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Abstract

We analyze stochastic volatility effects in the context of the bond

market. The short rate model is of Vasicek type and the focus of our

analysis is the effect of multiple scale variations in the volatility of

this model. Using a combined singular-regular perturbation approach

we can identify a parsimonious representation of multiscale stochastic

volatility effects. The results are illustrated with numerical simulations.

We also present a framework for model calibration and look at the con-

nection to defaultable bonds.
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1 Introduction

In this paper we illustrate the role of stochastic volatility in the case of interest
rate markets. Our main example is the pricing of zero-coupon bonds when the
interest rate is defined in terms of a Vasicek model, as well as the pricing of
options on bonds. We use the singular perturbation framework set forth in
[7] and extend the results in [4] to the case where the volatility is driven by a
slow process in addition to the fast considered there.

The fact that zero-coupon bonds are parameterized by two time indices
(the time at which the contract begins, and the maturity date) means that
arbitrage restrictions across different maturities have to be taken into account.
Also, note that options on bonds can be written on an infinite number of bonds
indexed by their different maturity date and each bond cannot be treated inde-
pendently, for bonds of different maturities are correlated. The most important
difference between the classic Black-Scholes scenario and interest rate markets
is the fact that the short rate is not the price of a traded asset.

The main building block to price many other financial instruments in inter-
est rate markets is the zero-coupon bond. In Section 2 we show two different
approaches to price zero-coupon bonds. In the following section we review
briefly a class of models that have desirable properties in terms of modelling
interest rate markets, namely, the affine models for the short rate. We focus
then on one such model, the Vasicek model. In Section 4 we introduce stochas-
tic volatility in the Vasicek framework by letting the volatility be driven by
two stochastic processes that vary on two different time scales. In Section 5
we compute an asymptotic approximation to the bond price. This gives a par-
simonious representation that is useful for calibration purposes, as presented
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in Section 7. Finally, in Section 8, we discuss the connection to the case with
a defaultable bond.

2 Pricing Bonds

We define a zero-coupon bond with maturity T as a contract, subscribed at
the present time t, that guarantees the holder one dollar to be paid at time T
(with t ≤ T ). We begin by assuming that, under the subjective measure P,
the short rate follows the dynamics

drt = κ(t, rt)dt+ ϑ(t, rt)dWt, (1)

where Wt is a standard P-Brownian motion, and we assume that κ and ϑ are
continuous with respect to t, and such that they satisfy the usual conditions
for a strong solution. The money market account, Bt, is defined by

dBt = rtBt dt. (2)

No-arbitrage pricing consists in pricing a contingent claim (the derivative)
in terms of some underlying asset. In the Black-Scholes setting one typically
has two processes: one that represents the price of the risky asset (usually a
stock), and another one that represents the money market account.

In our case we also have two processes, rt and Bt, given by (1) and (2),
and it would seem natural to price the zero-coupon bond as a ”derivative of

the short rate”: that is, in order to compute the no-arbitrage price of the bond
we would like to find a replicating strategy, based on the money account and
some underlying asset, that gives $1 at time T . The problem is that equation
(1) does not represent the price of a traded asset. The only asset whose price
is given exogenously is the money account, so we do not have interesting ways
of forming replicating strategies (or even self-financing strategies).

We can get a better understanding of what the problem is if we try to
price a zero-coupon bond. This can be done in two different ways. One is
to form strategies with bonds of different maturities. But note that this is
quite different than what is done in the Black-Scholes case, where a typical
replicating strategy consists of holdings of the money account and of the un-
derlying risky asset: now our portfolio will contain holdings of two different

contingent claims, that is, of two derivatives (two bonds of different maturi-
ties), and maybe of the money account. If we consider the price process of one
of the bonds as given, then we could price the other bond relative to the given
benchmark bond.

The other way is to find an appropriate martingale measure that allows us
to compute the price according to the general theory of derivative pricing. A
zero-coupon bond can be considered as a contingent claim with payoff equal
to one. Hence, the bond price, P (t, T ), is given by

P (t, T ) = EQ[ e−
R

T

t
rsds · 1 |Ft ] = EQ[ e−

R

T

t
rsds |Ft ]. (3)
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where Ft is the filtration associated with the Brownian motion Wt. Note
however that we now need to know the equivalent martingale measure Q.

In the Black-Scholes case, the equivalent martingale measure was found in
the following way: if we assume that the price of the underlying asset, St, is
given by

dSt = µtStdt+ σtStdWt, (4)

where and µt and σt satisfy some appropriate conditions, then the new measure
Q was defined by the Radon-Nikodym derivative

dQ

dP
:= e−

R

T

0
θsdWs−

1
2

R

T

0
θ2
sds, (5)

with θt = (µt − rt)/σt. Note that θt, and therefore Q, are uniquely determined
by the given P-dynamics of the risky asset (µt and σt).

In our case the short rate dynamics is not enough to uniquely determine
the equivalent martingale measure.

2.1 The Term Structure Equation

In this section we recall standard arguments for obtaining the partial differen-
tial equation giving the price of a zero-coupon bond.

Assumption 2.1 We assume that the bond price depends on the short rate,

P (t, T ) = P (t, rt, T ).

We also assume, from now on, that P (t, x, T ) has continuous partial deriva-

tives up to second order with respect to the first two variables, and up to first

order with respect to T .

