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Abstract

In this paper we carry out an asymptotic analysis of the elastic wave equations in random media in the parabolic

white-noise regime. In this regime, the propagation distance is much larger than the initial beam width, which is

itself much larger than the typical wavelength; moreover, the correlation length of the random medium is of the same

order as the initial beam width, and the amplitude of the random fluctuations is small. In this distinguished limit we

show that wave propagation is governed by a system of random paraxial wave equations. The equations for the shear

waves and pressure waves have the form of Schrödinger equations driven by two correlated Brownian fields. The

diffraction operators can be expressed in terms of transverse Laplacians. The covariance structure of the Brownian

fields is determined by the two point-statistics of the density and Lamé parameters of the random medium.

1. Introduction

The parabolic approximation for wave propagation in heterogeneous media is a model used in a vast num-
ber of applications, for instance in communication and imaging [31]. It usually has the form of a Schrödinger
equation that describes waves propagating along a privileged propagation axis determined by the source. It
is very simple compared to the full three-dimensional wave equation, both from the theoretical and numeri-
cal viewpoints, and it enables analysis of many important phenomena, such as laser beam propagation [30],
time reversal in random media [4,26], underwater acoustics [31] or migration problems in geophysics [5].

The parabolic approximation for scalar waves in homogeneous and random media is rather well under-
stood. It is even valid in some scaling regimes in which the medium fluctuations are rapid and can be
approximated by a white-noise term. The main motivations for studying the white-noise paraxial wave
equation are (i) it appears as a very natural model in many situations where the correlation length of the
medium is relatively small, in particular much smaller than the propagation distance, (ii) it allows for the
use of Itô’s stochastic calculus, which in turn enables the closure of the hierarchy of moment equations
and the statistical analysis of important wave propagation problems, such as scintillation [12]. When the
paraxial approximation and the white-noise approximation can be justified simultaneously for scalar waves,
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then the limit equation takes the form of the random Schrödinger equation studied in particular in [7].
The proof of the convergence of the solution of the wave equation in random media to the solution of the
white-noise paraxial equation was obtained for stratified weakly fluctuating media in [2] and recently for
three-dimensional random media in the context of acoustic waves in [14].

A parabolic approximation for linear elastic waves is of great interest for solving migration problems in
geophysics [8]. In the theory of elastic waves the field is described by the displacement vector. It is not
straightforward to extend the parabolic approximation to elastic waves because two different wavenumbers
coexist for plane waves in a given direction in a homogeneous medium, one for pressure waves and one
for shear waves. The effective behavior of the coupling terms between shear waves and pressure waves in
heterogeneous media is not easy to incorporate in the parabolic approximation. The analysis of the effective
coupling is one of the main objectives of this work. In this paper we consider three-dimensional linear elastic
waves. Motivated by problems in geophysics, we assume that the privileged propagation axis is the vertical
direction. This choice explains the terminology “downward-going” waves and “upward-going” waves that we
use in the context of the wave decomposition that we set forth.

In the literature it is possible to find parabolic approximation models for the linear elastic wave equations
which are obtained by suppressing the reflection terms. In [22] this idea is used to transform the second-
order boundary value problem for two-dimensional elastic waves in laterally inhomogeneous media into a
first-order initial value problem in space, whose numerical solutions can be computed efficiently. In [25] a
parabolic approximation is constructed for three-dimensional elastic waves where the wave field disturbance
is characterized by two almost plane waves travelling with wave speeds associated with pressure and shear
waves. In [18] the author uses a multi-scale expansion and deals separately with the shear waves and the
pressure waves. In [6] the reflection terms are suppressed based on the argument that the phases of the
coupling terms between the downward-going and the upward-going waves vary rapidly making these terms
negligible in the lowest order approximation. All these derivations are formal and give quantitatively different
predictions [33].

Our goal is to provide a rigorous derivation of the paraxial wave equations for elastic waves in homogeneous
media and, moreover, in random media.

1) In the case of a homogeneous medium, we consider the distinguished limit in which the propagation
distance is much larger than the initial beam width, which is itself much larger than the typical wavelength.
We apply an invariant imbedding theorem and an averaging theorem for rapidly oscillating differential
equations in order to prove the convergence of the solution of the wave equation to the solution of a system
of Schrödinger equations. The invariant imbedding allows us to transform the boundary value problem into
an initial value problem. The averaging theorem allows us to derive effective paraxial wave equations for
elastic waves. In particular, we find that the coupling terms between downward-going waves and upward-
going waves, and between shear waves and pressure waves, have rapid phases. By using an averaging theorem
for highly oscillatory differential equations, we show that these coupling terms average out to give non-zero
effective terms (in the form of Lie brackets) for downward-going shear waves and for the downward-going
pressure waves. There is no effective energy transfer between the downward-going waves and the upward-
going waves, neither between pressure waves and shear waves. However, the effective or implicit coupling
between the wave modes affects the propagation of the downward-going shear waves and the one of the
downward-going pressure waves. It is therefore important to take into account these effects. It turns out that
the explicit computation of the effective Lie brackets gives very simple forms for the parabolic approximations
of the pressure waves and the shear waves.

2) In the case of a random medium, we assume additionally that the correlation length of the random
medium is of the same order as the initial beam width, and that the amplitude of the random fluctuations
is small. By applying diffusion approximation theorems we prove the convergence of the solution of the
random elastic wave equations to the solution of a system of Itô-Schrödinger equations. These Schrödinger
equations are driven by two correlated Brownian fields, whose covariance function depends on the two-point
statistics of the fluctuations of the density and Lamé parameters of the medium. This result shows that it is
possible to justify both the parabolic approximation and the white-noise approximation in the distinguished
limit considered in this paper. The limit system permits easy numerical simulations on the one hand, and
theoretical computations of moments using Itô’s formula on the other hand.
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The paper is organized as follows. In Section 2 we describe the linear elastic wave equations in a random
medium. We then introduce the fundamental wave decomposition that we use in the analysis in Section 3.
Next we present the main results, the random paraxial wave equations, in Section 4. The proofs of the results
are given in Section 5 when the medium is homogeneous and in Section 6 when the medium is randomly
heterogeneous.

2. Elastic waves in a random medium

We consider linear elastic waves propagating in a three-dimensional medium with heterogeneous and
random fluctuations. The equations of motion for small displacements u(t, x) = (uj(t, x))j=1,2,3 of an
elastic medium are

ρ(x)
∂2uj

∂t2
=

3∑

k=1

∂τjk

∂xk
+ Sj(t, x) , j = 1, 2, 3 . (1)

Here ρ is the density of the medium and τ is the 3 × 3 stress tensor, which, in an isotropic medium is

τjk(t, x) = λ(x)

[
3∑

l=1

∂ul(t, x)

∂xl

]
1j(k) + µ(x)

[
∂uj(t, x)

∂xk
+

∂uk(t, x)

∂xj

]
, j, k = 1, 2, 3 , (2)

where λ(x) and µ(x) are the Lamé parameters of the medium and 1j(k) = 1 if k = j and 0 otherwise. The
forcing term S(t, x) is the density of force sources.

In this paper we focus our attention on propagation through a random section occupying the region x3 ∈
(−L, 0) with the source S located outside of the random section at the surface x3 = 0. The parameterization
is motivated by waves probing for instance the heterogeneous earth and we may think of x3 as the main
probing direction. We shall refer to waves propagating in a direction with a negative (resp. positive) x3-
component as downward-moving (respectively upward-moving) waves.

It is more convenient to write the governing equations as a hyperbolic system. We introduce the new
dependent variables, pressure p, three-dimensional velocity ξ, and a stress tensor component χ, defined by

p(t, x) = λ(x)




3∑

j=1

∂uj(t, x)

∂xj



 , (3)

ξj(t, x) =
∂uj(t, x)

∂t
, j = 1, 2, 3 , (4)

χjk(t, x) = µ(x)

[
∂uj(t, x)

∂xk
+

∂uk(t, x)

∂xj

]
, j, k = 1, 2, 3 . (5)

Equations (1-2) can then be rewritten as

ρ(x)
∂ξj

∂t
=

∂p

∂xj
+

3∑

k=1

∂χjk

∂xk
+ Sj(t, x) , j = 1, 2, 3 , (6)

∂χjk

∂t
= µ(x)

[
∂ξj

∂xk
+

∂ξk

∂xj

]
, j, k = 1, 2, 3 , (7)

∂p

∂t
= λ(x)




3∑

j=1

∂ξj

∂xj



 . (8)

If the shear modulus µ = 0, then χ = 0 and we get the acoustic wave equations for the pressure p and the
velocity ξ.

