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Abstract. Suppose that a composite is constructed from two phases and that we propagate
an electromagnetic signal through it. The velocity of the signal in the composite depends on the
microstructure. What microstructures are associated with the maximum and minimum speeds of
the electromagnetic signal? Here we show that the group velocity of a pulse can be higher in the
composite than in either of the two phases. We derive sharp bounds for the relative increase and
decrease in the group velocity of the electromagnetic signal in the composite and give the associated
optimal microstructures. We also find that a pulse in a composite can have substantially smaller
dispersion and, at the same time, substantially larger group velocity than pulses traveling in the pure
phases.
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1. Introduction. For electromagnetic wave propagation, a lot is known about
the effective properties of materials in the time harmonic case [3, 13, 14, 16]. Expres-
sions for the effective dielectric tensor ε∗(ω) often give an accurate description of a
material’s response to a field that varies at a constant frequency ω. However, surpris-
ingly little is known about the propagation of signals or pulses despite its importance
in applications.

A pulse is a superposition of waves with a range of frequencies. If the range of
frequencies is narrow (so that the pulse is spatially broad), then the envelope of the
pulse travels with a velocity called the group velocity. It is generally regarded as a
good approximation to the velocity at which the energy of a pulse travels and to the
velocity at which information (at that frequency range) can be propagated. However,
there are examples (see [17, 18, 24] and references therein) of superluminal and even
negative group velocities, corresponding to the peak of the wave leaving a region
before it even enters that region. Here, we consider the group velocity of a two phase
composite in the quasi-static limit, where the microstructure is much smaller than the
characteristic wavelength, and ask the question of whether the group velocity in the
composite can be higher than in either of the constituent phases. We show that it can,
and by a large factor, depending on the properties of the phases. It is very surprising
that such a phenomenon can occur at all, since normally energy is scattered and thus
one would expect the energy to travel more slowly in the composite. The key point
is that the group velocity depends on both the value of the refractive index and the
dispersion. By combining one phase with high refractive index and low dispersion

∗Received by the editors February 14, 2001; accepted for publication August 31, 2001; published
electronically July 24, 2002.

http://www.siam.org/journals/siap/62-6/38508.html
†Department of Mathematics, University of California at Irvine, Irvine, CA 92697-3875 (ksolna@

math.uci.edu). The research of this author was supported by the National Science Foundation
through grant DMS-0093992.

‡Department of Mathematics, University of Utah, Salt Lake City, UT 84112 (milton@math.utah.
edu). The research of this author was supported by the National Science Foundation through grants
DMS-9402763 and DMS-9803748.

2064



BOUNDS ON GROUP VELOCITY 2065

with another phase with low refractive index and high dispersion, the composite can
be made to exhibit a comparatively low refractive index and low dispersion and hence
a relatively large group velocity. In particular, this can be realized when the dispersion
relation of both phases is described by a Lorentzian model and when one phase is close
to resonance. In the electromagnetic case, the “speed-up” is largest in a laminate
microgeometry but can be made large also in isotropic microstructures, described
by an assemblage of spheres corresponding to the Maxwell–Garnett approximation
formula. The group velocity can also be smaller in the composite than in the phases,
and we derive bounds for the possible “slow-down.” These bounds are attained by
geometries similar to those that realize the optimal bounds for the speed-up, but with
a different orientation of the laminate and with the roles of the phases interchanged
in the sphere assemblage. A related phenomenon is the reduction of the velocity of
sound in bubbly water [6].

Bounds on the group velocity are of interest, for example, when constructing a
composite wave guide or in certain device applications. The characteristics of devices
like switches, lasers, and integrated optical filters can be tailored using finely layered
materials. In [21] a separation in group velocity for different wave modes is exploited
for passive pulse shaping; in [5, 8] fine layering is exploited for this purpose. Recently,
there has been a strong interest in single phase materials with abnormally low group
velocity [23]. An unusual quantum-mechanical interference effect gives an index of
refraction associated with a very low group velocity. In such a material one obtains
an enormous spatial compression of the electromagnetic pulse due to the low group
velocity. In principle this could be used for parallelization of information. Page et al.
[19] consider the problem of an appropriate definition of group velocity in the case of
acoustic wave propagation, with strong scatterers and pulse length on the same scale
as the scatterers. This has been a long-standing open question. In experiments they
obtain a large slow-down using a medium similar to a Maxwell–Garnett model. In
addition to the group velocity, the dispersion of a propagating pulse is important. In
[22] Santosa and Symes derive an effective medium in the case of waves propagating in
a periodic medium with a small cell size. For a one dimensional medium they obtain
explicit formulas that characterize the dispersive effects and illustrate these with nu-
merical calculations. Here, we show that it is possible to construct a composite with
a group velocity that is higher than the group velocities of the constituent phases
and, moreover, a dispersion that is smaller than the dispersion in either phase. We
illustrate this with a numerical calculation. For numerical examples of pulse prop-
agation in general linear and nonlinear elastic media, see the results of Fogerty and
LeVeque [7] and LeVeque [12].

We start our discussion by reviewing the expression for the group velocity, in
section 2. In section 3, we derive the upper bound for the group velocity in a two
phase composite when the volume fraction of the constituents is a free parameter. We
derive the associated bounds when the volume fraction is fixed, in section 4. Finally,
in section 5, we adapt the analysis to obtain lower bounds for the group velocity.

2. Preliminaries. We consider pulse propagation in a dielectric composite of
two isotropic phases that is subject to some time dependent field E(t). We work
in the quasi-static regime, assuming that the time variation of the electric field is
sufficiently slow such that the curl of the electric field varies on a scale large relative
to the microstructure of the material. A main feature of a propagating pulse or wave
packet is its group velocity. Following Jackson [9] we first derive an expression for this
velocity. We consider one dimensional wave propagation along the spatial dimension
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x and let the wave pulse be characterized by

u(x, t) =
1√
2π

∫ ∞

−∞
A(k)eikx−iω(k)tdk,(1)

with k being the wave number and ω the (temporal) frequency. If the distribution
A(k) is concentrated in a relatively narrow set about the wave number k0, then

u(x, t) ≈ ei(k0ω
′
(k0)−ω(k0))t

√
2π

∫ ∞

−∞
A(k)eik(x−ω

′
(k0)t)dk.

This shows that, up to a phase factor, the wave pulse travels approximately undis-
torted in shape, with a velocity characterized by the group velocity vg:

vg(k0) ≡ ω
′
(k0) =

dω

dk
(k0).(2)

The phase velocity of a particular mode is

vp(k) ≡ ω(k)

k
.(3)

For electromagnetic waves in a medium with relative magnetic permeability µ ≡ 1
the relation between ω and k is given by

ω(k) =
ck√
ε∗(k)

,(4)

with c being the velocity of light in a vacuum and ε∗ the (effective) relative dielectric
permittivity of the medium.

In the next section we present bounds for the group velocity of the composite. The
phases are characterized in terms of their dielectric permittivities ε1(ω) and ε2(ω);
here these are expressed as functions of the temporal frequency ω. The effective
dielectric permittivity ε∗ is determined in terms of these. It follows from (2) and
(4) that

vg(ω0) =
c√

ε∗(ω0) +
ω0

2
√

ε∗(ω0)

dε∗(ω0)
dω0

.(5)

Thus, the group velocity depends on both the effective electrical permittivity and
its variation with frequency. The idea underpinning the results of the next section
is that by combining a material with high permittivity but slow frequency variation
with a material with low permittivity but high frequency variation one might obtain
a composite which has a comparatively low permittivity and a comparatively slow
frequency variation, therefore having a higher group velocity than either phase.