As we do not have a risky (underlying) asset, we form a portfolio with
bonds of two different maturities. In particular, we let our portfolio contain
θ1 bonds with maturity T1 and θ2 bonds with maturity T2. When no risk of
confusion with the time indices exists we will use the notation P1 = P (t, T1)
and P2 = P (t, T2) for the corresponding prices of the bonds. Applying Itô’s
formula we get

dP1 =
∂P1

∂t
dt+

∂P1

∂x
(κ dt+ ϑ dWt) +

1

2
ϑ2∂

2P1

∂x2
dt,

and the analogous equation for P2. If we let

µ1 =
1

P1

(
∂P1

∂t
+ κ

∂P1

∂x
+

1

2
ϑ2∂

2P1

∂x2

)
and σ1 =

ϑ

P1

∂P1

∂x
, (6)

we can then write the price dynamics of the T1-bond as

dP1 = µ1P1dt+ σ1P1dWt. (7)
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The analogous equation holds for the T2-bond. If we impose the condition that
our strategy has to be self-financing, and we choose our portfolio in such a way
that we eliminate the random part of the portfolio dynamics, then, by absence
of arbitrage, this portfolio must have a rate of return equal to the short rate.
This leads to a relationship between rt and the drift and volatility of bonds
of each maturity T (the details can be found in [2], Chapter 16). If we let µT

and σT have the analogous meaning as (6), but for an arbitrary maturity time
T , then we obtain the following result.

Proposition 2.2 If the bond market is arbitrage free, there exists a process λ
such that

µT (t) − rt

σT (t)
= λt (8)

holds for all t, and for every maturity time T . The process λ is known as the

market price of risk.

Proposition 2.2 may also be expressed like this: If the bond market is free

of arbitrage, bonds of all maturities must have the same market price of risk.

The dynamics of the bond price, PT = P (t, T ), is now given by

dPT = µT PT dt+ σT PT dWt.

If we substitute the expressions for µT and σT (which are given by (6) with
the subscript T ) in the last equation, we obtain

∂PT

∂t
+ κ

∂PT

∂x
+

1

2
ϑ2∂

2PT

∂x2
− rtPT = ϑλ

∂PT

∂x
.

As λ is independent of maturity we don’t need to keep track of T , so we let
P = PT . We now rearrange the last equation to obtain the following result.

Theorem 2.3 If the bond market is arbitrage free, the price of a bond of

maturity T is given by the boundary value problem

{
∂P
∂t

+ (κ− λϑ)∂P
∂x

+ 1
2
ϑ2 ∂2P

∂x2 − xP = 0

P (T, x, T ) = 1.
(9)

This partial differential equation is referred to as the term structure equation.

Note that now λ is not determined within the model: it is determined by the
market.

2.2 Probabilistic Representation of the Bond Price

We have seen earlier that the bond price could be computed as a conditional
expectation, but we did not know with respect to which measure. Proposi-
tion 2.2 shows how to construct the measure.
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Let P ⋆(t, T ) := e−
R

t

0 rsdsP (t, T ). An equivalent martingale measure Q is
said to be an equivalent martingale measure for the bond market if Q is equiv-
alent to P and the process P ⋆(t, T ) is a martingale under Q, for all maturities
T . Thus, we let T̄ denote the largest maturity and identify the measure Q by
the Radon-Nikodym derivative

dQ

dP
:= e−

R

T̄

0 λsdWs−
1
2

R

T̄

0 λ2
sds, (10)

where λt is given by (8). Then, restricted to FT we have

dQ

dP
:= e−

R

T

0 λsdWs−
1
2

R

T

0 λ2
sds.

Proposition 2.2 guarantees the existence of the quantity λ, as determined
by the market. Besides the condition imposed by Proposition 2.2, we assume
that λ is such that the process defined by

Zt := e−
R

t

0
λsdWs−

1
2

R

t

0
λ2

sds (11)

is a P-martingale. In practice, λ is frequently taken to be a constant.
If λ is such that (11) is a martingale, by Girsanov’s theorem it follows that

W̃t = Wt +
∫ t

0
λsds is a standard Q-Brownian motion. Under the new measure

Q, the dynamics of the short rate is given by

drt = (κ− λϑ)dt+ ϑdW̃t. (12)

3 Affine Models

3.1 General Case

In the literature there are many different models for the dynamics of the short
rate. The most popular ones are the so-called affine models, due to their pleas-
ing properties from analytical and computational points of view. These models
are characterized by the assumption that the short rate is an affine function
of a vector of unobserved state variables vt = (v1(t), ..., vN(t)). Specifically, it
is assumed that

rt = δ0 +

N∑

i=1

δivi(t),

where the vector vt follows an ”affine diffusion,”

dvt = α(vt)dt+ β(vt)dWt.

With the proper choice of α and β, corresponding to the affine family, one
obtains that the price at time t of a zero-coupon bond with maturity T can
be written as

P (t, T ) = eA(T−t)−B(T−t)⊤vt , (13)
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where A and B are obtained as solutions of a set of ordinary differential equa-
tions. The important point is that the yield curve of these models is affine in
the state variables, where we define the yield curve in (24) below.

3.2 The Vasicek Model

Among the affine class, one of the most popular ways of modelling the short
rate is the Vasicek model, in which the short rate is considered to be a Gaussian
process that satisfies the following stochastic differential equation

drt = a(r∞ − rt)dt+ σdWt,

where a, r∞ and σ are constants, and Wt is a standard Brownian motion. In
this case, the only state variable is the ”unobserved” short rate. The drawback
of this model is that, due to the Gaussian nature of the rt process, there is
a positive probability that the short rate is negative, which is unreasonable
from an economic point of view. Despite this drawback, the Vasicek model is
frequently used because it allows explicit computations and many results can
be obtained in closed form, making it easier to highlight the important points
of further analysis.

