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COUPLED PARAXIAL WAVE EQUATIONS IN RANDOM MEDIA
IN THE WHITE-NOISE REGIME1

BY JOSSELIN GARNIER AND KNUT SØLNA2

Université Paris VII and University of California at Irvine

In this paper the reflection and transmission of waves by a three-
dimensional random medium are studied in a white-noise and paraxial
regime. The limit system derives from the acoustic wave equations and is
described by a coupled system of random Schrödinger equations driven by
a Brownian field whose covariance is determined by the two-point statistics
of the fluctuations of the random medium. For the reflected and transmitted
fields the associated Wigner distributions and the autocorrelation functions
are determined by a closed system of transport equations. The Wigner distri-
bution is then used to describe the enhanced backscattering phenomenon for
the reflected field.

1. Introduction. The paraxial wave equation, in homogeneous or in random
media, is a model used for many applications, for instance in communication and
imaging [19]. It has the form of an evolution equation that describes waves prop-
agating along a privileged axis and it can be obtained by neglecting backscatter-
ing. Its simplicity, compared to the full three-dimensional wave equation, enables
analysis of many important phenomena, such as laser beam propagation [9, 12, 16,
23], time reversal in random media [5, 11], underwater acoustics [24] or migration
problems in geophysics [6].

The derivation of the paraxial model in homogeneous media is well understood,
and it can also be justified in heterogeneous media for small variations of the wave
speed [2, 4]. However, it is not clear whether the paraxial (parabolic) approxima-
tion is still valid in a scaling regime in which the medium fluctuations are rapid and
can be approximated by a white-noise term. The main motivations for studying the
white-noise paraxial wave equation are (i) it appears as a very natural model in
many applications where the correlation length of the medium is relatively small,
in particular much smaller than the propagation distance, (ii) it allows for the use
of Itô’s stochastic calculus, which in turn enables the closure of the hierarchy of
moment equations [15] and thereby analysis of important wave propagation prob-
lems, such as the star scintillation due to atmospheric turbulence [25].
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If the paraxial approximation and the white-noise approximation can be justified
simultaneously, then the conjecture [21, 23] is that the limit equation should take
the form of the random Schrödinger equation studied in particular in [8]. The proof
of the convergence of the solution of the wave equation in random media to the so-
lution of the white-noise paraxial equation was obtained in the case of stratified
weakly fluctuating media in [1]. In our paper we consider the transmission and
reflection of acoustic waves by a slab of medium whose parameters have three-
dimensional random fluctuations and whose end is either transparent or a strong
interface. This model is particularly interesting in the context of optical coherence
tomography [26]. We analyze a wave propagation regime in which the paraxial
and white-noise approximations are valid. In this regime we obtain a system of
coupled Schrödinger equations driven by a Brownian field that fully determines
the statistics of the transmitted and reflected waves. As a corollary we compute
explicitly the two-point statistics of the transmitted and reflected waves. These re-
sults show that the often used “independent approach” for the reflected wave (in
which the statistics of the forward- and backward-propagating waves are assumed
to be independent [26]) is valid if and only if the transverse correlation radius of
the fluctuations of the random medium is smaller than the initial beam width. Fi-
nally, we use the coupled Schrödinger equations to give a rigorous account for the
enhanced backscattering or weak localization phenomenon [27] and we compute
explicitly the enhancement factor and the shape of the enhanced backscattering
cone.

2. The transmission and reflection operators. We consider linear acoustic
waves propagating in 1 + d spatial dimensions with random medium fluctuations.
The governing equations are

ρ(z,x)
∂u
∂t

+ ∇p = F,
1

K(z,x)

∂p

∂t
+ ∇ · u = 0,(2.1)

where p is the pressure field, u is the velocity field, ρ is the density of the medium,
K is the bulk modulus of the medium and (z,x) ∈ R × R

d are the space coordi-
nates. The source is modelled by the forcing term F. We consider in this paper the
situation in which a random slab occupying the section z ∈ (0,L) is sandwiched
in between two homogeneous half-spaces. The source, F, is located outside of the
slab at z = z0, z0 > L. We shall refer to waves propagating in the direction with
a positive z component as right-propagating waves. The medium fluctuations in
the random slab (0,L) vary rapidly in space while the “background” medium is
constant. The medium is assumed to be matched at the right boundary z = L. We
consider a possible mismatch at the boundary z = 0 and denote the background
medium parameters by ρ0 and K0 in the half-space z ≤ 0 and by ρ1 and K1 in the
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half-space z > 0:

1

K(z,x)
=

⎧⎪⎪⎨⎪⎪⎩
K−1

0 , if z ≤ 0,

K−1
1

(
1 + νK(z,x)

)
, if z ∈ (0,L),

K−1
1 , if z ≥ L,

ρ(z,x) =
⎧⎨⎩

ρ0, if z ≤ 0,
ρ1, if z ∈ (0,L),
ρ1, if z ≥ L,

where the random field νK(z,x) models the medium fluctuations, whose correla-
tion length is lK . The source has the form

F(t, z,x) = fs(t,x)δ(z − z0)ez,

where ez is the unit vector pointing in the z-direction, z0 > L is the source po-
sition. We denote by ω0 the typical frequency of the source term fs and by R0
the diameter of its spatial support (which gives the initial beam width). The typ-
ical wavelength associated with the typical frequency ω0 is λ0 = 2πc1/ω0, for
c1 = √

K1/ρ1 the background speed for z > 0, which is of the same order as the
background speed c0 = √

K0/ρ0 in the half-space z ≤ 0.
We can now introduce the scaling regime that we consider in this paper:

(1) We assume that the correlation length lK of the medium is much smaller
than the propagation distance L. We denote by ε2 the ratio between the correlation
length and the typical propagation distance.

(2) We assume that the transverse width of the source R0 and the correlation
length of the medium lK are of the same order. This means that we assume that the
ratio R0/L is of order ε2. This scaling is motivated by the fact that, in this regime,
there is a nontrivial interaction between the fluctuations of the medium and the
beam.

(3) We assume that the typical wavelength λ0 is much smaller than the prop-
agation distance L; more precisely, we assume that the ratio λ0/L is of order
ε4. This high-frequency scaling is motivated by the following considerations. The
Rayleigh length for a beam with initial width R0 and central wavelength λ0 is of
the order of R2

0/λ0 in absence of random fluctuations (the Rayleigh length is the
distance from beam waist where the beam area is doubled by diffraction). In order
to get a Rayleigh length of the order of the propagation distance L, the ratio λ0/L

must be of order ε4 since R0/L ∼ ε2.

Henceforth we shall assume nondimensionalized units chosen such that the
background bulk modulus K1 and density ρ1 in the half-space z > 0 are 1, hence,
the background speed c1 = √

K1/ρ1 and impedance Z1 = √
K1ρ1 are also equal

to 1. If we consider the propagation distance, L, as our reference distance of order
1 in this scaled regime, then the source has the form

F(t, z,x) = f

(
t

ε4 ,
x
ε2

)
δ(z − z0)ez,(2.2)
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where f (t,x) is the normalized source shape function (with time and spatial scales
of variations of order 1), and the medium fluctuations have the form

1

K(z,x)
=

⎧⎪⎪⎨⎪⎪⎩
K−1

0 , if z ≤ 0,

1 + ε3ν

(
z

ε2 ,
x
ε2

)
, if z ∈ (0,L),

1, if z ≥ L,

ρ(z,x) =
⎧⎨⎩

ρ0, if z ≤ 0,
1, if z ∈ (0,L),
1, if z ≥ L,

where the zero-mean, stationary random field ν has a correlation length of order
1 and standard deviation of order 1. We also assume that it satisfies strong mixing
conditions in z. Here the amplitude ε3 of the fluctuations has been chosen so as to
obtain an effective regime of order 1 when ε goes to zero. That is, if the magnitude
of the fluctuations is smaller than ε3, then the wave would propagate as if the
medium were homogeneous, while if the order of magnitude is larger, then the
wave would not penetrate the slab. The scaling that we consider here corresponds
to the physically most interesting situation.