3. An upper bound for the group velocity.

3.1. Summary of results. We present a bound for the group velocity of the
dielectric composite for a general anisotropic medium, and also the bound when the
medium is constrained to be isotropic.

The composite is constructed from two isotropic dielectric phases. The parameters

εi(ω0) and
dεi
dω

(ω0)(6)
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characterize material i, with i ∈ {1, 2} and ω0 being the frequency at which we
evaluate the group velocity, which we call the center frequency. The phases are labeled
so that ε1(ω0) ≥ ε2(ω0), and we let p denote the volume fraction of material one. We
assume the following:

(i) the quasi-static regime, i.e., that the scale of the microstructure is much
smaller than the wavelength (yet large compared to the mean free path of
electrons);

(ii) that the relative magnetic permeability is constant: µ ≡ 1;
(iii) that the dielectric permittivity is real ;
(iv) dεi/dω > 0.

Thus, we do not consider damping or anomalous dispersion effects, and the relation-
ship between ω and k is given by (4).

Our main interest lies in the speed-up of the composite relative to the constituents.
Let {v1, v2, v

∗} be, respectively, the group velocities of the phases and the composite,
and define

G = min

[
v∗

v1
,
v∗

v2

]
.(7)

We want to maximize this quantity with respect to the microgeometry of the composite
and the volume fraction. We find the following.

Theorem 3.1. Under assumptions (i)–(iv) stated above,

G ≤ G(h, β) =




(1−h)β

2
√

h(1−β)(β−h)
for 2h

1+h ≤ β ≤ √
h,

1−h

2
√

(1−β)(β−h)
for

√
h ≤ β ≤ 1+h

2 ,

1 otherwise,

(8)

with

h =
ε2(ω0)

ε1(ω0)
≤ 1,(9)

β =
[ ω
2ε1

dε1
dω ]0 + 1

[ ω
2ε2

dε2
dω ]0 + 1

.

The notation [·]0 indicates a quantity evaluated at ω0. The result (8) shows that
the bound on the speed-up depends only on the dielectric contrast and on a measure
of dispersion contrast. The result is derived in section 3.3, and the analysis we present
there gives bounds also for v∗/v1 and v∗/v2. Note that h measures the contrast in
the dielectric permittivity, while β is a measure of the contrast in dispersion.

The bound (8) is realized by waves propagating in a laminated material, with
the layer interfaces normal to the direction of propagation and parallel to the electric
field. The optimal volume fraction when 2h/(1 + h) < β < (1 + h)/2 is

p =
h(1− 2β + h)

(1− h)(β − h)
.(10)

If β ≥ (1 + h)/2, then it is best to use only phase 2 (p = 0), and if β ≤ 2h/(1 + h), it
is best to use only phase 1. We also find that

max
β

G(h, β) = G(h,
√
h) =

1 +
√
h

2h1/4
∼ 1

2h1/4
as h ↓ 0.(11)
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At this maximal speed-up, p =
√
h/(1 +

√
h), v1 = v2, and the effective dielectric

permittivity of the laminate is ε∗ =
√
hε1. Thus, by choosing h small enough, we

can construct a composite where pulses travel arbitrarily faster than they do in either
of the two phases but still slower than the speed of light in a vacuum. The volume
fraction of the geometry realizing the bound is p ∼ √

h. Hence, large relative speed-
ups are obtained by doping phase 2 with a small concentration of phase 1, with the
ratio of the dielectric permittivities, h, being small. Let {vp,1, vp,2} denote the phase
velocities of the constituents; then we can write

max
β

G(h, β) = G(h,
√
h) ∼ 1

2h1/4
=

√
vp,2/vp,1

2
as h ↓ 0.

Similarly to (11) we find

max
h

G(h, β) = G(β2, β) ∼ 1

2
√
β

as β ↓ 0.(12)

Hence, a large speed-up can be achieved in the limit of large dispersion contrast.
If we constrain the composite to be isotropic, we find the following.
Lemma 3.2. Under assumptions (i)–(iv) stated above,

G ≤ Gd(h, β) ≤ Gd(h,
√
h) ∼ 1

2h1/4
as h ↓ 0.(13)

The subscript d ∈ {2, 3} denotes the spatial dimension, and Gd is given in sections
3.4 and 3.5. The upper bound in (13) is attained with p ∼ 2

√
h for d = 2, and p ∼

(3/2)
√
h for d = 3. In both two and three space dimensions, the bounds are attained

by composites realizing the Hashin–Shtrikman bounds [10], namely, the Hashin sphere
assemblage [11]. That is, the composite consists of densely packed coated spheres
which all have the same volume fractions of the two phases and which range in size
to the infinitesimal (so they can be packed to fill all space). The spheres have a core
made up of phase 1 and are coated with phase 2. In Figure 1 we plot G(h, β) and
G3(h, β) for a range of parameter values. Note that the bounds on the speed-up almost
coincide in the isotropic (dashed lines) and anisotropic (solid lines) cases.

For a given ratio of the dielectric permittivities h, the value of the parameter β
determines whether we can construct a composite having a larger group velocity than
both of the phases, that is, G > 1. In Figure 2 we show, as a function of h, the range
of β values for which we can construct such a composite. These are the sets enveloped
by the solid, dashed, and dotted lines corresponding to the anisotropic and isotropic
(d = 3 and d = 2) cases, respectively. The more interesting parameter regime, h
small, is associated with a relatively large range of β values. A relative speed-up can
only be obtained when 0 < β < 1, which requires that

1

ε1(ω0)

dε1(ω0)

dω
<

1

ε2(ω0)

dε2(ω0)

dω
.

3.2. Illustration with Lorentzian phases. Motivated by the above results we
consider some specific models for the dielectric permittivities and seek to construct a
composite such that it is associated with a large speed-up. We discuss the anisotropic
case and thus let the medium be laminated in the direction parallel to the electric
field and orthogonal to the propagation direction.
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Fig. 1. The figure shows the optimal speed-up as a function of β for a range of values of
the ratio of the dielectric permittivities h. The solid lines correspond to the anisotropic case and
the dashed line to the isotropic bound. Note that these almost coincide. In the top plot we use
h ∈ {10−9, 10−7, 10−5, 10−3, 10−1} and obtain the largest speed-ups for small h. In the bottom
plot we use h ∈ {.01, .02, .05, .1}.
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Fig. 2. The figure shows the set of β values for which a composite can be constructed that has
a larger group velocity than both of the phases. Note that the set depends only on the value of h.
We show the set when we consider, respectively, a general anisotropic geometry for the composite
(outlined by the solid lines) and an isotropic geometry in, respectively, 3D (dashed lines) and 2D
(dotted area). In the latter two cases the set is empty for large h.
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Fig. 3. The top plot shows the group velocities as a function of the center frequency for
a composite of materials defined by the Lorentzian model. The dotted, dashed, and solid lines
correspond, respectively, to materials one, two, and the composite. In the bottom plot we show the
speed-up of the composite relative to the phases. The dashed line is the asymptotic upper bound
on the speed-up for the given (small) ratio of the dielectric permittivities. Note that the bound is
attained when the group velocities of the phases coincide.