Our first goal is to price zero-coupon bonds. Following the analysis of the
previous section, we let Q be defined by

dQ

dP
:= e−λdWT − 1

2
λ2T ,

where we assume the market price of risk, λ, to be a constant. Under this
measure, the dynamics of the short rate is given by the Ornstein-Uhlenbeck
process

drt = a(r⋆ − rt)dt+ σdW̃t, (14)

where r⋆ = r∞ − λσ
a

, and W̃t = Wt + λt is a standard Q-Brownian motion.
Let BV (t, x;T, σ, r⋆) denote the Vasicek price at time t of a zero-coupon

bond with maturity T when rt = x. By Theorem 2.3, this no-arbitrage price
is determined by the term structure equation:

{
LV (σ, r⋆) BV = 0

BV (T, x;T, σ, r⋆) = 1,
(15)

where the Vasicek operator for the parameters σ and r⋆ is given by

LV (σ, r⋆) :=
∂

∂t
+

1

2
σ2 ∂

2

∂x2
+ a(r⋆ − x)

∂

∂x
− x · . (16)

Note that this operator depends on λ through r⋆ = r∞ − λσ
a

. Let τ = T − t
be the time to maturity. Trying a solution of the form

BV (t, x;T, σ, r⋆) = A(τ)e−B(τ)x, (17)
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we get that A and B satisfy the following ordinary differential equations

Ȧ

A
=

1

2
σ2B2 − ar⋆B, (18)

Ḃ = 1 − aB, (19)

with initial conditions A(0) = 1, and B(0) = 0 and where the dot means
differentiation with respect to τ Solving these differential equations we get
that

B(τ) =
1

a

(
1 − e−aτ

)
(20)

and

A(τ) = e−R∞τ+R∞
1
a
(1−e−aτ )− σ

2

4a3 (1−e−aτ )2 , (21)

where

R∞ = r⋆ − σ2

2a2
. (22)

Hence, the Vasicek bond price is given by

BV (t, rt;T, σ, r
⋆) = e

−
n

R∞τ + (rt−R∞)B + σ
2

4a
B2

o

. (23)

For fixed t, the graph of P (t, T ) as a function of T is called the bond price

curve at time t.

3.3 The Yield Curve

If at time t we buy a zero-coupon bond with maturity T , the continuously
compounded return on this investment, which we denote R(t, T ), is obtained
from

P (t, T ) e (T−t)R = 1.

This quantity R, which gives us the ”internal rate of return” of the bond, is
called the yield and it plays an important role in interest rate markets. At
time t one would be indifferent to buy the T -bond or to invest the amount
P (t, T ) during the period [t, T ] at the rate R(t, T ). If we keep t fixed and we
let maturity vary, we obtain very useful information about the interest rate
market, namely, we get an idea of what the market thinks about the future
evolution of interest rates.

The continuously compounded zero-coupon yield, R(t, T ), is given by

R(t, T ) = − logP (t, T )

T − t
. (24)

For fixed t, the graph of R(t, T ) is called the yield curve, or the term structure

at t.
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Figure 1: Bond price (top) and yield curve (bottom) for the Vasicek model. For

this example, a = 1, σ = 0.1, r⋆ = 0.1, R∞ = 0.095. The initial value of the short

rate is x = 0.05 for the solid line, and x = 0.15 for the dashed line.

The yield for the Vasicek model is given by

RV (t, T ) = R∞ + (rt − R∞)
B

T − t
+

σ2

4a

B2

T − t
, (25)

which is an affine function of the short rate rt. In Figure 1 we show the Vasicek
bond price (as a function of maturity) and the corresponding yield curve for
some specific values of the parameters. We can see how the mean reverting
property of the Ornstein-Uhlenbeck process brings the yield back to its long
term value, R∞.

4 The Vasicek Model with Stochastic Volatil-

ity

In the case of the Black-Scholes model, typical historical data of the standard
deviation of returns indicate that the volatility is not constant. The distribu-
tions of returns are not normal (they show fat tails), moreover, one can observe
a smile effect in the implied volatility and similarly for the bond market [1, 3].

Figure 2 shows two different paths of a non-constant volatility. In the top
figure the volatility is low (under 14%) for the first 17 years, and then it is high

for the rest of the time. In the bottom figure the volatility is high for several
months, and then low for a similar period. Then high again, and so forth. The
second path exhibits volatility clustering, the tendency of volatility to come in
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Figure 2: Volatility Paths. Top: Slow scale. Bottom: Fast scale.

rapid bursts. This burstiness is closely related to mean reversion. We want to
incorporate these type of volatility variations schematically in our modeling,
the analysis of such an extended model will inform us about the significance of
volatility heterogeneity and the shortcoming of the constant parameter model.
As we show below we can do so in a robust way, essentially, the presence of
such volatility time scales is what is important, not their detailed modelling.

We now introduce a stochastic volatility model as follows. Let

σt := f(Yt, Zt),

where f is a smooth bounded positive function, bounded away from zero, and
Yt and Zt are two diffusion processes that vary, respectively, on a fast time
scale and on a slow time scale. Under the subjective probability measure P,
the short rate follows the stochastic differential equation

drt = a(r∞ − rt)dt+ σtdW
0
t , (26)

where a and r∞ are constants, and W 0
t is a standard Brownian motion.