We consider in this paper the situation in which a random section occupying the region x3 ∈ (−L, 0) is
sandwiched in between two homogeneous half-spaces. The medium parameters are:
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1

µ(x)
=





µ−1

0 if x3 ≤ −L or x3 ≥ 0,

µ−1
0

[
1 + ε3mµ

( x

ε2

)]
if x3 ∈ (−L, 0),

(9)

ρ(x) =





ρ0 if x3 ≤ −L or x3 ≥ 0,

ρ0

[
1 + ε3mρ

( x

ε2

)]
if x3 ∈ (−L, 0),

(10)

λ(x) =





λ0 if x3 ≤ −L or x3 ≥ 0,

λ0

[
1 + ε3mλ

( x

ε2

)]
if x3 ∈ (−L, 0),

(11)

with ε a small parameter. The parameter ε2 characterizes the ratio of the correlation length of the random
medium fluctuations to the thickness of the random section. The random processes mµ(x), mρ(x), and
mλ(x) describe the medium fluctuations. We assume that they are stationary and zero-mean and that they
satisfy strong mixing conditions in x3. We have also assume that the amplitude of the random fluctuations
is of order ε3. This is the interesting regime in which the medium fluctuations give rise to effective terms of
order one when ε goes to zero, as we will show in this paper.

Recall also that we let the source be located at the surface in the plane x3 = 0. We consider a scaling
regime in which the spatial support of the source (in the transverse direction), or equivalently the initial
beam width, is of order ε2. This means that the transverse scale of the source and the one of the spatial
fluctuations of the medium are of the same order. Remember that the Rayleigh length for a beam with
initial beam width r0 and carrier wavelength λ0 is of the order of r2

0/λ0 in absence of random fluctuations
(the Rayleigh length is the distance from beam waist where the beam area is doubled by diffraction). In
order to get a Rayleigh length of order one, we assume that the carrier wavelength of the source is of order
ε4. Therefore, in this regime the source has the form

S(t, x) = s

(
t

ε4
,
x⊥

ε2

)
δ(x3) , x = (x⊥, x3) , x⊥ = (x1, x2) . (12)

The source then generates waves that propagate mainly along the x3-axis, as we will see below.

3. The mode decomposition

We rescale the transverse spatial variables so as to observe the wave at the scale of the source and we
take a scaled Fourier transform in time:

ξ̌ε
j (ω, x) =

∫
ξj(ε

4t, ε2x⊥, x3)e
iωtdt , χ̌ε

jk(ω, x) =

∫
χjk(ε4t, ε2x⊥, x3)e

iωtdt .

Except at x3 = 0 (where the source is) the six-dimensional vector (ξ̌ε
1 , ξ̌

ε
2 , ξ̌

ε
3, χ̌

ε
13, χ̌

ε
23, χ̌

ε
33) satisfies

∂ξ̌ε
1

∂x3
=− iω

ε4µ
χ̌ε

13 −
1

ε2

∂ξ̌ε
3

∂x1
, (13)

∂ξ̌ε
2

∂x3
=− iω

ε4µ
χ̌ε

23 −
1

ε2

∂ξ̌ε
3

∂x2
, (14)

∂ξ̌ε
3

∂x3
=− iω

2ε4µ
χ̌ε

33 , (15)
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∂χ̌ε
13

∂x3
=− iρω

ε4
ξ̌ε
1 +

∂

∂x1

(
λ + 2µ

iω

∂ξ̌ε
1

∂x1

)
+

∂

∂x2

(
µ

iω

∂ξ̌ε
1

∂x2

)

+
∂

∂x1

(
λ

iω

∂ξ̌ε
2

∂x2

)
+

∂

∂x2

(
µ

iω

∂ξ̌ε
2

∂x1

)
− 1

ε2

∂

∂x1

(
λ

2µ
χ̌ε

33

)
, (16)

∂χ̌ε
23

∂x3
=− iρω

ε4
ξ̌ε
2 +

∂

∂x2

(
λ + 2µ

iω

∂ξ̌ε
2

∂x2

)
+

∂

∂x1

(
µ

iω

∂ξ̌ε
2

∂x1

)

+
∂

∂x2

(
λ

iω

∂ξ̌ε
1

∂x1

)
+

∂

∂x1

(
µ

iω

∂ξ̌ε
1

∂x2

)
− 1

ε2

∂

∂x2

(
λ

2µ
χ̌ε

33

)
, (17)

∂χ̌ε
33

∂x3
=

2µ

λ + 2µ

[
− iρω

ε4
ξ̌ε
3 − λ

iω

(
∂2ξ̌ε

3

∂x2
1

+
∂2ξ̌ε

3

∂x2
2

)
− 1

ε2

λ + µ

µ

(
∂χ̌ε

13

∂x1
+

∂χ̌ε
23

∂x2

)

+ε2 ∂

∂x3

(
λ

iω

) (
∂ξ̌ε

1

∂x1
+

∂ξ̌ε
2

∂x2

)
− ∂

∂x3

(
λ

2µ

)
χ̌ε

33 −
λ

ε2

∂

∂x1

(
1

µ

)
χ̌ε

13 −
λ

ε2

∂

∂x2

(
1

µ

)
χ̌ε

23

]
, (18)

where µ, ρ and λ are evaluated at (ε2x1, ε
2x2, x3). The four other dependent variables are given by:

χ̌ε
11 =−2ε2µ

iω

∂ξ̌ε
1

∂x1
, (19)

χ̌ε
12 =−ε2µ

iω

∂ξ̌ε
1

∂x2
− ε2µ

iω

∂ξ̌ε
2

∂x1
, (20)

χ̌ε
22 =−2ε2µ

iω

∂ξ̌ε
2

∂x2
, (21)

p̌ =−ε2λ

iω

∂ξ̌ε
1

∂x1
− ε2λ

iω

∂ξ̌ε
2

∂x2
+

λ

2µ
χ̌ε

33 . (22)

When the medium is homogeneous (mµ = mρ = mλ = 0), then there exist plane wave solutions that
depend only on x3 and satisfy:

d

dx3




ξ̌ε
1

χ̌ε
13

ξ̌ε
2

χ̌ε
23

ξ̌ε
3

χ̌ε
33




= − iω

ε4
M




ξ̌ε
1

χ̌ε
13

ξ̌ε
2

χ̌ε
23

ξ̌ε
3

χ̌ε
33




, M =




0 µ−1
0 0 0 0 0

ρ0 0 0 0 0 0
0 0 0 µ−1

0 0 0
0 0 ρ0 0 0 0
0 0 0 0 0 (2µ0)

−1

0 0 0 0
2µ0ρ0

λ0 + 2µ0
0




.