Since both the medium and the source have transverse spatial variations at the
scale ε2, it is convenient to rescale the transverse variable x/ε2 → x and to intro-
duce the rescaled fields uε and pε:

uε(t, z,x) = u(t, z, ε2x), pε(t, z,x) = p(t, z, ε2x).(2.3)

The reader should keep in mind that thus, in the discussion below, when we refer to
the transversal spatial parameter x it corresponds to ε2x in the original coordinates.
The rescaled fields satisfy in the region z ∈ (−∞,0]:

ρ0
∂uε

∂t
+
[

∂z

ε−2∇x

]
pε = 0,

1

K0

∂pε

∂t
+
[

∂z

ε−2∇x

]
· uε = 0,(2.4)

where ∇x stands for the gradient with respect to the transverse spatial variables x.
In the random slab z ∈ (0,L) the fields satisfy

∂uε

∂t
+
[

∂z

ε−2∇x

]
pε = 0,

(2.5) (
1 + ε3ν

(
z

ε2 ,x
))

∂pε

∂t
+
[

∂z

ε−2∇x

]
· uε = 0,

and in the region z ∈ [L,∞) (in which the source is located):

∂uε

∂t
+
[

∂z

ε−2∇x

]
pε = f

(
t

ε4 ,x
)
δ(z − z0)

[
1
0

]
,

∂pε

∂t
+
[

∂z

ε−2∇x

]
uε = 0.

In the Fourier domain (with respect to time), the first equations of these systems
give the expressions of the velocity fields in terms of the pressure fields.
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FIG. 1. Boundary conditions for the modes in the presence of an interface at z = 0, a random slab
(0,L) and a source at z = z0.

We first consider the wave field in the homogeneous half-space z ≤ 0, which al-
lows us to introduce the standard paraxial wave equation in homogeneous medium.
The wave field satisfies (2.4) with the wave speed c0 = √

K0/ρ0. Following [18]
(in a different scaling) we introduce the complex amplitudes ǎε

0 and b̌ε
0 of the right-

and left-propagating modes (see Figure 1):

ǎε
0(k, z,x) = c0

2

[∫ ( 1

ε4 pε(t, z,x) + 1

ik

∂pε

∂z
(t, z,x)

)
eic0kt/ε4

dt

]
e−ikz/ε4

,

b̌ε
0(k, z,x) = c0

2

[∫ ( 1

ε4 pε(t, z,x) − 1

ik

∂pε

∂z
(t, z,x)

)
eic0kt/ε4

dt

]
eikz/ε4

.

They are such that the pressure field in the region z ≤ 0 can be written as

pε(t, z,x) = 1

2π

∫ (
ǎε

0(k, z,x)eikz/ε4 + b̌ε
0(k, z,x)e−ikz/ε4)

e−ic0kt/ε4
dk,

and they satisfy

∂ǎε
0

∂z
(k, z,x)eikz/ε4 + ∂b̌ε

0

∂z
(k, z,x)e−ikz/ε4 = 0.

Using (2.4), we find that they also satisfy the coupled mode equations

∂ǎε
0

∂z
= i

2k

xǎ

ε
0 + e−2ikz/ε4 i

2k

xb̌

ε
0,

∂b̌ε
0

∂z
= −e2ikz/ε4 i

2k

xǎ

ε
0 − i

2k

xb̌

ε
0,

where 
x is the transverse Laplacian. In the limit ε → 0, the cross terms (pro-
portional to e±2ikz/ε4

) average out to zero and we get the two uncoupled paraxial
wave equations

∂ǎε
0

∂z
= i

2k

xǎ

ε
0,

∂b̌ε
0

∂z
= − i

2k

xb̌

ε
0.

Taking into account the fact that there is no source in the half-space z ≤ 0, and
therefore no right-going wave, we obtain the general expression of the wave in the
left homogeneous half-space

pε(t, z,x) = 1

2π

∫
b̌ε

0(k, z,x)e−ikz/ε4
e−ic0kt/ε4

dk, z ≤ 0.(2.6)
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Similarly, the wave fields in the homogeneous regions (L, z0) and (z0,∞) have
the forms

pε(t, z,x)

=

⎧⎪⎪⎨⎪⎪⎩
1

2π

∫ (
ǎε

1(k, z,x)eikz/ε4 + b̌ε
1(k, z,x)e−ikz/ε4)

e−ikt/ε4
dk, z ∈ (L, z0),

1

2π

∫
ǎε

2(k, z,x)eikz/ε4
e−ikt/ε4

dk, z > z0,

respectively. Here we used the fact that there is no source and therefore no left-
going wave in the region z > z0; see Figure 1. We can also use the jump conditions
across the source position z = z0 to obtain the relations

b̌ε
1(k, z0,x) = −1

2eikz0/ε
4
f̌ (k,x),(2.7)

ǎε
2(k, z0,x) − ǎε

1(k, z0,x) = 1
2e−ikz0/ε

4
f̌ (k,x).(2.8)

By solving the paraxial wave equation for b̌ε
1, we obtain the expression for the

complex amplitude of the wave impinging on the random slab at z = L:

b̌ε
1(k,L,x) = eikz0/ε

4
b̌inc(k,x),(2.9)

b̌inc(k,x) = − 1

2(2π)d

∫
f̂ (k,κ)ei|κ |2(L−z0)/(2k)+iκ·x dκ,(2.10)

where the Fourier transforms are defined by

f̌ (k,x) =
∫

f (t,x)eikt dt, f̂ (k,κ) =
∫

f̌ (k,x)e−iκ ·x dx.(2.11)

The pressure field in the region z ∈ (0,L) can be written as

pε(t, z,x) = 1

2π

∫ (
ǎε(k, z,x)eikz/ε4 + b̌ε(k, z,x)e−ikz/ε4)

e−ikt/ε4
dk,

with the complex amplitudes ǎε and b̌ε of the right- and left-propagating modes
given explicitly by

ǎε(k, z,x) = 1

2

[∫ ( 1

ε4 pε(t, z,x) + 1

ik

∂pε

∂z
(t, z,x)

)
eikt/ε4

dt

]
e−ikz/ε4

,

b̌ε(k, z,x) = 1

2

[∫ ( 1

ε4 pε(t, z,x) − 1

ik

∂pε

∂z
(t, z,x)

)
eikt/ε4

dt

]
eikz/ε4

.

Using (2.5) we obtain the following mode coupling equations:

∂ǎε

∂z
=
(

ik

2ε
ν

(
z

ε2 ,x
)

+ i

2k

x

)
ǎε

(2.12)

+ e−2ikz/ε4
(

ik

2ε
ν

(
z

ε2 ,x
)

+ i

2k

x

)
b̌ε,
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∂b̌ε

∂z
= −e2ikz/ε4

(
ik

2ε
ν

(
z

ε2 ,x
)

+ i

2k

x

)
ǎε

(2.13)

−
(

ik

2ε
ν

(
z

ε2 ,x
)

+ i

2k

x

)
b̌ε.

This system is valid in z ∈ (0,L) and it is complemented with the following
boundary conditions at z = 0 and z = L:

b̌ε(k, z = L,x) = eikz0/ε
4
b̌inc(k,x),(2.14)

ǎε(k, z = 0,x) = R0b̌
ε(k, z = 0,x),(2.15)

where R0 = (Z0 −1)/(Z0 +1) is the reflection coefficient of the interface at z = 0
and Z0 = √

K0ρ0 is the impedance of the left homogeneous half-space. These
boundary conditions are obtained from the continuity relations of the fields pε and
ez · uε at z = 0 and z = L. The continuity relations also give the expressions for
the complex amplitudes of the transmitted field b̌ε

0 in the region z ≤ 0 and of the
reflected field ǎε

1 in the region z ≥ L:

b̌ε
0(k, z = 0,x) = T0b̌

ε(k, z = 0,x),(2.16)

ǎε
1(k, z = L,x) = ǎε(k, z = L,x),(2.17)

where T0 = 2Z
1/2
0 /(1+Z0) is the transmission coefficient of the interface at z = 0.

If there is no impedance contrast Z0 = 1, then T0 = 1 and R0 = 0 and the boundary
condition (2.15) reads ǎε(k, z = 0,x) = 0. This is the radiation condition express-
ing the fact that there is no wave incoming from −∞.

We now make use of an invariant imbedding step and introduce transmission
and reflection operators. First, we define the lateral Fourier modes

âε(k, z,κ) =
∫

ǎε(k, z,x)e−iκ ·x dx,

(2.18)
b̂ε(k, z,κ) =

∫
b̌ε(k, z,x)e−iκ ·x dx,

and make the ansatz

b̂ε
0(k,0,κ) =

∫
T̂ ε(k, z,κ,κ ′)b̂ε(k, z,κ ′) dκ ′,

(2.19)
âε(k, z,κ) =

∫
R̂ε(k, z,κ,κ ′)b̂ε(k, z,κ ′) dκ ′.

