε
´

Ω`
εw

2
,K `

εq

2
, z
¯

A
ε
´

Ω´
εw

2
,K ´

εq

2
, z
¯

,

and then analyze the limit εÑ 0 of W ε with the same approach as described in this
appendix. The Wigner transform (5.52) is

W εpΩ,K,x, zq “

ż

R
dtE

“

W εpΩ,K, t,x, zq
‰

,

and this converges in the limit to the solution W pΩ,K,x, zq of (5.53)–(5.54).

Appendix B. The transport equation in the physical scales.
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To distinguish between the scaled and unscaled variables, we resurrect the nota-
tion of section 5.2 with the unscaled variables denoted by primes.

We begin with the pressure field (5.34),

ppTLt
1, Lx1, Lz1q «

iωoρo
εd

ż

dω1

2π

ż

dk1

p2πqd
aε

1

pω1 ´ β1pk1qv1z,k
1, z1q

a

β1pk1q

ˆe´i
`

ω1o
ε `ω

1
˘

t1`ik
1

ε ¨x
1
`i

β1pk1q
ε z1 . (B.1)

The scaling relations (2.8)–(2.15) and (5.5)–(5.6) give

ω1ot
1

ε
“

2π

λo{L

t

TL
“ ωot,

ω1t1 “ ω1
t

TL
“ ωt, i.e., ω1 “ ωTL,

k1

ε
¨ x1 “

k1

λo{L
¨
x

L
“
k1

λo
¨ x “ k ¨ x, i.e., k1 “ λok,

β1pk1q “
a

pk1oq
2 ´ |k1|2 “ λo

a

k2
o ´ |k|

2 “ λoβpkq,

ω1 ´ β1pk1qv1oz “ TLω ´ λoβpkq
voz

pλo{Lqco
“ TLrω ´ βpkqvozs,

β1pk1q

ε
z1 “

λoβpkq

λo{L

z

L
“ βpkqz.

Equation (B.1) becomes (3.1), with amplitudes

apω,k, zq “
TLL

d

?
λo

aε
1
´

TLpω ´ βpkqvozq, λok,
z

L

¯

, (B.2)

satisfying the initial conditions

apω,k, 0q “
TLL

d

λo

i

2
a

βpkq
pSpTsω, `skq “

iσsTs`
d
s

2
a

βpkq
pSpTsω, `skq, (B.3)

derived from (2.17) and (5.32).
It remains to write the transport equation (3.12) for the Wigner transform. To

do so, we obtain from definitions (5.33) and the scaling relations above that

Ω1 “ ηrω1 ` β1pk1qv1ozs “ T rω ` βpkqvozs,

K 1 “
k1

γ
“
λok

λo{`
“ `k.

We also recall the definition (5.35) of Aε in terms of aε, and obtain that

W pω,k,x, zq “

ż

dq

p2πqd
exp

”

iq ¨
`

∇βpkqz ` x
˘

ı

E
„

a
´

ω,k `
q

2

¯

a
´

ω,k ´
q

2

¯



“

ˆ

TLL
d

?
λo

˙2
1

λdo

ż

dq1

p2πqd
exp

”

i
q1

λo{L
¨
`

∇β1pk1qz1 ` x1
˘

ı

ˆ E
„

Aε
´

Ω1 ´ ηβ1pγK 1qv1oz,K
1 `

q1

2
, z1

¯

Aε
´

Ω1 ´ ηβpγK 1qv1oz,K
1 ´

q1

2
, z1

¯



,
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with Ω1 and K 1 defined as above in terms of ω and k, and z1 “ z{L. Since ε “ λo{L,
we can change the variable of integration as q1  q1ε, and obtain

W pω,k,x, zq “
T 2
LL

d

λo
W ε 1

`

Ω1 ´ ηβ1pγK 1qv1oz,K
1,x1, z1

˘

« σ2
sT

2
s `

2d
s

λo
Ld
W 1

`

Ω1 ´ ηβ1pγK 1qv1oz,K
1,x1, z1

˘

. (B.4)

Here the approximation is for ε ! 1, where we have replaced W ε 1 by its ε Ñ 0
limit W

1

.

Using the initial conditions (5.37) and (5.54) and the scaling relations between
Ω1, K 1 and ω and k, we have

W pω,k,x, 0q “ σ2
sT

2
s `

2d
s

λo
Ld

δpx{Lq

4β1pk1q

ˇ

ˇ

ˇ

pS
´

ηsω
1,
`s
`
K 1

¯
ˇ

ˇ

ˇ

2

“ σ2
sT

2
s `

2d
s

δpxq

4βpkq

ˇ

ˇ pS
`

Tsω, `sk
˘
ˇ

ˇ

2
,

as stated in (3.13) and (3.3). The transport equation (3.12) follows from (5.53), using

Bz1 ´∇β1pγK 1q ¨∇x1 “ L rBz ´∇βpkq ¨∇xs .