Consider the following models for the dielectric permittivities:

ε1(ω) = 1 +
∆−1

5/4− ω2
,(14)

ε2(ω) = 1 +

√
∆

1/4 +
√
∆− ω2

,(15)

with ∆ a small parameter. Both of these models have the standard Lorentzian form
given in (7.129) of [9]:

ε1(ω) = 1 +
ω2
p

ω2
1 − ω2 − iωγ

,

with γ = 0, that is, no damping. Note that for 1/4 +
√
∆ < ω <

√
1/4 + 2

√
∆ the

dielectric permittivity of phase 2, ε2, is negative, and the group velocity as given by
(2) becomes purely imaginary. For these frequency modes the wave is being damped,
and we define the group velocity to be zero. We denote the center frequency of the
propagating pulse by ω0 and choose the volume fraction of the first material to be p =
p(ω0) =

√
ε2(ω0)/ε1(ω0) =

√
h. The effective dielectric permittivity of the composite

in the direction of the electric field (parallel to the layers) is ε∗ = pε1 + (1− p)ε2.
In the top plot of Figure 3 we show the group velocities as a function of ω0. The

group velocity is normalized by the speed of light c. The displayed frequency range is
close to the resonance frequency of the second material. The “nonpropagating” regime
corresponds to the frequencies at which the group velocity of phase 2, shown with the
dashed line, is zero. We let ∆ = 10−3 and thus are doping phase 2 with a material
which has a high dielectric permittivity and low dispersion. The group velocity of
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phase 1 is shown with a dotted line. The bottom plot shows the actual speed-up as a
function of ω0. The dashed line is the bound for the speed-up in the small h limit, that
is, 1/(2h1/4). Recall that h is the ratio of the dielectric permittivity of the phases.
For the models we use h = O(

√
∆). The figure shows that when the group velocities

of the phases coincide, the realized speed-up approximately equals the bound. If
the group velocity depends sensitively on ω0, the material is dispersive. From the
figure we see that a large speed-up is obtained by combining one phase with a large
dielectric permittivity and low dispersion with another phase that has a relatively
low dielectric permittivity and relatively high dispersion. The composite can then be
made to exhibit a comparatively low dielectric permittivity and low dispersion and
hence a large group velocity.

Next, we examine the dispersion and actual shape of a pulse transmitted, respec-
tively, through the phases and the composite. We let the halfspace x > 0 be occupied
by the dielectric medium. A wave pulse v(x, t) is impinging upon the medium at
x = 0, arriving from the vacuous halfspace x < 0. We let the impinging pulse or wave
packet traveling in the positive x-direction be defined by

v(0, t) = e−t2/(2T 2) cos(ω0t),(16)

with T the temporal support of the initial pulse. Thus, the pulse is a (Gaussian)
amplitude modulated cosine wave. Its speed of propagation is approximately the
group velocity evaluated at the “center frequency” ω0. Our objective is to characterize
the way in which the pulse is being degraded by dispersion as it propagates into the
medium. We normalize by the speed of light in a vacuum through the change of
variables:

ω0 =
ω0

c
,(17)

z = tc,

u(x, z) = v
(
x,

z

c

)
.

The Fourier transformed pulse

û(x, ω) =
1√
2π

∫ ∞

−∞
u(x, z)eiωzdz

solves

∂2û

∂x2
+ εω2û = 0.(18)

Using (16) and (18), we find that the transmitted pulse is

u(x, z) =
1√
2π

∫ ∞

−∞
A(ω)eik(ω)x−iωzdω,(19)

with k(ω) = ω
√

ε(ω), ε the dielectric permittivity of the medium, and

A(ω) =
L

2

[
e−L2(ω−ω0)

2/2 + e−L2(ω+ω0)
2/2

]
=

1√
2π

∫ ∞

−∞
u(0, z)eiωzdz,

L = cT.
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We center in the normalized time coordinate according to the “travel time” as defined
by the group velocity vg, introducing new coordinates

d =
x

L
, τ =

z − x
vg

L
,

and we seek an expression for the transmitted pulse in these coordinates:

UL(d, τ) ≡ u

(
Ld,L

(
τ +

d

vg

))
.

In this section we normalize the group velocity with respect to the speed of light in a
vacuum: vg ≡ [dω/dk]0 = 1/k

′
(ω0). From (19) it then follows that

UL(d, τ) = �[eiLd(k(ω0)−ω0k
′
(ω0))e−iω0Lτw(d, τ)],(20)

with

w(d, τ) ≡ 1√
2π

∫ ∞

−∞
e−s2/2eiLκ(s/L)de−isτds,(21)

κ(ω) ≡ k(ω + ω0)− k(ω0)− k
′
(ω0)ω.

Here we expand the wave number k around the center frequency ω0. If the medium
is nondispersive, then k is linear in ω and κ ≡ 0; thus

w(d, τ) = e−τ2/2,

which is the initial pulse envelope. However, in general the material is dispersive,
κ �= 0, and this implies a gradual smearing of the envelope. We discuss next a
measure for dispersion. Note that

eiLκ(s/L)d = eid([k
′′

]0s
2/(2L)+[k

′′′
]0s

3/(6L2)+···);(22)

hence, we let the quantity

D ≡ |k′′ |0 =
∣∣∣∣d2k(ω0)

dω2

∣∣∣∣ = v−3
g |ω′′ |0(23)

define dispersion. Observe that, if

T � Tmin ≡ 1

c

[
k

′′′

k′′

]
0

,(24)

then the third order term in the Taylor series in (22) will be dominated by the dis-
persion term. Note also that since the slowness is

s ≡ 1

vg
= [k

′
]0 =

[
d(ωn)

dω

]
0

,

with n =
√
ε being the index of refraction, we can write

D = |k′′ |0 =
∣∣∣∣ dsdω

∣∣∣∣
0

=

∣∣∣∣2dn(ω0)

dω
+ ω0

d2n(ω0)

dω2

∣∣∣∣ .
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Fig. 4. The top, middle, and bottom plots show the transmitted pulse shapes for three propaga-
tion distances. The top plot corresponds to the composite, which exhibits a smaller dispersion than
phase 2 (bottom plot) but somewhat larger than phase 1 (middle plot).

Let L denote the propagation length at which the initial support of the pulse has
approximately doubled due to dispersive effects. This length depends on the disper-
sion, and we seek an expression for it. The initial temporal width of the pulse is
approximately T , and therefore the support of A(ω) in (19) is about ∆ω = 1/(cT ).
Thus, the variation in the slowness over the relevant frequencies is approximately

∆s = |k′′ |0∆ω =
D
cT

.

The pulse has approximately doubled its support when x ≈ L with L∆s = cT , or

L =
c2T 2

D =
L2

D .(25)

Note that in untransformed coordinates

d2k(ω0)

dω2 =
D
c2

≡ D

and L = T 2/D. If the initial spatial support of the pulse ∆x = vgcT is fixed, then
v2
gD becomes the measure that determines the penetration depth.

For the model (14) with ω0 = 1/2 we find that for phase 1, 2, and the composite
this measure L of “penetration depth” is, respectively, O(∆1/2), O(∆), and O(∆3/4).
This implies that this dispersion measure for the composite is in between those of the
phases.

In order to examine more closely the transformation in pulse shape, we next
illustrate it with a numerical wave propagation example. The pulse UL(d, ·) in (20)
consists of rapid oscillations on the scale 1/(ω0L) with amplitude or envelope defined
by |w(d, ·)|. In Figure 4 we show the transmitted temporal pulse shape as defined
by the envelope |w(d, ·)|. We use ∆ = 10−3, L = 103m, d ∈ {10, 100, 1000}, and a
center frequency ω0 = .5605m−1. This center frequency corresponds to the maximum
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Fig. 5. The top plot in the figure shows the group velocities and the bottom plot the dispersion
for, respectively, the composite (solid line), phase 1 (dotted line), and phase 2 (dashed line). Note
that the group velocity of the composite is larger and the dispersion smaller than the corresponding
values for the individual phases.

speed-up seen in Figure 3, which is ≈ 7!. The calculations were carried out in Matlab
on a Sun work-station and involve using the fast Fourier transform (FFT) to compute
|w(d, ·)|. The envelopes are plotted as functions of τ (on a linear scale) and are in the
plot centered according to d. Note that the speed of propagation is well described by
the group velocity; moreover, note that the dispersion in the composite is in between
those in the phases.