Using the mode coupling equations (2.12)–(2.13) we find that the operators T̂ ε

and R̂ε satisfy

d

dz
R̂ε(k, z,κ,κ ′)

= e−2ikz/ε4
L̂ε(k, z,κ,κ ′)(2.20)
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+ e2ikz/ε4
∫∫

R̂ε(k, z,κ,κ1)L̂
ε(k, z,κ1,κ2)

× R̂ε(k, z,κ2,κ
′) dκ1 dκ2

+
∫

L̂ε(k, z,κ,κ1)R̂
ε(k, z,κ1,κ

′) dκ1

+
∫

R̂ε(k, z,κ,κ1)L̂
ε(k, z,κ1,κ

′) dκ1,

d

dz
T̂ ε(k, z,κ,κ ′)

=
∫

T̂ ε(k, z,κ,κ1)L̂
ε(k, z,κ1,κ

′) dκ1

(2.21)
+ e2ikz/ε4

∫∫
T̂ ε(k, z,κ,κ1)L̂

ε(k, z,κ1,κ2)

× R̂ε(k, z,κ2,κ
′) dκ1 dκ2,

where we have defined

L̂ε(k, z,κ1,κ2) = − i

2k
|κ1|2δ(κ1 − κ2) + ik

2(2π)dε
ν̂

(
z

ε2 ,κ1 − κ2

)
,(2.22)

with ν̂(z,κ) the partial Fourier transform (in x) of ν(z,x). This system is comple-
mented with the initial conditions at z = 0, which are obtained from (2.15) and
(2.16):

R̂ε(k, z = 0,κ,κ ′) = R0δ(κ − κ ′), T̂ ε(k, z = 0,κ,κ ′) = T0δ(κ − κ ′).

The transmission and reflection operators evaluated at z = L carry all the relevant
information about the random medium from the point of view of the transmitted
and reflected waves, which are our main quantities of interest.

Our objective in the next sections is to characterize the transmitted wave field

pε
tr(s,x) = pε(z0 + ε4s, z = 0,x)

(2.23)

= 1

(2π)d+1

∫∫∫
T̂ ε(k,L,κ,κ ′)b̂inc(k,κ ′) dκ ′ ei(κ ·x−ks) dκ dk,

and the reflected wave field

pε
ref(s,x) = pε(z0 + L + ε4s, z = L,x)

(2.24)

= 1

(2π)d+1

∫∫∫
R̂ε(k,L,κ,κ ′)b̂inc(k,κ ′) dκ ′ ei(κ ·x−ks) dκ dk.

Note that the wave field “fronts” are observed on the time scale of the source and
around their respective expected arrival times (z0 for the transmitted wave, and
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L + z0 for the reflected wave, which corresponds to the travel time to go from the
source at z = z0 to the interface at z = 0 and back at the surface at z = L).

3. The random Schrödinger model.

3.1. Statement of the main result. We consider the transmitted and reflected
fields pε

tr and pε
ref defined by (2.24)–(2.25) and use diffusion approximation theo-

rems to identify a limit random Schrödinger model. The main result is the follow-
ing one.

PROPOSITION 3.1. The processes (pε
tr(s,x),pε

ref(s,x))s∈R,x∈Rd converge in
distribution as ε → 0 in the space C0(R,L2(Rd,R

2))∩L2(R,L2(Rd,R
2)) to the

limit process (ptr(s,x),pref(s,x))s∈R,x∈Rd

ptr(s,x) = 1

2π

∫∫
Ť (k,L,x,x′)b̌inc(k,x′) dx′ e−iks dk,(3.1)

pref(s,x) = 1

2π

∫∫
Ř(k,L,x,x′)b̌inc(k,x′) dx′ e−iks dk.(3.2)

Here C0(R,L2(Rd,R
2)) is the space of continuous functions (in s) with val-

ues in L2(Rd,R
2) and L2(R,L2(Rd,R

2)) = L2(R × R
d,R

2). The operators
Ť (k, z,x,x′) and Ř(k, z,x,x′) are the solutions of the following Itô–Schrödinger
diffusion models:

dŤ (k, z,x,x′) = i

2k

x′Ť (k, z,x,x′) dz + ik

2
Ť (k, z,x,x′) ◦ dB(z,x′),(3.3)

dŘ(k, z,x,x′) = i

2k
(
x + 
x′)Ř(k, z,x,x′) dz

(3.4)

+ ik

2
Ř(k, z,x,x′) ◦ (dB(z,x) + dB(z,x′)

)
,

with the initial conditions

Ť (k,0,x,x′) = T0δ(x − x′), Ř(k,0,x,x′) = R0δ(x − x′).

The symbol ◦ stands for the Stratonovich stochastic integral in z, B(z,x) is a real-
valued Brownian field with covariance

E[B(z1,x1)B(z2,x2)] = min{z1, z2}C0(x1 − x2),(3.5)

and we have used the notation

C(z,x) = E[ν(z′ + z,x′ + x)ν(z′,x′)],(3.6)

C0(x) =
∫ ∞
−∞

C(z,x) dz.(3.7)
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The moments of the finite-dimensional distributions also converge, in the sense that

E

[ q∏
j=1

pε
tr(sj ,xj )

mj

q̃∏
j=1

pε
ref(s̃j , x̃j )

m̃j

]
(3.8)

ε→0−→ E

[ q∏
j=1

ptr(sj ,xj )
mj

q̃∏
j=1

pref(s̃j , x̃j )
m̃j

]
,

for any q, q̃ ∈ N, (sj )j=1,...,q ∈ R
q , (s̃j )j=1,...,q̃ ∈ R

q̃ , (xj )j=1,...,q ∈ R
dq ,

(x̃j )j=1,...,q̃ ∈ R
dq̃ , (mj )j=1,...,q ∈ N

q and (m̃j )j=1,...,q̃ ∈ N
q̃ .

In [8] the existence and uniqueness have been established for the random
process

Vk(z,x) =
∫

Ť (k, z,x,x′)φ(x′) dx′,

for a test function φ with unit L2(Rd)-norm, in the case T0 = 1. It is shown that
the process Vk(z,x) is a continuous Markov diffusion process on the unit ball of
L2(Rd,C). The moment equations moreover satisfy a closed system at each order
[15]. The analysis can be readily extended to the pair (ptr,pref) defined in terms of
(Ť ,Ř) and can be carried out jointly for all frequencies k in an interval bounded
away from 0 and infinity. We then get that the processes ptr and pref have constant
L2(R × R

d)-norms, so that the conservation of energy relation holds:∫∫
|ptr(s,x)|2 + |pref(s,x)|2 ds dx =

∫∫
|binc(s,x)|2 ds dx,(3.9)

where we have also used the identity R2
0 + T 2

0 = 1.
The main steps of the proof of Proposition 3.1 given in the next section are

(1) tightness and a priori estimates for (pε
tr,p

ε
ref),

(2) convergence of the finite-dimensional distributions of the process (pε
tr,

pε
ref), using the convergence of specific moments of the reflection and transmis-

sion operators T̂ ε and R̂ε . Heuristically, the reasons for the convergence of T̂ ε

and R̂ε are that the terms with the rapid phases exp(±i2kz/ε4) in (2.20)–(2.21)
vanish in the limit ε → 0, and that the random “potential” in (2.22) can be replaced
by a white noise. We then get formally the limit system (3.3)–(3.4). However, this
holds true in a special weak sense only. Indeed, it is important to note that the re-
flection and transmission operators T̂ ε and R̂ε themselves do not converge to T̂
and R̂ solution of (3.3)–(3.4), but only certain moments (expectations of products
of components with distinct frequencies k), which are those needed to ensure the
convergence of the transmitted and reflected fields. This approach is similar to the
one used to prove the O’Doherty–Anstey theory in one-dimensional random me-
dia [7, 14] and to study the second-order statistics of the wave backscattered by a
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three-dimensional random medium [17, 18]. The limit moments are characterized
by the system (A.15) of coupled equations, which gives the practical way to com-
pute all the moments of the reflected and transmitted wave fields. Some particular
applications will be given in Sections 4 and 5.

(3) use of Itô’s lemma for Hilbert-space-valued processes [20], Theorem 2.4,
in order to check that the specific moments of the reflection and transmission oper-
ators T̂ and R̂ given by (3.3)–(3.4) are solutions of the system (A.15) of coupled
equations.

3.2. Proof of Proposition 3.1. This section is devoted to the proof of Proposi-
tion 3.1. We shall use a technique similar to the one presented in [14] in the case
of randomly layered media.

Step 1. A priori estimates. From (2.12)–(2.13) we can check that, for any k,
the integral ∫

|ǎε(k, z,x)|2 − |b̌ε(k, z,x)|2 dx

is conserved in z. Applying this conservation relation at z = 0 and z = L, and
taking into account the boundary conditions (2.14)–(2.15), we obtain∫

|ǎε(k,L,x)|2 dx + (1 − R2
0)

∫
|b̌ε(k,0,x)|2 dx =

∫
|b̌inc(k,x)|2 dx.