4.1 The Fast Scale Volatility Factor

We choose the first factor driving the volatility, Yt, to be a fast mean reverting

Ornstein-Uhlenbeck process

dYt = α(m− Yt)dt+ βdW 1
t , (27)
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where α, m and β are constants, and W 1
t is a standard Brownian motion whose

covariation with W 0
t is given by

d
[
W 0,W 1

]
t
= ρ1dt.

We assume ρ1 to be constant and |ρ1| < 1. The process {Yt}t≥0 is an ergodic
process whose invariant distribution is N(m, ν2), with ν2 = β2/2α. Under the
invariant distribution, the covariance is given by

E [(Yt −m)(Ys −m)] = ν2e−α|t−s|,

which shows that the exponential rate of decorrelation of {Yt} is α. Hence, 1/α
can be thought of as the typical correlation time. The parameter ν2 controls
the size of the fluctuations in the volatility associated with variations in Yt.
We assume that ν2 is constant and consider a regime of fast mean reversion
or α large (i.e., β = O(

√
α)). Increasing α and keeping ν fixed changes the

degree of burstiness of the volatility without affecting the magnitude of the
fluctuations. (See [7] for more details).

Define ǫ = 1/α. Then, the small parameter ǫ can be interpreted as the
mean reversion time of the volatility associated with fluctuations in Yt. The
asymptotic analysis that we introduce in Section 5.2 is then for the case ǫ ↓ 0,
with ν2 fixed, that is β = ν

√
2/ǫ.

4.2 The Slow Scale Volatility Factor

We choose the second factor, Zt, to follow the stochastic differential equation

dZt = δ c(Zt) dt+
√
δ g(Zt) dW

2
t , (28)

where δ is a small parameter, W 2
t is a standard Brownian motion, and we

assume that the functions c(·) and g(·) are smooth and at most linearly growing
at infinity. As the parameter δ is assumed to be small, this makes Zt vary on
a slow scale: namely, Zt varies on the O(1/δ) scale. Note that we now have
three relevant time scales:

(1) The O(1) scale, which is the time-to-maturity scale (T).

(2) The slow-scale or O(1/δ) scale, which is the characteristic time scale of
the process Zt. (T < 1

δ
)

(3) The fast-scale or O(ǫ) scale, which is the mean reversion time of the
process Yt. (ǫ < T )
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4.3 The Model under the Risk-Neutral Measure

The introduction of two new sources of randomness gives rise to a family of
equivalent martingale measures that will be parameterized by the market price
of risk, λ, and two market prices of volatility risk, which we denote by γ and
ξ, associated respectively with Yt and Zt. All these market prices are not
determined within the model, but are fixed exogenously by the market.

We now assume that these market prices of risk do not depend on the
short rate: that is, they have the form λ(Yt, Zt), γ(Yt, Zt) and ξ(Yt, Zt). We
also assume that λ, γ and ξ are smooth bounded functions.

We define the new equivalent martingale measure, Q, by

dQ

dP
= e−

R

T

0 Ht·dBt−
1
2

R

T

0 ‖Ht‖2dt,

where Ht = (λ(Yt, Zt), γ(Yt, Zt), ξ(Yt, Zt)) and Bt = (B0
t , B

1
t , B

2
t ). By Gir-

sanov’s Theorem, B⋆
t = Bt +

∫ t

0
Hsds is a Q-Brownian motion, with B⋆

t =
(B0∗

t , B
1⋆
t , B

2⋆
t ). We now define (W 0∗

t ,W 1⋆
t ,W 2⋆

t ) with the following correla-
tion structure:




W 0∗
t

W 1⋆
t

W 2⋆
t


 =




1 0 0

ρ1

√
1 − ρ2

1 0

ρ2 ρ̃12

√
1 − ρ2

2 − ρ̃2
12







B0∗
t

B1⋆
t

B2⋆
t


 , (29)

where we assume |ρ1| < 1 and ρ2
2 + ρ̃2

12 < 1. Note that with this structure
d[W 1,W 2]t = ρ12dt, with ρ12 := ρ1ρ2 + ρ̃12

√
1 − ρ2

1. Under the Risk-Neutral
Measure, our model is therefore:

drt = ( a(r∞ − rt) − λtft ) dt+ ft dW
0∗
t (30)

dYt =

(
1

ǫ
(m− Yt) −

1√
ǫ
Λt

)
dt+

1√
ǫ
dW 1⋆

t (31)

dZt =
(
δ c(Zt) −

√
δ g(Zt) Γt

)
dt+

√
δ g(Zt) dW

2⋆
t , (32)

where we have used λt for λ(Yt, Zt), and the analogous convention for γt, ξt,
ft, Λt and Γt, together with:

Λ(y, z) := ρ1 λ(y, z) + γ(y, z)
√

1 − ρ2
1, (33)

Γ(y, z) := ρ2 λ(y, z) + ρ̃12 γ(y, z) + ξ(y, z)
√

1 − ρ2
2 − ρ̃2

12. (34)

5 The Bond Price with Stochastic Volatility

In this section we present the asymptotic analysis for the bond price, and we
find an approximation to the price that accounts for stochastic volatility. In
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order to emphasize the dependence of the approximation on the small param-
eters ǫ and δ, we will denote the no-arbitrage Vasicek price of a zero-coupon
bond with maturity T by P ǫ,δ(t, x, y, z;T ). Using the probabilistic represen-
tation, this price is given by

P ǫ,δ(t, x, y, z;T ) = EQ

[
e−

R

T

t
rsds

∣∣ rt = x, Yt = y, Zt = z
]
. (35)

Because in the Vasicek model rt can take any negative value with positive
probability, the expectation in (35) is not trivially finite. One can prove that
the expectation is indeed finite by showing that rt and

∫ t

0
rs ds have exponential

moments, see [4, 6].