Next we show that we can, in fact, construct a composite having a group velocity
that is larger than that of either phase and in addition having a smaller dispersion than
both phases! We accomplish this task by a slight modification of the parameters in the
above example. First, we move the center frequency further away from the resonance
frequency of phase 2: ω0 = 0.6m−1. Second, we shift the resonance frequency of phase
1 somewhat closer to ω0:

ε1(ω) = 1 +
∆−1

3/4− ω2
.(26)

We use the same phase 2 and the same layered geometry for the composite as above,
and for the volume fraction of phase 1 we use p = p(∆) =

√
∆. The solid line in the

top plot of Figure 5 shows the resulting group velocity for the composite as a function
of the (small) parameter ∆. The dotted and dashed lines give the group velocities for
phases 1 and 2, respectively. Recall that we define the group velocity relative to the
speed of light. In the bottom plot we graph the corresponding dispersion measure D.
The figure shows that for a certain regime of ∆ values we have indeed constructed
a composite having increased group velocity and a substantially reduced dispersion
relative to the constituents.

Next, we confirm this by numerical wave propagation. We use L = 103m and
d ∈ {0.1, 1, 100}. We choose the small parameter ∆ = 2.8×10−3 and let ω0 = 0.6m−1.
Figure 6 shows the transmitted pulses. With the chosen parameters, the group velocity
of the composite is approximately twice the group velocity of phase 2, and four times
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Fig. 6. The figure plots the transmitted pulses in the composite (top plot) and phase 1 (middle
plot) and 2 (bottom plot) for three travel-lengths. The group velocity is largest in the composite;
still, the pulse is subject to the smallest dispersion here.
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Fig. 7. The solid line is the penetration depth of a pulse traveling in the composite, as a
function of the initial pulse support. The dotted and dashed lines are the penetration depths for the
two phases; these are significantly smaller than for the composite.

that of phase 1; see Figure 5. Despite this, we see that the degradation of the traveling
pulse is much greater in the individual phases. This is particularily the case for the
pulse traveling in phase 2, the relatively faster constituent.

In (25) we define the “penetration depth,” L, of a pulse. This quantity depends
on the dispersion of the medium and the temporal support of the initial pulse. In
Figure 7 we plot L as a function of the initial pulse support T , both for the composite
at hand and for the pure phases. We do this for for the initial support T > Tmin, with
Tmin being defined in (24). The figure shows that the penetration depth is strongly
enhanced by combining the two phases in the way discussed above, a way that also
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enhances the group velocity.

3.3. Analysis for anisotropic media. In this section we derive the bound (8)
for the group velocity. Thus, we consider a dielectric composite with two isotropic
phases when there are no constraints on the volume fraction nor on the geometry of
the composite.

From (2) and (4) it follows that the group velocity of the composite can be
expressed as

vg(ω0) =
c√

ε∗(ω0) +
ω0

2
√

ε∗(ω0)

dε∗(ω0)
dω0

,(27)

with c being the velocity of light, ε∗ the effective dielectric permittivity of the com-
posite, and ω0 the center frequency of the propagating pulse. The main idea behind
the derivation is to first bound dε∗/dω in terms of ε∗. This, together with the fact
that ε2 ≤ ε∗ ≤ ε1, can be used to bound vg in (27). We define

αi =
ω0

2εi(ω0)

dεi(ω0)

dω0
,

γ = α1 − α2,

β =
1 + α1

1 + α2
.

These quantities are determined by the parameters (6). Define, moreover, the param-
eters

α∗ =
ω0

2ε∗(ω0)

dε∗(ω0)

dω0
,

e∗ =
ε∗(ω0)

ε1(ω0)
,

which also depend on the volume fraction and the geometry of the composite. Below
we suppress the dependence on ω0. It is convenient to derive the bounds on the group
velocity in terms of the scaled “slowness”:

s =
c

vg
√
ε1

=
√
e∗ +

α∗
√
e∗

,(28)

with h < e∗ ≤ 1. First, we seek a bound for α∗ in terms of ε∗. Since ε∗ is a
homogeneous function in ε1 and ε2, we find, using Euler’s theorem,

ε∗ = ε∗ε1ε1 + ε∗ε2ε2,

dε∗

dω
= ε∗ε1

dε1

dω
+ ε∗ε2

dε2

dω
,

where ε∗ε1 = ∂ε∗/∂ε1 and ε∗ε2 = ∂ε∗/∂ε2. From these relations it follows that

dε∗

dω
= ε∗ε1ε1

(
1

ε1

dε1

dω
− 1

ε2

dε2

dω

)
+ ε∗

1

ε2

dε2

dω
,

and hence also that

α∗ = ε∗ε1γ + e∗α2.
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Fig. 8. The area marked A in the figure gives an example of the set of possible values for α∗ as
a function of e∗. The dashed line represents the case with s̄ as the minimal value for the slowness
for the parameters chosen in this example. The line is tangential to the boundary of the marked set
at e∗ = ē∗.

Bounds for ε∗ε1 when the volume fraction is fixed are derived in [20] and listed in
(46). From these we find, by an argument similar to that presented in Appendix A
concerning the isotropic case, that the upper and lower bounds on ε∗ε1 for each possible
value of e∗ are

ε∗ε1 ≤ lI(e
∗) =

e∗ − h

1− h
,(29)

ε∗ε1 ≥ lII(e
∗) =

e∗(e∗ − h)

1− h
.

Thus, the set of possible α∗ values are enveloped by

αI(e
∗) = lI(e

∗)γ + e∗α2 =
e∗ − h

1− h
γ + e∗α2,(30)

αII(e
∗) = lII(e

∗)γ + e∗α2 =
e∗(e∗ − h)

1− h
γ + e∗α2.

The geometries giving the extremal values for ε∗ε1 correspond to wave propagation
in a laminated medium with the layers orthogonal or, respectively, parallel to the
direction of propagation. We let ε denote the relevant component of the dielectric
tensor. To get the upper bound for the group velocity, we minimize s = s(e∗, α∗)
subject to h ≤ e∗ ≤ 1 and αI(e

∗) ≤ α∗ ≤ αII(e
∗).

The bound for s is found via geometrical considerations; we next show how. Note
that the area marked A in Figure 8 gives an example of the set of possible values
for α∗ as a function of e∗. The plot corresponds to γ < 0. When we solve (28) with
respect to α∗, we find

α∗ =
√
e∗s− e∗.

Denote the minimum possible value of the slowness by s̄, and the associated value of
e∗ by ē∗. Then the curve

√
e∗s̄ − e∗ will either be tangential to the boundary of A

at e∗ = ē∗ or touch A at one of the two corners e∗ = h or e∗ = 1. In the latter case
the minimal slowness is achieved when the composite is one of the phases. Figure 8
shows an example for which a composite is optimal. The dashed curve in the figure is
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√
e∗s̄− e∗, with s̄ being the minimum slowness for the given parameters; the curve is

tangential to the boundary of the marked region for e∗ = ē∗. Note that if s > s̄, the
curve

√
e∗s− e∗ intersects the boundary for e∗ �= ē∗. Thus, if we define S = S(e∗) by

lI(e
∗)γ + e∗α2 =

√
e∗S(e∗)− e∗,(31)

then S(e∗) is minimum for e∗ = ē∗ and S(ē∗) = s̄. From (31) we therefore find

S
′
(ē∗)

1 + α2
=

d

de

[
(β − 1)lI(e) + e√

e

]∣∣∣∣
e=ē∗

= 0.(32)

When we carry out the differentiation in (32) and solve for ē∗, we find that ē∗ solves

β =
1 + α1

1 + α2
= 1− ē∗

2l
′
I(ē

∗)ē∗ − lI(ē∗)
=

h(ē∗ + 1)

ē∗ + h
.(33)

The resulting value of ē∗ lies in the interval h < e∗ < 1 only when

2h

1 + h
< β <

1 + h

2
,(34)

which is the condition for the bound on the speed-up G, as defined in (8) to be larger
than unity. This is the area outlined by the solid lines in Figure 2. Note that if γ > 0,
lI in (33) is replaced by lII . However, in this case (33) has no solution with β > 1
and h < ē∗ < 1.

