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Wave propagation in a one-dimensional random medium with short- or long-range correlations
is analyzed. Multiple scattering is studied in the regime where the fluctuations of the medium
parameters are small and the propagation distance is large. In this regime pulse propagation is
characterized by a random time shift described in terms of a standard or fractional Brownian
motion and a deterministic deformation described by a pseudo-differential operator. This operator
is characterized by a frequency-dependent attenuation that obeys a power law with an exponent
ranging from 0 to 2. The exponent is between 1 and 2 for a long-wavelength pulse and it is
determined by the power decay rate at infinity of the autocorrelation function of the random medium
parameters. The exponent is between 0 and 1 for a short-wavelength pulse and it is determined
by the power decay rate at zero of the autocorrelation function of the random medium parameters.
This frequency-dependent attenuation is associated with a frequency-dependent phase responsible
for dispersion, which ensures causality and that the Kramers-Kronig relation is satisfied. In the
time domain the effective wave equation has the form of a linear integro-differential equation with
a fractional derivative.

PACS numbers: 43.20.Bi, 43.20.Fn, 43.20.Hq,

I. INTRODUCTION

Frequency-dependent attenuation has been observed in a wide range of applications in acoustics4,34, and also in
other domains, such as seismic wave propagation7,8,35. Experimental observations show that the attenuation of
acoustic waves has a frequency dependence of the form E = E0 exp(−α(ω)z), where E denote the amplitude of an
acoustic variable such as velocity or pressure and ω is the frequency. The damping coefficient has been seen to obey
the empirical power law

α(ω) = α0|ω|y, (1)

where α0 ∈ (0,∞) and y ∈ (0, 2) are parameters that are characteristic of the medium and obtained through a
fitting of measured data1,19,22,23. Different wave equation models have been proposed to reproduce such a power
law9,10,18,21,33,34,36. One of the problems discussed in these papers is to obtain a causal wave equation in the space-
time domain that reproduces the power law. Another problem is to relate such an equation to first principles in
physics. In our paper we propose a derivation from first principles of an effective equation that exhibits a frequency-
dependent attenuation with a power law, and we show that this attenuation is accompanied by a frequency-dependent
phase that ensures the causality of the associated approximation and the automatic satisfaction of the Kramers-Kronig
relations. The physical model is a one-dimensional acoustic wave equation in a random medium that exhibits short-
or long-range correlations. The basic phenomenon is multiple scattering responsible for an effective attenuation
and dispersion. The relation between the microscopic statistics of the random medium and the parameters of the
frequency-dependent attenuation power law is given and discussed. The effective wave equation has the form of a
partial differential equation with special fractional derivatives.

a)Electronic address: garnier@math.jussieu.fr
b)Electronic address: ksolna@math.uci.edu
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II. ACOUSTIC WAVE PROPAGATION IN RANDOM MEDIA

A. Acoustic Wave Equations

We develop an asymptotic probabilistic theory for the acoustic wave equations in the presence of random fluctuations
of the medium with short- or long-range correlations. The one-dimensional acoustic wave equations are given by

ρ(z)
∂u

∂t
+

∂p

∂z
= 0 , (2)

1

K(z)

∂p

∂t
+

∂u

∂z
= 0 , (3)

where p is the pressure and u is the velocity. For simplicity we assume that the density of the medium ρ is a constant
equal to ρ0. The bulk modulus of the medium K is assumed to be randomly varying in the region z ∈ [0, L] and
we consider the weakly heterogeneous regime15,26, in which the fluctuations of the bulk modulus are small and rapid
(compared to the propagation distance):

1

K(z)
=

{ 1
K0

(
1 + εν

(
z
ε2

))
, z ∈ [0, L] ,

1
K0

, z ∈ (−∞, 0) ∪ (L,∞) ,

ρ(z) = ρ0 for all z .

Here, the dimensionless parameter ε is small and it characterizes the separation of scales. The effective impedance
and speed of sound are ζ0 =

√
K0ρ0 and c0 =

√
K0/ρ0, respectively. The source located at z0 < 0 emits a pulse at

time z0/c0. This pulse is impinging on the section [0, L] and hits the boundary at 0 at time 0.
The random process ν is assumed to be stationary and to have mean zero. Its autocorrelation function is denoted

by

φ(z) := E[ν(x)ν(x + z)] , (4)

where E stands for the expectation with respect to the distribution of the random medium. The function φ(z) is
bounded, even, and maximal at zero (φ(0) is the variance of the fluctuations). Its local properties at zero and its
asymptotic behavior at infinity characterize the short- and long-range correlations of the random medium, as we
discuss in the next subsection.

B. Random Medium Properties

Wave propagation in random media is usually studied with a driving process ν that has mixing properties. This
means that the random values ν(x + z) and ν(x) taken at two points separated by the distance z become rapidly
uncorrelated when z → ∞. In other words the autocorrelation function φ(z) decays rapidly to zero as z → ∞. More
precisely we say that the random process ν is mixing if its autocorrelation function decays fast enough at infinity so
that it is absolutely integrable:

∫ ∞

0

|φ(z)|dz < ∞ . (5)

This is the usual assumption for random media, under which the theory is well established. In this case the correlation
length can be defined as lc = 2

∫ ∞

0
φ(z)dz/φ(0). The standard O’Doherty-Anstey (ODA) theory describes the propa-

gating pulse in this regime. The effective equation for the wave front has been obtained by several authors5,6,11,15,27,32.
The pulse propagation is characterized by a random time shift and a deterministic spreading. The random time shift
is described in terms of a standard Brownian motion, while the deterministic spreading is described by a pseudo-
differential operator that we will describe in Section III. If, additionally, the correlation length of the medium is
smaller than the typical wavelength, then the pseudo-differential operator can be reduced to a second-order diffusion15.

Wave propagation in multiscale and rough media, with short- or long-range fluctuations, has recently attracted a
lot of attention, as more and more data collected in real environments confirm that this situation can be encountered
in many different contexts, such as in geophysics12 or in laser beam propagation through the atmosphere13,16,31.