The diagonalization of the 6 × 6 matrix M gives the general form of the plane wave solutions

ξ̌ε
1(ω, x3) = ζ

−1/2
S

(
ǎ1(ω)e

i
ωx3
cSε4 + b̌1(ω)e

−i
ωx3
cSε4

)
, (23)

χ̌ε
13(ω, x3) = ζ

1/2
S

(
− ǎ1(ω)e

i
ωx3
cSε4 + b̌1(ω)e

−i
ωx3
cSε4

)
, (24)

ξ̌ε
2(ω, x3) = ζ

−1/2
S

(
ǎ2(ω)e

i
ωx3
cSε4 + b̌2(ω)e

−i
ωx3
cSε4

)
, (25)

χ̌ε
23(ω, x3) = ζ

1/2
S

(
− ǎ2(ω)e

i
ωx3
cSε4 + b̌2(ω)e

−i
ωx3
cSε4

)
, (26)

ξ̌ε
3(ω, x3) = ζ

−1/2
P

(
ǎ3(ω)e

i
ωx3

cP ε4 + b̌3(ω)e
−i

ωx3
cP ε4

)
, (27)

χ̌ε
33(ω, x3) = ζ

1/2
P

(
− ǎ3(ω)e

i
ωx3

cP ε4 + b̌3(ω)e
−i

ωx3
cP ε4

)
. (28)

Here cS and cP are the shear-wave and pressure-wave velocities, and ζS and ζP are the shear-wave and
pressure-wave impedances of the homogeneous medium:

cS =

√
µ0

ρ0
, cP =

√
2µ0 + λ0

ρ0
, ζS =

√
µ0ρ0 , ζP =

√
4µ2

0ρ0

2µ0 + λ0
. (29)
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The modes ǎj , j = 1, 2 are upward-moving shear waves, the mode ǎ3 is an upward-moving pressure wave,
the modes b̌j , j = 1, 2 are downward-moving shear waves, and the mode b̌3 is a downward-moving pressure
wave.

When the medium is heterogeneous and described by the model (9-11), then we introduce the generalized
upward-moving modes ǎε

j and downward-moving modes b̌ε
j defined by

ξ̌ε
1(ω, x) = ζ

−1/2
S

(
ǎε
1(ω, x)e

i
ωx3
cSε4 + b̌ε

1(ω, x)e
−i

ωx3
cSε4

)
, (30)

χ̌ε
13(ω, x) = ζ

1/2
S

(
− ǎε

1(ω, x)e
i

ωx3
cSε4 + b̌ε

1(ω, x)e
−i

ωx3
cSε4

)
, (31)

ξ̌ε
2(ω, x) = ζ

−1/2
S

(
ǎε
2(ω, x)e

i
ωx3
cSε4 + b̌ε

2(ω, x)e
−i

ωx3
cSε4

)
, (32)

χ̌ε
23(ω, x) = ζ

1/2
S

(
− ǎε

2(ω, x)e
i

ωx3
cSε4 + b̌ε

2(ω, x)e
−i

ωx3
cSε4

)
, (33)

ξ̌ε
3(ω, x) = ζ

−1/2
P

(
ǎε
3(ω, x)e

i
ωx3

cP ε4 + b̌ε
3(ω, x)e

−i
ωx3

cP ε4
)
, (34)

χ̌ε
33(ω, x) = ζ

1/2
P

(
− ǎε

3(ω, x)e
i

ωx3
cP ε4 + b̌ε

3(ω, x)e
−i

ωx3
cP ε4

)
, (35)

where cS , cP , ζS , and ζP are the shear-wave and pressure-wave velocities and impedances of the background
homogeneous medium as defined by (29).

The radiation conditions at +∞ and −∞ derive from the fact that there is no downward-moving wave in
the region x3 > 0 and no upward-moving wave in the region x3 < −L:

ǎε
j(ω, x⊥, x3 = (−L)−) = 0 , b̌ε

j(ω, x⊥, x3 = 0+) = 0 , j = 1, 2, 3 , (36)

see Figure 1. The jump conditions across the source plane x3 = 0 are obtained by integrating (6-8) across
x3 = 0:

[ξ̌ε
j ]

0+

0− = 0 , [χ̌ε
13]

0+

0− = −š1 , [χ̌ε
23]

0+

0− = −š2 , [χ̌ε
33]

0+

0− = − 2µ0

2µ0 + λ0
š3 , š(ω, x⊥) =

∫
s(t, x⊥)eiωtdt .

(37)
From the jump conditions (37) and the radiation conditions at +∞, we obtain:

b̌ε
j(ω, x⊥, x3 = 0−) = b̌inc,j(ω, x⊥) , b̌inc,j(ω, x⊥) =

1

2ζ
1/2
S

šj(ω, x⊥) , j = 1, 2 , (38)

b̌ε
3(ω, x⊥, x3 = 0−) = b̌inc,3(ω, x⊥) , b̌inc,3(ω, x⊥) =

1

2ζ
1/2
P

2µ0

2µ0 + λ0
š3(ω, x⊥) . (39)

By the continuity of the fields across z = −L and the radiation condition at −∞, we get:

ǎε
j(ω, x⊥, x3 = (−L)+) = 0 , j = 1, 2, 3 . (40)

Let us next introduce the six-dimensional vector

X̌ε(ω, x⊥, x3) =




ǎε
1

b̌ε
1

ǎε
2

b̌ε
2

ǎε
3

b̌ε
3




(ω, x⊥, x3) . (41)

From (13-18), the vector X̌ε satisfies in the section x3 ∈ (−L, 0) the linear system
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6

−L

x3

0

6
ǎε

j((−L)−) = 0
?
b̌ε
j((−L)−)

6
ǎε

j((−L)+)
?
b̌ε
j((−L)+)

6
ǎε

j(0
−)

6̌aε
j(0

+)

?
b̌ε
j(0

−)

?
b̌ε
j(0

+) = 0

Fig. 1. Boundary conditions for the wave modes with a source at x3 = 0 and radiation conditions at ±∞.

dX̌ε

dx3
= Ǎε(ω, x⊥, x3)X̌

ε , (42)

Ǎε(ω, x⊥, x3) =
1

ε2

[
e

i
ωx3
ε4 ( 1

cP
+ 1

cS
)
Ǎ1,1 + e

i
ωx3
ε4 ( 1

cP
− 1

cS
)
Ǎ1,−1

+e
i

ωx3
ε4 (− 1

cP
+ 1

cS
)
Ǎ−1,1 + e

i
ωx3
ε4 (− 1

cP
− 1

cS
)
Ǎ−1,−1

]

+
1

ε
m̃P

(
x⊥,

x3

ε2

)[
e

i
2ωx3
ε4cP B̌2,0 + e

−i
2ωx3
ε4cP B̌−2,0

]

+
1

ε
m̃S

(
x⊥,

x3

ε2

)[
e

i
2ωx3
ε4cS B̌0,2 + e

−i
2ωx3
ε4cS B̌0,−2

]

+
1

ε
mP

(
x⊥,

x3

ε2

)
B̌

0,0
P +

1

ε
mS

(
x⊥,

x3

ε2

)
B̌

0,0
S

+Ǎ0,0 + e
2i

ωx3
ε4cP Ǎ2,0 + e

−2i
ωx3

ε4cP Ǎ−2,0 + e
2i

ωx3
ε4cS Ǎ0,2 + e

−2i
ωx3
ε4cS Ǎ0,−2 , (43)

and the two-point boundary conditions

H−LX̌ε(ω, x⊥,−L) + H0X̌ε(ω, x⊥, 0) = V̌ (ω, x⊥) . (44)

The matrices Ǎj,k and B̌j,k are given in Appendix A. The vector V̌ (ω, x⊥) and the matrices H−L and H0

are defined by

V̌ (ω, x⊥) =




0

b̌inc,1(ω, x⊥)
0

b̌inc,2(ω, x⊥)
0

b̌inc,3(ω, x⊥)




, H−L =




1 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0




, H0 =




0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1




, (45)

and

mS(x) = (mµ + mρ)(x) , (46)

mP (x) =
(
(mµ + mρ) −

λ0

2µ0 + λ0
(mµ + mλ)

)
(x) , (47)

m̃S(x) = (mµ − mρ)(x) , (48)

m̃P (x) =
(
(mµ − mρ) +

λ0

2µ0 + λ0
(mµ + mλ)

)
(x) . (49)

In the expression (43) of Ǎε we have neglected terms of order ε and smaller, and kept only the terms of
order ε−2, ε−1 and 1. The mode decomposition (i.e. the definitions of the mode velocities and impedances)
has canceled the terms of order ε−4 that are present in the original equations (13-18).
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If the source is x⊥-independent and if the medium is homogeneous (mµ = mρ = mλ = 0), then the solution
of (42)-(44) is a constant vector which corresponds to a collection of three downward-moving modes: two
shear-wave modes that propagate with the velocity cS and one pressure-wave mode that propagates with
the velocity cP .