Let s(h), s(1), and s(ē∗) denote the slownesses of, respectively, the pure phases
and the composite that minimizes the slowness; from (31) we then find

s(h)

1 + α2
=

√
h,(35)

s(1)

1 + α2
= β,

s(ē∗)
1 + α2

=

[
(β − 1)lI(ē

∗) + ē∗√
ē∗

]
.

The maximal speed-ups relative to the pure phases are

g1 =
s(1)

s(ē∗)
=

1 + ē∗

2
√
ē∗

,(36)

g2 =
s(h)

s(ē∗)
=

ē∗ + h

2
√
hē∗

.

From (33) and (36) we find the bound for G defined in (7):

G ≤ G(h, β) = min[g1, g2] =




(1−h)β

2
√

h(1−β)(β−h)
for 2h

1+h ≤ β ≤ √
h,

1−h

2
√

(1−β)(β−h)
for

√
h ≤ β ≤ 1+h

2 ,

1 otherwise,

as stated in (8). The maximum speed-up for a given h is

max
β

G(h, β) = G(h,
√
h) =

1 +
√
h

2h1/4
,

and then ē∗ =
√
h and p =

√
h/(1 +

√
h).
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3.4. Analysis of the two dimensional isotropic case. We adapt the analysis
of the previous section to a two dimensional isotropic medium. With the volume
fraction a free parameter, we seek upper bounds for the group velocity. First note
that the bounds for α∗ are as in (30), only with different bounds for ε∗ε1 , that is,
different lI and lII . In this case we have

αI(e
∗) = lI(e

∗)γ + e∗α2 =
(he∗ + 1)(e∗ − h)

1− h2
γ + e∗α2,(37)

αII(e
∗) = lII(e

∗)γ + e∗α2 =
(e∗)2 − h2

1− h2
γ + e∗α2.(38)

The bounds for ε∗ε1 follow by the argument presented in Appendix A, and they
correspond to cylinder assemblages realizing the two dimensional Hashin–Shtrikman
bounds [11]. The bound for the group velocity itself can now be found by a geometric
argument similar to that of the previous section. As above, the speed-up exceeds
unity only for γ < 0. Hence, the maximum group velocity is realized by composites
attaining the bound in (37). From (37) and (38) it follows that in this case the ana-
logue of the set marked A in Figure 8 is not convex. As we show in Appendix C,
this implies that G, the speed-up, exceeds unity only for h < e∗ < .432. Let ē∗ be
the effective dielectric permittivity for the composite associated with the maximum
speed-up. By an argument as in the previous section we find that ē∗ now solves

β = β(ē∗) =
3h(ē∗)2 + h

3h(ē∗)2 + (1− h2)ē∗ + h
.(39)

This defines the set of β values (β(.432), β(h)) that corresponds to the bound on the
group velocity exceeding unity. This set is marked by dots in Figure 2. Let g1 and g2

be the maximal speed-up relative to the two phases; then we find

g1(ē
∗) =

3(ē∗)2 + 1

2
√
ē∗((ē∗)2 + 1)

,(40)

g2(h, ē
∗) =

3h(ē∗)2 + (1− h2)ē∗ + h

2
√
hē∗((ē∗)2 + 1)

,

and g1 = g2 for ē∗ solving

ē∗ =
c(h)−√

c(h)2 − 12

6
≡ f(h),

c(h) =
(1 + h)(1 +

√
h)√

h
.

Moreover, dg1/dē
∗ = 0 for ē∗ ∈ {±1,±1/√3}, and dg2/dē

∗ = 0 for ē∗ ∈ {±1/√3, h,
−1/h}. From this it follows that G2 in (13) is

G2(h, β) =




g1(e(β)) for β(.432) ≤ β ≤ β(f(h)),
g2(h, e(β)) for β(f(h)) ≤ β ≤ β(h),
1 otherwise,

(41)

with e(·) being the smaller of the roots of (39) when solved with respect to ē∗, and
β(·) being defined by (39). The maximum speed-up is obtained with β = β(f(h)).
For h small we find

max
β

G(h, β) ∼ G(h,
√
h) ∼ 1

2h1/4
;

then ē∗ ∼ √
h and p ∼ 2

√
h.
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3.5. Analysis of the three dimensional isotropic case. The analysis of the
three dimensional case follows the same steps as those presented above for a two
dimensional medium. We summarize the modifications of the involved expressions.
The bounds for α∗ are

αI = lI(e
∗)γ + e∗α2 =

(e∗ − h)(e∗h+ 2)

(1− h)(2 + h)
γ + e∗α2,(42)

αII = lII(e
∗)γ + e∗α2 =

(e∗ − h)(e∗ + 2h)

(1− h)(1 + 2h)
γ + e∗α2.

The bounds correspond to sphere assemblages realizing the three dimensional Hashin–
Shtrikman bounds [11]. We derive the bounds for ε∗ε1 in Appendix A, based on those
presented in [2] for the fixed volume case. In this case G3, the speed-up, exceeds
unity only for h < e∗ < .756 and γ < 0; see Appendix C. Denote by ē∗ the effective
dielectric permittivity for the composite with maximal group velocity; then

β = β(ē∗) =
3h(ē∗)2 + hē∗ + 2h

3h(ē∗)2 + (2− h2)ē∗ + 2h
,(43)

with h < ē∗ < .756. The maximal speed-ups relative to the pure phases are

g1(ē
∗) =

3(ē∗)2 + ē∗ + 2√
ē∗2((ē∗)2 + 2)

,

g2(h, ē
∗) =

3h(ē∗)2 + (2− h2)ē∗ + 2h

2
√
hē∗((ē∗)2 + 2)

,

with dg1/dē
∗ = 0 for ē∗ ∈ {−2,±√

2/3, 1}, and dg2/dē
∗ = 0 for ē∗ ∈ {±√

2/3, h,
−2/h}. We find that g1 = g2 for ē∗ solving

ē∗ =
c(h)−√

c(h)2 − 24

6
≡ f(h),

c(h) =
h3/2 + h+

√
h+ 2√

h
.

From this it follows that G3 in (13) is

G3(h, β) =




g1(e(β)) for β(.756) ≤ β ≤ β(f(h)),
g2(h, e(β)) for β(f(h)) ≤ β ≤ β(h),
1 otherwise,

(44)

with e(·) being the smaller of the roots of (43) when solved with respect to ē∗, and
β(·) being defined by (43). The maximum speed-up is obtained for β = β(f(h)). For
h small we find

max
β

G(h, β) ∼ G(h,
√
h) ∼ 1

2h1/4
,

and then ē∗ ∼ √
h and p ∼ 3

√
h/2.

4. Upper bound with a fixed volume fraction. So far we have derived
bounds for the group velocity when the volume fraction is considered as a free param-
eter. We chose the volume fraction to obtain a maximum speed-up for the composite.
In this section we derive bounds for the speed-up of the composite when the volume
fraction is fixed. In this case the speed-up is defined relative to those geometries that
are associated with the upper and lower bounds for the dielectric permittivity of the
composite for the given volume fraction.
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4.1. Anisotropic media. We present first the bounds in the general anisotropic
case. The two isotropic constituents of the composite are defined by (6) as before.
Define the scaled slowness of the composite as in (28):

s =
c

vg
√
ε1

=
√
e∗ +

α∗
√
e∗

.