Qualitatively, the long-range correlation property means that the random process has long memory (in contrast
with a mixing process). This means that the correlation degree between the random values ν(x + z) and ν(x) taken
at two points separated by the distance z is not completely negligible when z → ∞. It corresponds to the fact that
the autocorrelation function has a slow decay at infinity. More precisely we say that the random process ν has the
H-long-range correlation property if its autocorrelation function satisfies:

φ(z)
|z|→∞
≃ rH

∣∣∣
z

lc

∣∣∣
2H−2

, (6)
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where rH > 0 and H ∈ (1/2, 1). Here the correlation length lc is the critical length scale beyond which the power law
behavior (6) is valid. Note that the autocorrelation function is not integrable since 2H − 2 ∈ (−1, 0), which means
that a random process with the H-long-range correlation property is not mixing.

Qualitatively the short-range correlation property means that the random process is rough at small scales. This
means that the correlation degree between the random values ν(x + z) and ν(x) taken at two points separated by
the distance z has a sharp decay at zero. It corresponds to the fact that the autocorrelation function decays faster
than an affine function at zero. More precisely we say that the random process ν has the H-short-range correlation
property if its autocorrelation function satisfies:

φ(z)
|z|→0≃ φ(0)

(
1 − dH

∣∣∣
z

lc

∣∣∣
2H

+ O
(∣∣∣

z

lc

∣∣∣
))

, (7)

where dH > 0 and H ∈ (0, 1/2). Here the correlation length lc is the critical length scale below which the power
law behavior (7) is valid. For technical reasons we also assume that φ(z) is continuously differentiable and piecewise
twice continuously differentiable on (0,∞) (note that φ′(z) blows up at 0+); that φ(z), φ′(z) and φ′′(z) are absolutely
integrable at infinity, say on (lc,∞); and that φ′′(z)+2H(2H−1)φ(0)dH |z/lc|2H−2/l2c is absolutely integrable at zero,
say on (0, lc). Note that the expansion (7) is the key hypothesis for the H-short-range correlation property and that
the additional technical hypotheses allow us to get the desired result in a general context. However, these technical
hypotheses are not absolutely necessary, and we will show that the desired result can be obtained without them on a
particular example.

C. Random Medium Models with Short- or Long-range Correlations

In this section we present random processes ν that satisfy the conditions that we have imposed on the medium
fluctuations. The first model we may think of is based on the fractional Brownian motion, that is known to have
special properties in terms of long-range dependence and in terms of roughness of its trajectories. We remind the
reader that the fractional Brownian motion WH(z) with Hurst index H ∈ (0, 1) is the Gaussian process with mean
zero and covariance:

E[WH(x)WH(x + z)] =
1

2

(
|x + z|2H + |x|2H − |z|2H

)
. (8)

It is a self-similar process:

WH(az)
dist.∼ aHWH(z) for all a > 0 , (9)

with stationary increments:

E
[
(WH(x + z) − WH(x))2

]
= |z|2H . (10)

For H = 1/2 it is the standard Brownian motion which has independent increments and Hölder continuous trajectories
of any order strictly less than 1/2.
For H < 1/2 it is a random process with negatively-correlated increments (which is a type of short-range correlation
property). The realizations are Hölder continuous trajectories of any order strictly less than H , which means that
they are more irregular than the trajectories of a Brownian motion.
For H > 1/2 it is a random process with positively-correlated increments (which is a type of long-range correlation
property). The realizations are Hölder continuous trajectories of any order strictly less than H , which means that
they are more regular than the trajectories of a Brownian motion.
However, the fractional Brownian motion is not stationary. We will first introduce two random processes that have
local properties similar to the ones of the fractional Brownian motion but are stationary. We will also introduce two
binary medium models that have either the long- or short-range correlation property.

Fractional Ornstein Uhlenbeck medium. The fractional Ornstein Uhlenbeck (OU) process ν(z) is defined by

ν(z) :=
σ√

HΓ(2H)lHc

[
WH(z) − 1

lc

∫ z

−∞

e
x−z

lc WH(x)dx
]
, (11)

where WH is a fractional Brownian motion with Hurst index H ∈ (0, 1). The fractional OU process is in fact a
fractional Brownian motion with a restoring force towards zero. The fractional OU process is a zero-mean, stationary,
Gaussian process. Its variance is σ2 and its autocorrelation function is given by

φ(z) =
σ2

HΓ(2H)l2H
c

[ 1

4lc

∫ ∞

−∞

e−
|x|
lc |z + x|2Hdx − 1

2
|z|2H

]
. (12)
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FIG. 1. Realizations of the fractional OU process with Hurst index H and correlation length lc. The trajectories are more
regular when H is larger.

If H = 1/2, then the standard OU process (synthesized with a standard Brownian motion) is a stationary Gaussian
Markov process. Its autocorrelation function is

φ(z) = σ2 exp
(
− |z|

lc

)
, (13)

which shows that it is a mixing process.
If H ∈ (1/2, 1) then the fractional OU process has the H-long-range correlation property since its autocorrelation

function φ(z) satisfies (6) with

rH =
σ2(2H − 1)

Γ(2H)
. (14)

If H ∈ (0, 1/2), then the fractional OU process has the H-short-range correlation property since its autocorrelation
function φ(z) satisfies (7) with

dH =
1

2HΓ(2H)
. (15)

Moreover, φ(z) is infinitely differentiable over (0,∞); φ(z), resp. φ′(z), φ′′(z), decays as |z|2H−2, resp. |z|2H−3,
|z|2H−4, at infinity and is absolutely integrable at infinity; φ′′(z) + φ(0)dH2H(2H − 1)|z/lc|2H−2/l2c converges to
φ(0)/l2c as z → 0, so it is absolutely integrable at 0.

It is possible to simulate paths of the fractional OU process using the Cholesky method (see Figure 1) or other
well-known methods3.

