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aLaboratoire de Probabilités et Modèles Aléatoires & Laboratoire Jacques-Louis Lions,
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When a broadband pulse penetrates into a dissipative and dispersive medium, phase dispersion
and frequency-dependent attenuation alter the pulse in a way that results in the appearance
of a precursor field with an algebraic decay. We derive here the existence of precursors in non-
dispersive, non-dissipative, but randomly heterogeneous and multiscale media. The shape of
the precursor and its fractional power law decay with propagation distance depend on the
random medium class. Three principal scattering precursor classes can be identified : (i) In
exponentially decorrelating random media, and more generally in mixing random media, the
precursor has a Gaussian shape and a peak amplitude that decays as the square root of
the inverse of the propagation distance. (ii) In short-range correlation media, with rough
multiscale medium fluctuations, the precursor has a skewed shape with a tail that exhibits
an anomalous power law decay in time and a peak amplitude that exhibits an anomalous
power law decay with propagation distance, both of which depend on the Hurst exponent
that characterizes the roughness of the medium. (iii) In long-range correlation media with
long-range memory, the situation mimics that of class (ii), but with modified power laws.
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1. Introduction

Heterogeneous and multiscale media play an important role in many different ap-
plication areas, such as in geophysics [9] or in laser beam propagation through the
atmosphere [12, 26]. Due to multiple scattering pulse propagation is then character-
ized by a random time shift described in terms of a fractional Brownian motion and
a deterministic spreading described by a pseudo-differential operator. This operator
is characterized by a frequency-dependent attenuation that obeys a power law with
an exponent ranging from 0 to 2 that is related to the fractal (or Hurst) parame-
ter of the multiscale medium. This frequency-dependent attenuation is associated
with a frequency-dependent phase, which ensures causality and that the Kramers-
Kronig relation is satisfied. In the time domain the effective wave equation has
the form of a linear integro-differential equation with a fractional derivative. These
results are derived in [14]. Related results for particular situations, respectively
paraxial propagation, strongly heterogeneous media with long-range correlations
and Goupillaud media can be found in [10, 21, 29]. In [28] the transmitted pulse in
so called locally layered media was considered and it was shown that central results
on the pulse deformation are robust with respect to such medium perturbations,
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while in [13] solitons in random media with long range perturbations was consid-
ered and it was shown that aspects of the pulse deformation theory that predicts
power law rather than exponential decay generalizes to nonlinear situations.

On the other hand it is known that, when a broadband pulse penetrates into
a causally dispersive medium, the interrelated effects of phase dispersion and fre-
quency dependent attenuation alter the pulse in a way that results in the ap-
pearance of a precursor field with a nonexponential decay. Precursors have been
studied for a long time in homogeneous media [4, 7, 30], in which the amplitude of
the precursor decays as the square root of the inverse of the propagation distance.
Early experimental observations of “Brillouin” precursors involved microwaves in
waveguides [25]. Experimental studies have been carried out also in the optical
regime exploring the prospect of utilizing them for study of materials and biolog-
ical systems [1, 27]. Motivated in part by potential applications to for instance
radar technology, remote sensing, communications and information technology re-
searchers continue to explore the role of precursors [17–20, 22, 23]. In the context
of microwave exposure of tissue the role of precursors has been studied in [2, 3]. A
central motivation in these studies is the algebraic and slow decay of the precursor,
as the square root of the inverse of the propagation distance in the classic case.

In this paper we study the long-distance propagation of a step function modu-
lated sine wave in a multiscale medium and the emergence of a special precursor
from the effective fractional wave equation. We will in particular see that the
precursor has a power law decay rate, with a fractional exponent that is related
to the Hurst parameter of the multiscale random medium. Thus, we shall refer
to these precursors occurring in “fractal” like or multiscale media as fractional
precursors. Their behaviors are similar to the classic precursors of homogeneous
dispersive media, however, they occur under very different circumstances since ef-
fective dispersion and attenuation result from multiple scattering in a medium
whose components are not dissipative neither dispersive.

The outline of the paper is as follows. First, we give some background on the
analytic framework for analysis of waves in one-dimensional random media in Sec-
tions 2 to 4. The analysis of the precursor will be based on a fractional effective
equation for the transmitted wave in multiscale media that we recapitulate in Sec-
tion 4. Then we discuss the results regarding the fractional precursor in Section 5
and we derive these results in Section 6. Technical parts of the proofs are given in
the appendices.

2. Modeling of Waves in Complex Environments

We consider the one-dimensional wave equation in the presence of random fluctu-
ations of the medium:

∂2p

∂z2
− n2(z)

c20

∂2p

∂t2
= F (t, z) . (1)

Here p(t, z) is the pressure field in acoustics or the electric field in electromagnetics
and in optics. The speed of propagation in the homogeneous background medium
is c0 and the index of refraction of the medium n(z) is assumed to be randomly
varying. We assume that the source F (t, z) is located at 0 and emits a right-going
signal starting at time 0.

We consider the weakly heterogeneous regime [11] in which the index of refraction
has small and rapid fluctuations (compared to the propagation distance). We write
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it in the form

n2(z) = 1 + ν(z) .

The random process ν(z) is assumed to be stationary and to have mean zero. Its
autocorrelation function is denoted by

φ(z) := E[ν(x)ν(x+ z)] , (2)

where E stands for the expectation with respect to the distribution of the random
medium. The function φ(z) is bounded, even, and maximal at zero (φ(0) is the
variance of the fluctuations). Its local properties at zero and its asymptotic behav-
ior at infinity characterize the short- and long-range correlations of the random
medium, as we discuss in the next section.

3. Regimes of Clutter

Wave propagation in random media is usually studied with a driving process ν that
has mixing properties. This means that the random values ν(x+z) and ν(x) taken
at two points separated by the distance z become rapidly uncorrelated when z →
∞. In other words the autocorrelation function φ(z) decays rapidly to zero as z →
∞. More precisely we say that the random process ν is mixing if its autocorrelation
function decays fast enough at infinity so that it is absolutely integrable:

∫ ∞

0
|φ(z)|dz <∞ . (3)

This is the usual assumption for random media, under which the theory is
well established. In this case the correlation length can be defined as lc =
2
∫ ∞
0 φ(z)dz/φ(0). The standard O’Doherty-Anstey (ODA) theory describes the

propagating pulse in this regime. The effective equation for the wave front has
been obtained by several authors [5, 6, 8, 11]. The pulse propagation is charac-
terized by a random time shift and a deterministic spreading. The random time
shift is described in terms of a standard Brownian motion, while the determinis-
tic spreading is described by a pseudo-differential operator that we will discuss in
Section 4.