Using now (2.16)–(2.17) and the identity R2
0 + T 2

0 = 1, we obtain∫
|ǎε

1(k,L,x)|2 dx +
∫

|b̌ε
0(k,0,x)|2 dx =

∫
|b̌inc(k,x)|2 dx,(3.10)

which expresses the fact that the power of the incoming wave is fully recovered by
the transmitted and reflected waves. Integrating in k and using Parseval’s equality
establishes the total energy conservation relation∫∫

|pε
ref(s,x)|2 dxds +

∫∫
|pε

tr(s,x)|2 dxds =
∫∫

|binc(s,x)|2 dxds.(3.11)

We first state a priori estimates for our quantities of interest.

LEMMA 3.1. There exists C > 0 such that, uniformly in ε and in s0, s1,∫
|pε

tr(s0,x)|2 dx ≤ C and

(3.12) ∫
|pε

tr(s1,x) − pε
tr(s0,x)|2 dx ≤ C|s1 − s0|.

The same estimate holds true for pε
ref.
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PROOF. Using Sobolev’s embedding L∞(R) ⊂ H 1(R), there exists a constant
Csob such that, for any x,

sup
s

|pε
tr(s,x)|2 ≤ Csob‖pε

tr(·,x)‖H 1(R,R) = Csob

2π

∫
(1 + k2)|b̌ε(k,0,x)|2 dk,

where we have also used Parseval’s equality. Integrating in x and using the conser-
vation equation (3.10) yields the first result of the lemma:

sup
s

∫
|pε

tr(s,x)|2 dx ≤
∫

sup
s

|pε
tr(s,x)|2 dx ≤ Csob

2π

∫∫
(1 + k2)|b̌inc(k,x)|2 dxdk.

By the Cauchy–Schwarz inequality, we have

|pε
tr(s1,x) − pε

tr(s0,x)|2 =
∣∣∣∣ ∫ s1

s0

∂pε
tr

∂s
(s,x) ds

∣∣∣∣2 ≤
∫ s1

s0

ds

∫ s1

s0

∣∣∣∣∂pε
tr

∂s
(s,x)

∣∣∣∣2 ds

≤ |s1 − s0|
∫ ∣∣∣∣∂pε

tr

∂s
(s,x)

∣∣∣∣2 ds.

The integral in x of the last term in the inequality can be bounded uniformly as
above. The reflected field can be analyzed in the same way, which completes the
proof. �

Step 2. The moments of the finite-dimensional distribution of (pε
tr(s,x),

pε
ref(s,x)) converge to those of (ptr(s,x),pref(s,x)). The general moment (3.8)

of pε
tr(s,x) can be expressed as the multiple integral

E

[ q∏
j=1

pε
tr(sj ,xj )

mj

q̃∏
j=1

pε
ref(s̃j , x̃j )

m̃j

]

= 1

(2π)(N+M)(d+1)

×
∫

· · ·
∫ q∏

h=1

mh∏
j=1

dκ ′
h,j dκh,j dkh,j

×
q̃∏

h=1

m̃h∏
j=1

dκ̃ ′
h,j dκ̃h,j dk̃h,j

×∏
h,j

(
b̂inc(kh,j ,κ

′
h,j )e

i(κh,j ·xh−kh,j sh))
×∏

h,j

(
b̂inc(k̃h,j , κ̃

′
h,j )e

i(κ̃h,j ·x̃h−k̃h,j s̃h))

× E

[∏
h,j

T̂ ε(kh,j ,L,κh,j ,κ
′
h,j )

∏
h,j

R̂ε(k̃h,j ,L, κ̃h,j , κ̃
′
h,j )

]
,
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for N =∑q
h=1 mh and M =∑q̃

h=1 m̃h. Therefore, the convergence of the general
moment of the transmitted and reflected wave fields in the white-noise limit will
follow from the convergence of the following specific moments E[I ε(L)] of the
transmission and reflection operators, where

I ε(L) =
N∏

j=1

T̂ ε(kj ,L,κj ,κ
′
j )

M∏
j=1

R̂ε(k̃j ,L, κ̃j , κ̃
′
j ).(3.13)

We call these moments “specific” because we restrict our attention to the case in
which the frequencies kj , k̃j are all distinct.

We use diffusion approximation theorems to obtain equations for the moments
I ε in the limit ε → 0. In the Appendix we show that

lim
ε→0

E[I ε(L)] = E

[
N∏

j=1

T̂ (kj ,L,κj ,κ
′
j )

M∏
j=1

R̂(k̃j ,L, κ̃j , κ̃
′
j )

]
,

when the right-hand side expectation is taken with respect to the following Itô–
Schrödinger model for the transmission and reflection operators:

dT̂ (k, z,κ,κ ′) = − i|κ ′|2
2k

T̂ (k, z,κ,κ ′) dz − k2C0(0)

8
T̂ (k, z,κ,κ ′) dz

(3.14)

+ ik

2(2π)d

∫
T̂ (k, z,κ,κ1) dB̂(z,κ1 − κ ′) dκ1,

dR̂(k, z,κ,κ ′) = − i(|κ |2 + |κ ′|2)
2k

R̂(k, z,κ,κ ′) dz

− k2C0(0)

4
R̂(k, z,κ,κ ′) dz

− k2

4(2π)d

∫
Ĉ0(κ1)R̂(k, z,κ − κ1,κ

′ − κ1) dκ1 dz(3.15)

+ ik

2(2π)d

∫ (
R̂(k, z,κ,κ1) dB̂(z,κ1 − κ ′)

+ R̂(k, z,κ1,κ
′) dB̂(z,κ − κ1)

)
dκ1,

with the initial conditions T̂ (k,0,κ,κ ′) = T0δ(κ − κ ′) and R̂(k,0,κ,κ ′) =
R0δ(κ − κ ′). Here we have used the notations (3.6)–(3.7) and the Brownian field
B̂ has the following operator-valued spatial covariance:

E[B̂(z1,κ1)B̂(z2,κ2)] = min{z1, z2}(2π)dĈ0(κ1)δ(κ1 + κ2),(3.16)

where

Ĉ0(κ) =
∫ ∞
−∞

∫
Rd

C(z,x)e−iκ ·x dxdz.(3.17)
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The field B̂ is the partial Fourier transform of the field B defined in the statement
of the proposition. Consider next the reflection operator in the original spatial vari-
ables:

Ť (k, z,x,x′) = 1

(2π)d

∫∫
ei(κ ·x−κ ′·x′)T̂ (k, z,κ,κ ′) dκ dκ ′,(3.18)

Ř(k, z,x,x′) = 1

(2π)d

∫∫
ei(κ ·x−κ ′·x′)R̂(k, z,κ,κ ′) dκ dκ ′.(3.19)

Then we find that this operator is weakly characterized by the following Itô–
Schrödinger diffusion:

dŤ (k, z,x,x′) = i

2k

x′Ť (k, z,x,x′) dz − k2C0(0)

8
Ť (k, z,x,x′) dz

+ ik

2
Ť (k, z,x,x′) dB(z,x′),

dŘ(k, z,x,x′) = i

2k
(
x + 
x′)Ř(k, z,x,x′) dz

− k2(C0(0) + C0(x′ − x))

4
Ř(k, z,x,x′) dz

+ ik

2
Ř(k, z,x,x′)

(
dB(z,x) + dB(z,x′)

)
.

In Stratonovich form this diffusion model becomes (3.3). This proves the last state-
ment of the proposition (the convergence of the moments).

Step 3. Convergence of (pε
tr,p

ε
ref) to (ptr,pref) in C0(R,L2

w(Rd,R
2)) ∩

L2
w(R,L2

w(Rd,R
2)). Here L2

w is the L2 space equipped with the weak topol-
ogy. Lemma 3.1 shows that the process (pε

tr,p
ε
ref) is tight in C0(R,L2

w(Rd,R
2)).