Fractional white noise medium. As a second example we consider the model

ν(z) :=
σ

lHc

[
WH(z) − WH(z + lc)

]
, (16)

where WH is a fractional Brownian motion with Hurst index H ∈ (0, 1). The fractional white noise is a zero-mean,
stationary, Gaussian process. Its variance is σ2 and its autocorrelation function is given by

φ(z) =
σ2

2l2H
c

(
|z + lc|2H + |z − lc|2H − 2|z|2H

)
. (17)

If H = 1/2, then the standard white noise process (synthesized with a standard Brownian motion) is a stationary
Gaussian process. Its autocorrelation function is

φ(z) = σ2
(
1 − |z|

lc

)
1[0,lc](|z|) , (18)

which shows that it is a mixing process.
If H ∈ (1/2, 1) then the fractional white noise has the H-long-range correlation property since its autocorrelation

function φ(z) satisfies (6) with

rH = σ2H(2H − 1) . (19)
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FIG. 2. Realizations of the fractional white noise with Hurst index H and correlation length lc. The trajectories are more
regular when H is larger.

If H ∈ (0, 1/2), then the fractional white noise “almost” has the H-short-range correlation property. Indeed its
autocorrelation function φ(z) satisfies (7) with

dH = 1 , (20)

but the function φ(z) is not continuously differentiable over (0,∞) since φ′(z) has a singularity at z = lc. This gives
rise to a slightly different result than the general result stated in Subsection III.F, and we will analyze it in detail in
Appendix C.

Note that the typical trajectories of the fractional white noise are very similar to the ones of the fractional OU
process (compare Figures 1 and 2).

Binary medium with mixing property. Here we construct a process corresponding to a binary medium so that
the process ν is stepwise constant and takes values ±σ over intervals with random lengths. We denote by (lj)j≥0 the
lengths of these intervals and by (nj)j≥0 the values taken by the process over each elementary interval. The process
ν(z) is defined by

ν(z) := nNz
where Nz = sup {n ≥ 0, Ln ≤ z} , (21)

where L0 = 0 and Ln+1 = Ln + ln. The random variables nj are independent and identically distributed with the
distribution

P(nj = ±σ) =
1

2
. (22)

The random variables lj are independent and identically distributed with the exponential distribution whose proba-
bility density function (pdf) is

pl1(z) =
1

lc
exp

(
− z

lc

)
1[0,∞)(z) . (23)

Note that it is very easy to simulate the random variable l1, since −lc lnU has the pdf (23) if U is uniformly distributed
over [0, 1]. The random process ν(z) is a stationary jump Markov process and its autocorrelation function is

φ(z) = σ2 exp
(
− |z|

lc

)
, (24)

which shows that it is a mixing process. Note that the binary medium process has the same autocorrelation function
as the standard OU process, although these two random processes are very different (the first one is a jump process
that takes only two values, the second one is a continuous process). It is of course known that the autocorrelation
function is not sufficient to characterize the statistics of a random medium, but we will see that it is sufficient to
characterize wave propagation in a random medium.

Binary medium with long-range correlations. The long-range correlation property for a binary medium
corresponds to the existence of intervals much longer than the average interval length.

We again consider the process (21) corresponding to a binary medium where the random variables nj are independent
and identically distributed with the distribution (22) and the random variables lj are independent and identically
distributed with the distribution with the pdf

pl1(z) = (3 − 2H)
l3−2H
c

z4−2H
1[lc,∞)(z) , (25)

Fractional wave equations in multiscale media 5



where H ∈ (1/2, 1). Note that it is very easy to simulate the random variable l1, since lcU
−1/(3−2H) has the pdf (25)

if U is uniformly distributed over [0, 1]. The average length of the random interval is

E[l1] =
3 − 2H

2 − 2H
lc , (26)

while the variance of l1 is infinite. A salient aspect of this model is that very long intervals (i.e. much longer than E[l1])
can be generated, which are responsible for the infinite variance of the length of the interval and for the long-range
correlation property of the random medium. The process ν is bounded, it has mean zero and variance σ2, but it is not
stationary. However, using renewal theory14, the distribution of the process (ν(x + z))z≥0 converges to a stationary
distribution when x → ∞ and the autocorrelation function of ν satisfies

E[ν(x)ν(x + z)]
x→∞−→ φ(z) = σ2

∫ ∞

z

P(l1 > s)

E[l1]
ds ,

The autocorrelation function

φ(z) = σ2
[ 1

3 − 2H

l2−2H
c

|z|2−2H
1[lc,∞)(|z|) +

(
1 − 2 − 2H

3 − 2H

|z|
lc

)
1[0,lc)(|z|)

]
, (27)

satisfies the H-long-range correlation property (6) with rH = σ2/(3 − 2H).
It is also possible to make the process stationary by simply modifying the statistical distribution of the length of the

first interval: If the random lengths (lj)j≥1 are independent and identically distributed according to the distribution
with the pdf (25), and if l0 is independent of the (lj)j≥1 and has the distribution with the pdf:

pl0(z) =
P(l1 > z)

E[l1]

=
2 − 2H

3 − 2H

1

lc
1[0,lc)(z) +

2 − 2H

3 − 2H

l2−2H
c

z3−2H
1[lc,∞)(z) , (28)

then the process ν is bounded, zero-mean and stationary, and it has the H-long-range correlation property since its
autocorrelation function E[ν(x)ν(x + z)] is (27) for any x.

Binary medium with short-range correlations. The short-range correlation property for a binary medium
corresponds to the accumulation of intervals with lengths much smaller than the average length.