Wave propagation in multiscale and rough media, with short- or long-range fluc-
tuations, has recently attracted a lot of attention (as mentioned in the introduc-
tion). Examples are given in [14] and the effective pulse propagation in multiscale
and rough media is described in Section 4.

Qualitatively, the long-range correlation property means that the random process
has long memory (in contrast to a mixing process). This means that the correlation
degree between the random values ν(x+z) and ν(x) taken at two points separated
by the distance z is not completely negligible when z → ∞. It corresponds to the
fact that the autocorrelation function has a slow decay at infinity. More precisely
we say that the random process ν has the H-long-range correlation property if its
autocorrelation function satisfies:

φ(z)
|z|→∞≃ rH

∣

∣

∣

z

lc

∣

∣

∣

2H−2
+ o

(∣

∣

∣

z

lc

∣

∣

∣

2H−2)

, (4)

where rH > 0 and the Hurst parameter H ∈ (1/2, 1). Here the correlation length lc
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is the critical length scale beyond which the power law behavior (4) is valid. Note
that the autocorrelation function is not integrable since 2H − 2 ∈ (−1, 0), which
means that a random process with the H-long-range correlation property is not
mixing. Additional technical hypotheses on the random process ν are required for
the derivation of the effective fractional wave equation and they are given in [14].

Qualitatively the short-range correlation property means that the random pro-
cess is rough at small scales. This means that the correlation degree between the
random values ν(x+ z) and ν(x) taken at two points separated by the distance z
has a sharp decay at zero. It corresponds to the fact that the autocorrelation func-
tion decays faster than an affine function at zero. More precisely we say that the
random process ν has the H-short-range correlation property if its autocorrelation
function satisfies:

φ(z)
|z|→0
≃ φ(0)

(

1 − dH

∣

∣

∣

z

lc

∣

∣

∣

2H
+O

(
∣

∣

∣

z

lc

∣

∣

∣

))

, (5)

where dH > 0 and H ∈ (0, 1/2). Here the correlation length lc is the critical length
scale below which the power law behavior (5) is valid.

4. Random Effective Propagation Model

In Ref. [14] we studied the pulse propagation through random media with mixing,
long-range, and short-range correlation properties, in the weakly scattering regime
(small-amplitude medium fluctuations and large propagation distance). We have
found in [14] that the right-going pulse

a(τ, z) = p
(

τ0(z) + τ, z
)

in the frame moving with the random travel time

τ0(z) =
z

c0
+

1

2c0

∫ z

0
ν(x)dx

(whose statistics for large propagation distances can be described in terms of a frac-
tional Brownian motion in the long- and short-range cases) has the deterministic
form

a(τ, z) =
1

2π

∫

exp
(

− iωτ − γc(ω)ω2

8c20
z − i

γs(ω)ω2

8c20
z
)

f̂(ω)dω , (6)

where f̂(ω) is the Fourier transform of the initial pulse and

γc(ω) := 2

∫ ∞

0
φ(z) cos

(2ωz

c0

)

dz , (7)

γs(ω) := 2

∫ ∞

0
φ(z) sin

(2ωz

c0

)

dz . (8)

The pulse profile a(τ, z) satisfies the partial differential equation (PDE):

∂a

∂z
= La , (9)
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where L is a pseudo-differential operator that describes the deterministic pulse
deformation:

L = Lc + Ls , (10)
∫ ∞

−∞
Lca(τ)eiωτdτ = −γc(ω)ω2

8c20

∫ ∞

−∞
a(τ)eiωτdτ , (11)

∫ ∞

−∞
Lsa(τ)eiωτdτ = − iγs(ω)ω2

8c20

∫ ∞

−∞
a(τ)eiωτdτ . (12)

The PDE (9) is completed with the initial condition a(τ, z = 0) = f(τ) correspond-
ing to the initial pulse profile. The above results derive from averaging in certain
integro-differential equations that describes the evolution of the front shape with
the propagation distance z and is based on an asymptotic scaling mentioned above,
see [14] for the details. We remark here that the pulse a(τ, z) corresponds to ob-
serving the wave field at position z when centered in time at a random time τ0(z).
The random centering of the observation window can be described precisely. Let
τ(z) be the first arrival time at position z, that is, the integral of the reciprocal of
the local speed of sound in between the surface z = 0 and the observation point z.
Then we have in the asymptotic framework presented in [14]:

τ0(z) − τ(z) ≃ zφ(0)

8c0
. (13)

Note therefore that to leading order we have a deterministic delay relative to the
first arrival time, the scattering gradually delays the pulse, while the random arrival
time τ0 itself can be described in distribution in terms of a zero-mean standard or
fractional Brownian motion process with respect to the spatial variable.

The first qualitative property satisfied by the pseudo-differential operator L is
that it is non-local (in the time domain) but it preserves the causality. Indeed we
can write

La(τ) =
1

8c0

∫ ∞

0
φ

(c0s

2

) ∂2a

∂τ2
(τ − s)ds . (14)

Equation (9) gives the effective evolution of the front wave a(τ, z) in the frame
moving with the random travel time τ0(z). If we ignore the small random time
shift and focus our attention to the deterministic pulse deformation, then we can
write the effective equation in the form of a wave equation for the wave field in the
original frame as:

∂p

∂z
+

1

c0

∂p

∂t
= Lp , (15)

p(t, z = 0) = f(t) .

This PDE is equivalent to the following effective wave equation

∂2p

∂z2
− 1

c20

∂2p

∂t2
=

2

c0

(

∂tL
)

p , (16)

p(t, z = 0) = f(t) , ∂zp(t, z = 0) = − 1

c0
f ′(t) .
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4.1. Mixing Random Media

In this subsection we consider the case of a mixing random medium. We first assume
that the typical wavenumber ω/c0 of the input pulse is such that

|ω|lc
c0

≪ 1 .