Moreover, the first estimate in the lemma shows that, for any L2(Rd,R)-functions
φ,ψ , the random processes

Xε
φ(s) =

∫
pε

tr(s,x)φ(x) dx,

Y ε
ψ(s) =

∫
pε

ref(s,x)ψ(x) dx

are uniformly bounded. Therefore, the finite-dimensional distributions are charac-
terized by the moments of the form

E

[ q∏
j=1

Xε
φj

(sj )
mj

q̃∏
j=1

Y ε
ψj

(s̃j )
m̃j

]
,
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where q, q̃ ∈ N, mj, m̃j ∈ N, sj , s̃j ∈ R, φj ,ψj ∈ L2(Rd,R). These moments can
be written as multiple integrals:

E

[ q∏
j=1

Xε
φj

(sj )
mj

q̃∏
j=1

Y ε
ψj

(s̃j )
m̃j

]

= 1

(2π)(N+M)(d+1)

×
∫

· · ·
∫ q∏

h=1

mh∏
j=1

dκ ′
h,j dκh,j dkh,j ×

q̃∏
h=1

m̃h∏
j=1

dκ̃ ′
h,j dκ̃h,j dk̃h,j

×∏
h,j

(b̂inc(kh,j ,κ
′
h,j )φ̂h(κh,j )e

−ikh,j sh)

×∏
h,j

(b̂inc(k̃h,j , κ̃
′
h,j )ψ̂h(κ̃h,j )e

−ik̃h,j s̃h)

× E

[∏
h,j

T̂ ε(kh,j ,L,κh,j ,κ
′
h,j )

∏
h,j

R̂ε(k̃h,j ,L, κ̃h,j , κ̃
′
h,j )

]
,

for N =∑q
h=1 mh and M =∑q̃

h=1 m̃h. Note that only specific moments of quan-
tities of the form (3.13) appear (i.e., moments of products of the transmission
and reflection operators at distinct k). The convergence of these specific moments
therefore implies the convergence of the finite-dimensional distributions, hence the
weak convergence in C0(R,L2

w(Rd,R
2)). Furthermore, the estimate (3.11) shows

that the processes are tight in L2
w(R,L2

w(Rd,R
2)) (the unit ball is compact in the

weak topology). This proves the weak convergence in L2
w(R,L2

w(Rd,R
2)).

Step 4. Convergence of (pε
tr,p

ε
ref) to (ptr,pref) in C0(R,L2(Rd,R

2)) ∩ L2(R,

L2(Rd,R
2)). Here L2 is the L2 space equipped with the strong topology. Since

the convergence has been proved in the weak topology, it is sufficient to show
that the L2-norm is preserved. On the one hand, the L2-norms of the processes
(pε

tr,p
ε
ref) are deterministic, independent of ε, and given by (3.11). On the other

hand, the limit process (ptr,pref) has constant L2-norm given by (3.9). This proves
the first statement of the proposition and completes its proof.

4. The Wigner distributions. We first introduce the dimensionless autocor-
relation function C of the fluctuations of the random medium

C(z,x) = σ 2C

(
z

lz
,

x
lx

)
,

where σ is the standard deviation of the fluctuations of the random medium and
lz (resp. lx) is the longitudinal (resp. transverse) correlation radius of the medium.
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With this representation we have

C0(x) = σ 2lzC0

(
x
lx

)
, Ĉ0(u) = σ 2lzl

d
x Ĉ0(ulx).

We assume next that the power spectral density Ĉ0(u) decays fast enough so that∫ |u|2Ĉ0(u) du is finite. This means that the autocorrelation function C0(x) is at
least twice differentiable at x = 0, which corresponds to a smooth random medium.
For simplicity, we assume also that the random fluctuations are isotropic in the
transverse directions, in the sense that the autocorrelation function C0(x) depends
only on |x|.

4.1. The Wigner distribution of the transmitted wave. We now consider two
frequencies k1 and k2 in a frequency band centered at k and we define the two-
frequency Wigner distribution of the transmission operator by

WT
k1,k2

(z,x,x′,q,q′)

=
∫∫

e−i(q·y+q′·y′)

(4.1)

× E

[
Ť

(
k1, z,

√
k√
k1

(
x + y

2

)
,

√
k√
k1

(
x′ + y′

2

))

× Ť

(
k2, z,

√
k√
k2

(
x − y

2

)
,

√
k√
k2

(
x′ − y′

2

))]
dydy′.

Using the stochastic equation (3.3) and Itô’s formula, we find that the Wigner
distribution satisfies the closed system

∂WT
k1,k2

∂z
+ q′

k
· ∇x′WT

k1,k2

= −C0(0)(k2
1 + k2

2)

8
WT

k1,k2

+ k1k2

4(2π)d

∫
Ĉ0(u)WT

k1,k2

(
z,x,x′,q,q′ − 1

2

( √
k√
k1

+
√

k√
k2

)
u
)

× eiu·x′(√k/
√

k1−
√

k/
√

k2
)
du,

starting from

WT
k1,k2

(z = 0,x,x′,q,q′) = T 2
0 (4π2k1k2/k2)d/2δ(x − x′)δ(q + q′).

It is possible to solve this system and to find an integral representation of the two-
frequency Wigner distribution by using the approach of [9]. However, we aim at
focusing on spatial aspects in the next sections, and we shall simplify the algebra



334 J. GARNIER AND K. SØLNA

by assuming that the bandwidth B of the incoming wave with carrier wavenumber
k0 is small. To describe this regime it is convenient to introduce

β = σ 2k2
0Llz

4
, α = L

k0l2
x

, α0 = L

k0r
2
0

,(4.2)

where r0 is the initial beam width, β describes the intensity of random scattering,
while α and α0 represent the intensities of diffraction on respectively the scales of
the medium variations and the input beam. Note that these parameters correspond
to inverse Fresnel numbers (up to a factor 2π ) relative to respectively the lateral
medium correlation scale and the aperture; below we shall consider explicitly the
case with small medium Fresnel number. We assume that the bandwidth B of the
incoming wave is small in the sense that

B � Bc, Bc := k0 min(1, α−1, α−1
0 , β−1).(4.3)

In this regime we can approximate the two-frequency Wigner distribution by its
behavior at the carrier frequency. That is, if k1, k2 lie in the spectrum of the incom-
ing wave, the two-frequency Wigner distribution WT

k1,k2
can be approximated by

the simplified Wigner distribution WT that depends only on the carrier wavenum-
ber k0 and not on the lag k1 − k2. This Wigner distribution can be written in the
form

WT (z,x,x′,q,q′) = T 2
0 (2π)dWT

(
z

L
,

x
r0

,
x′

r0
,qlx,q′lx

)
,

where WT satisfies

∂WT

∂ζ
+ αlx

r0
q′ · ∇x′WT = β

(2π)d

∫
Ĉ0(u)[WT (q′ − u) − WT (q′)]du,(4.4)

starting from WT (ζ = 0,x,x′,q,q′) = δ(x − x′)δ(q + q′). We remark that these
are in fact the classical equations of radiative transport for angularly resolved wave
energy density [22]. In [22] the radiative transfer equations are written in the stan-
dard time-dependent form, while (4.4) is written in a time-harmonic form in a ref-
erence frame moving with the background velocity along the z-axis corresponding
to the form set forth in [10].

In this context we have that βC0(0) is the total scattering cross-section, βĈ0(·)
the differential scattering cross-section describing coupling of modes depending
on their relative propagation directions and (αlx/r0)q′ a transport or velocity vec-
tor. It is clear from this equation that diffractive effects (characterized by the term
q′ ·∇x′) are of order 1 if αlx/r0 ∼ 1 or equivalently k0r0lx ∼ L. In terms of Fresnel
numbers, diffractive effects are of order 1 if

αe ≡ L

k0a2
e

∼ 1,
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where we have defined the effective aperture ae by

ae =√
lxr0.

In Section 5 we shall see that a physically important and mathematically interesting
regime corresponds to

α0 � αe ∼ 1 � α,

so that from the point of view of the “medium Fresnel” number we are in a Fraun-
hofer diffraction scaling, while from the point of view of the “source Fresnel”
number we are in a Fresnel diffraction scaling and finally from the point of view
of the effective Fresnel number, 1/(2παe), we are in a general or scalar diffraction
theory setup.

By taking a Fourier transform in q′ and x′, we obtain a transport equation that
can be integrated and we find the following integral representation for WT :

WT (ζ,x,x′,q,q′)

= T 2
0

(4π2α)d

∫∫
e−i(q′+q)·η1−i(r0(x′−x)/(αlx)+qζ )·η2(4.5)

× eβ
∫ ζ

0 C0(η1+η2ζ
′)−C0(0) dζ ′

dη1 dη2.

This expression will be used in Section 5.1 to compute and discuss the two-point
statistics of the transmitted field.

4.2. The Wigner distribution for the reflected wave. We define the two-
frequency Wigner distribution of the reflection operator by

WR
k1,k2

(z,x,x′,q,q′)

=
∫∫

e−i(q·y+q′·y′)

(4.6)

× E

[
Ř

(
k1, z,

√
k√
k1

(
x + y

2

)
,

√
k√
k1

(
x′ + y′

2

))

× Ř

(
k2, z,

√
k√
k2

(
x − y

2

)
,

√
k√
k2

(
x′ − y′

2

))]
dydy′.