We again consider the process (21) corresponding to a binary medium where the random variables nj are independent
and identically distributed with the distribution (22) and the random variables lj are independent and identically
distributed with the distribution with the pdf

pl1(z) =
1 − 2H

(li/lc)2H−1 − 1

l1−2H
c

z2−2H
1[li,lc](z) , (29)

where H ∈ (0, 1/2) and 0 < li < lc. Here the inner scale li is introduced in order to obtain a well-defined and
normalized pdf and it will be taken to be much smaller than the correlation length lc. Note that it is very easy to
simulate the random variable l1, since li[1−(1−(li/lc)

1−2H)U ]−1/(1−2H) has the pdf (29) if U is uniformly distributed
over [0, 1]. The average length of the random interval is

E[l1] =
1 − 2H

2H

l2H
c − l2H

i

l2H−1
i − l2H−1

c

, (30)

and its variance is finite. A salient aspect of this model is that it exhibits an accumulation of very small intervals (i.e.
much smaller than E[l1]) which corresponds to very rapid changes in the medium properties. Using renewal theory the
distribution of the process (ν(x + z))z≥0 converges to a stationary distribution when x → ∞ and the autocorrelation
function of ν satisfies

E[ν(x)ν(x + z)]
x→∞−→ φ(z) , (31)

where

φ(z) =
σ2

1 − (li/lc)2H

(
1 − 1

1 − 2H

|z|2H

l2H
c

+
2H

1 − 2H

|z|
lc

)
1(li,lc](|z|)

+σ2
(
1 − 2H

1 − 2H

(
(li/lc)

2H − (li/lc)
)

1 − (li/lc)2H

|z|
li

)
1[0,li](|z|) . (32)
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FIG. 3. Realizations of a binary medium with the index H . When H < 1/2 we can observe an accumulation of very small
intervals responsible for the H-short-range correlation property (a). When H > 1/2 we can observe the existence of some
intervals longer than the average responsible for the H-long-range correlation property (b).

If li ≪ lc, then

φ(z) ≃ σ2
(
1 − 1

1 − 2H

|z|2H

l2H
c

+
2H

1 − 2H

|z|
lc

)
1(0,lc](|z|) , (33)

which satisfies the H-short-range correlation property (7) with dH = 1/(1 − 2H). Note that φ is continuous and
continuously differentiable over (0,∞), even at z = lc since φ(l−c ) = 0 = φ(l+c ) and φ′(l−c ) = 0 = φ′(l+c ), φ′′ is
piecewise twice continuously differentiable (there is a jump of φ′′ at lc) and φ, φ′, and φ′′ are absolutely integrable at
infinity and φ′′(z) + φ(0)dH2H(2H − 1)|z/lc|2H−2/l2c = 0 close to 0 so it is absolutely integrable at 0.

Note that the trajectories of the process ν(z) for a binary medium (see Figure 3) are very different from the ones of
the fractional OU process or the fractional white noise. However, we will see that wave propagation in these random
media can be described in the same effective way.

III. ANALYSIS OF THE WAVE FRONT

A. Mode Decomposition

We consider the right- and left-going waves defined in terms of the local impedance and moving with the local
sound speed:

[
Aε(t, z)
Bε(t, z)

]
:=

[
ζε−1/2(z)p(t, z) + ζε1/2(z)u(t, z)

−ζε−1/2(z)p(t, z) + ζε1/2(z)u(t, z)

]
. (34)

The local impedance and sound speed are

ζε(z) :=
√

K(z)ρ(z) =
ζ0√

1 + εν(z/ε2)
, (35)

cε(z) :=
√

K(z)/ρ(z) =
c0√

1 + εν(z/ε2)
. (36)

The mode amplitudes satisfy

∂

∂z

[
Aε

Bε

]
= − 1

cε(z)

[
1 0
0 −1

]
∂

∂t

[
Aε

Bε

]
+

ζε′(z)

2ζε(z)

[
0 1
1 0

] [
Aε

Bε

]
. (37)

This system is completed with an initial condition corresponding to a right-going pulse wave that is incoming from
the homogeneous half-space z < 0 and is impinging on the random medium in [0, L],

Aε(t, z) = f
( t − z/c0

ε2

)
, Bε(t, z) = 0 , t < 0 . (38)

Equation (37) clearly exhibits the two important aspects of the propagation mechanisms. The first term on the right
describes transport along the random characteristics with the local sound speed cε(z). The second term on the right
describes coupling between the right- and left-going modes, which is proportional to the derivative of the logarithmic
impedance. The asymptotic analysis of this system is given in the mixing case in Ref. 15 and in the long-range
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case in Ref. 17. The main steps are the following ones. We first perform a series of transformations to rewrite the
evolution equations of the modes by centering along the characteristic of the right-going mode. We then obtain an
upper-triangular system that can be integrated more easily. In a second step we apply a limit theorem to this system
to establish an effective equation for the wave front.

B. Wave Front Transmission

We now state the fundamental results that characterize the wave front transmitted through a random medium. Let
us introduce the random travel time

τε
0 (z) :=

z

c0
+

ε

2c0

∫ z

0

ν
( x

ε2

)
dx . (39)

1. If the random process is mixing or if it satisfies the H-long-range correlation property, H ∈ (1/2, 1), then the
wave front observed in the random frame moving with the random travel time

Aε
(
τε
0 (z) + ε2τ, z

)
, z > 0 , (40)

converges in distribution as ε → 0 to the deterministic profile

a(τ, z) :=
1

2π

∫
exp

(
− iωτ − γc(ω)ω2

8c2
0

z − i
γs(ω)ω2

8c2
0

z
)
f̂(ω)dω , (41)

where f̂(ω) is the Fourier transform of the initial pulse and

γc(ω) := 2

∫ ∞

0

φ(z) cos
(2ωz

c0

)
dz , (42)

γs(ω) := 2

∫ ∞

0

φ(z) sin
(2ωz

c0

)
dz . (43)

2. If the random process is mixing then the expectation of the random travel time τε
0 (z) is z/c0 and its variance is

Var
(
τε
0 (z)

)
=

ε4

c2
0

γc(0)

4
z + o(ε4) , (44)

as ε → 0. The random travel time τε
0 (z) has the distribution of

z

c0
+

ε2

c0

√
γc(0)

2
W (z) + o(ε2) , (45)

as ε → 0, where W (z) is a standard Brownian motion.