This condition means that the typical wavelength is longer than lc and in this case
we find that

γc(ω)ω2

c20
=
γc(0)ω

2

c20
, (17)

γs(ω)ω2

c20
= 0 , (18)

which shows that we have an effective second-order diffusion and no effective dis-
persion.

We next consider the case of a mixing random medium with the linear decay
behavior at zero:

φ(z) = φ(0)
(

1 − d1/2
|z|
lc

+ o
( |z|
lc

))

, (19)

with d1/2 ≥ 0. The linear decay of the autocorrelation function is typical of a
Markov process, such as the standard Orstein-Uhlenbeck process or the binary
(two-component) medium process in the case in which the lengths of the intervals
have an exponential distribution. This behavior is in fact very general. For instance
the linear decay rate (19) holds for the binary medium process in the case in
which the lengths of the intervals have an arbitrary distribution with positive finite
expectation. If we assume that the typical wavenumber ω/c0 of the input pulse is
such that

|ω|lc
c0

≫ 1 ,

which means that the typical wavelength is smaller than lc, then we have

γc(ω)ω2

c20
=
φ(0)d1/2

2lc
, (20)

γs(ω)ω2

c20
=
φ(0)ω

c0
, (21)

which shows that we have an effective constant attenuation and no effective disper-
sion. In Appendix A we shall discuss the case with an exponentially decorrelating
random medium, corresponding to linear decay, without making the high-frequency
approximation. We remark that if the medium fluctuations are smooth, correspond-
ing to for instance a Gaussian correlation function, then the wave travels undis-
torted in this high-frequency regime to leading order. Thus, indeed the medium
roughness affects the type of wave deformation one would observe.
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4.2. Random Media with Short-range Correlations

This is the regime in which the random medium possesses the H-short-range corre-
lation property, H ∈ (0, 1/2), and the typical wavenumber ω/c0 of the input pulse
is such that

|ω|lc
c0

≫ 1 .

This second condition means that the typical wavelength is smaller than lc and
therefore the pulse probes the short-range properties of the medium. In this case
we find by using (5), see [14], that

γc(ω)ω2

c20
= φ(0)dH

Γ(1 + 2H)

22H
sin(Hπ)

1

lc

( |ω|lc
c0

)1−2H
, (22)

γs(ω)ω2

c20
= φ(0)

ω

c0
− φ(0)dH

Γ(1 + 2H)

22H
cos(Hπ)

( |ω|lc
c0

)−2H ω

c0
. (23)

This result shows that wave propagation in random media with short-range corre-
lations exhibits frequency-dependent attenuation that is characterized by a power
law with the exponent 1− 2H ranging from 0 to 1. This exponent is related to the
power decay rate at zero of the autocorrelation function of the medium fluctuations.

In the time domain, we can write

La(τ) =
φ(0)

8c0

∂a

∂τ
− φ(0)dH

23+2Hc1−2H
0 l2Hc

∫ ∞

0
s2H

∂2a

∂τ2
(τ − s)ds

=
φ(0)

8c0

∂a

∂τ
+

φ(0)HdH

22+2Hc1−2H
0 l2Hc

∫ ∞

0

1

s1−2H

∂a

∂τ
(τ − s)ds . (24)

If we go back to the original frame, neglect the random time shift, and substitute
the expression (24) of the pseudo-differential operator into (15), we obtain the form
of the integro-differential wave equation proposed by Hanyga [16]:

∂p

∂z
+

1

c0

∂p

∂t
=
φ(0)

8c0

∂p

∂t
+

φ(0)HdH

22+2Hc1−2H
0 l2Hc

∫ ∞

0

1

s1−2H

∂p

∂t
(t− s)ds . (25)

If we substitute the expression (24) into (16) we obtain the effective fractional wave
equation

∂2p

∂z2
− 1

c20

(

1 +
φ(0)

4

)∂2p

∂t2
=

φ(0)HdH

21+2Hc2−2H
0 l2Hc

∫ ∞

0

1

s1−2H

∂2p

∂t2
(t− s)ds . (26)

4.3. Random Media with Long-range Correlations

This is the regime in which the random medium has the H-long-range correlation
property, H ∈ (1/2, 1) and the typical wavenumber ω/c0 of the input pulse is such
that

|ω|lc
c0

≪ 1 .
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This second condition means that the typical wavelength is longer than lc and
therefore the pulse probes the long-range properties of the medium. In this case
we find by using (4), see [14], that

γc(ω)ω2

c20
= rH

Γ(2H − 1)

22H−2
cos

(

(H − 1

2
)π

) 1

lc

( |ω|lc
c0

)3−2H
, (27)

γs(ω)ω2

c20
= rH

Γ(2H − 1)

22H−2
sin

(

(H − 1

2
)π

)( |ω|lc
c0

)2−2H ω

c0
. (28)

This shows that the wave propagation in random media with long-range correla-
tions exhibits frequency-dependent attenuation that is characterized by a power
law with the exponent 3 − 2H ranging from 1 to 2. This exponent is related to
the power decay rate at infinity of the autocorrelation function of the medium
fluctuations.

In the time domain, we can write

La(τ) =
rH l

2−2H
c

21+2Hc3−2H
0

∫ ∞

0

1

s2−2H

∂2a

∂τ2
(τ − s)ds . (29)

If we go back to the original frame and substitute the expression (29) of the pseudo-
differential operator into (16) we obtain the effective fractional wave equation

∂2p

∂z2
− 1

c20

∂2p

∂t2
=

rH l
2−2H
c

22Hc4−2H
0

∫ ∞

0

1

s2−2H

∂3p

∂t3
(t− s)ds . (30)

In the next sections we discuss how the precursor emerges as a consequence of
the above descriptions.