5.1 The Bond Price Expansion

An application of Feynman-Kac’s result to (35) shows that P ǫ,δ is a solution
of the following problem

{
Lǫ,δP ǫ,δ = 0

P ǫ,δ(T, x, y, z;T ) = 1,
(36)

where the operator Lǫ,δ is given by

L
ǫ,δ =

1

ǫ
L0 +

1√
ǫ
L1 + L2 +

√
δM1 + δM2 +

√
δ

ǫ
M3, (37)

with

L0 = (m− y)
∂

∂y
+ ν2 ∂

2

∂y2
(38)

L1 = ν
√

2

(
ρ1f(y, z)

∂2

∂x∂y
− Λ(y, z)

∂

∂y

)
(39)

L2 =
∂

∂t
+

1

2
f 2(y, z)

∂2

∂x2
+ (a(r∞ − x) − λ(y, z)f(y, z))

∂

∂x
− x · (40)

M1 = ρ2f(y, z)g(z)
∂2

∂x∂z
− g(z)Γ(y, z)

∂

∂z
(41)

M2 = c(z)
∂

∂z
+

1

2
g2(z)

∂2

∂z2
(42)

M3 = ν
√

2ρ12g(z)
∂2

∂y∂z
. (43)

Note that if we fix y and z, and we let σ = f(y, z) and r⋆ = r∞ − λ(y,z)f(y,z)
a

,
then we can write (40) as

L2 =
∂

∂t
+

1

2
σ2 ∂

2

∂x2
+ a(r⋆ − x)

∂

∂x
− x·,
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which is the Vasicek operator defined in (16). That is, L2 ≡ LV (σ, r⋆).
The small parameter ǫ gives rise to a singular perturbation problem. In the

limit when ǫ goes to zero, the leading problem becomes the Poisson equation
associated with the operator L0 rather than the Vasicek problem. The terms
associated only with the small parameter δ give rise to a regular perturbation
problem about the Vasicek operator L2. In the next sections we carry out the
combined regular and singular perturbation expansion.

In order to carry out the asymptotic analysis, we begin writing P ǫ,δ in
powers of

√
δ:

P ǫ,δ = P ǫ
0 +

√
δP ǫ

1 + δP ǫ
2 + · · · . (44)

Substituting (44) in the PDE (36), and considering the O(1) terms (with re-
spect to δ) and the O(

√
δ) terms, we define the problems that will determine

P ǫ
0 and P ǫ

1 .

Definition 5.1 The leading order term P ǫ
0 is defined as the unique solution

to
(

1

ǫ
L0 +

1√
ǫ
L1 + L2

)
P ǫ

0 = 0 (45)

P ǫ
0(T, x, y, z;T ) = 1, (46)

Definition 5.2 The term P ǫ
1 is defined as the unique solution to the problem

(
1

ǫ
L0 +

1√
ǫ
L1 + L2

)
P ǫ

1 = −
(

M1 +
1√
ǫ
M3

)
P ǫ

0 (47)

P ǫ
1(T, x, y, z;T ) = 0. (48)

In the next sections we expand P ǫ
0 and P ǫ

1 in powers of
√
ǫ to obtain the

approximation to the price, P ǫ,δ.

5.2 The Fast Scale Correction

First we expand P ǫ
0 as

P ǫ
0 = P0 +

√
ǫP1,0 + ǫP2,0 + ǫ3/2P3,0 + · · · . (49)

In order to find explicit expressions for P0 and P1,0, we insert (49) into equation
(45). From the O(1/ǫ) and O(1/

√
ǫ) terms we obtain that P0 and P1,0 do not

depend on y: hence, we can write P0 = P0(t, x, z)), and P1,0 = P1,0(t, x, z).
The O(1) terms give that P0 is determined by the problem:

{
〈LV 〉P0 = 0

P0(T, x, z) = 1,
(50)
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where the bracket notation 〈·〉 means integration with respect to the invari-
ant distribution of the Y process (ie., integration with respect to a normal
N(m, ν2)). That is, 〈LV 〉 is the Vasicek operator LV (σ̄, r̄⋆), with parameters

σ̄(z) :=
√

〈f 2(·, z)〉, r̄⋆(z) := r∞ − 〈λ(·, z)f(·, z)〉
a

. (51)

Hence, we have that

P0(t, x, z) = BV (t, x;T, σ̄(z), r̄⋆(z)), (52)

where BV was defined in (17). This is the constant volatility Vasicek price
evaluated at effective parameters σ̄(z) and r̄⋆(z), which result from averaging
with respect to the fast variable, and from ”freezing” the slow factor at its
current level z. The explicit form of P0 is given by

P0(t, x, z) = A(τ, z)e−B(τ)x, (53)

where τ = T − t is the time to maturity, and the expressions for A(τ, z) and
B(τ) are now given by:

A(τ, z) = e−R∞(z)τ+R∞(z) 1
a
(1−e−aτ )− σ̄

2(z)

4a3 (1−e−aτ )2 , (54)

B(τ) =
1

a

(
1 − e−aτ

)
, (55)

with

R∞(z) = r̄⋆(z) − σ̄2(z)