3. Under the H-long-range correlation property, H ∈ (1/2, 1), the expectation of the random travel time τε
0 (z) is

z/c0 and its variance is

Var
(
τε
0 (z)

)
=

ε2(3−2H)l2−2H
c

c2
0

rH

4H(2H − 1)
z2H + o(ε2(3−2H)) , (46)

as ε → 0. The random travel time τε
0 (z) has the distribution of

z

c0
+

ε3−2H l1−H
c

c0

√
rH

4H(2H − 1)
WH(z) + o(ε3−2H) , (47)

as ε → 0, where WH(z) is a fractional Brownian motion with Hurst index H .
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The first point in the mixing case and the second point are classical results known as the O’Doherty-Anstey theory28

and they can be found in Refs. 2, 6, 15. The third point was established in Ref. 26 for a certain class of subordinated
Gaussian processes and in Ref. 17 for the processes under consideration in this paper. The first point in the long-range
case was proved in Ref. 17.

We see from the first point that the frequency-dependent attenuation

γc(ω)ω2

8c2
0

, (48)

of the wave front in (41) is always nonnegative because γc(ω) is the power spectral density of the stationary fluctuations
ν(z) of the random medium.

The term exp[−iγs(ω)ω2z/(8c2
0)] in (41) is a frequency-dependent phase modulation and γs(ω) is conjugate to

γc(ω). This shows that the transmitted wave front when centered with respect to the random travel time correction
propagates in a dispersive effective medium with the frequency-dependent wavenumber given by

k(ω) =
ω

c0
− ε2 γs(ω)ω2

8c2
0

, (49)

up to smaller terms in ε.
The fundamental results stated above show that the transmitted wave front in the random medium is modified in

two ways compared to propagation in a homogeneous one.
First, its arrival time at the end of the slab z = L has a small random component. In the usual case in which φ

is integrable, the random time shift is of order ε2 and its statistical distribution is described in terms of a standard
Brownian motion. In the long-range correlation case, the random time shift is of order ε3−2H and its statistical
distribution is described in terms of a fractional Brownian motion26. Remember, however, that the pulse width is
of order ε2, which means that the random time delay is large compared to the pulse width, moreover, it becomes
relatively larger as H is closer to 1.

Second, if we observe the wave front near its random arrival time, then we see a pulse profile that, to leading order,
is deterministic and is the original pulse shape convolved with a deterministic kernel that depends on the second-order
statistics of the medium through the autocorrelation function of ν:

a(τ, z) = [H(·, z) ∗ f ](τ) . (50)

The convolution kernel is given by

H(τ, z) =
1

2π

∫
exp

(
− iωτ − γc(ω)ω2

8c2
0

z − i
γs(ω)ω2

8c2
0

z
)
dω . (51)

We describe the effective pulse attenuation and dispersion in the next subsections.

C. Deterministic Pulse Deformation

In this section we analyze the main properties of the effective equation for the wave front: The important function
affecting the dynamics is the Fourier transform (42-43) of the positive lag part of the autocorrelation function of the
random fluctuations of the medium. We have stated that Aε(τε

0 (z) + ε2τ, z) converges to a given by (41). By taking
an inverse Fourier transform, it is possible to identify the partial differential equation (PDE) satisfied by a:

∂a

∂z
= La , (52)

where L is a pseudo-differential operator that describes the deterministic pulse deformation:

L = Lc + Ls , (53)
∫ ∞

−∞

Lca(τ)eiωτ dτ = −γc(ω)ω2

8c2
0

∫ ∞

−∞

a(τ)eiωτdτ , (54)

∫ ∞

−∞

Lsa(τ)eiωτ dτ = − iγs(ω)ω2

8c2
0

∫ ∞

−∞

a(τ)eiωτ dτ . (55)

The PDE (52) is completed with the initial condition a(τ, z = 0) = f(τ).
The first qualitative property satisfied by the pseudo-differential operator L is that it preserves the causality. Indeed,

in the time domain, we can write

La(τ) =

[
1

8c0
φ

(c0τ

2

)
1[0,∞)(τ)

]
∗

[
∂2a

∂τ2
(τ)

]

=
1

8c0

∫ ∞

0

φ
(c0s

2

) ∂2a

∂τ2
(τ − s)ds . (56)
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The indicator function 1[0,∞) is essential to interpret correctly the convolution. If a is vanishing for τ < 0, then La
is also vanishing for τ < 0, which is a manifestation of causality.

The pseudo-differential operator also satisfies the Kramers-Kronig relations24,25. Indeed the function ω →
ω2[γc(ω) + iγs(ω)] is analytic in the upper complex half plane and vanishes as |ω| → ∞. Note that our effective
equation is derived from first principles in physics, so that there is no surprise that causality and Kramers-Kronig
relations are satisfied.

Equation (52) gives the effective evolution of the front wave a(τ, z) in the frame moving with the random travel
time τε

0 (z). If we ignore the small random time shift and focus our attention to the deterministic pulse deformation,
then we can write the effective equation in the form of a wave equation for the pressure in the original frame and at
the scale z = ε2ξ and t = ε2τ as:

∂p

∂ξ
+

1

c0

∂p

∂τ
= ε2Lp , (57)

p(τ, ξ = 0) = ζ
1/2
0 f(τ) .

This PDE is valid up to ξ = L/ε2 in the asymptotic framework ε → 0 and it is equivalent to the following effective
wave equation

∂2p

∂ξ2
− 1

c2
0

∂2p

∂τ2
=

2ε2

c0

(
∂τL

)
p , (58)

p(τ, ξ = 0) = ζ
1/2
0 f(τ) , ∂ξp(τ, ξ = 0) = −ζ

1/2
0

c0
f ′(τ) .

The pseudo-spectral operator L can be divided into two parts as (53). The first component Lc, as pointed out in
Subsection III.B after (48), is a frequency-dependent attenuation which can be interpreted as an effective diffusion
operator. The second component Ls is an effective dispersion operator, since it preserves the energy.

D. Mixing Random Media

In this subsection we consider the case of a mixing random medium. We first assume that the typical wavenumber
ω/c0 of the input pulse is such that

|ω|lc
c0

≪ 1 .