The bounds for e∗ in this expression are

e∗ ≥ h1(p, h) =
h

ph+ (1− p)
,(45)

e∗ ≤ h2(p, h) = p+ (1− p)h,

with p being the volume fraction of phase 1. These extremal values for e∗ correspond
to a laminated composite with lamination parallel (h1), respectively orthogonal, to the
direction of propagation. Let the set of realizable values for the dispersion parameter
α∗ be enveloped by αI and αII as in (30):

αI(e
∗) = lI(e

∗)γ + e∗α2,

αII(e
∗) = lII(e

∗)γ + e∗α2.

In this case with the volume fraction fixed, lI and lII , the bounds for ε
∗
ε1 , are given by

lI(e
∗) = e∗ − h

1− p

(
1− e∗

1− h

)2

,(46)

lII(e
∗) =

1

p

(
e∗ − h

1− h

)2

.

These bounds are derived in [20]. The set enveloped by αI and αII , the analogue
of the set marked A in Figure 8, is therefore convex and lens-shaped. The analysis
can now proceed as above. Again we need γ < 0, and now the relative dispersion
parameter β that corresponds to a maximum speed-up with e∗ = ē∗ is

β =
1 + α1

1 + α2
= 1− ē∗

2l
′
I(ē

∗)ē∗ − lI(ē∗)
(47)

= 1− ē∗

a(1 + 2ē∗ − 3(ē∗)2) + ē∗
,

where

a =
h

(1− p)(1− h)2
.

From (45) and (47), the set of values for the parameters β and h that are associated
with a positive speed-up can be found. We show this set for three different values of
p in Figure 9.

We next find the bounds for the speed-up that derives from the “optimal” com-
posite with e∗ = ē∗. The speed-up is defined relative to the composites corresponding
to the bounds for e∗ in (45). Thus, we do not define the speed-ups by comparison with
the pure phases as above, but instead by comparison with the laminate geometries.
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Fig. 9. The figure shows the range of β and h values that, for a given volume fraction, is
associated with a maximal speed-up relative to the laminated geometries exceeding unity. The sets
are those enveloped by the solid, dashed, and dotted lines, corresponding to p = .99, .5, and .01,
respectively.

With β chosen as in (47), denote by gi the resulting maximal speed-up relative to the
composite with e∗ = hi(p, h). Then

gi =

√
hi

ē∗

[
1 + ē∗(hi + h−1

i )− 3(ē∗)2

2(1− (ē∗)2)

]
.(48)

Large speed-ups are obtained for small values of h. In this regime it follows from (45),
(47), and (48) that the speed-up is bounded as follows.

Lemma 4.1. Under assumptions (i)–(iv) stated above,

G ≤ max
β

G(h, β, p) ∼




1
2h1/4 [p(1− p)]1/4 for h = o(1) � p � 1,
1+

√
K+1

2(K+1)1/4 for p = Kh = o(1),

1 for p � h = o(1),

(49)

with G = mini[gi].
In Figure 10 we show the maximal speed-up maxβ G as a function of p and h.

The solid lines correspond to the exact bounds, and the dashed lines to the approxi-
mation (49).

The bound (49) for the speed-up as we have defined it in this section is close to
the bound (11). In (11) the speed-up is defined to be relative to the pure phases, and
we optimize also with respect to the volume fraction. Next, we look at the possible
speed-up when we constrain the volume fraction but define the speed-up to be relative
to the pure phases. We ask the question: If material i is doped with the other phase
such that pi ≥ 1 − p̄, where p̄ is a small parameter which constrains the maximum
amount of doping material used, what is the possible speed-up for the composite
relative to phase i, v∗/vi? Recall that pi is the volume fraction of material i. By a
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Fig. 10. The figure shows the optimal speed-up for a given value of the volume fraction of
material one, as a function of this volume fraction and for h ∈ {10−10, 10−8, 10−5}, with the
largest speed-up corresponding to the smallest h-value. Note that the speed-up is relative to the
laminated geometries corresponding to extremal values for the effective dielectric permittivity. The
bottom plot shows the corresponding optimal value for the relative dispersion parameter β.

modification of the above analysis, we find that the speed-up is then bounded by

G ≤
√
p̄√
h
.(50)

Note a higher rate of the speed-up here with respect to h than in (11) and (49). The
higher rate is obtained since we compare only with the doped phase rather than with
both constituents. The bounds correspond to laminated geometries with pi = 1− p̄.

4.2. Isotropic media. In this section we consider the group velocity of a dielec-
tric composite when the volume fraction is known and fixed and when, in addition,
we constrain the composite to be isotropic.

In the isotropic fixed volume case, Axell [2] derives the bounds

ε∗ε1 ≤ −c
(d)
3 + c

(d)
4 e∗ − c

(d)
5 (e∗)2 = l

(d)
I (e∗),(51)

ε∗ε1 ≥ c
(d)
0 − c

(d)
1 e∗ + c

(d)
2 (e∗)2 = l

(d)
II (e

∗),

with c
(d)
j = c

(d)
j (h, p) > 0 being listed in Appendix D. The superscript d ∈ {2, 3}

denotes the space dimension. In two space dimensions the bounds (51) are realized
by a composite defined in terms of doubly coated cylinders [15]. In three space
dimensions the bound lI derives from Bergman’s bound [4] for e∗. This bound may
or may not be optimal. It has been shown to be attained for five different values of
e∗ corresponding to five different geometries; see, for example, [1]. The bound lII is
realized by a geometry defined in terms of doubly coated spheres [1] but does not play
a role in what follows. Using (51) in (30) gives the appropriate bounds for α∗, and
the analysis can proceed as before. Now h

(d)
1 (h, p) ≤ e∗ ≤ h

(d)
2 (h, p), with hi being the
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(normalized) Hashin–Shtrikman bounds [11], which are given in Appendix D. The
set defined by the bounds for α∗ is convex and lens-shaped. As before, no relative
speed-up is possible for γ > 0; see Appendix B. With γ < 0 we find that the maximal
speed-up is characterized by

β(ē∗) = 1− ē∗

c
(d)
3 + c

(d)
4 ē∗ − 3c

(d)
5 (ē∗)2

,

which with h
(d)
1 (h, p) ≤ ē∗ ≤ h

(d)
2 (h, p) determines the range of values of β for which

G > 1. The maximal speed-ups relative to the sphere assemblages associated with the

Hashin–Shtrikman bounds, gi = s(h
(d)
i )/s(ē∗), are now

gi =

√
h

(d)
i

(
c
(d)
3 + ē∗

(
c
(d)
3 /h

(d)
i + c

(d)
5 h

(d)
i

)
− 3c

(d)
5 (ē∗)2

)
2
√
ē∗

(
c
(d)
3 − c

(d)
5 (ē∗)2

) ,(52)

with h
(d)
1 (h, p) ≤ ē∗ ≤ h

(d)
2 (h, p) and gi the speed-up relative to the sphere assemblage

associated with h
(d)
i .

As above, large speed-ups are obtained for h small. We find the following result
for the maximal speed-up.

Lemma 4.2. Under assumptions (i)–(iv) stated above,

max
β

Gd(h, β, p) ∼ 1

2h1/4
[p(1− p)]1/4

[
d− 1

(d− p)(1 + p(d− 1))

]1/4

as h ↓ 0.(53)

These bounds are only slightly (≈ 10%) smaller than those of the anisotropic case
given in (49).