5. Fractional Precursors

Following [7] we consider in this paper a source function of the form of a step
function modulated sine wave

f(τ) = sin(ωcτ)Iτ>0 . (31)

The centered transmitted pulse introduced in Section 4 is then given by

a(τ, z) = − 1

2π
Re

[

∫ ∞

−∞

1

ω − ωc
exp

( z

c0
Φ(ω, θ)

)]

, (32)

for

Φ(ω, θ) = − ω2

8c0
(γc(ω) + iγs(ω)) − iωθ , θ =

τc0
z
. (33)

The transmitted pulse a(τ, z) satisfies

a(τ, z) ≃ sin(ωcτ)Iτ>0 , (34)

for small propagation distances or in the case with no medium clutter. Our interest
is in the case of relatively long propagation distances. The wave is then affected
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by the random medium. In fact the wave signal in (34) is exponentially damped.
However, as the wave penetrates deep into the medium another signal emerges at
the wave front that is not exponentially damped, rather exhibits algebraic decay.
This signal is a localized pulse that may serve as a medium probe. Its shape is
generic in the sense that it only depends on the medium regime and the associated
model parameters discussed above. This means that for long propagation distances
we will see a probing pulse whose shape does not depend on the realization, it
is self-averaging and attains an invariant shape up to scaling. The shape of this
function depends on the Hurst parameter in the case of random media with long-
and short-range correlations and it spreads out and decays as a fractional power
of propagation distance. In analogy with the emergence of precursors in the case
of homogeneous dispersive media we refer to the wave that emerges at the front as
the fractional precursor. We present next the detailed results regarding the random
precursors and give the derivation of the results in Section 6.

5.1. Mixing Media

We consider the case of a mixing random medium. We discuss in this subsection
the low-frequency and the high-frequency regimes, ωclc/c0 ≪ 1 and ωclc/c0 ≫
1, respectively. For consistency we address in Appendix A the intermediate case
ωclc/c0 ∼ 1.

In the low-frequency regime in which the typical wavenumber ωc/c0 of the input
pulse is such that ωclc/c0 ≪ 1, we have an effective second-order diffusion (17) and
no effective dispersion. The phase function appearing in (33) is given by

Φ(ω, θ) = −γc(0)ω
2

8c0
− iωθ . (35)

We introduce the parameterization

Z =
γc(0)ω

2
c

8c20
z , T =

8c0
γc(0)ωc

θ =
ωcτ

Z
. (36)

Note that the first arrival time τ(z) corresponds to T = −c0/(2lcωc) ≪ −1 in this
framework. We find the following characterization for the transmitted pulse:

Proposition 5.1: In mixing media, if Z is large and T is (at most) of order one,
then the transmitted signal has the asymptotic form

a(τ, z)
Z≫1≃ asp(T,Z) + ap(T,Z) , (37)

with

asp(T,Z) =
exp(−ZT 2/4)√

4πZ

1

1 + T 2/4
,

ap(T,Z) = exp(−Z) sin(ZT )IT>0 .

The result is based partly on a steepest descent asymptotic approximation (see
Subsection 6.1). Here the component asp is the precursor signal that emerges as the
signal penetrates into the medium while ap is the oscillating sine wave component
that is exponentially damped with propagation distance. Indeed, in the regime
Z ≫ 1 the signal contribution has a much smaller amplitude than the precursor,
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however, we retain it here to articulate how the sine pulse is gradually transformed
into the probing precursor.

If we consider a small T , of the order of Z−1/2, then we obtain the following
corollary:

Corollary 5.2: In mixing media, if Z is large and ωcτ is smaller than Z, then
the transmitted signal has the asymptotic Gaussian form

a(τ, z)
Z≫1≃ 1√

4πZ
exp

(

− (ωcτ)
2

4Z

)

. (38)

In Figure 1 we show the transmitted pulse for two different propagation distances:
Z = 1 and 20 and with a mixing medium model. The solid line in the figure
corresponds to a numerical evaluation of the integral in (32) using the FFT, while
the dashed line corresponds to the approximation in (37), and the dashed-dotted
line is the Gaussian approximation (38). Initially the pulse is the sine signal in
(34). It can be seen that the signal is quickly damped, and as the signal propagates
into the medium a coherent pulse emerges at the wave front. Note that with large
propagation distance the precursor is indeed to leading order a Gaussian pulse
that completely dominates the transmitted sine signal. Regarding the decay of the
precursor we have the following result.

Proposition 5.3: The peak amplitude of the precursor decays as

max
τ

a(τ, z)
Z≫1≃ 1√

4π
Z−1/2 . (39)

We remark that the above results are robust in that they hold also for other
probing signals than (34), provided that these signals are broadband. Thus, the
precursor damping described in Proposition 5.1 is typical for mixing media in the
large propagation distance limit.

We comment next on the situation in which the wavenumber ωc/c0 is such that
ωclc/c0 ≫ 1. We then have an effective constant attenuation and no effective dis-
persion. The wave propagates therefore without deformation up to an exponential
attenuation. In this case we have

Φ(ω, θ) = −
φ(0)c0d1/2

16lc
− i

φ(0)ω

8
− iωθ .

We introduce in this case the parameterization

Z =
φ(0)d1/2

16lc
z , (40)

T =
2

d1/2

(ωclc
c0

)

(

1 +
8θ

φ(0)

)

=
ωc(τ + τs(z))

Z
, (41)

with τs(z) = φ(0)z/(8c0) = τ0(z) − τ(z).
We find then the following characterization for the transmitted pulse:

a(τ, z) = exp(−Z) sin(ZT )IT>0 , (42)

which only exhibits an exponential decay of the sine wave without deformation.
This follows from the fact that attenuation is frequency-independent in this regime.
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Figure 1. Pulse profile for Z = 1 and Z = 20 and for a mixing random medium. The pulse is shown
as a function of T . The solid line is the exact transmitted pulse (32), the dashed line corresponds to the
asymptotic form (37), and the dashed-dotted line is the Gaussian approximation (38). Initially the pulse
is the sine signal (34).

We shall find below that the low- and high-frequency limits of the mixing case
that we discussed above in Proposition 37 and in Eq. (42) can be obtained from the
“low frequency-long range” and the “high frequency-short range” cases discussed
in the next two subsections at the limiting value H = 1/2 for the Hurst parameter.