This condition means that the typical wavelength is longer than lc and in this case we find that

γc(ω)ω2

c2
0

=
γc(0)ω2

c2
0

, (59)

γs(ω)ω2

c2
0

= 0 , (60)

which shows that we have an effective second-order diffusion (i.e. a quadratic frequency dependence of the attenuation
of the form (1) with y = 2) and no effective dispersion.

We next consider the case of a mixing random medium with the linear decay behavior at zero:

φ(z) = φ(0)
(
1 − d1/2

|z|
lc

+ o
( |z|

lc

))
, (61)

with d1/2 ≥ 0. We also assume that φ is continuously differentiable and piecewise twice continuously differentiable,
and that φ, φ′, and φ′′ are absolutely integrable over (0,∞). The linear decay of the autocorrelation function is typical
of a Markov process, such as the standard OU process synthesized with a standard Brownian motion or the binary
medium process in the case in which the lengths of the intervals have an exponential distribution. This behavior is
in fact more general. For instance the linear decay rate (61) holds for the white noise process synthesized with a
standard Brownian motion or the binary medium process in the case in which the lengths of the intervals have an
arbitrary distribution with positive finite expectation. If we assume that the typical wavenumber ω/c0 of the input
pulse is such that

|ω|lc
c0

≫ 1 ,
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which means that the typical wavelength is smaller than lc, then we have (see Appendix A)

γc(ω)ω2

c2
0

=
φ(0)d1/2

2lc
, (62)

γs(ω)ω2

c2
0

=
φ(0)ω

c0
, (63)

which shows that we have an effective constant attenuation (of the form (1) with y = 0) and no effective dispersion.
These two cases (quadratic and constant attenuations) are the standard cases observed with standard models of

random media, that are mixing and not rough. As we will see in the next subsections, the picture becomes more
interesting when non-mixing or rough random media are considered.

E. Random Media with Long-range Correlations

This is an interesting regime that leads to explicit formula. This is the regime in which the random medium has
the H-long-range correlation property, H ∈ (1/2, 1) and the typical wavenumber ω/c0 of the input pulse is such that

|ω|lc
c0

≪ 1 .

This second condition means that the typical wavelength is longer than lc and therefore the pulse probes the long-range
properties of the medium. In this case we find by using (6) and formula 3.761 in Ref. 20 that

γc(ω)ω2

c2
0

= rH
Γ(2H − 1)

22H−2
cos

(
(H − 1

2
)π

) 1

lc

( |ω|lc
c0

)3−2H

, (64)

γs(ω)ω2

c2
0

= rH
Γ(2H − 1)

22H−2
sin

(
(H − 1

2
)π

)( |ω|lc
c0

)2−2H ω

c0
. (65)

This shows that the wave propagation in random media with long-range correlations exhibits frequency-dependent
attenuation that is characterized by a power law of the form (1) with the exponent y = 3 − 2H ranging from 1 to 2.
This exponent is related to the power decay rate at infinity of the autocorrelation function of the medium fluctuations.
The frequency-dependent attenuation is associated with a frequency-dependent phase. This ensures that causality is
respected and Kramers-Kronig relations are satisfied. Moreover the ratio of the effective dispersion coefficient over
the effective diffusion coefficient is

Rdisp./diff.(H) =
sin

(
(H − 1

2 )π
)

cos
(
(H − 1

2 )π
) , (66)

which shows that the effective dispersion is stronger than the effective diffusion when H is close to 1 and that it is
weaker when H is close to 1/2 (see Figure 4). Note also that we recover the standard mixing case (formulas (59-60))
when H → 1/2.

In the time domain, we can write

La(τ) =
rH l2−2H

c

21+2Hc3−2H
0

∫ ∞

0

1

s2−2H

∂2a

∂τ2
(τ − s)ds . (67)

If we go back to the original frame and substitute the expression (67) of the pseudo-differential operator into (58) we
obtain the effective fractional wave equation

∂2p

∂ξ2
− 1

c2
0

∂2p

∂τ2
=

rH l2−2H
c ε2

22Hc4−2H
0

∫ ∞

0

1

s2−2H

∂3p

∂τ3
(τ − s)ds , (68)

which is of the form of the one proposed in Ref. 34, but not exactly. Indeed, in Ref. 34 Szabo proposes to use the
Riemann-Liouville fractional derivative29 and writes the fractional wave equation in the form

∂2p

∂ξ2
− 1

c2
0

∂2p

∂τ2
= cε,H

∫ ∞

0

1

s5−2H
p(τ − s)ds . (69)

As noted in Refs. 7–9 the Riemann-Liouville fractional derivative has disadvantages, for instance the derivative of a
constant is not zero so that attenuation does not vanish for a system at equilibrium30. The Caputo derivative has
been introduced to overcome this drawback and has been discussed in Ref. 9. Our derivation from first principles
allows us to get the correct form (68) of the effective wave equation.
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FIG. 4. Ratios of the effective dispersion coefficient over the effective diffusion coefficient. Note the symmetry of the ratio with
respect to H = 1/2.

F. Random Media with Short-range Correlations

This is the regime in which the random medium possesses the H-short-range correlation property, H ∈ (0, 1/2),
and the typical wavenumber ω/c0 of the input pulse is such that

|ω|lc
c0

≫ 1 .

This second condition means that the typical wavelength is smaller than lc and therefore the pulse probes the short-
range properties of the medium. In this case we find by using (7) that

γc(ω)ω2

c2
0

= φ(0)dH
Γ(1 + 2H)

22H
sin(Hπ)

1

lc

( |ω|lc
c0

)1−2H

, (70)

γs(ω)ω2

c2
0

= φ(0)
ω

c0
− φ(0)dH

Γ(1 + 2H)

22H
cos(Hπ)

( |ω|lc
c0

)−2H ω

c0
. (71)

This result is proved in the Appendix B and it shows that wave propagation in random media with short-range
correlations exhibits frequency-dependent attenuation that is characterized by a power law of the form (1) with
the exponent y = 1 − 2H ranging from 0 to 1. This exponent is related to the power decay rate at zero of the
autocorrelation function of the medium fluctuations. Moreover the ratio of the effective dispersion coefficient over the
effective diffusion coefficient is

Rdisp./diff.(H) = −cos(Hπ)

sin(Hπ)
, (72)

which shows that the effective dispersion is stronger than the effective diffusion when H is close to 0 and that it is
weaker when H is close to 1/2 (see Figure 4). Note also that we recover the standard mixing case (formulas (62-63))
when H → 1/2.