2a2
. (56)

Define now P̃1,0 =
√
ǫ P1,0, and the operator

A :=
√
ǫ 〈L1L

−1
0 ( L2 − 〈L2〉 ) 〉. (57)

The O(
√
ǫ) terms give that P̃1,0 is determined by the problem:

{
〈L2〉P̃1,0 = AP0

P̃1,0(T, x, z) = 0.
(58)

In order to obtain an expression for the operator A we introduce φ(y, z) and
ψ(y, z), solutions of the following Poisson equations with respect to y:

L0φ(y, z) = f 2(y, z) − σ̄2(z), (59)

L0ψ(y, z) = λ(y, z)f(y, z)− 〈λ(·, z)f(·, z)〉. (60)

Both φ and ψ are defined up to an additive function that does not depend on
y, and that will not affect A since the operator L1 (which is included in A)
takes derivatives with respect to y. We then have

L
−1
0 (L2 − 〈L2〉) =

1

2
φ(y, z)

∂2

∂x2
− ψ(y, z)

∂

∂x
,
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and therefore

L1L
−1
0 (L2 − 〈L2〉) = ν

√
2
{
ρ1f(y, z)

∂2

∂x∂y

(
1

2
φ
∂2

∂x2
− ψ

∂

∂x

)

−Λ
∂

∂y

(
1

2
φ
∂2

∂x2
− ψ

∂

∂x

) }
.

Expanding, and using the fact that P0(t, x, z) does not depend on y, we have
that

AP0 =
ν
√
ǫ√
2
ρ1〈f(·, z)φy(·, z)〉

∂3P0

∂x3

− ν
√
ǫ√
2

(〈Λ(·, z)φy(·, z)〉 + 2ρ1〈f(·, z)ψy(·, z)〉)
∂2P0

∂x2

+ ν
√

2ǫ 〈Λ(·, z)ψy(·, z)〉
∂P0

∂x
, (61)

where φy represents the partial derivative of φ with respect to y, and the
analogous convention holds for ψy. If we now let

V ǫ
1 (z) := ν

√
2ǫ 〈Λψy〉, (62)

V ǫ
2 (z) := −ν

√
ǫ√
2

(〈Λφy〉 + 2ρ1〈fψy〉) , (63)

V ǫ
3 (z) :=

ν
√
ǫ√
2
ρ1〈fφy〉, (64)

then we can write

A = V ǫ
1

∂

∂x
+ V ǫ

2

∂2

∂x2
+ V ǫ

3

∂3

∂x3
, (65)

The problem for P̃1,0 then becomes

{
〈L2〉P̃1,0 = V ǫ

1
∂P0

∂x
+ V ǫ

2
∂2P0

∂x2 + V ǫ
3

∂3P0

∂x3

P̃1,0(T, x, z) = 0.
(66)

The problem for P̃1,0 can easily be solved explicitly, to give a representation
in the form:

P̃1,0 = Dǫ(τ, z)A(τ, z)e−B(τ)x, (67)

see [4, 6]. However, before we give the explicit form we shall in Section 6 carry
out a group parameter reduction that will simplify the representation of the
solution.
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5.3 The Slow Scale Correction

Let us now expand P ǫ
1 (the second term on the expansion (44)) in terms of the

small parameter ǫ,

P ǫ
1 = P0,1 +

√
ǫP1,1 + ǫP2,1 + ǫ3/2P3,1 + · · · , (68)

and substitute this expression in the terminal value problem that defines P ǫ
1

(equation (47)). The leading order term gives that P0,1 does not depend on y,
that is, P0,1 = P0,1(t, x, z).

Define P̃0,1 =
√
δP0,1 and M̃1 =

√
δM1. From the O(1) terms we obtain

that the problem that determines P̃0,1 is

{
〈L2〉P̃0,1 = −〈M̃1〉P0

P̃0,1(T, x, z) = 0,
(69)

where we recall that P0 = A(τ, z) e−B(τ) x. Let

V δ
0 (z) = −

√
δ g(z) 〈Γ(·, z)〉, (70)

V δ
1 (z) =

√
δ ρ2 g(z) 〈f(·, z)〉, (71)

and recall that M1 is given in (41). Then we can write 〈M̃1〉, as

〈M̃1〉 = V δ
0

∂

∂z
+ V δ

1

∂2

∂x∂z
.

Again, the problem for P̃0,1 can easily be solved explicitly, to give a represen-
tation in the form:

P̃0,1 = Dδ(τ, z)A(τ, z) e−B(τ) x, (72)

see [6]. However, in Section 6 we carry out a group parameter reduction that
will simplify the representation of this solution. Before we go into the details of
the group parameter transformation we present in the next section a numerical
illustration of some typical corrections to the bond and yield that derives from
our multiscale model.

5.4 The Bond Price Approximation

In We define the bond price approximation as

P̃ ǫ,δ := P0 +
√
ǫ P1,0 +

√
δ P0,1 = P0 + P̃1,0 + P̃0,1.

From (67), (72) and (53) it follows that we can write the approximation ex-
plicitly as

P̃ ǫ,δ = (1 +Dǫ +Dδ)Ae−B x, (73)
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where Dǫ and Dδ are O(
√
ǫ) and O(

√
δ) respectively and A and B are defined

in (54) and (55). The corresponding approximation to the yield curve, R̃ǫ,δ =

− 1
τ

log P̃ ǫ,δ, is given by

R̃ǫ,δ = R0 −
1

τ
log

(
1 +Dǫ +Dδ

)
≈ R0 −

1

τ

(
Dǫ +Dδ

)
, (74)

where R0 = − 1
τ

logP0 is the yield corresponding to the constant volatility
price P0.