If the source is x⊥-dependent and/or the medium is heterogeneous, then transverse spatial effects and/or
random effects have to be taken into account:
1) The matrices Ǎj,k in (43) correspond to deterministic transverse spatial effects. For (j, k) 6= (0, 0), these
terms have large amplitudes, of order ε−2, but they also have rapid phases that vary at the scale ε4, and
we will see that they give rise to effective terms of order one in the limit ε → 0 through the application
of an averaging theorem for highly oscillatory differential equations. These effects are purely deterministic,
they consist of coupling between modes with different velocities, including coupling between upward- and
downward-moving modes, and it is crucial to take them into account in the determination of the paraxial
wave equation. Indeed, the matrix Ǎ0,0 that would be the natural candidate for the right-hand side of the
paraxial wave equation does not capture the full paraxial mechanism. In other words, ”brutally” suppressing
the upward-moving (i.e. reflected) modes leads to wrong results. As we will see, the reflected modes are
vanishing in the limit ε → 0, but the coupling terms between upward- and downward-moving modes give
important contributions to the dynamics of the transmitted waves.
2) The matrices B̌j,k in (43) correspond to downward and upward scattering and coupling between modes
due to the random heterogeneities of the medium. These terms have large amplitudes, of order ε−1, but
they vary rapidly at the scale ε2, and the driving processes have mean zero and mixing properties. They
will also give rise to effective terms of order one in the limit ε → 0 through the application of a diffusion
approximation theorem. The limit of X̌ε will be characterized by a stochastic partial differential equation
driven by two correlated Brownian fields.

4. The paraxial wave equations

In this section we state the main results of the paper. Proposition 1 describes the paraxial equations
for elastic waves when the medium is homogeneous and it is proved in Section 5. Proposition 2 describes
the white-noise paraxial equations for elastic waves when the medium is randomly heterogeneous and it is
proved in Section 6.
Proposition 1 Let us assume that the medium is homogeneous mµ = mρ = mλ = 0. The transmitted
wave consists of the succession of two fields that emerge at x3 = −L around time t = L/cP and t = L/cS

respectively:

(ξ, χ, p)
(
t =

L

cP
+ ε4s, ε2x⊥, x3 = −L

)
ε→0−→ (ξP , χP , pP )(s, x⊥) , (50)

(ξ, χ, p)
(
t =

L

cS
+ ε4s, ε2x⊥, x3 = −L

)
ε→0−→ (ξS , χS , pS)(s, x⊥) . (51)

The first field (ξP , χP , pP ) is a pressure wave of the form

χPjk(s, x⊥) = 0 , (j, k) 6= (3, 3) , (52)

χP33(s, x⊥) =
1

2π

∫
χ̌P33(ω, x⊥)e−iωsdω , (53)

ξPj(s, x⊥) = 0 , j = 1, 2 , (54)

ξP3(s, x⊥) = ζ−1
P χP33(s, x⊥) , (55)

pP (s, x⊥) =
λ0

2µ0
χP33(s, x⊥) . (56)

The second field (ξS , χS , pS) is a shear wave of the form
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χSj3(s, x⊥) =
1

2π

∫
χ̌Sj3(ω, x⊥)e−iωsdω , j = 1, 2 , (57)

χSjk(s, x⊥) = 0 , (j, k) 6∈ {(1, 3), (2, 3)} , (58)

ξSj(s, x⊥) = ζ−1
S χSj3(s, x⊥) , j = 1, 2 , (59)

ξS3(s, x⊥) = 0 , (60)

pS(s, x⊥) = 0 . (61)

The time-harmonic fields χ̌P33 and χ̌Sj3, j = 1, 2, are given by

χ̌P33(ω, x⊥) = ζ
1/2
P

∫
ŤP (ω, x⊥ − x′

⊥, 0)b̌inc,3(ω, x′
⊥)dx′

⊥ ,

χ̌Sj3(ω, x⊥) = ζ
1/2
S

∫
ŤS(ω, x⊥ − x′

⊥, 0)b̌inc,j(ω, x′
⊥)dx′

⊥ , j = 1, 2 ,

where ŤP (ω, x⊥, x3) and ŤS(ω, x⊥, x3) satisfy the Schrödinger equations for x3 ∈ (−L, 0):

∂ŤP (ω, x⊥, x3)

∂x3
=

icP

2ω
∆x⊥

ŤP (ω, x⊥, x3) , ŤP (ω, x⊥, x3 = −L) = δ(x⊥) , (62)

∂ŤS(ω, x⊥, x3)

∂x3
=

icS

2ω
∆x⊥

ŤS(ω, x⊥, x3) , ŤS(ω, x⊥, x3 = −L) = δ(x⊥) . (63)

Here ∆x⊥
= ∂2

∂x2
1

+ ∂2

∂x2
2

is the transverse Laplacian.

We now give the result when the medium has random fluctuations.
Proposition 2 In the limit ε → 0, the transmitted wave consists of the succession of two fields that emerge
at x3 = −L around time t = L/cP and t = L/cS as described by (50-51). The first field is a pressure wave
of the form (52-56). The second field is a shear wave of the form (57-61). The time-harmonic fields χ̌P33

and χ̌Sj3, j = 1, 2 are given by

χ̌P33(ω, x⊥) = ζ
1/2
P

∫
ŤP (ω, x⊥, x′

⊥, 0)b̌inc,3(ω, x′
⊥)dx′

⊥ ,

χ̌Sj3(ω, x⊥) = ζ
1/2
S

∫
ŤS(ω, x⊥, x′

⊥, 0)b̌inc,j(ω, x′
⊥)dx′

⊥ , j = 1, 2 .

The operators ŤP and ŤS are the solutions of the following Itô-Schrödinger diffusion models for x3 ∈ (−L, 0):

dŤP (ω, x⊥, x′
⊥, x3) =

icP

2ω
∆x′

⊥

ŤP (ω, x⊥, x′
⊥, x3)dx3 +

iω

2cP
ŤP (ω, x⊥, x′

⊥, x3) ◦ dBP (x′
⊥, x3) , (64)

dŤS(ω, x⊥, x′
⊥, x3) =

icS

2ω
∆x′

⊥

ŤS(ω, x⊥, x′
⊥, x3)dx3 +

iω

2cS
ŤS(ω, x⊥, x′

⊥, x3) ◦ dBS(x′
⊥, x3) , (65)

with the initial conditions

ŤP (ω, x⊥, x′
⊥, x3 = −L) = ŤS(ω, x⊥, x′

⊥, x3 = −L) = δ(x⊥ − x′
⊥) . (66)

Here the symbol ◦ stands for the Stratonovich stochastic integral, BP (x⊥, x3) and BS(x⊥, x3) are two cor-
related Brownian fields with the covariance matrix

(
E[BP (x⊥, x3)BP (, x′

⊥, x′
3)] E[BP (x⊥, x3)BS(, x′

⊥, x′
3)]

E[BS(x⊥, x3)BP (, x′
⊥, x′

3)] E[BS(x⊥, x3)BS(, x′
⊥, x′

3)]

)
= min{x3, x

′
3}C0(x⊥ − x′

⊥) , (67)

C0(x⊥) =

(
C0,PP (x⊥) C0,PS(x⊥)
C0,PS(x⊥) C0,SS(x⊥)

)
, (68)

and we have used the notations
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CPP (x) = E[mP (x′ + x)mP (x′)] , (69)

C0,PP (x⊥) =

∫ ∞

−∞

CPP (x⊥, x3)dx3 , (70)

CSS(x) = E
[
mS(x′ + x)mS(x′)

]
, (71)

C0,SS(x⊥) =

∫ ∞

−∞

CSS(x⊥, x3)dx3 , (72)

CPS(x) =
1

2
E[mP (x′ + x)mS(x′)] +

1

2
E[mS(x′ + x)mP (x′)] , (73)

C0,PS(x⊥) =

∫ ∞

−∞

CPS(x⊥, x3)dx3 , (74)

where mP and mS are defined by (46-47).
In order to give a complete characterization of the transmitted field, we add that there is no other

transmitted wave in the sense that for any time t0 6∈ {L/cP , L/cS},

(ξ, χ, p)
(
t = t0 + ε4s, ε2x⊥, x3 = −L

) ε→0−→ (0,0, 0) .