Appendix C. Solution of the transport equation in the paraxial regime.
To deal with the convolution in (3.22), we Fourier transform in ω,k and x,

W̆ pt,y, q, zq “

ż

R

dω

2π
e´iωt

ż

Rd

dk

p2πqd
eik¨y

ż

Rd
dx e´iq¨xW pω,k,x, zq. (C.1)

Using definition (3.23) of the scattering kernel and the expression (3.9) of the power

spectral density pRcc, we write

Qparpω,kq “
k2
oσ

2
c `
d`1T

4

ż

R
drt1 eiωT

rt1
ż

Rd
dy1 e´i`k¨y

1

ż

R
dz1Rccprt1,y

1, z1q

“
k2
oσ

2
c `

4

ż

R
dt eiωt

ż

Rd
dy e´ik¨yR

´ t

T
,
y

`

¯

,

with R defined in (3.25). Substituting into (3.22), we obtain

”

Bz `
q

ko
¨∇y

ı

W̆ pt,y, q, zq “
σ2
c `k

2
o

4

”

R
´ t

T
,
y ´ vt

`

¯

´Rp0,0q
ı

W̆ pt,y, q, zq, (C.2)

for z ą 0, with initial condition obtained from (3.26) and (C.1)

W̆ pt,y, q, 0q “ W̆0pt,yq :“
σ2
sT

2
s `

2d
s

4ko

ż

R

dω

2π
e´iωt

ż

Rd

dk

p2πqd
eik¨y

ˇ

ˇ pSpTsω, `skq
ˇ

ˇ

2

“
σ2
sTs`

d
s

4ko

ż

R

dΩ

2π
e´iΩ

t
Ts

ż

Rd

dK

p2πqd
eiK¨

y
`s

ˇ

ˇ pSpΩ,Kq
ˇ

ˇ

2
. (C.3)

Note that this condition is independent of q.
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Equation (C.2) can be solved by integrating along the characteristic y “ y0`
q
ko
z,

stemming from y0 at z “ 0,

W̆
´

t,y0 `
q

ko
z, q, z

¯

“W̆0pt,y0q

ˆexp
!σ2

c `k
2
o

4

ż z

0

dz1
”

R
´ t

T
,
y0 `

q
ko
z1 ´ vot

`

¯

´Rp0,0q
ı)

.

Substituting y0 “ y ´ q{koz in this equation, and inverting the Fourier transform,

W pω,k,x, zq “

ż

R
dt eiωt

ż

Rd
dy e´ik¨y

ż

Rd

dq

p2πqd
eiq¨xW̆0

´

t,y ´
q

ko
z
¯

ˆ exp
!σ2

c `k
2
o

4

ż z

0

dz1
”

R
´ t

T
,
y ´ q

ko
pz ´ z1q ´ vot

`

¯

´Rp0,0q
ı)

. (C.4)

The result (3.27) follows after substituting the expression (C.3) into this equation.

Appendix D. Proof of radiative transfer connection.
We prove here the result involving Eqs. (3.17) and (3.18). We start by computing

the different terms in equation (3.18): The first term is

∇~kΩp~kq ¨∇~xV pω, ~k, ~xq “
co
ko
δ
`

kz ´ βpkq
˘

”

`

Bz ´∇kβpkq ¨∇x
˘

W pω,k,x, zq
ı

.

For the second term we use that if ~k1 “ pk1, βpk1qq and ~k “ pk, kzq, then

δ
`

Ωp~kq ´ Ωp~k1q
˘

“
1

co
δ
`

|~k| ´ ko
˘

“
ko

coβpkq
δ
`

kz ´ βpkq
˘

,

and

ż

Rd`1

d~k1

p2πqd`1

ż

dω1

2π
S
`

ω, ω1, ~k, ~k1
˘

V pω1, ~k1, ~xq “
co
ko
δ
`

kz ´ βpkq
˘

ˆ

ż

O

dω1dk1

p2πqd`1
Qpω, ω1,k,k1qW pω1,k1,x, zq.

Similarly, for the third term we have that if ~k “ pk, βpkqq and ~k1 “ pk1, k1zq, then

δ
`

Ωp~kq ´ Ωp~k1q
˘

“
1

co
δ
`

ko ´ |~k|
˘

“
ko

coβpk1q
δ
`

k1z ´ βpk
1q
˘

,

and

ż

Rd`1

d~k1

p2πqd`1

ż

dω1

2π
S
`

ω, ω1, ~k, ~k1
˘

V pω, ~k, ~xq “
co
ko
δ
`

kz ´ βpkq
˘

ˆ

ż

O

dω1dk1

p2πqd`1
Qpω, ω1,k,k1qW pω,k,x, zq.

Gathering the results and using equation (3.12), we obtain (3.18).
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