5.2. Random Media with Short-range Correlations

We consider next the case in which the random medium has the H-short-range
correlation property (5) withH ∈ (0, 1/2). Moreover, we assume the high-frequency
regime with a relatively short wavelength so that ωclc/c0 ≫ 1. Now the phase
function in (33) takes the form

Φ(ω, θ) = −iωφ(0)

8
− φ(0)dHΓ(1 + 2H)c0

22H+3lc
exp

(

iπ(H − 1

2
)
)(ωlc

c0

)1−2H
− iωθ ,

which can be derived from (7) and (8), see [14], or explicitly by formula 3.411 in
[15].

We introduce a change of coordinates

Z =
φ(0)dHΓ(1 + 2H)

22H+3lc

(ωclc
c0

)1−2H
z , (43)

T =
22H

dHΓ(1 + 2H)

(ωclc
c0

)2H
(

1 +
8θ

φ(0)

)

=
ωc(τ + τs(z))

Z
, (44)

with τs(z) = φ(0)z/(8c0) = τ0(z) − τ(z). Note that in view of the discussion



July 16, 2009 20:51 Waves in Random and Complex Media 0907precursor

12 Taylor & Francis and I.T. Consultant

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10
x 10

−3

T

pu
ls

e

Figure 2. Pulse profile for Z = 10 and H = 1/4. The pulse is shown as a function of T . The solid line
corresponds to the exact transmitted pulse (32) while the dashed line corresponds to the approximation
(45).

regarding observation frame in (13) we find that T = 0 corresponds to the first
arrival time, thus, the transmitted pulse vanishes for T < 0.

We show in Subsection 6.2 using a steepest descent approach that the transmitted
signal can be approximated as follows.

Proposition 5.4: In random media with short-range correlations, if Z is large
and T is at most of order one, then the transmitted signal has the asymptotic form

a(τ, z)
Z≫1≃ asp(T,Z) + ap(T,Z) , (45)

with

asp(T,Z) = exp

(

− αsHZ

T
1−2H

2H

)

βsH
√

2πZT
1+2H

2H

T
1

H

T
1

H + [(1 − 2H)]
1

H

IT>0 ,

ap(T,Z) = exp [−Z sin(πH)] sin [Z(T − cos(πH))] IT>cos(πH) ,

where

αsH = 2H(1 − 2H)
1−2H

2H , βsH = (2H)−
1

2 (1 − 2H)
1

4H .

In the limit H ↑ 1/2 we find:

asp(T,Z) + ap(T,Z)
H→1/2

= exp(−Z) sin(ZT )IT>0 .

with T,Z defined as in (40), which is the high-frequency regime of the mixing case
in (42).

In Figures 2 and 3 we show the transmitted pulse for two different dimensionless
propagation distances: Z = 10, 15. The solid lines in the figures correspond to a
numerical evaluation of the integral in (32) using the FFT, while the dashed lines
correspond to the approximation in (45). Again we see how the precursor emerges at
the wavefront. We now focus our attention to the shape of the fractional precursor,
which is studied in detail in Subsection 6.2.

Proposition 5.5: In random media with short-range correlations, if Z is large
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Figure 3. Pulse profile for Z = 15 and H = 1/4.

then the precursor has the form

a(T,Z)
Z≫1≃ Z− 1

1−2HAs
(

TZ− 2H

1−2H

)

, (46)

As(Y ) =
1

π
Re

[

∫ ∞

0
exp

(

− exp
(

iπ(H − 1/2)
)

u1−2H − iuY
)

du
]

. (47)

The precursor shape function As has the following properties:
i) For negative Y the value of As(Y ) is zero.
ii) At Y = 0 the function As and all its derivatives are zero.
iii) For positive small Y the function As can be approximated by

As(Y ) ≃ βsH√
2π
Y − 1+2H

4H exp
(

− αsHY
− 1−2H

2H

)

. (48)

iv) For positive large Y the function As can be approximated by

As(Y ) ≃ 1

π

[

sin(2Hπ)Γ(2 − 2H)
]

Y −(2−2H) . (49)

We see from the figures that the multiscale nature of the medium fluctuations
changes the nature of the precursor “pulse shaping”. First, in the mixing case the
decay rate of the peak amplitude is conversely proportional to the square root of
the propagation distance. In the short-range correlation case the decay amplitude
is different.

Corollary 5.6: In random media with short-range correlations the peak amplitude
of the fractional precursor decays as

max
T

a(T,Z)
Z≫1≃ Ps(H)Z− 1

1−2H (50)

for Z ≫ 1, where Ps(H) is a coefficient that depends only on H.

The function Ps(H) is plotted in Figure 4 (left picture) and it can be well ap-
proximated (from (48)) by

Ps(H) ≃ 1√
2π

[

2H(1 − 2H)
]− 1

1−2H
(

H + 1/2
)

H+1/2

1−2H exp
(

− H + 1/2

1 − 2H

)

. (51)
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Figure 4. Coefficients Ps(H) (picture a) and Pl(H) (picture b). The solid lines are the exact values. In
picture a, the dashed line is the approximation (51). In picture b, the dashed line is the approximation
(62).

The power law decay Z− 1

1−2H with the decay rate 1
1−2H ∈ (1,∞) is characteristic

of random media with short-range correlations. It is different from the power decay
with decay rate Z−1/2 observed in mixing media.

In the mixing case discussed above the asymptotic shape is Gaussian. In par-
ticular the tail of the precursor decays super-exponentially in time as (38). In the
case with a random medium with short-range correlations the asymptotic shape is
skewed with a power law decay for large times that depends on the Hurst parame-
ter. In fact the right tail of the fractional precursor has a power law decay in time
reflecting the short-range correlation properties of the random medium. The power
law can be identified in the regime of large times and we next quote the result that
characterizes this aspect of the pulse shaping that carries in it the signature of the
medium class.

Corollary 5.7: If T
1−2H

2H ≫ Z ≫ 1 then we have

a(T,Z) ≃ sin(2Hπ)Γ(2 − 2H)

π
Z−(1−2H)T−(2−2H) . (52)

Since T = ωc(τ + τs(z))/Z, this statement is equivalent to the following one: If
[ωc(τ + τs(z))]

1−2H ≫ Z ≫ 1 then we have

a(τ, z) ≃ sin(2Hπ)Γ(2 − 2H)

π

Z

[ωc(τ + τs(z))]2−2H
. (53)

See Subsection 6.2 for the derivation. We illustrate the tail behavior and the good
match with the theoretical predictions in Figures 5 and 6 for the Hurst parameter
being respectively H = 0.1 and H = 0.3.