5. A lower bound on the group velocity.

5.1. Results. In this section we present a lower bound for the group velocity for
one dimensional wave propagation in the dielectric composite. The bounds presented
here concern general anisotropic media. Tight bounds for an isotropic medium can
be obtained by modifications analogous to those in section 3.4.

The composite is defined as before, as a dielectric composite with two isotropic
phases. The two isotropic phases are characterized by the parameters (6). Let
{v1, v2, v∗} be the group velocities for, respectively, the phases and the composite,
and define

J = min

[
v1

v∗
,
v2

v∗

]
.

The lower bound for the group velocity is obtained by maximizing this quantity with
respect to the geometry of the composite and the volume fraction. We find that the
bound for the slow-down is characterized by the following.

Theorem 5.1. Under assumptions (i)–(iv) stated above,

J ≤ J (h, β) =




2(1−hβ)3/2

3
√

3(1−β)h(1−h)
for max[0, 3h−1

2h ] ≤ β ≤ √
h,

2(1−hβ)3/2

3
√

3(1−β)(1−h)β
for

√
h ≤ β ≤ 2

3−h ,

1 otherwise.

(54)
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Fig. 11. The figure shows the optimal slow-down as a function of β for a range of values of
h. The set of solid lines corresponds to h ∈ {10−9, 10−7, 10−5, 10−3, 10−1}, with the largest
slow-downs being obtained for small h values.

h and β are defined in (9), and the wave is polarized so that its electric field
is directed normal to the layers. The bound is again realized by propagation in a
laminated medium, but now with lamination parallel to the direction of propagation,
and we need γ < 0. The bound, when maximized also with respect to the value of β,
becomes

max
β

J (h, β) = J (h,
√
h)(55)

=
2(1 +

√
h+ h)3/2√

h(1 +
√
h)33/2

∼ 2

33/2
√
h
=

vp,2/vp,1
33/2/2

as h ↓ 0.

At the maximal slow-down, p ∼ 1 − 2h and v1 = v2. Note that a large slow-down
can be obtained for h small; then the volume fraction p for the “optimal” composite
is close to unity. Thus, contrary to the maximal speed-up case, a large slow-down is
obtained when material one is doped with material two, rather than vice versa.

In Figure 11 we plot J (h, β) for a range of parameter values. Large slow-downs
are obtained when h is small and β is close to zero. This corresponds to the dielectric
permittivity of material two’s being much smaller than that of material one; moreover,
it implies that the relative dispersion in material two is much larger than the relative
dispersion in material one.

5.2. Illustration. The above results suggest how to construct a composite such
that its group velocity is small relative to that of the phases. To accomplish this task
we can use the same phases as in section 3.2. We again discuss the anisotropic case.
To obtain a large reduction in the group velocity, we now let the medium be laminated
with its layers orthogonal to the electric field, i.e., with the direction of propagation
parallel to the layers. Recall that the phases are defined by the Lorentzian models

ε1(ω) = 1 +
∆−1

5/4− ω2
,

ε2(ω) = 1 +

√
∆

1/4 +
√
∆− ω2

.

In this case we choose the volume fraction of phase 1 to be p = 1 − 2h = 1 −
2(ε2(ω0)/ε1(ω0)), and we use ∆ = 10−3. The effective dielectric permittivity of the
composite is

1

ε∗
=

p

ε1
+

1− p

ε2
.
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Fig. 12. The top plot shows the group velocities as a function of the center frequency for
a composite of materials defined by the Lorentzian model. The dotted, dashed, and solid lines
correspond, respectively, to materials one, two, and the composite. In the bottom plot we show
the slow-down of the composite relative to the phases. The dashed line is the upper bound on the
slow-down for the given ratio of the dielectric permittivities.

The top plot in Figure 12 shows the group velocity for the pure phases and the
composite. We show the group velocity as a function of the center frequency of the
pulse ω0. The displayed frequency range is close to the resonance frequency of phase
2. The bottom plot shows the actual slow-down for the composite relative to both of
the phases. Note that by combining the same phases as in section 3.2 we are able to
construct a composite with a comparatively small group velocity. Moreover, note that
the realized slow-down is approximately equal to the bound when the group velocities
of the phases coincide. For ω0 ≈ 0.5605 the realized slow-down is approximately 80!.

5.3. Outline of the analysis. The derivation of the lower bound is but a slight
modification of the analysis presented in section 3.3. Now we seek an upper bound for

s =
c

vgε1
=

√
e∗ +

α∗
√
e∗

,(56)

with h < e∗ ≤ 1 and α∗ restricted to a set as shown in Figure 8. It is easy to show
that the slow-down J exceeds unity only for γ < 0 and that in this case

β = β(ē∗) =
3ē∗ − 1

3ē∗ − h
,(57)

with ē∗ being the value of the effective dielectric permittivity of the composite that
corresponds to the maximal slow-down. Now ē∗ lies in the range max[1/3, h] < ē∗ < 1.
From (57) it follows that J > 1 for

max

[
0,

3h− 1

2h

]
< β <

2

3− h
.(58)

Let g−1
i = vi/v

∗; then, using (57), we find

g−1
1 =

2(ē∗)3/2

3ē∗ − 1
,(59)
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g−1
2 =

2(ē∗)3/2√
h(3e∗ − h)

,

and

J ≤ J (h, β) =




2(1−hβ)3/2

3
√

3(1−β)h(1−h)
for max[0, 3h−1

2h ] ≤ β ≤ √
h,

2(1−hβ)3/2

3
√

3(1−β)(1−h)β
for

√
h ≤ β ≤ 2

3−h ,

1 otherwise,

as stated in (54). Moreover, we find that

max
β

J (h, β) ≤ J (h,
√
h) =

2(1 +
√
h+ h)3/2√

h(1 +
√
h)33/2

at this optimum ē∗ = (1 +
√
h+ h)/3, and the volume fraction is

p =
1 +

√
h− 2h

(1− h)(1 +
√
h+ h)

∼ 1− 2h as h ↓ 0.

Appendix A. Bounds for εε1 in the isotropic case. We seek bounds for ε∗ε1
in the two (d = 2) and three (d = 3) dimensional isotropic cases. For a fixed volume
fraction, (51) gives

ε∗ε1 ≤ l
(d)
I (e∗; p),(60)

ε∗ε1 ≥ l
(d)
II (e

∗; p),(61)

with h
(d)
1 (h, p) < e∗ < h

(d)
2 (h, p) and h

(d)
i the Hashin–Shtrikman bounds (68). We

seek expressions for the boundary of the union of the lens-shaped regions enveloped

by l
(d)
I and l

(d)
II when the union is taken with respect to the volume fraction. As we

show, the boundary curves are those traced out by the endpoints of the lens-shaped

regions, that is, l
(d)
I (e∗; p(d)

i (e∗)), with p
(d)
i (e∗) obtained by solving (68) with respect

to p for a given e∗ that attains the Hashin–Shtrikman bound. The lower envelope is

defined by l
(d)
I (e∗; p(d)

1 (e∗)). Note that the bounds h
(d)
i in (68) are monotonic in p.