There is no reflected wave in the sense that for any time t0 > 0,

(ξ, χ, p)
(
t = t0 + ε4s, ε2x⊥, x3 = 0

) ε→0−→ (0,0, 0) .

In [7] the existence and uniqueness has been established for each of the two random processes

VP (ω, x⊥, x3) =

∫
ŤP (ω, x⊥, x′

⊥, x3)φP (x′
⊥)dx′

⊥ ,

VS(ω, x⊥, x3) =

∫
ŤS(ω, x⊥, x′

⊥, x3)φS(x′
⊥)dx′

⊥ ,

for any test functions φS and φP with unit L2(R2, C)-norm. Furthermore, it is shown that each of the
two processes VS(ω, x⊥, x3) and VP (ω, x⊥, x3) is a continuous Markov diffusion process on the unit ball of
L2(R2, C). The moment equations moreover satisfy a closed system at each order [12]. It is straightforward to
generalize these results for the joint distribution of the pair of processes (VS , VP ). The interested reader can
find explicit calculations for the mean intensity, the autocorrelation function, and other relevant quantities
of the transmitted wave in [14].

The fact that the solutions of Itô-Schrödinger equations have constant L2-norms shows that the sum of
the energies of the transmitted pressure wave (50) and of the transmitted shear wave (51) (in homogeneous
or random media) is equal to the energy of the incoming wave. Indeed, the energy flux density is given by

F(t, x) =
[
λ(∇ · u)I + µ(∇u + ∇tu)

]
ξ = pξ + χξ .

Therefore, the total energy flux generated by the source and entering the random section at x3 = 0 is

Finc =
1

8πρ0

∫∫ |š1(ω, x⊥)|2
cS

+
|š2(ω, x⊥)|2

cS
+

|š3(ω, x⊥)|2
cP

dωdx⊥ ,

the energy flux of the transmitted pressure wave (50) exiting at x3 = −L is

Ftr,P =
1

8πρ0

∫∫
1

cP

∣∣∣
∫

ŤP (ω, x⊥, x′
⊥, 0)š3(ω, x′

⊥)dx′
⊥

∣∣∣
2

dωdx⊥ =
1

8πρ0

∫∫ |š3(ω, x⊥)|2
cP

dωdx⊥ ,

and the energy flux of the transmitted shear wave (51) exiting at x3 = −L is

Ftr,S =
1

8πρ0

2∑

j=1

∫∫
1

cS

∣∣∣
∫

ŤS(ω, x⊥, x′
⊥, 0)šj(ω, x′

⊥)dx′
⊥

∣∣∣
2

dωdx⊥ =
1

8πρ0

2∑

j=1

∫∫ |šj(ω, x⊥)|2
cS

dωdx⊥ .

This shows that we have Finc = Ftr,P + Ftr,S , which illustrates the fact that no energy is reflected and all
the energy is transmitted in the form of the two wave fields described in the propositions.
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5. The derivation of the paraxial wave equations in the homogeneous case

In this section we assume that there are no random fluctuations mµ = mρ = mλ = 0 and we prove
Proposition 1. We transform the two-point boundary value problem (42)-(44) into an initial value problem.
This is done by an invariant imbedding step in which we introduce transmission and reflection matrices.
First, we define the lateral Fourier modes for j = 1, 2, 3:

âε
j(ω, κ⊥, x3) =

∫
ǎε

j(ω, x⊥, x3)e
−iκ⊥·x⊥dx⊥ , b̂ε

j(ω, κ⊥, x3) =

∫
b̌ε
j(ω, x⊥, x3)e

−iκ⊥·x⊥dx⊥ ,

where we have denoted κ⊥ = (κ1, κ2). The reflected wave is characterized by âε
j(ω, κ⊥, x3 = 0) and the

transmitted wave by b̂ε
j(ω, κ⊥, x3 = −L). The parameters ω and κ⊥ are frozen in the problem, so we shall

not write explicitly the (ω, κ⊥)-dependence of the vectors and matrices. The vector X̂ε(x3) is defined as

in (41), however, in terms of the Fourier modes âε
j and b̂ε

j and it is the solution of the two-point boundary
value problem:

dX̂ε

dx3
= Âε(x3)X̂

ε , H−LX̂ε(−L) + H0X̂ε(0) = V̂ ,

with the 6 × 6 matrix Âε(x3) given by

Âε(x3) =
1

ε2

[
e

i
ωx3
ε4 ( 1

cP
+ 1

cS
)
Â1,1 + e

i
ωx3
ε4 ( 1

cP
− 1

cS
)
Â1,−1 + e

i
ωx3
ε4 (− 1

cP
+ 1

cS
)
Â−1,1 + e

i
ωx3
ε4 (− 1

cP
− 1

cS
)
Â−1,−1

]

+Â0,0 + e
2i

ωx3
ε4cP Ǎ2,0 + e

−2i
ωx3

ε4cP Ǎ−2,0 + e
2i

ωx3
ε4cS Ǎ0,2 + e

−2i
ωx3
ε4cS Ǎ0,−2 , (75)

Âj,k are given in Appendix A, H−L and H0 are given by (45), and

V̂ =




0

b̂inc,1

0

b̂inc,2

0

b̂inc,3




, b̂inc,j(ω, κ⊥) =

∫
b̌inc,j(ω, x⊥)e−iκ⊥·x⊥dx⊥ , j = 1, 2, 3 .

By applying Proposition B.1 of Appendix B , we get that the reflected and transmitted modes are given by

âε
j(x3 = 0) = [R̂ε(x3 = 0)V̂ ]2j−1 , j = 1, 2, 3 , (76)

b̂ε
j(x3 = −L) = [T̂ε(x3 = 0)V̂ ]2j , j = 1, 2, 3 , (77)

where the reflection and transmission matrices R̂ε and T̂ε are solution of the initial value problem

dR̂ε

dx3
= (I − R̂εH0)Âε(x3)R̂

ε , R̂ε(x3 = −L) = I , (78)

dT̂ε

dx3
=−T̂εH0Âε(x3)R̂

ε , T̂ε(x3 = −L) = I , (79)

and I is the 6 × 6 identity matrix. Note that the linear boundary value problem has been transformed
into a nonlinear initial value problem, that has the form of a matrix Riccati equation. We can now apply
Proposition C.1 which gives the asymptotic behavior of the reflection and transmission matrices:
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dR̂

dx3
= (I − R̂H0)Â0,0R̂ +

i

ω( 1
cP

+ 1
cS

)

[
(I − R̂H0)Â1,1R̂, (I − R̂H0)Â−1,−1R̂

]

+
i

ω( 1
cP

− 1
cS

)

[
(I − R̂H0)Â1,−1R̂, (I − R̂H0)Â−1,1R̂

]
,

dT̂

dx3
=−T̂H0Â0,0R̂ +

i

ω( 1
cP

+ 1
cS

)

[
T̂H0Â1,1R̂, T̂H0Â−1,−1R̂

]

+
i

ω( 1
cP

− 1
cS

)

[
T̂H0Â1,−1R̂, T̂H0Â−1,1R̂

]
,

where the brackets stand for Lie brackets as defined in Proposition C.1. It turns out that these equations
can be dramatically simplified. Indeed, the Lie brackets can be computed

[
(I − R̂H0)Â1,1R̂, (I − R̂H0)Â−1,−1R̂

]
= (I − R̂H0)(Â1,1Â−1,−1 − Â−1,−1Â1,1)R̂,

[
(I − R̂H0)Â1,−1R̂, (I − R̂H0)Â−1,1R̂

]
= (I − R̂H0)(Â1,−1Â−1,1 − Â−1,1Â1,−1)R̂,

[
T̂H0Â1,1R̂, T̂H0Â−1,−1R̂

]
= T̂(Â1,1Â−1,−1 − Â−1,−1Â1,1)H0R̂,

[
T̂H0Â1,−1R̂, T̂H0Â−1,1R̂

]
= T̂(Â1,−1Â−1,1 − Â−1,1Â1,−1)H0R̂ ,

and we have the remarkable identity

Â0,0 +
i

ω( 1
cP

+ 1
cS

)

(
Â1,1Â−1,−1 − Â−1,−1Â1,1

)
+

i

ω( 1
cP

− 1
cS

)

(
Â1,−1Â−1,1 − Â−1,1Â1,−1

)
= D̂,

with

D̂ =
i|κ⊥|2

2ω




−cS 0 0 0 0 0
0 cS 0 0 0 0
0 0 −cS 0 0 0
0 0 0 cS 0 0
0 0 0 0 −cP 0
0 0 0 0 0 cP




.