The influence of the corrections Dǫ and Dδ will affect the shape of the yield
curve, so we expect a richer variety of shapes.

In the following figures we use the values of the parameters a = 1, σ̄ = 0.1,
r̄⋆ = 0.1 and the initial value x = 0.07 and show results corresponding to the
approximation derived above. If we assume that only the fast scale process Yt

has influence on σt (i.e., we assume δ = 0), we obtain the graphics in Figure
3, where the prices and yields are computed for ǫ = 0.001. The yield curve is
increasing for very short maturities, it becomes decreasing for medium range
maturities (from 1.5 years to 9 years) and then it becomes slowly increasing
again.

In Figure 4 we assume that only the slow scale process affects the volatility
(i.e., we take ǫ = 0). The yield curve is increasing up to 6 years and it decreases
for longer maturities. Figure 5 shows the case when the volatility is driven by
both processes, Yt and Zt. As one would expect, it seems that the slow scale
seems to have a greater impact on the long range, while the fast scale seems to
affect the medium maturity yields. In Figure 6 we can see that the larger the
value of δ, the more pronounced is the influence of the slow scale volatility.

6 Group Parameter Reduction

The leading order bond price, P0, depends on the parameters a, σ̄(z) and r̄⋆(z),
which are those that define the operator LV (σ̄, r̄⋆) (see (51)). The first order

corrections, P̃1,0 and P̃0,1, depend in particular also on the z-dependent group
parameters

V ǫ
1 , V

ǫ
2 , V

ǫ
3 , V

δ
0 , V

δ
1 . (75)

If we define the price correction

P ǫ,δ
c :=

√
ǫ P1,0 +

√
δ P0,1, (76)

then the problem characterizing P ǫ,δ
c can be written as

{
LV (σ̄, r̄⋆)P ǫ,δ

c = −H
ǫ,δ
V P0

P ǫ,δ
c (T, x, z;T ) = 0,

(77)
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Figure 3: Bond price and yield curves with constant volatility (thin line), and fast-

scale stochastic volatility (dashed line). For this example, ǫ = 0.001.
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Figure 4: Bond price and yield curves with constant volatility (thin line), and slow-

scale stochastic volatility (dashed line). For this example, δ = 0.01.
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Figure 5: Bond price and yield curves with constant volatility (thin line), fast-scale

stochastic volatility (dashed line) and two-factor stochastic volatility (dotted line).

For this example, ǫ = 0.001, δ = 0.01.
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Figure 6: Bond prices and yields as in Figure 5, when ǫ = 0.001, δ = 0.1.
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where in the source term we have used the notation

H
ǫ,δ
V =

3∑

k=1

V ǫ
k

∂k

∂xk
+

(
V δ

0

∂

∂z
+ V δ

1

∂2

∂z∂x

)
. (78)

Note that the price approximation does not depend on y, and that z is a
fixed parameter (obtained by ”freezing” the slow factor at its current level).
In this section we discuss how to effectively reduce the number of degrees of
freedom.

If we now define

m1 :=
∂R∞(z)

∂z
,

m2 :=
∂(σ̄2(z)/(4a))

∂z
,

by making use of (53) and (54), we can write the source operator in terms of
the ”Greeks” as

−H
ǫ,δ
V P0 = −

{
U1

∂

∂x
+ U2

∂2

∂x2
+ U3

∂3

∂x3
− τ m1

(
V δ

0 + V δ
1

∂

∂x

)}
P0, (79)

with

U1 = V ǫ
1 −m1V

δ
0 , U2 = V ǫ

2 −m2V
δ
0 −m1V

δ
1 , U3 = V ǫ

3 −m2V
δ
1 .

If we now define

σ⋆(z) =
√
σ̄2(z) + 2U2(z) , (80)

r⋆⋆(z) = r⋆(z) +
U1(z)

a
, (81)

we have that

LV (σ⋆, r⋆⋆) = LV (σ̄, r̄⋆) + U2
∂2

∂x2
+ U1

∂

∂x
,

where we have dropped the z dependence. Therefore, using (50), (77) and the

fact that P̃ ǫ,δ = P0 + P ǫ,δ
c , we get that

LV (σ⋆, r⋆⋆) P̃ ǫ,δ = U1
∂P ǫ,δ

c

∂x
+ U2

∂2P ǫ,δ
c

∂x2
− U3

∂3P0

∂x3
+ τ m1

(
V δ

0 + V δ
1

∂

∂x

)
P0,

where the source is very similar to (79), except for the first two terms. Note
that the source terms

U1
∂P ǫ,δ

c

∂x
and U2

∂2P ǫ,δ
c

∂x2
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are of order O(ǫ + δ), since V ǫ
1 , V ǫ

2 and P̃1,0 are all of order O(
√
ǫ), and V δ

0 ,

V δ
1 and P̃0,1 are all of order O(

√
δ). Thus, the first two terms of the source

are negligible compared to the other source terms, and therefore the corrected
price, P0 +P ǫ,δ

c , has the same order of accuracy as P ⋆
0 +P ⋆

c , where P ⋆
0 satisfies

{
LV (σ⋆, r⋆⋆)P ⋆

0 = 0
P ⋆

0 (T, x;T ) = 1,

and P ⋆
c satisfies {

LV (σ⋆, r⋆⋆)P ⋆
c = −H⋆

V P
⋆
0

P ⋆
c (T, x;T ) = 0,

with the new source operator

H
⋆
V = U3

∂3

∂x3
− τ

(
W0 +W1

∂

∂x

)
,

where we defined

W0 = m1 V
δ
0 , W1 = m1 V

δ
0 . (82)

Note that the set of parameters that are to be calibrated is thus reduced to,
first, the O(1) parameters

a, r⋆⋆, σ⋆, (83)

in addition, we have the small parameters

U3, W0, W1, (84)

that are O(
√
ǫ+

√
δ).