5.3. Random Media with Long-range Correlations

We consider the case in which the random medium has the long-range correlation
property (4) with H ∈ (1/2, 1) and the low-frequency regime ωc ≪ c0/lc. Now the
phase function in (33) takes the form

Φ(ω, θ) = −c0rHΓ(2H − 1)

22H+1lc
exp

(

iπ(H − 1

2
)
)(ωlc

c0

)3−2H
− iωθ .
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Figure 5. Precursor profile for H = 0.1, Z = 10, in linear (picture a) and logarithmic (picture b) scales,
as a function of T . The solid line is the theoretical expression (46-47) of the precursor. The dashed line
(in picture a) corresponds to the approximate expression (48) substituted into (46), which gives a good
approximation of the central form of the precursor. The dot-dashed line (in picture b) is the asymptotic
formula (52), which gives a good approximation of the positive tail of the precursor.
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Figure 6. Same as in Figure 5, but for H = 0.3, Z = 10.

We introduce the change of coordinates

Z =
rHΓ(2H − 1)

22H+1lc

(ωclc
c0

)3−2H
z , (54)

T =
22H+1

rHΓ(2H − 1)

(ωclc
c0

)2H−2
θ =

ωcτ

Z
. (55)

Using a steepest descent approach, we find the following result in Subsection 6.3,
which shows that the step function modulated sine wave is exponentially damped
and that a precursor appears at the front.

Proposition 5.8: In random media with long-range correlations, if Z is large
and T is of order one and negative, then the transmitted signal has the asymptotic
form

a(τ, z)
Z≫1≃ asp(T,Z) + ap(T,Z) , (56)

with

asp(T,Z) = exp
(

−αlHZ|T |
3−2H

2−2H

) βlH |T |
2H−1

4−4H

√
2πZ

1

1 +
( |T |

3−2H

)
1

1−H

,

ap(T,Z) = exp [−Z sin(πH)] sin [Z(T − cos(πH))] IT>cos(πH) ,
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where

αlH = (2 − 2H)(3 − 2H)−
3−2H

2−2H , βlH = (2 − 2H)−
1

2 (3 − 2H)−
1

4−4H .

We remark that as H ↓ 1/2 the limiting pulse shape approaches the Gaussian
shape and is centered around T = 0. One can check explicitly that this limit gives
the signal in (37) of the low-frequency regime in the mixing case.

For T ≥ 0 the direct evaluation via the steepest descent method at the stationary
point does not give the leading contribution, however, we shall get the precursor
behavior and its power law decay via an integral expression as we discuss next. We
remark that the approximation ap for the damped sine wave component holds also
for T > 0.

In Figures 7 and 8 we show the transmitted pulse for two different propagation
distances: Z = 4, 400 and H = 0.9. The solid line in the figure corresponds to a
numerical evaluation of the integral in (32) using the FFT, while the dashed line
corresponds to the asymptotic approximation in (56).

The pulse shape of the precursor for arbitrary value of T is obtained in Subsection
6.3 and we give it in the following proposition.

Proposition 5.9: In random media with long-range correlations, if Z is large
then the precursor has the form

a(T,Z)
Z≫1≃ Z− 1

3−2HAl
(

TZ
2−2H

3−2H

)

, (57)

Al(Y ) =
1

π
Re

[

∫ ∞

0
exp

(

− exp
(

iπ(H − 1/2)
)

u3−2H − iuY
)

du
]

. (58)

The precursor shape function Al has the following properties:
i) At Y = 0 the function Al and its derivatives are given by:

∂kAl
∂Y k

(0) =
1

(3 − 2H)π
cos

(π

2

1 − 2(H + k)

3 − 2H

)

Γ
( 1 + k

3 − 2H

)

.

ii) For negative large Y the function Al can be approximated by

Al(Y ) ≃ βlH√
2π

|Y |
2H−1

4−4H exp
(

− αlH |Y |
3−2H

2−2H

)

. (59)

iii) For positive large Y the function Al can be approximated by

Al(Y ) ≃ 1

π

[

− sin(2Hπ)Γ(4 − 2H)
]

Y −(4−2H) . (60)

We see from Figures 9 and 10 that the long-range correlations in the medium
again change the precursor qualitatively. First, the peak amplitude of the precursor
has a anomalous power decay different from the usual decay rate Z−1/2 observed
in mixing media.

Corollary 5.10: In random media with long-range correlations the peak ampli-
tude of the fractional precursor decays as

max
T

a(T,Z)
Z≫1≃ Pl(H)Z− 1

3−2H , (61)

where Pl(H) is a coefficient that depends only on H.
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Figure 7. Pulse profile for Z = 4 and H = 0.9. The pulse is shown as a function of T . The solid line is
the exact transmitted pulse (32) while the dashed line corresponds to the approximation (56).
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Figure 8. As Figure 7, but with Z = 400.

The function Pl(H) is plotted in Figure 4 (right picture) and it can be well
approximated (from (59)) by

Pl(H) ≃ 1√
2π

[

(2 − 2H)(3 − 2H)
]− 1

3−2H
(

H − 1/2
)

H−1/2

3−2H exp
(

− H − 1/2

3 − 2H

)

. (62)

The power law decay Z− 1

3−2H with the decay rate 1
3−2H ∈ (1/2, 1) is characteristic

of random media with long-range correlations. It is different from the power decay
with decay rate 1/2 observed in mixing media.

Second, the pulse develops an anomalous power law decay for large times. We
have the following proposition characterizing this effect.