It is absolutely remarkable that the zero-th order term Â0,0 and the Lie brackets coming from the averaging
theorem combine to give a diagonal matrix, while each contribution is rather complicated. This gives the
following equations for the reflection and transmission matrices:

dR̂

dx3
= (I − R̂H0)D̂R̂ , R̂(x3 = −L) = I , (80)

dT̂

dx3
=−T̂H0D̂R̂ , T̂(x3 = −L) = I . (81)

The solution of (80) is a diagonal matrix whose even diagonal terms are equal to one:

R̂(x3) =




R̂S(x3) 0 0 0 0 0
0 1 0 0 0 0

0 0 R̂S(x3) 0 0 0
0 0 0 1 0 0

0 0 0 0 R̂P (x3) 0
0 0 0 0 0 1




where
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dR̂S

dx3
(x3) =− icS|κ⊥|2

2ω
R̂S(x3) , R̂S(x3 = −L) = 1 ,

dR̂P

dx3
(x3) =− icP |κ⊥|2

2ω
R̂P (x3) , R̂P (x3 = −L) = 1 .

Therefore, for j = 1, 2, 3, we have

lim
ε→0

âε
j(x3 = 0) = [R̂(x3 = 0)V̂ ]2j−1 = 0 .

This shows that the paraxial (or forward-scattering) approximation is valid in the sense that the reflected
modes âε

j(x3 = 0) are vanishing in the limit ε → 0. The solution of (81) is also a diagonal matrix:

T̂(x3) =




1 0 0 0 0 0

0 T̂S(x3) 0 0 0 0
0 0 1 0 0 0

0 0 0 T̂S(x3) 0 0
0 0 0 0 1 0

0 0 0 0 0 T̂P (x3)




,

where

dT̂S

dx3
(x3) =− icS|κ⊥|2

2ω
T̂S(x3) , T̂S(x3 = −L) = 1 ,

dT̂P

dx3
(x3) =− icP |κ⊥|2

2ω
T̂P (x3) , T̂P (x3 = −L) = 1 .

By taking an inverse Fourier transform in κ⊥, we obtain the result of Proposition 1. Finally, the solutions
of the Schrödinger equations in a homogeneous medium can be computed explicitly and we obtain

χP33(s, x⊥) =
ζ
1/2
P

(2π)3

∫∫
b̌inc,3(ω, κ⊥)e−

icP
2ω |κ⊥|2L+iκ⊥·x⊥dκ⊥e−iωsdω ,

χSj3(s, x⊥) =
ζ
1/2
S

(2π)3

∫∫
b̌inc,j(ω, κ⊥)e−

icS
2ω |κ⊥|2L+iκ⊥·x⊥dκ⊥e−iωsdω , j = 1, 2 .

6. The derivation of the paraxial wave equations in the random case

In this section we prove Proposition 2. We transform the two-point boundary value problem (42)-(44) into
an initial value problem. This is very important in the random case so that we can deal exclusively with
quantities that are adapted to the filtration of the driving processes mµ, mρ, and mλ (which is necessary for
the application of a diffusion approximation theorem). This transformation is done by an invariant imbedding
step in which we introduce transmission and reflection operators. The algebra is more complicated than in
the homogeneous case since the random medium fluctuations involve coupling not only between the six
modes (as in the homogeneous case) but also between different κ⊥-modes. That is why we need to introduce

matrix operators. The vector X̂ε defined as in (41) is solution of the two-point boundary value problem:

dX̂ε

dx3
= Â

ε
(x3)X̂

ε , H−LX̂ε(−L) + H0X̂ε(0) = V̂ .

Here Â
ε
(x3) is the matrix operator acting on six-dimensional vector fields Ŷ (κ⊥) as

[Â
ε
(x3)Ŷ ](κ⊥) =

∫
Â

ε
(κ⊥, κ′

⊥, x3)Ŷ (κ′
⊥)dκ′

⊥,

with the kernel
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Â
ε
(κ⊥, κ′

⊥, x3) = δ(κ⊥ − κ′
⊥)

{
Â0,0 +

1

ε2

[
e

i
ωx3
ε4 ( 1

cP
+ 1

cS
)
Â1,1 + e

i
ωx3
ε4 ( 1

cP
− 1

cS
)
Â1,−1

+e
i

ωx3
ε4 (− 1

cP
+ 1

cS
)
Â−1,1 + e

i
ωx3
ε4 (− 1

cP
− 1

cS
)
Â−1,−1

]}

+
1

ε

1

(2π)2
̂̃mP

(
κ⊥ − κ′

⊥,
x3

ε2

) [
e

i
2ωx3
ε4cP B̂2,0 + e

−i
2ωx3
ε4cP B̂−2,0

]

+
1

ε

1

(2π)2
̂̃mS

(
κ⊥ − κ′

⊥,
x3

ε2

) [
e

i
2ωx3
ε4cS B̂0,2 + e

−i
2ωx3
ε4cS B̂0,−2

]

+
1

ε

1

(2π)2
m̂P

(
κ⊥ − κ′

⊥,
x3

ε2

)
B̂

0,0
P +

1

ε

1

(2π)2
m̂S

(
κ⊥ − κ′

⊥,
x3

ε2

)
B̂

0,0
S . (82)

By applying Proposition B.1, we get that the reflected and transmitted modes are given by

âε
j(x3 = 0) = [R̂

ε
(x3 = 0)V̂ ]2j−1 , j = 1, 2, 3 , (83)

b̂ε
j(x3 = −L) = [T̂

ε
(x3 = 0)V̂ ]2j , j = 1, 2, 3 , (84)

where the reflection and transmission matrix-operator kernels are solution of the initial value problem

dR̂
ε

dx3
= (Î − R̂

ε
Ĥ

0
)Â

ε
(x3)R̂

ε
, R̂

ε
(x3 = −L) = Î , (85)

dT̂
ε

dx3
=−T̂

ε
Ĥ

0
Â

ε
(x3)R̂

ε
, T̂

ε
(x3 = −L) = Î , (86)

where
Î(κ⊥, κ′

⊥) = δ(κ⊥ − κ′
⊥)I , Ĥ

0
(κ⊥, κ′

⊥) = δ(κ⊥ − κ′
⊥)H0 .

Explicitly, the transmitted wave components are, for j = 1, 2:

χj3(t, ε
2x⊥, x3 = −L) =

ζ
1/2
S

(2π)3

∫∫ 3∑

k=1

T̂ ε
2j,2k(ω, κ⊥, κ′

⊥, x3 = 0)̂binc,k(ω, κ′
⊥)eiκ⊥·x⊥dκ′

⊥dκ⊥e
i ω

ε4 ( L
cS

−t)
dω ,

χ33(t, ε
2x⊥, x3 = −L) =

ζ
1/2
P

(2π)3

∫∫ 3∑

k=1

T̂ ε
6,2k(ω, κ⊥, κ′

⊥, x3 = 0)̂binc,k(ω, κ′
⊥)eiκ⊥·x⊥dκ′

⊥dκ⊥e
i ω

ε4 ( L
cP

−t)
dω ,

ξj = ζ−1
S χj3 and ξ3 = ζ−1

P χ33 while the other components are obtained by (19-22). We first note that the

rapid phase in ω will give a localization in time of the transmitted waves (provided we show that T̂
ε

has a
limit). Therefore we focus our attention on

χε
j3(s, x⊥) = χj3

(
t =

L

cS
+ ε4s, ε2x⊥, x3 = −L

)
,

χε
33(s, x⊥) = χ33

(
t =

L

cP
+ ε4s, ε2x⊥, x3 = −L

)
.