It then follows by a geometric argument that the envelopes are defined in the way
described if

∂l
(d)
I (e∗; p)
∂p

< 0 for p > p
(d)
2 (e∗),(62)

∂l
(d)
II (e

∗; p)
∂p

< 0.(63)

Consider the three dimensional case and (62). We find

∂l
(3)
I (e∗; p)
∂p

(1− h)3

3h
= −∂{[(p+ (1− p)h− e∗)2]/(p(1− p))}

∂p

= − (1− e∗)2

(1− p)2
+

(e∗ − h)2

p2
≡ H(p, e∗).
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Note thatH(p, e∗) < 0 for p > (e∗−h)/(1−h). Since p
(3)
2 (e∗) = 3(e∗−h)/((1−h)(e∗+

2)), we have shown (62) for d = 3 and thus obtain the upper bound by substituting

the expression for p
(3)
2 (e∗) into (60). This gives

(e∗ − h)(e∗h+ 2)

(1− h)(2 + h)
,

which is the function denoted by lI in (42).
Next consider (63). This inequality follows since

∂l
(3)
II (e

∗; p)
∂p

(1− h)2(2 + h)

3(1 + h)
=

∂
{

(h−e∗)2

p

}
∂p

= − (h− e∗)2

p2
< 0.

Substituting the expression for p
(3)
1 (e∗) into (60), we thus get the lower bound

(e∗ − h)(e∗ + 2h)

(1− h)(1 + 2h)
,

denoted by lII in (42).
An analogous argument for d = 2 gives us the bounds used in (37) and (38).

Appendix B. A condition for speed-up. For the bound on the speed-up, G,
to exceed unity, we need γ < 0. We show this for an isotropic composite with fixed
volume fraction. We find by an argument similar to the one in section 3.3 that γ > 0
and G > 1 imply that the ē∗ given by

1− β = − γ

1 + α2
=

ē∗

2l
′
II(ē

∗)ē∗ − lII(ē∗)

=
ē∗

3c
(d)
2 (ē∗)2 − c

(d)
1 ē∗ − c

(d)
0

(64)

must satisfy h
(d)
1 < ē∗ < h

(d)
2 , with h

(d)
i being the Hashin–Shtrikman bounds. The

c
(d)
j and h

(d)
j parameters are functions of h and p and are listed in Appendix D. As

above, d ∈ {2, 3} is the spatial dimension. By our assumptions, α2 > 0; hence γ > 0
implies 1−β < 0. However, as we show next, the expression in (64) is strictly positive

for h
(d)
1 < ē∗ < h

(d)
2 . Note first that g(·) defined by

ē∗

1− β
= − ē∗(1 + α2)

γ
= 3c

(d)
2 (ē∗)2 − c

(d)
1 ē∗ − c

(d)
0 ≡ g(ē∗)ē∗

is monotone and increasing. Thus we need only show that g(h
(d)
1 ) ≥ 0 to conclude

that G ≡ 1 if γ > 0. Consider the three dimensional case. We can write the Hashin–
Shtrikman bound as

h
(3)
1 = h(1 + b1),(65)

1

h
(3)
1

=
1

h
(1− b2),
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with

b1 ≡ 3p(1− h)

3h+ (1− p)(1− h)
,

b2 ≡ 3p(1− h)

3h+ (1 + 2p)(1− h)
.

Then we have

g
(
h

(3)
1

)(1− h)(2 + h)

h
= −6− 3b1 + 2b2 +

3(1 + h)

p(1− h)
(3b1 + b2)

> −6 + 3(1 + h)

p(1− h)
(2b1 + b2)

> −6 + 3

(
6

3h+ (1− p)(1− h)
+

3

3h+ (1 + 2p)(1− h)

)
> 0,

as we set out to show.
A similar argument applies to the two dimensional case.

Appendix C. Restriction on the effective dielectric permittivity ε∗.
Consider the effective dielectric permittivity associated with a maximum speed-up
ē∗. We show that in the isotropic case with the volume fraction a free parameter,
ē∗ ∈ (h, .342) for d = 2. A similar argument shows that ē∗ ∈ (h, .756) for d = 3.

We assume that γ < 0; only then do we have an actual speed-up of the composite
relative to both of the two constituents. When γ < 0, the curve corresponding to
the lower boundary of the set marked A in Figure 8, αI , has constant and negative
curvature and is given by (37):

αI(e
∗) = lI(e

∗)γ + e∗α2.

The dashed line in Figure 8 that characterizes the minimum slowness (s̄) is
√
e∗s̄− e∗(66)

and has a curvature that decreases monotonically with e∗. The curve may therefore
be tangential to the set A at e∗ = ē∗ and also intersect the lower boundary for some
e∗ with ē∗ < e∗ ≤ 1. Then we do not have a speed-up relative to the pure phases.
For a positive speed-up we need

s̄− 1 < αI(1) = α1.(67)

Next, we translate this constraint into a constraint on e∗. Let s(h) be the slowness of
phase 2. From (35) we get

s(h) =
√
h(1 + α2).

Recall that g2 is the speed-up relative to phase 2:

g2 =
s(h)

s̄
=

√
h(1 + α2)

s̄
.

The constraint (67) can thus be written

s̄ =

√
h(1 + α2)

g2
< (1 + α1)
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or

√
h <

1 + α1

1 + α2
g2 = βg2.

Using the expressions for β and g2 given in, respectively, (39) and (40), the above
inequality becomes

√
h <

3h(ē∗)2 + (1− h2)ē∗ + h

2
√
hē∗((ē∗)2 + 1)

3h(ē∗)2 + h

3h(ē∗)2 + (1− h2)ē∗ + h
.

Defining x ≡ √
ē∗, we find from this

2x5 − 3x4 + 2x− 1 = (x− 1)2(2x3 + x2 − 1) < 0.

Note that this equation is independent of the parameters of the problem, and the
appropriate root of 2x3 + x2 − 1 = 0 leads to ē∗ ≤ .432.

For d = 3 an analogous argument shows that in this case the appropriate root of
2x3 + x2 − 2 = 0 leads to ē∗ ≤ .756.

Appendix D. Some results used in the analysis. For reference we list some
bounds used above.

Hashin and Shtrikman [11] give bounds for the effective dielectric permittivity of
an isotropic dielectric composite, given the volume fraction and the dielectric permit-
tivities of the two isotropic phases. The bounds for e∗ = ε∗/ε1 are

e∗ ≥ h
(d)
1 (h, p) = h+

dph(1− h)

dh+ (1− p)(1− h)
,(68)

e∗ ≤ h
(d)
2 (h, p) = 1− d(1− p)(1− h)

d− p(1− h)
,

with h defined in (9), p being the volume fraction of phase 1, and d ∈ {2, 3} being
the spatial dimension.

Axell [2] gives bounds for ε∗ε1 for two and three dimensional isotropic composites
with two isotropic constituents. They are

ε∗ε1 ≥ c
(d)
0 − c

(d)
1 e∗ + c

(d)
2 (e∗)2,(69)

ε∗ε1 ≤ −c
(d)
3 + c

(d)
4 e∗ − c

(d)
5 (e∗)2,

with

c
(2)
0 = 2h2

p(1−h)2 + h2

1−h2 , c
(3)
0 = 3h2(1+h)

p(1−h)2(2+h) +
2h2

(1−h)(2+h) ,

c
(2)
1 = 4h

p(1−h)2 , c
(3)
1 = 6h(1+h)

p(1−h)2(2+h) +
h

(1−h)(2+h) ,

c
(2)
2 = 2

p(1−h)2 − 1
1−h2 , c

(3)
2 = 3(1+h)

p(1−h)2(2+h) − 1
(1−h)(2+h) ,

c
(2)
3 = 2h

(1−p)(1−h)2 − h
1−h2 , c

(3)
3 = h

(1−h) +
3h(p+(1−p)h)2

p(1−p)(1−h)3 ,

c
(2)
4 = 1 + 4h

(1−p)(1−h)2 , c
(3)
4 = 1

(1−h) +
6h(p+(1−p)h)
p(1−p)(1−h)3 ,

c
(2)
5 = 2h

(1−p)(1−h)2 + h
1−h2 , c

(3)
5 = 3h

p(1−p)(1−h)3 .
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