Corollary 5.11: If T ≫ Z
2H−2

3−2H and Z ≫ 1, then we have

a(T,Z) ≃ − sin(2Hπ)Γ(4 − 2H)

π
Z−(3−2H)T−(4−2H) . (63)

Since T = ωcτ/Z, this statement is equivalent to the following one: If
(ωcτ)

3−2H ≫ Z ≫ 1 then we have

a(τ, z) ≃ − sin(2Hπ)Γ(4 − 2H)

π

Z

(ωcτ)4−2H
. (64)

We show in Figures 9 and 10 the excellent match of the theoretical power law
prediction with the explicit calculation of the tail via computation of the integral
in (32).
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Figure 9. Precursor profile for H = 0.7, Z = 10, in linear (picture a) and logarithmic (picture b) scales
as a function of T . The solid line is the theoretical expression (57-58) of the precursor. The dashed line
(in picture a) corresponds to the approximate expression (59) substituted into (57), which gives a good
approximation of the precursor at negative times. The dot-dashed line (in picture b) is the asymptotic
formula (63), which gives a good approximation of the positive tail of the precursor.
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Figure 10. Same as in Figure 9, but for H = 0.9, Z = 10.

6. Derivation of the Main Results

6.1. Mixing Media

We consider the medium regime discussed in Subsection 5.1 and derive the results
presented there. We use the parameterization in (36), moreover, denote Ω = ω/ωc.
The expression (32) for the transmitted pulse becomes

a(τ, z) = − 1

2π
Re

[

∫ ∞

−∞

1

Ω − 1
exp

(

ZΦm(Ω, T )
)

dΩ
]

, (65)

with the phase function

Φm(Ω, T ) = −Ω2 − iΩT .

We plot the real and imaginary parts of Φm in Figure 11 for T = 1 and as a
function of complex frequency Ω. We have a unique saddle point in the complex
plane given by Ω∗ = −iT/2. The saddle point is shown by the diamond in the
figure, the pole by the cross. The steepest descent path is in this case parallel to the
abscissa and can be joined with the original integration path for some large absolute
value for the real part of Ω. We have also a contribution in terms of the residue at
the pole at ωc, that is Ω = 1, giving rise to the “signal” component ap. Applying
now the method of steepest descent and computing the signal contribution via the
associated residue we find that we can approximate the integral (65) as in (37).
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Figure 11. Contour plot of Real(Φ) and Imag(Φ) for T = 1. Case of a random mixing medium. The
diamond corresponds to the saddle point while the cross corresponds to the pole and the dashed line is
the integration path.

6.2. Random Media with Short-range Correlations

We consider the medium regime discussed in Subsection 5.2 and derive the results
discussed there with ωc ≫ c0/lc. We use notations as in the previous subsection.
Here T = 0 corresponds to the first arrival time, thus, the transmitted pulse van-
ishes for T < 0. The expression (32) for the transmitted pulse becomes

a(τ, z) = − 1

2π
Re

[

∫ ∞

−∞

1

Ω − 1
exp

(

ZΦs(Ω, T )
)

dΩ
]

, (66)

with the phase function now taking the form

Φs(Ω, T ) = − exp
(

iπ(H − 1/2)
)

Ω1−2H − iΩT .

We plot the real and imaginary parts of Φs in Figure 12 for H = 0.3 and T = 0.5.
For T > 0 the saddle point is given by

Ω∗ = i
(1 − 2H

T

)1/(2H)
.

Thus, we have a unique saddle point in the upper complex half-plane. The saddle
point is shown by the diamond in the figure, the pole by the cross and the steepest
descent path from the top saddle point joining the original integration path by
the dashed line. Applying again the method of steepest descent and computing
the contribution of the residue associated with the signal pole we arrive at the
approximation in (45).

We next derive the results in Proposition 5.5 and Corollaries 5.6-5.7. We give the
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Figure 12. Contour plot of Real(Φ) and Imag(Φ) for H = 0.3 and T = 0.5.

main steps of the proof while the technical details are given in Appendices B and
C. The pulse profile is given by (66). The following lemma shows that the pole at
Ω = 1 is asymptotically negligible in that it gives a contribution to the transmitted
pulse profile that is small in Z (i.e. smaller than the precursor amplitude). This
expresses the fact that the step function modulated sine wave signal is damped
and becomes negligible compared to the precursor signal (67) that appears at the
front.

Lemma 6.1: There exists a constant KH such that:

∣

∣

∣
a(T,Z) − 1

π
Re

[

∫ ∞

0
exp

(

ZΦs(Ω, T )
)

dΩ
]
∣

∣

∣
≤ KHZ

− 2

1−2H . (67)

Proof : See Appendix B. �

Next, using the change of variable Ω = uZ−1/(1−2H) in the expression of the
precursor in (67) we obtain the statement of Proposition 5.5. The function As
defined by (47) is the dimensionless pulse profile of the precursor in media with
short-range correlations. We have in particular

max
T

a(T,Z) =
[

max
Y

As(Y )
]

Z− 1

1−2H ,

which gives Corollary 5.6. The analysis of the large-Y behavior of As(Y ) and
the result (49) is based on a variant of the Abelian theorem 7(i) in [24] which
is detailed in Appendix C. By substituting (49) into the expression (47) of the
precursor we obtain the result of Corollary 5.7. Note that the two hypotheses of

Corollary 5.7 are equivalent to T
1−2H

2H ≫ Z ≫ 1 or [ωc(τ+τs)]
1−2H ≫ Z ≫ 1 (since

T = [ωc(τ + τs)]/Z). In the (τ, Z) variables we obtain (53). We remark that the
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error bound in Lemma 6.1 gives a corresponding limit on the range of T in (52):

T ≪ Z
1+4H−4H2

(1−2H)(2−2H) ,

to assure that the approximation dominates the error bound in (67). Finally, note
that the result (48) can be obtained via a steepest descent approximation.

6.3. Random Media with Long-range Correlations

We consider the medium regime discussed in Subsection 5.3 and derive the results
discussed there with ωc ≪ c0/lc. We use here the parameterization in (54) and the
expression (32) for the transmitted pulse becomes

a(T,Z) = − 1

2π
Re

[

∫

1

Ω − 1
exp

(

ZΦl(Ω, T )
)

dΩ
]

, (68)

with the phase function now taking the form

Φl(Ω, T ) = − exp
(

iπ(H − 1/2)
)

Ω3−2H − iΩT .