The proof of the convergence follows closely the strategy adopted in [14], where the paraxial wave equation
is obtained from the acoustic wave equations in the same distinguished limit. The proof is similar because

the matrix operator Â
ε

has a diagonal block structure (with 2× 2 blocks along the diagonal), which means
that it has the same structure as the 2 × 2 operator encountered in the acoustic case. The main step of the
proof consists in showing the convergence of the general moments of the transmitted wave components to the
ones given by the limit system of stochastic partial differential equation (64-65). For N ∈ N, jr ∈ {1, 2, 3},
mr ∈ N, sr ∈ R and x⊥r ∈ R2, r = 1, . . . , N , the general moment of transmitted wave components

Iε = E

[ N∏

r=1

χε
jr3(sr, x⊥r)

mr

]

can be expressed as a sum of 3M multiple integrals, for M =
∑N

r=1 mr:
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Iε =
∑

k=(kr,h)h=1,...,mr,r=1,...,N∈{1,2,3}M

Iε
k ,

Iε
k =

ζ
MS
2

S ζ
MP
2

P

(2π)3M

∫
· · ·

∫ N∏

r=1

mr∏

h=1

dκ′
⊥r,hdκ⊥r,hdωr,h

×
∏

r,h

(
b̂inc,kr,h

(ωr,h, κ′
⊥r,h)ei(κ⊥r,h·x⊥r−ωr,hsr)

)
E

[∏

r,h

T̂ ε
2jr ,2kr,h

(ωr,h, κ⊥r,h, κ′
⊥r,h, 0)

]
,

for MP = card{kr,h = 3 , h = 1, . . . , mr , r = 1, . . . , N} and MS = M − MP . Therefore, the convergence
of the general moment of the transmitted wave components in the white-noise limit will follow from the
convergence of the specific moments E[Jε(0)] of the transmission matrix-operator kernels, where

Jε(x3) =

M∏

r=1

T̂ ε
jr ,kr

(ωr, κ⊥r, κ
′
⊥r, x3) . (87)

We call these moments “specific” because we restrict our attention to the case in which the frequencies ωr,

r = 1, . . . , N , are all distinct in (87). It is important to note that the transmission operator kernels T̂
ε

themselves do not converge to T̂ , but only certain moments (expectations of products of components with
distinct frequencies), which are those needed to ensure the convergence of the transmitted fields.

We use diffusion approximation theorems in the same way as in [14] combined with the application of
the averaging theorem in Appendix C as in the homogeneous case to obtain the limit of the expectation of
Jε(0) as ε → 0. We find that this limit can be expressed as the expectation of the corresponding product of
components of an “effective” transmission kernel in the following way:

lim
ε→0

E
[
Jε(0)

]
= E

[ M∏

r=1

T̂jr ,kr(ωr, κ⊥r, κ
′
⊥r, 0)

]
.

The expectation on the right-hand side is taken with respect to the following Itô-Schrödinger model for the
transmission operator:

T̂ (ω, κ⊥, κ′
⊥, x3) =




δ(κ⊥ − κ′
⊥) 0 0 0 0 0

0 T̂S 0 0 0 0
0 0 δ(κ⊥ − κ′

⊥) 0 0 0

0 0 0 T̂S 0 0
0 0 0 0 δ(κ⊥ − κ′

⊥) 0

0 0 0 0 0 T̂P




,

where the kernels T̂S(ω, κ⊥, κ′
⊥, x3) and T̂P (ω, κ⊥, κ′

⊥, x3) are solution of

dT̂S(ω, κ⊥, κ′
⊥, x3) =− icS|κ′

⊥|2
2ω

ŤS(ω, κ⊥, κ′
⊥, x3)dx3 −

ω2C0,SS(0)

8c2
S

T̂S(ω, κ⊥, κ′
⊥, x3)dx3

+
iω

2(2π)2cS

∫
T̂S(ω, κ⊥, κ′′

⊥, x3)dB̂S(κ′′
⊥ − κ′

⊥, x3)dκ′′
⊥ ,

dT̂P (ω, κ⊥, κ′
⊥, x3) =− icP |κ′

⊥|2
2ω

T̂P (ω, κ⊥, κ′
⊥, x3)dx3 −

ω2C0,PP (0)

8c2
P

T̂P (ω, κ⊥, κ′
⊥, x3)dx3

+
iω

2(2π)2cP

∫
T̂P (ω, κ⊥, κ′′

⊥, x3)dB̂P (κ′′
⊥ − κ′

⊥, x3)dκ′′
⊥ ,

starting from T̂S(ω, κ⊥, κ′
⊥, x3 = −L) = δ(κ⊥ − κ′

⊥) and T̂P (ω, κ⊥, κ′
⊥, x3 = −L) = δ(κ⊥ − κ′

⊥). Here

we use the standard Itô stochastic integral and the Brownian field B̂ = (B̂S , B̂P )T is the partial Fourier
transform of the field B = (BS , BP )T . It has the following operator-valued spatial covariance:

E
[
B̂(κ⊥, x3)B̂

T (κ′
⊥, x′

3)
]

= min{x3, x
′
3}(2π)2Ĉ0(κ⊥)δ(κ⊥ + κ′

⊥) , (88)
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where

Ĉ0(κ⊥) =

∫

R2

C0(x⊥)e−iκ⊥·x⊥dx⊥ . (89)

By considering the transmission kernels in the original spatial variables:

ŤS(ω, x⊥, x′
⊥, x3) =

1

(2π)2

∫∫
ei(κ⊥·x⊥−κ

′

⊥
·x′

⊥
)T̂S(ω, κ⊥, κ′

⊥, x3)dκ⊥dκ′
⊥ ,

ŤP (ω, x⊥, x′
⊥, x3) =

1

(2π)2

∫∫
ei(κ⊥·x⊥−κ

′

⊥
·x′

⊥
)T̂P (ω, κ⊥, κ′

⊥, x3)dκ⊥dκ′
⊥ ,

we obtain that they satisfy the system (64-65) where we have used the Stratonovich integral instead of Itô
integral.

7. Conclusion

In this paper we have used invariant imbedding and limit theorems to obtain the paraxial equations for
elastic waves in random media in the parabolic white-noise regime. We have shown that the paraxial systems
for the pressure waves and shear waves have the form of a system of Schrödinger equations that are driven
by a pair of correlated Brownian fields. We have identified the structure of the correlation between the
Brownian fields and between the wave fields and we have clarified the form of the diffraction operators.
These equations give a new and efficient way of modeling elastic wave propagation in a consistent manner
via averaging and diffusion approximation results. Owing to the central role elastic wave propagation have
in for instance geophysics we expect these result to be relevant in a number of applications, in particular for
analyzing schemes for imaging theoretically as well as for numerical wave propagation.

Appendix A. Expressions of the matrices

The matrices Ǎ are obtained from Â by substitution iκ1 → ∂
∂x1

and iκ2 → ∂
∂x2

.