6.1 Yield Correction

From (67) and (72) we know that the first order correction to the bond price
can be written as P ǫ,δ

c =
(
Dǫ +Dδ

)
P0. Because P ⋆

c has the same order of
accuracy as P ǫ,δ

c , we may write

P ⋆
c = D⋆ P ⋆

0 ,

so that the corrected yield takes the form

R̃ǫ,δ = R⋆
0 −

1

τ
log (1 +D⋆) ≈ R⋆

0 −
1

τ
D⋆.

Here R⋆
0 = − 1

τ
log P ⋆

0 is the yield corresponding to the constant volatility bond
price P ⋆

0 evaluated at the effective short rate and volatility (r⋆⋆, σ⋆), and

D⋆(τ) = U3g1(τ) +W0g2(τ) +W1g3(τ) , (85)
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with

g1(τ) =
B(τ) − τ

a3
+
B2(τ)

2a2
+
B3(τ)

3a
,

g2(τ) = −τ 2/2,

g3(τ) =
τ

a2
+
τ 2

2a
−B(τ)

(
τ

a
+

1

a2

)
.

Note that in this parameterization the structure of the yield curve correction is
not affected by the fast factor as long as the slow is present, only the interpre-
tation of the parameters does. Observe also that only the temporal aspect of
the yield curve is affected by the stochastic volatility modulation. The spatial
part is still determined by the modulation xB(τ)/τ in the expression for the
leading yield surface

R0(t, τ ; x, z) = R⋆
∞ + (x− R⋆

∞)
B(τ)

τ
+

(σ⋆)2

4a

B2(τ)

τ
,

where we defined

R⋆
∞ = r⋆⋆(z) − (σ⋆)2(z)

2a2
.

Observe that in order to calibrate the parameters ci, i = 1, 2, 3, we would need
to regress the observed yield corrections relative to the constant volatility
model against the yield curve terms factors gi, i = 1, 2, 3. We comment on the
calibration in more detail in the next section.

7 Calibration of the Model

In this section we discuss one way of calibrating the model to market data.
Assume we for various t and T can observe the yield R(t, T ; x), the market

yield at time t of a bond with maturity T and current short rate level x and
time to maturity τ = T − t. To emphasize that it is an observed market yield
we will write Robs(t, T ). We then seek to estimate

a, r⋆⋆, σ⋆, U3, W0, W1

so that for the set of observed yields we have

Robs(t, T ; x) ≈ R⋆
0(τ, a, r

⋆⋆, σ⋆; x) − (U3g1(τ) +W0g2(τ) +W1g3(τ))/τ,

where R⋆
0 corresponds to the constant parameter Vasicek yield as given in

(25), but evaluated at the corrected parameters. This can for instance be ac-
complished by first fitting R⋆

0 to the data by estimating the O(1) parameters
a, r⋆⋆, σ⋆ via a least squares procedure to get apriori estimates of their leading
value. The multiscale correction will affect the ”wings” of the yield term struc-
ture relatively strongest, corresponding to small and large maturity. Thus, in
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a second step we include the correction terms and estimate also the small
correction parameters in addition to an updated estimate of the parameters
r⋆⋆, σ⋆. Note that when exploiting the apriori parameter estimates this second
step becomes, in view of the form (25), actually a linear least squares prob-
lem relative to a set of term structure factors defined in terms of the apriori
estimates.

We conclude that the asymptotic framework has provided us with a robust
approach to parameterize the yield term structure, moreover, the parameters
of the fitted term structure can be used in the pricing of related, potentially
less liquid, contracts.

8 Connection to Defaultable Bonds

We consider a particular obligor corresponding to an underlying name. The
event that the obligor defaults is modeled in terms of the first arrival of a
Poisson process with stochastic intensity or hazard rate λ(1). Conditioned on
the path of the hazard rate the probability that the obligor has survived till
time T is thus exp(−

∫ T

0
λ

(1)
s ds). The probability of survival till time T is then

under the doubly stochastic framework

EQ

[
e−

R

T

0
λ
(1)
s ds

]
,

with the expectation taken with respect to the risk neutral of pricing measure
so that this corresponds to the bond price expression (3). In the Vasicek setup
we model the intensity by a Vasicek process so that

λ
(1)
t = X

(1)
t , (86)

is an Ornstein-Uhlenbeck processes:

dX
(1)
t = a1

(
X⋆

1 −X
(1)
t

)
dt+ σ1 dW

(1)
t . (87)

Thus, we can re-interpret all our results on multiscale stochastic volatility bond
prices as results on the survival probability in the context of a defaultable
bond in the case where the underlying hazard rate process is modelled in
terms of a multiscale stochastic volatility Vasicek process, see also [10, 14]. In
the multiname case correlations in between name is essential and there is an
important ”gearing” effect of stochastic volatility impact in terms of the size
of the name portfolio regarding its joint survival probability, see [5, 15].
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