If the bandwidth of the incoming wave satisfies (4.3) and if k1, k2 lie in the spec-
trum of the wave, then we find by using (3.4) that the two-frequency Wigner dis-
tribution WR

k1,k2
can be approximated by the simplified Wigner distribution WR

that depends only on the carrier wavenumber k0 and not on the lag k1 − k2. This
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Wigner distribution satisfies the closed system

∂WR

∂z
+ q

k0
· ∇xW

R + q′

k0
· ∇x′WR

= k2
0

4(2π)d

∫
Ĉ0(u)

×
[
WR(z,x,x′,q − u,q′) + WR(z,x,x′,q,q′ − u)

+ 2WR

(
z,x,x′,q − 1

2
u,q′ − 1

2
u
)

cos
(
u · (x − x′)

)
− 2WR

(
z,x,x′,q − 1

2
u,q′ + 1

2
u
)

cos
(
u · (x − x′)

)
− 2WR(z,x,x′,q,q′)]du,

starting from WR(z = 0,x,x′,q,q′) = R2
0(2π)dδ(x − x′)δ(q + q′). We now cast

the Wigner distribution in a suitable dimensionless form. We consider the follow-
ing Fourier transform V R of the Wigner distribution WR :

WR(z,x,x′,q,q′) = 1

(2π)d

∫
V R

(
z,

q + q′

2
,q − q′, s

)
eis·(x′−x) ds,

which we introduce because the stationary maps that we will identify in
Lemma 4.1, in the asymptotic regime α → ∞, have simple representations in
this new frame. Note also that this ansatz incorporates the fact that WR does not
depend on x + x′, only on x − x′, q and q′, which follows from the stationarity of
the random medium. The Fourier-transformed operator V R(z,q, r, s) has the form

V R(z,q, r, s) = R2
0(πlx)

deizr·s/k0VR

(
z

L
,qlx, rlx, slx

)
,

where VR is the solution of the dimensionless system

∂VR

∂ζ
= β

(2π)d

×
∫

Ĉ0(u)

[
VR

(
ζ,q − 1

2
u, r − u, s

)
e−iαs·uζ

+ VR

(
ζ,q − 1

2
u, r + u, s

)
eiαs·uζ

+ VR

(
ζ,q − 1

2
u, r, s − u

)
e−iαr·uζ(4.7)

+ VR

(
ζ,q − 1

2
u, r, s + u

)
eiαr·uζ − 2VR(ζ,q, r, s)
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− VR

(
ζ,q − 1

2
u, r − u, s + u

)
eiα[(r−s)·u−|u|2]ζ

−VR

(
ζ,q − 1

2
u, r − u, s − u

)
e−iα[(r+s)·u+|u|2]ζ

]
du,

starting from VR(ζ,q, r, s) = δ(q). The parameters α and β are given by (4.2).
We want now to analyze the regime in which the transverse correlation length

lx of the medium is smaller than the beam width r0. More exactly, we assume from
now on in this section that

(1) r0 � lx , which means that the transverse correlation length of the medium
is small,

(2) k0r0lx ∼ L, which means that diffractive effects are of order 1.

These two conditions are equivalent to α0 � αe ∼ 1 � α. Note that in the previous
section we established the fact that diffraction plays a role for the transmitted wave
for a propagation distance L of the order of k0r0lx , which is smaller than the usual
Rayleigh length k0r

2
0 . This is a well-known result [19], and we shall deduce it for

the reflected field in the analytic framework that we have set forth.
The rapid transverse variations regime is particularly interesting to study be-

cause WR has a multiscale behavior. In (4.7) this regime gives rise to rapid phases.
The following proposition describes the asymptotic behavior of VR as α → ∞.
The presence of singular layers at r = 0 and at s = 0 requires particular atten-
tion and is responsible, for instance, for the enhanced backscattering phenomenon
studied in Section 5.3. The situation with α large corresponds to a strong diffrac-
tion situation, at the scale of the lateral medium fluctuations. In general [part (1) in
Lemma 4.1] the intensity of the reflection operator decays exponentially accord-
ing to the parameter βC0(0) corresponding to the total scattering cross section.
This decay follows from a partial loss of coherence by random forward scattering.
However, as articulated in parts (2) and (3) of the lemma below, the coupling of
wave modes depends on the full medium autocorrelation function if we look at
nearby specular reflection or small spatial offset frequencies. This coupling will
be important when we analyze enhanced backscattering in Section 5.3.

LEMMA 4.1. (1) For any r �= 0, s �= 0:

VR(ζ,q, r, s)
α→∞−→ δ(q)e−2βC0(0)ζ .(4.8)

(2) For any s �= 0 we have VR(ζ,q, r
α
, s)

α→∞−→ VR
r (ζ,q) where VR

r (ζ,q) is
solution of

∂VR
r

∂ζ
= 2β

(2π)d

∫
Ĉ0(u)

[
VR

r

(
ζ,q − 1

2
u
)

cos(r · uζ ) − VR
r (ζ,q)

]
du,(4.9)
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and is given explicitly by

VR
r (ζ,q) = 1

(2π)d

∫
e−iq·ueβ

∫ ζ
0 C0(u/2+rζ ′)+C0(u/2−rζ ′)−2C0(0)dζ ′

du.(4.10)

Similarly, for any r �= 0 we have VR(ζ,q, r, s
α
)

α→∞−→ VR
s (ζ,q).

(3) For any r and s we have

VR

(
ζ,q,

r
α

,
s
α

)
α→∞−→ VR

r (ζ,q) + VR
s (ζ,q) − δ(q)e−2βC0(0)ζ .(4.11)

PROOF. In case (1), the rapid phases cancel the contributions of all but the
term VR (ζ,q, r, s) in (4.7), and we get

∂VR

∂ζ
= −2

β

(2π)d

∫
Ĉ0(u)VR du = −2βC0(0)VR,

which gives (4.8). In case (2), we obtain in the limit α → ∞ the simplified system

∂ṼR
r

∂ζ
= β

(2π)d

∫
Ĉ0(u)

[
ṼR

r

(
ζ,q − 1

2
u, s − u

)
e−ir·uζ

+ ṼR
r

(
ζ,q − 1

2
u, s + u

)
eir·uζ − 2ṼR

r (ζ,q, s)
]
du.

We then Fourier transform this equation in q and s, and we obtain that the solution
does not depend on s, that it satisfies (4.9), and that it is given by (4.10).

In case (3), we obtain the simplified system for VR
r,s(ζ,q) = limα→∞ VR(ζ,q,

r
α
, s

α
):

∂VR
r,s

∂ζ
= 2β

(2π)d

∫
Ĉ0(u)

[
VR

s

(
ζ,q − 1

2
u
)

cos(s · uζ )

+ VR
r

(
ζ,q − 1

2
u
)

cos(r · uζ ) − VR
r,s(ζ,q)

]
du.

Using (4.9) satisfied by VR
s and VR

r , we get

∂VR
r,s

∂ζ
= ∂VR

r

∂ζ
+ ∂VR

s

∂ζ
+ 2βC0(0)[VR

r + VR
s − VR

r,s],
which yields (4.11). �

5. Two-point statistics of the transmitted and reflected fields.

5.1. The transmitted field. The results of Section 4.1 allow us to compute the
two-point statistics of the transmitted field. We assume that

(a) the pulse has carrier frequency k0 and it is narrowband in the sense that it
satisfies (4.3),
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(b) the input beam spatial profile is Gaussian with radius r0,

binc(t,x) = f0(t)e
−ik0t exp

(
−|x|2

r2
0

)
(5.1)

(suppressing the complex conjugate part here and below),
(c) the transverse correlation radius lx of the random fluctuations of the

medium is much smaller than r0 and k0r0lx ∼ L. As we have discussed after (4.4),
this last condition ensures that diffractive effects are of order 1.

Under (a) and (b), we find that the autocorrelation function of the transmitted
field defined by

Atr(s, t,x,y) = lim
ε→0

E

[
pε

tr

(
s + t

2
,x + y

2

)
pε

tr

(
s − t

2
,x − y

2

)]
has the form

Atr(s, t,x,y) = T 2
0 f0

(
s + t

2

)
f0

(
s − t

2

)
e−ik0t

(
r2

0

8π

)d/2

×
∫

e−|ηL/k0+y|2/(2r2
0 )−r2

0 |η|2/8e−iη·x(5.2)

× ek2
0/4

∫ L
0 C0(ηz/k0+y)−C0(0) dz dη.

Under (a)–(c), we obtain

Atr(s, t,x,y) = T 2
0 f0

(
s + t

2

)
f0

(
s − t

2

)
e−ik0t

(
r2

0

8π

)d/2

(5.3)
×
∫

e−r2
0 |η|2/8−|y|2/(2r2

0 )e−iη·xek2
0/4

∫ L
0 C0(ηz/k0+y)−C0(0) dz dη.