Â1,1 =




0 0 0 0 0 0
0 0 0 0 iκ1αa 0
0 0 0 0 0 0
0 0 0 0 iκ2αa 0
0 0 0 0 0 0

iκ1αc 0 iκ2αc 0 0 0




, Â−1,−1 =




0 0 0 0 0 iκ1αa

0 0 0 0 0 0
0 0 0 0 0 iκ2αa

0 0 0 0 0 0
0 iκ1αc 0 iκ2αc 0 0
0 0 0 0 0 0




,

Â1,−1 = −




0 0 0 0 iκ1αb 0
0 0 0 0 0 0
0 0 0 0 iκ2αb 0
0 0 0 0 0 0
0 0 0 0 0 0
0 iκ1αc 0 iκ2αc 0 0




, Â−1,1 = −




0 0 0 0 0 0
0 0 0 0 0 iκ1αb

0 0 0 0 0 0
0 0 0 0 0 iκ2αb

iκ1αc 0 iκ2αc 0 0 0
0 0 0 0 0 0




,

with αa =
ζ
1/2

P

ζ
1/2

S

(
λ0

4µ0
− ζS

2ζP

)
, αb =

ζ
1/2

P

ζ
1/2

S

(
λ0

4µ0
+ ζS

2ζP

)
, and αc =

ζ
1/2

S

ζ
1/2

P

µ0+λ0

2µ0+λ0
,
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Â0,0 =− icS|κ⊥|2
2ω




1 0 0 0 0 0
0 −1 0 0 0 0
0 0 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0




− icS

2ω

µ0 + λ0

µ0




κ2
1 0 κ1κ2 0 0 0
0 −κ2

1 0 −κ1κ2 0 0
κ1κ2 0 κ2

2 0 0 0
0 −κ1κ2 0 −κ2

2 0 0
0 0 0 0 0 0
0 0 0 0 0 0




− icP |κ⊥|2
2ω

λ0

2µ0 + λ0




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 1




,

Â0,2 =
icS |κ⊥|2

2ω




0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




+
icS

2ω

µ0 + λ0

µ0




0 0 0 0 0 0
κ2

1 0 κ1κ2 0 0 0
0 0 0 0 0 0

κ1κ2 0 κ2
2 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0




,

Â0,−2 = − icS|κ⊥|2
2ω




0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




− icS

2ω

µ0 + λ0

µ0




0 κ2
1 0 κ1κ2 0 0

0 0 0 0 0 0
0 κ1κ2 0 κ2

2 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




,

Â2,0 = − icP |κ⊥|2
2ω

λ0

2µ0 + λ0




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0




, Â−2,0 =
icP |κ⊥|2

2ω

λ0

2µ0 + λ0




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0




,

B̂0,2 =
iω

2cS




0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




, B̂0,−2 = − iω

2cS




0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




,

B̂2,0 =
iω

2cP




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0




, B̂−2,0 = − iω

2cP




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0




,

B̂
0,0
S =

iω

2cS




1 0 0 0 0 0
0 −1 0 0 0 0
0 0 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0




, B̂
0,0
P =

iω

2cP




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 −1




.
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Appendix B. An invariant imbedding theorem

Let us consider the two-point boundary value problem:

dX

dz
(z) = A(z)X(z), X(z) ∈ R

m, (B.1)

with the boundary condition H−LX(−L) + H0X(0) = V 0, where A(z), H−L and H0 are m× m-matrices
and V 0 is an m-dimensional vector. Assume that H−L + H0 is invertible. In this linear framework the
invariant imbedding approach leads to the following proposition [3].
Proposition B.1 Let us define the matrices (R(ζ))−L≤ζ≤0 and (Q(z, ζ))−L≤z≤ζ≤0 as the solutions of the
initial value problems:

dR

dζ
(ζ) = A(ζ)R(ζ) − R(ζ)H0A(ζ)R(ζ) , −L ≤ ζ ≤ 0 , (B.2)

starting from ζ = −L: R(ζ = −L) = (H−L + H0)−1, and

∂Q

∂ζ
(z, ζ) = −Q(z, ζ)H0A(ζ)R(ζ) , −L ≤ z ≤ ζ ≤ 0 , (B.3)

starting from ζ = z: Q(z, ζ = z) = R(z). If the solution R(ζ) of the nonlinear initial value problem (B.2)
exists up to ζ = 0, then P(z) = Q(z, 0) is the solution of:

dP

dz
(z) = A(z)P(z) , 0 ≤ z ≤ L , with H−LP(−L) + H0P(0) = I ,

and consequently X(z) = P(z)V 0 is the solution of (B.1) with the boundary condition H−LX(−L) +
H0X(0) = V 0.

Appendix C. An averaging theorem

The following proposition can be found in [21,23]. We give here an elementary proof for consistency.
Proposition C.1 Let us consider the solution Xε = (Xε

jk)j,k=1,...,N of the initial value problem

dXε

dz
= F(0)(Xε) +

1

ε2

Q∑

q=1

(
F(q)(Xε)ei α(q)z

ε4 + G(q)(Xε)e−i α(q)z

ε4

)
, Xε(z0) = Xini , (C.1)

where F(q) : RN2 → RN2

and G(q) : RN2 → RN2

are smooth functions and α(q) ∈ R\{0} are distinct along
with their sums and differences. Then Xε converges to X the solution of the effective equation

dX

dz
= F(0)(X) +

Q∑

q=1

i

α(q)

[
F(q)(X),G(q)(X)

]
, X(z0) = Xini ,

where [·, ·] stands for the Lie brackets defined by

[
F(X),G(X)

]
=

N∑

j,k=1

(∂F(X)

∂Xjk
Gjk(X) − ∂G(X)

∂Xjk
Fjk(X)

)
.

Note that, when F(X) = AX and G(X) = BX where A and B are two N × N matrices, then
[
F(X),G(X)

]
= (AB − BA)X .

Proof. The result can be obtained by a multi-scale expansion ansatz in powers of harmonic phases:
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Xε(z) = X(0)(z) + ε2

Q∑

q=1

(
X(q,1)(z)ei α(q)z

ε4 + X(q,−1)(z)e−i α(q)z

ε4

)
(C.2)

+ε4

Q∑

q=1

(
X(q,2)(z)e2i α(q)z

ε4 + X(q,0)(z) + X(q,−2)(z)e−2i α(q)z

ε4

)

+ε4
∑

1≤q<q′≤Q

(
X(q,q′,1,1)(z)ei

(α(q)+α(q′))z

ε4 + X(q,q′,1,−1)(z)ei
(α(q)

−α(q′))z

ε4

)

+ε4
∑

1≤q<q′≤Q

(
X(q,q′,−1,1)(z)ei

(−α(q)+α(q′))z

ε4 + X(q,q′,−1,−1)(z)ei
(−α(q)

−α(q′))z

ε4

)
+ · · ·

Recall that α(q) along with their sums and differences are distinct so that these constitute different harmonics.
We now substitute the ansatz (C.2) in (C.1). By subsequently collecting the terms of order 0(ε−2) and 0(ε0)
and identifying the terms with the same harmonic (i.e. the same rapid phase), we obtain:

−iα(q)X(q,−1) = G(q)(X0) , iα(q)X(q,1) = F(q)(X0) ,

dX(0)

dz
= F(0)(X(0)) +

Q∑

q=1

∑

j,k

∂F(q)(X(0))

∂Xjk
X

(q,−1)
jk +

∑

j,k

∂G(q)(X(0))

∂Xjk
X

(q,1)
jk ,

−2iα(q)X(q,−2) =
∑

j,k

∂G(q)(X(0))

∂Xjk
X

(q,−1)
jk , 2iα(q)X(q,2) =

∑

j,k

∂F(q)(X(0))

∂Xjk
X

(q,1)
jk ,

i(α(q) + α(q′))X(q,q′,1,1) =
∑

j,k

∂F(q)(X(0))

∂Xjk
X

(q′,1)
jk +

∑

j,k

∂F(q′)(X(0))

∂Xjk
X

(q,1)
jk ,

−i(α(q) + α(q′))X(q,q′,−1,−1) =
∑

j,k

∂G(q)(X(0))

∂Xjk
X

(q′,−1)
jk +

∑

j,k

∂G(q′)(X(0))

∂Xjk
X

(q,−1)
jk ,

i(α(q) − α(q′))X(q,q′,1,−1) =
∑

j,k

∂F(q)(X(0))

∂Xjk
X

(q′,−1)
jk +

∑

j,k

∂G(q′)(X(0))

∂Xjk
X

(q,1)
jk ,

i(−α(q) + α(q′))X(q,q′,−1,1) =
∑

j,k

∂G(q)(X(0))

∂Xjk
X

(q′,1)
jk +

∑

j,k

∂F(q′)(X(0))

∂Xjk
X

(q,−1)
jk .

Substituting the expressions of X(q,1) and X(q,−1) given by the first equation into the second one gives the
desired result. The other equations give the expressions of the corrective terms. 2
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