In the time domain, we can write

La(τ) =
φ(0)

8c0

∂a

∂τ
− φ(0)dH

23+2Hc1−2H
0 l2H

c

∫ ∞

0

s2H ∂2a

∂τ2
(τ − s)ds

=
φ(0)

8c0

∂a

∂τ
+

φ(0)HdH

22+2Hc1−2H
0 l2H

c

∫ ∞

0

1

s1−2H

∂a

∂τ
(τ − s)ds . (73)

If we go back to the original frame, neglect the random time shift, and substitute the expression (73) of the pseudo-
differential operator into (57), we obtain exactly the form of the integro-differential wave equation proposed by
Hanyga21:

∂p

∂ξ
+

1

c0

∂p

∂τ
=

ε2φ(0)

8c0

∂p

∂τ
+

φ(0)HdHε2

22+2Hc1−2H
0 l2H

c

∫ ∞

0

1

s1−2H

∂p

∂τ
(τ − s)ds . (74)

If we substitute the expression (73) into (58) we obtain the effective fractional wave equation

∂2p

∂ξ2
− 1

c2
0

(
1 +

ε2φ(0)

4

)∂2p

∂τ2
=

φ(0)HdHε2

21+2Hc2−2H
0 l2H

c

∫ ∞

0

1

s1−2H

∂2p

∂τ2
(τ − s)ds . (75)
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IV. CONCLUSION

In this paper we have clarified the relation between the effective attenuation/dispersion of a wave propagating
through a random medium and the statistics of the random medium, in particular its short- or long-range correlation
properties. We have given explicit formulas between the power decay rate of the autocorrelation function of the random
medium and the exponents of the power law frequency-dependences of the effective attenuation and dispersion. The
main two results are the following ones.

When a long-wavelength pulse propagates in a random medium with an autocorrelation function that decays at
infinity as |z|2H−2, H ∈ (1/2, 1), then the attenuation has a power law frequency-dependence of the form α(ω) = α0|ω|y
with y = 3 − 2H ∈ (1, 2).

When a short-wavelength pulse propagates in a random medium with an autocorrelation function that behaves
at zero like 1 − dH |z|2H , H ∈ (0, 1/2), then the attenuation has a power law frequency-dependence of the form
α(ω) = α0|ω|y with y = 1 − 2H ∈ (0, 1).

In both cases a frequency-dependent phase responsible for dispersion is associated to the frequency-dependent
attenuation and it ensures that causality and Kramers-Kronig relations are respected. Effective fractional wave
equations can be written that have the form of equations studied in the literature9,21,34.

These results were derived in the case of one-dimensional wave equations and the mathematical tools that have
been used are restricted to this case. The generalization of the theory to three-dimensional random media remains
an open question.
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APPENDIX A: PROOF OF (62-63)

Let us assume that the process is mixing and the autocorrelation function φ(z) satisfies the linear decay (61). The
function φ(z) can then be written as

φ(z) = φ(0)
[
φ1/2

(d1/2

2

|z|
lc

)
+ φ̃

( |z|
lc

)]
, (A1)

where φ1/2 is defined by

φ1/2(u) = (1 − u)21[0,1](u) . (A2)

The function φ̃ is continuously differentiable and piecewise twice differentiable over (0,∞), because φ and φ1/2 are

continuously differentiable and piecewise twice differentiable over (0,∞) (For φ1/2, one can check that φ1/2(1
−) =

0 = φ1/2(1
+), φ′

1/2(1
−) = 0 = φ′

1/2(1
+), and φ′′

1/2(1
−) = 2, φ′′

1/2(1
+) = 0). Moreover, φ̃, φ̃′, and φ̃′′ are absolutely

integrable over (0,∞), φ̃(0) = 0, and φ̃′(0+) = 0. By performing a double integration by parts, we obtain

∫ ∞

0

φ̃(u)eiNudu = − 1

N2

∫ ∞

0

φ̃′′(u)eiNudu . (A3)

Riemann-Lebesgue’s lemma then gives

∫ ∞

0

φ̃(u)eiNudu
N→∞≃ o

( 1

N2

)
. (A4)

Moreover, by performing a double integration by parts, we obtain

∫ ∞

0

φ1/2(u)eiNudu =
i

N
+

2

N2
+

2i

N3

(
1 − eiN

)

N→∞≃ i

N
+

2

N2
+ o

( 1

N2

)
. (A5)

Using (A4) and (A5) in (A1) gives formulas (62-63).
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APPENDIX B: PROOF OF (70-71)

Let us assume that the autocorrelation function φ(z) satisfies the H-short-range property, H ∈ (0, 1/2). The
function φ(z) can then be written as

φ(z) = φ(0)
[
φH

([
dH(1 − 2H)

]1/(2H) |z|
lc

)
+ φ̃

( |z|
lc

)]
, (B1)

where φH is defined by

φH(u) =
(
1 − 1

1 − 2H
u2H +

2H

1 − 2H
u
)
1[0,1](u) . (B2)

The function φ̃ is continuously differentiable and piecewise twice differentiable over (0,∞), because φ and φH are
continuously differentiable and piecewise twice differentiable over (0,∞) (For φH , one can check that φH(1−) = 0 =

φH(1+), φ′
H(1−) = 0 = φ′

H(1+), and φ′′
H(1−) = 2H , φ′′

H(1+) = 0). Moreover, φ̃, φ̃′, and φ̃′′ are absolutely integrable

over (0,∞), φ̃(0) = 0, and φ̃′(0+) is well defined (since φ̃′′ is absolutely integrable at 0). Consequently a double
integration by parts yields:

∫ ∞

0

φ̃(u)eiNudu = − φ̃′(0+)

N2
− 1

N2

∫ ∞

0

φ̃′′(u)eiNudu

N→∞
= O

( 1

N2

)
. (B3)

Moreover, by performing an integration by parts step, we obtain
∫ ∞

0

φH(u)eiNudu
N→∞≃ i

N
− i

2H

1 − 2H

1

N1+2H

∫ ∞

0

v2H−1eivdv + o
( 1

N1+2H

)
. (B4)

The computation of the definite integral (see formula 3.761 in Ref. 20)
∫ ∞

0

v2H−1eivdv = Γ(2H)eiHπ (B5)

gives
∫ ∞

0

φH(u)eiNudu
N→∞≃ i

N
− i

N1+2H

Γ(1 + 2H)

1 − 2H
cos(Hπ)

+
1

N1+2H

Γ(1 + 2H)

1 − 2H
sin(Hπ) + o

( 1

N1+2H

)
. (B6)

Using (B3) and (B6) in (B1) gives (70-71).

APPENDIX C: THE FRACTIONAL WHITE NOISE WITH H ∈ (0, 1/2)

As we already noticed the fractional white noise with the Hurst index H ∈ (0, 1/2) “almost” satisfies the H-short-
range property, but fails to meet one of the technical hypotheses. Indeed its autocorrelation function φ(z) is not
differentiable at z = lc. However we show in this appendix that this model has “almost” the effective attenuation and
dispersion predicted in the general case in the H-short-range property.

Here φ(z) is explicit so we can carry out the computation and we find that, if |ω|lc/c0 ≫ 1, then

γc(ω)ω2

c2
0

= σ2 Γ(1 + 2H)

22H
sin(Hπ)

[
1 − cos

(2ωlc
c0

)] 1

lc

( |ω|lc
c0

)1−2H

, (C1)

γs(ω)ω2

c2
0

= σ2 ω

c0
− σ2 Γ(1 + 2H)

22H

[
cos(Hπ) + sin(Hπ) sin

(2|ω|lc
c0

)]( |ω|lc
c0

)−2H ω

c0
. (C2)

The singularity at lc is responsible for the additional terms that have a fast periodic modulation in ω. In this paper
we are interested in pulse propagation, and as shown by (41) we integrate over ω. Using the identity (formula 3.936
in Ref. 20)

1

2π

∫ 2π

0

exp
(
x cos(θ) + ix sin(θ)

)
dθ = 1, ∀x ∈ R , (C3)

we find that the additional modulated terms vanish when the expressions (C1-C2) are substituted into (41). Therefore,
we can consider that the effective attenuation and dispersion terms for the fractional white noise model are given by
the general formulas (70-71).

Fractional wave equations in multiscale media 14



1 K. Aki and P. G. Richards, Quantitative seismology, Vol. 1, Chap. 5 (Freeman, San Francisco, 1980).
2 M. Asch, W. Kohler, G. Papanicolaou, M. Postel, and B. White, “Frequency content of randomly scattered signals,” SIAM

Review 33, 519–626 (1991).
3 J.-M. Bardet, G. Lang, G. Oppenheim, A. Philippe, and M. S. Taqqu, Generators of the long-range dependence processes: a

survey, in Theory and applications of long-range dependence, P. Doukhan, G. Oppenheim, and M. S. Taqqu, eds., Birkhauser
(2003), pp. 579–624.

4 D. T. Blackstock, “Generalized Burgers equations for plane waves,” J. Acoust. Soc. Am. 77, 2050–2053 (1985).
5 R. Burridge and H. W. Chang, “Multimode one-dimensional wave propagation in a highly discontinuous medium,” Wave

Motion 11, 231–249 (1989).
6 R. Burridge, G. Papanicolaou, and B. White, “One-dimensional wave propagation in a highly discontinuous medium,” Wave

Motion 10, 19–44 (1988).
7 M. Caputo, “Linear models of dissipation whose Q is almost frequency independent II,” Geophys. J. R. Astron. Soc. 1,

529–539 (1967).
8 M. Caputo and F. Mainardi, “A new dissipation model based on memory mechanism,” Pure Appl. Geophys. 91, 134–147

(1971).
9 W. Chen and S. Holm, “Modied Szabo’s wave equation models for lossy media obeying frequency power law,” J. Acoust.

Soc. Am. 114, 2570–2574 (2003).
10 W. Chen and S. Holm, “Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary

frequency power-law dependency,” J. Acoust. Soc. Am. 115, 1424–1430 (2003).
11 J.-F. Clouet and J.-P. Fouque, “Spreading of a pulse traveling in random media,” Ann. Appl. Probab. 4, 1083–1097 (1994).
12 S. Dolan, C. Bean, and B. Riollet, “The broad-band fractal nature of heterogeneity in the upper crust from petrophysical

logs,” Geophys. J. Int. 132, 489–507 (1998).
13 A. Fannjiang and K. Sølna, “Scaling limits for wave beams in atmospheric turbulence,” Stoch. Dyn. 4, 135–151 (2004).
14 W. Feller, An introduction to probability theory and its applications, Vol. 2, Chap. 11 (Wiley, New York, 1971).
15 J.-P. Fouque, J. Garnier, G. Papanicolaou, and K. Sølna, Wave propagation and time reversal in randomly layered media

(Springer, New York, 2007).
16 A. E. Gargett, “The scaling of turbulence in the presence of stable stratification,” J. Geophys. Res. 93, 5021–5036 (1988).
17 J. Garnier and K. Sølna, “Pulse propagation in random media with long-range correlation,” SIAM Multiscale Model. Simul.

7, 1302–1324 (2009).
18 S. Gelinsky, S. A. Shapiro, and T. Müller, “Dynamic poroelasticity of thinly layered structure,” Int. J. Solids Structures 35,

4739–4751 (1998).
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