If, moreover, random scattering is strong, in the sense that β � 1, or equivalently
k2

0C0(0)L � 1, and if the autocorrelation function of the random fluctuations of
the medium is twice differentiable at zero:

C0(x) = C0(0) − D

2
|x|2 + o(|x|2),

(5.4)

D = − 1

d

C0(0) = −σ 2lz

dl2
x


C0(0),

then we obtain that the autocorrelation function has the Gaussian shape

Atr(s, t,x,y) = T 2
0 f0

(
s + t

2

)
f0

(
s − t

2

)
e−ik0t

(
r0

rT (L)

)d

(5.5)

× exp
(
− 2|x|2

rT (L)2 − |y|2
2ρT (L)2 + i

x · y
χT (L)2

)
.
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The beam radius rT (L), the correlation radius ρT (L) and the parameter χT (L) are
characterized by

rT (L) = r0

√√√√1 + DL3

3r2
0

,(5.6)

ρT (L) = r0

√
1 + DL3/(3r2

0 )√
1 + k2

0r2
0DL/4 + k2

0D2L4/48
,(5.7)

χT (L) = rT (L)√
k0DL2/2

,(5.8)

where we have taken into account that k0r
2
0 � L in the considered regime. Note in

particular that the beam width increases at the anomalous rate L3/2 (which was first
obtained in the physical literature in [13] and confirmed mathematically in [11]).
Furthermore, the lateral correlation radius decays to zero, which means that the
beam becomes partially coherent. We finally remark that these results hold true in
the case with a smooth random medium [with C0 twice differentiable at 0 as in
(5.4)]; the situation with a rough random medium will be addressed elsewhere.

5.2. The reflected field. Under (a) and (b), the limit autocorrelation function
of the reflected field defined by

Aref(s, t,x,y) = lim
ε→0

E

[
pε

ref

(
s + t

2
,x + y

2

)
pε

ref

(
s − t

2
,x − y

2

)]
has the form

Aref(s, t,x,y)

= R2
0f0

(
s + t

2

)
f0

(
s − t

2

)
e−ik0t

(
r2

0

8π

)d/2

(5.9)
×
∫∫∫

dη1 dη2 dη3e
iLη3·η2/k0−r2

0 (|η3|2+|η2−2η1|2)/8

× e−iη3·x+iy·(η1+η2/2)VR(1,η1,η2,η3),

where the function VR is the solution of the system (4.7). Under (a)–(c) the as-
ymptotic behavior of the function VR is determined by Lemma 4.1 and we find
that the autocorrelation is given by

Aref(s, t,x,y) = R2
0f0

(
s + t

2

)
f0

(
s − t

2

)
e−ik0t

(
r2

0

8π

)d/2

×
∫

e−r2
0 |η|2/8−|y|2/(2r2

0 )e−iη·x(5.10)

× ek2
0/4

∫ 2L
0 C0(ηz/k0+y)−C0(0) dz dη.
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This is exactly the form (5.3) of the autocorrelation function of the transmitted
wave, upon the substitution 2L for L. This shows that we would have obtained
the same result if we had assumed that the backward propagation was independent
of the forward propagation. The independent approach is valid in the regime in
which the beam width is much larger than the transverse correlation radius of the
fluctuations of the random medium, but it is not valid in other regimes, as can be
seen by comparing the full expressions (5.2) and (5.9).

5.3. Enhanced backscattering. The comparison of the autocorrelation func-
tion of the reflected wave and that of the transmitted wave for the propagation
distance 2L shows that, in the regime α � 1, there is no coherent effect building
up between the forward and backward propagations. However, corrective terms
show that there are some residual effects. In particular, we would like to show
that the reflected intensity exhibits a singular picture in a very narrow cone, of an-
gular width of order α−1, around the backscattered direction. This phenomenon,
called enhanced backscattering or weak localization, is widely discussed in the
physical literature [3, 27]. The physical observation is that, for an incoming quasi-
monochromatic quasi-plane wave, the mean reflected power has a local maximum
in the backscattered direction, which is twice as large as the mean reflected power
in the other directions.

In this section, we assume that the incoming wave has the form

binc(t,x) = f (t)e−ik0t ginc(x),

that it is narrowband in the sense that it satisfies (4.3), and that it is nearly a plane
wave, in the sense that ĝinc(κ) is concentrated at some κ inc (assumed to be dif-
ferent from the normal incident vector 0). By “concentrated” we mean that the
angular width of the incoming beam is smaller than α−1. The reflected signal in
the direction κ0 is

p̌ε
ref(s,κ0) =

∫
pε

ref(s,x)e−iκ0·x dx

= 1

2π

∫
R̂ε(k,L,κ0,κ

′)b̂inc(k,κ ′)e−iks dk.

The moment of the square modulus of p̌ε
ref(s,κ0) only involves specific moments

of quantities of the form (3.13) (with distinct k). Therefore this moment converges
to the one of the limit process p̌ref(s,κ0) defined as the Fourier transform in x
of pref(s,x) given by (3.2). This means that the mean reflected intensity in the
direction κ0 converges to

E[|p̌ε
ref(s,κ0)|2] ε→0−→ R2

0|f (s)|2IR(κ0),

IR(κ0) = 2−d ldx

∫
VR

(
1,

κ0 − κ ′
1

2
lx, (κ0 + κ ′

1)lx,0
)
|ĝinc(κ

′
1)|2 dκ ′

1.
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Using the fact that ĝinc(κ) is concentrated at κ inc, we get

IR(κ0) = PVR

(
1,

κ0 − κ inc

2
lx, (κ0 + κ inc)lx,0

)
,(5.11)

where P = 2−d ldx
∫ |ĝinc(κ

′
1)|2 dκ ′

1. This formula gives the mean reflected intensity
in the direction κ0 and is valid for arbitrary values of α and β . Let us consider the
regime α � 1. The mean reflected intensity far enough from the backscattered
direction −κ inc is of the form

IR(κ0) = PVR
0

(
1,

κ0 − κ inc

2
lx

)
for |κ0 + κ inc|lx � α−1,

where we have used the second point of Lemma 4.1. In a narrow angular cone
around the backscattered direction −κ inc, the reflected intensity is locally larger:

IR(−κ inc + α−1κ) = P [VR
0 (1,−κ inclx) + VR

κ lx
(1,−κ inclx)],

where we have used the third point of Lemma 4.1. If we assume, additionally, that
β � 1, then we have

IR(κ0) = P(πDβ)−d/2e−|κ0−κ inc|2l2x/(4Dβ) for |κ0 + κ inc|lx � α−1,

where D is the dimensionless version of D given by (5.4): D = σ 2lzl
−2
x D . This

formula gives the width of the diffusion cone around the specular direction κ inc:


κspec = 2
√

Dβ

lx
=

√
Dσk0

√
Llz

lx
= √

DLk0.(5.12)

On the top of this broad cone, we have a narrow cone of relative maximum equal
to 2 centered along the backscattered direction −κ inc:

IR(−κ inc + α−1κ) = P(πDβ)−d/2e−|κ inc|2l2x/(Dβ)[1 + e−Dβ|κ |2l2x/3].
This shows that the width of the enhanced backscattering cone is


κEBC =
√

3

lx
√

Dβα
= 2

√
3lx√

Dσ
√

lzL3
= 2

√
3√

DL3
.(5.13)

Note that the angular width 
θEBC = 
κEBC/k0 of the cone is proportional to the
wavelength, as predicted by physical arguments based on diagrammatic expan-
sions [27].

APPENDIX: DERIVATION OF THE LIMIT MOMENT EQUATIONS

The purpose of this appendix is to compute the limit of the expectation of
(3.13) as ε → 0, for distinct frequencies kj , k̃j . Using (2.20) and (2.21) we
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find

dI ε

dz
(z) =

N∑
j=1

N∏
l=1�=j

T̂ ε(kl, z,κ l ,κ
′
l)

×
M∏
l=1

R̂ε(k̃l, z, κ̃ l , κ̃
′
l)

×
{∫

T̂ ε(kj , z,κj ,κa)L̂
ε(kj , z,κa,κ

′
j ) dκa

+ e2ikj z/ε4
∫

T̂ ε(kj , z,κj ,κa)L̂
ε(kj , z,κa,κb)

× R̂ε(kj , z,κb,κ
′
j ) dκa dκb

}

+
M∑

j=1

N∏
l=1

T̂ ε(kl, z,κ l ,κ
′
l)

(A.14)

×
M∏

l=1�=j

R̂ε(k̃l, z, κ̃ l , κ̃
′
l)

×
{
e−2ik̃j z/ε4

L̂ε(k̃j , z, κ̃j , κ̃
′
j ) + e2ik̃j z/ε4

×
∫∫

R̂ε(k̃j , z, κ̃j ,κa)L̂
ε(k̃j , z,κa,κb)

× R̂ε(k̃j , z,κb, κ̃
′
j ) dκa dκb

+
∫

L̂ε(k̃j , z, κ̃j ,κa)R̂
ε(k̃j , z,κa, κ̃

′
j ) dκa

+
∫

R̂ε(k̃j , z, κ̃j ,κa)L̂
ε(k̃j , z,κa, κ̃

′
j ) dκa

}
.

We next apply the diffusion approximation to get limit equations for the moments;
see [14] for background material on and related applications of the diffusion ap-
proximation. Observe that the random coefficients are rapidly fluctuating in view
of (2.22). Those coefficients that are of order ε−1 are centered and fluctuate on
the scale ε2; moreover they are assumed to be rapidly mixing, giving a white-
noise scaling situation. Moreover, the rapid phase terms exp(±2ikz/ε4) lead to
some cancellations between interacting terms. Here, the fact that the frequen-
cies are distinct plays a key role. As a consequence, by applying diffusion ap-
proximation results, we obtain the equations for the moments E[I ε] in the limit
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ε → 0:

Ī (z) = lim
ε→0

E[I ε(z)].
We obtain from (A.14) that Ī solves a system of integro-differential equa-
tions

dĪ

dz
(z) = − i

2

(
N∑

j=1

|κ ′
j |2
kj

+
M∑

j=1

|κ̃j |2 + |κ̃ ′
j |2

k̃j

)
Ī (z)

− C0(0)

8

(
N∑

j=1

k2
j + 2

M∑
j=1

k̃2
j

)
Ī (z)

− 1

8(2π)d

∫
Ĉ0(κ)

×
{

N∑
j=1

∑
l �=j

kj kl Ī (κ ′
j − κ,κ ′

l + κ)

+ 2
M∑

j=1

k̃2
j Ī (κ̃j − κ, κ̃ ′

j − κ)

+
M∑

j=1

∑
l �=j

k̃j k̃l

(
Ī (κ̃j − κ, κ̃ ′

l − κ)(A.15)

+ Ī (κ̃ l − κ, κ̃ ′
j − κ)

+ Ī (κ̃j − κ, κ̃ l + κ)

+ Ī (κ̃ ′
j − κ, κ̃ ′

l + κ)
)

+ 2
N∑

j=1

M∑
l=1

kj k̃l

(
Ī (κ ′

j − κ, κ̃ l − κ)

+ Ī (κ ′
j − κ, κ̃ ′

l + κ)
)}

dκ,

where we only write the shifted arguments for Ī . The initial conditions are
Ī (k, k̃,κ, κ̃,κ ′, κ̃ ′, z = 0) = T N

0
∏N

j=1 δ(κj − κ ′
j )R

M
0
∏M

j=1 δ(κ̃j − κ̃ ′
j ). Using in

particular the relation

E

[∫∫∫ za

0

∫ zb

0
λa(sa,κa)λb(sb,κb) dB̂(sa,κa) dB̂(sb,κb) dκa dκb

]

=
∫∫ min(za,zb)

0
E [λa(s,κ)λb(s,−κ)] (2π)dĈ0(κ) ds dκ,
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we can then verify that

Ī (z) = E

[
N∏

j=1

T̂ (kj ,L,κj ,κ
′
j )

M∏
j=1

R̂(k̃j ,L, κ̃j , κ̃
′
j )

]
,

where the right-hand side expectation is taken with respect to the Itô–Schrödinger
model for the transmission and reflection operators in (3.14)–(3.15).

REFERENCES

[1] BAILLY, F., CLOUET, J. F. and FOUQUE, J. P. (1996). Parabolic and Gaussian white noise
approximation for wave propagation in random media. SIAM J. Appl. Math. 56 1445–
1470. MR1409128

[2] BAMBERGER, A., ENGQUIST, B., HALPERN, L. and JOLY, P. (1988). Parabolic wave equation
approximations in heterogenous media. SIAM J. Appl. Math. 48 99–128. MR923293

[3] BARABANENKOV, Y. N. (1973). Wave corrections for the transfer equation for backward scat-
tering. Izv. Vyssh. Uchebn. Zaved. Radiofiz. 16 88–96.

[4] BERNARDI, C. and PELISSIER, M.-C. (1994). Spectral approximation of a Schrödinger type
equation. Math. Models Methods Appl. Sci. 4 49–88. MR1259202

[5] BLOMGREN, P., PAPANICOLAOU, G. and ZHAO, H. (2002). Super-resolution in time-reversal
acoustics. J. Acoust. Soc. Am. 111 230–248.

[6] CLAERBOUT, J. F. (1985). Imaging the Earth’s Interior. Blackwell Science, Palo Alto, CA.
[7] CLOUET, J.-F. and FOUQUE, J.-P. (1994). Spreading of a pulse travelling in random media.

Ann. Appl. Probab. 4 1083–1097. MR1304774
[8] DAWSON, D. A. and PAPANICOLAOU, G. C. (1984). A random wave process. Appl. Math.

Optim. 12 97–114. MR764811
[9] FANNJIANG, A. C. (2005). White-noise and geometrical optics limits of Wigner–Moyal equa-

tion for beam waves in turbulent media. II. Two-frequency formulation. J. Stat. Phys. 120
543–586. MR2182320

[10] FANNJIANG, A. C. (2006). Self-averaging radiative transfer for parabolic waves. C. R. Math.
Acad. Sci. Paris 342 109–114. MR2193656

[11] FANNJIANG, A. and SØLNA, K. (2005). Superresolution and duality for time-reversal of waves
in random media. Phys. Lett. A 352 22–29.

[12] FANNJIANG, A. C. and SOLNA, K. (2005). Propagation and time reversal of wave beams in
atmospheric turbulence. Multiscale Model. Simul. 3 522–558 (electronic). MR2136163

[13] FEIZULIN, Z. I. and KRAVTSOV, YU. A. (1967). Broadening of a laser beam in a turbulent
medium. Radio Quantum Electron. 10 33–35.

[14] FOUQUE, J.-P., GARNIER, J., PAPANICOLAOU, G. and SØLNA, K. (2007). Wave Propaga-
tion and Time Reversal in Randomly Layered Media. Stochastic Modelling and Applied
Probability 56. Springer, New York. MR2327824

[15] FOUQUE, J. P., PAPANICOLAOU, G. and SAMUELIDES, Y. (1998). Forward and Markov ap-
proximation: The strong-intensity-fluctuations regime revisited. Waves Random Media 8
303–314. MR1633157

[16] GARNIER, J., GOUÉDARD, C. and VIDEAU, L. (2000). Propagation of a partially coherent
beam under the interaction of small and large scales. Opt. Commun. 176 281–297.

[17] GARNIER, J. and SØLNA, K. (2008). Effective transport equations and enhanced backscatter-
ing in random waveguides. SIAM J. Appl. Math. 68 1574–1599. MR2424954

[18] GARNIER, J. and SØLNA, K. (2008). Random backscattering in the parabolic scaling. J. Stat.
Phys. 131 445–486. MR2386572

http://www.ams.org/mathscinet-getitem?mr=1409128
http://www.ams.org/mathscinet-getitem?mr=923293
http://www.ams.org/mathscinet-getitem?mr=1259202
http://www.ams.org/mathscinet-getitem?mr=1304774
http://www.ams.org/mathscinet-getitem?mr=764811
http://www.ams.org/mathscinet-getitem?mr=2182320
http://www.ams.org/mathscinet-getitem?mr=2193656
http://www.ams.org/mathscinet-getitem?mr=2136163
http://www.ams.org/mathscinet-getitem?mr=2327824
http://www.ams.org/mathscinet-getitem?mr=1633157
http://www.ams.org/mathscinet-getitem?mr=2424954
http://www.ams.org/mathscinet-getitem?mr=2386572


346 J. GARNIER AND K. SØLNA

[19] ISHIMARU, A. (1997). Wave Propagation and Scattering in Random Media. IEEE Press, New
York. Reprint of the 1978 original, with a foreword by Gary S. Brown, An IEEE/OUP
Classic Reissue. MR1626707

[20] MIYAHARA, Y. (1982). Stochastic Evolution Equations and White Noise Analysis. Carleton
Mathematical Lecture Notes 42 1–80. Carleton Univ., Ottawa, Canada.

[21] PAPANICOLAOU, G., RYZHIK, L. and SØLNA, K. (2004). Statistical stability in time reversal.
SIAM J. Appl. Math. 64 1133–1155 (electronic). MR2068663

[22] RYZHIK, L., PAPANICOLAOU, G. and KELLER, J. B. (1996). Transport equations for elastic
and other waves in random media. Wave Motion 24 327–370. MR1427483

[23] STROHBEHN, J. W., ed. (1978). Laser Beam Propagation in the Atmosphere. Springer, Berlin.
[24] TAPPERT, F. D. (1977). The parabolic approximation method. In Wave Propagation and Un-

derwater Acoustics. Lecture Notes in Phys. 70 224–287. Springer, Berlin. MR0475274
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