We plot the real and imaginary parts of Φl in Figure 13 forH = 0.75 and T = −2.
The saddle point for T < 0 is given by

Ω∗ = i
( |T |

3 − 2H

)1/(2−2H)
.

Thus, we have a single saddle point in the upper complex half-plane. The saddle
point is shown by the diamond in the figure, the pole by the cross and the steepest
descent path from the saddle point joining the original integration path by the
dashed line. Applying again the method of steepest descent and evaluating the
pole contribution we find that we can approximate as in (56).

We now give the main steps of the proof of Proposition 5.9 and Corollaries 5.10-
5.11 of Subsection 5.3. The details are given in the appendices. The pulse profile is
given by (68). As in the case of media with short-range correlations the first step
shows that the step function modulated sine wave signal is exponentially damped
and becomes negligible compared to the precursor signal (69) that appears at the
front.

Lemma 6.2: There exists a constant KH such that:

∣

∣

∣
a(T,Z) − 1

π
Re

[

∫ ∞

0
exp

(

ZΦl(Ω, T )
)

dΩ
]
∣

∣

∣
≤ KHZ

− 2

3−2H . (69)

Proof : The proof follows the same line as in the case of a medium with short-range
correlations. �

Using the change of variable Ω = uZ−1/(3−2H) in the expression of the precur-
sor in (69) we find the statement of Proposition 5.9. The function Al defined by
(58) is the dimensionless pulse profile of the precursor in media with long-range
correlations. We have in particular

max
T

a(T,Z) =
[

max
Y

Al(Y )
]

Z− 1

3−2H ,
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Figure 13. Contour plot of Real(Φ) and Imag(Φ) for T = −2,H = 0.75.

which gives Corollary 5.10. The large-Y behavior of Al(Y ) follows from an Abelian
theorem as explained in Appendix C. By substituting (60) into the expression (58)
of the precursor we obtain the result of Corollary 5.11. Note that the two hypotheses

of Corollary 5.11 are equivalent to T− 3−2H

2−2H ≫ Z ≫ 1 or (ωcτ)
3−2H ≫ Z ≫ 1. In

the (τ, Z) variables we then obtain (64).

7. Conclusion

We have considered wave propagation in one-dimensional random media. The prob-
ing signal experiences a self-averaging deformation by interacting with the medium.
This can be seen as a “law of large number result” in that many double scatter-
ing events, backward and then forward scattering of wave energy, adds up with
propagation distance to give the deterministic deformation. The character of the
deformation depends on the medium class and long- or short-range correlations in
the medium in particular lead to an anomalous and skewed power law shape for
the pulse. What is not so intuitive is that this phenomenon takes place even when
the source signal is not pulse like, but for instance a stepped sine signal as we
have considered in this paper constituting the broadband source. Then at the front
of the sine wave the scattering builds a coherent wave pulse which travels much
deeper than the sine signal itself, it experiences an algebraic decay with propaga-
tion distance rather than exponential. An intuitive argument for this situation is
that at the front of the sine the broad band nature of the signal builds the pre-
cursor, while far behind the front the stepped sine source has a monochromatic
nature. In Figure 14 we summarize the picture: the solid line plots the exponent
of the frequency-dependent power law attenuation as described in Section 4, which
corresponds to the order of the time derivative in the fractional wave equation; the
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Figure 14. The fractional time derivative order in the fractional wave equation (solid line) and the damping
power for the precursor (dashed line) as functions of Hurst index H.

dashed line shows the damping power of the precursor associated with the frac-
tional wave equation. The fractional precursor is damped as the reciprocal of the
propagation distance to the damping power. The antipersistent case H ∈ (0, 1/2)
corresponds to relative high-frequency waves and the medium roughness being the
principal effect, while the persistent case corresponds to H ∈ (1/2, 1) and the
medium long-range correlations being the principal effect in terms of generation
and damping of the precursor.

We have here presented a first analysis of the “fractional precursor” phenomenon.
Many important questions remain. For instance the robustness of the result with
respect to the medium model, in particular with respect to the one-dimensional
assumption that we have made here and also with respect to the scaling assump-
tions in the underlying theory. Moreover, how this phenomenon can be relevant
in applications analogous to those where the classical precursors of homogeneous
dispersive media have plaid a role.
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Appendix A. Mixing and Exponentially Decorrelating Media

We consider here the case with the correlation function for the medium fluctuations
being

φ(z) = E[ν(y)ν(y + z)] = φ(0) exp(−|z|/lc) . (A1)

As remarked above the behavior at the origin of this correlation function is rather
general. We present it here to illustrate the intermediate case with (c0/lc)/ωc =
O(1). We remark moreover that this model has common features with the Lorentz
dielectric model of the classical situation analyzed for precursors in homogeneous
dispersive media [7]. The phase function in (33) is now

Φ(ω, θ) = −i
(

φ(0)ω2

8(ω + ic0/(2lc))
+ ωθ

)

.



July 16, 2009 20:51 Waves in Random and Complex Media 0907precursor

24 Taylor & Francis and I.T. Consultant

We introduce the parameterization

Z =
φ(0)ωc

8c0
z , T = 1 +

8θ

φ(0)
= 1 +

ωcτ

Z
, (A2)

and the mixing parameter

δm =
c0

2ωclc
.

The limit case δm → ∞, resp. δm → 0, corresponds to the low-frequency, resp.
high-frequency, regime. Note also that in view of the discussion regarding travel
time presented in Section 4 we find that T = 0 corresponds to the first arrival
time, thus, the transmitted pulse vanishes for T < 0. We then find the following
characterization for the transmitted pulse:

Proposition A.1: Under the model (A1), if Z is large and T is of order one,
then the transmitted signal has the asymptotic form

a(τ, z)
Z≫1≃ asp(T,Z) + ap(T,Z) , (A3)

with

asp(T,Z) =
exp(−Zδm(1 −

√
T )2)

√

4πZT 3/2/δm

T

T + δ2m(1 −
√
T )2

IT>0 ,

ap(T,Z) = exp

(

− Zδm
1 + δ2m

)

sin

(

Z
(

T − δ2m
1 + δ2m

)

)

IT>δ2m/(1+δ2m) .

The result follows again by a steepest descent argument. Here the component
asp is the precursor signal that emerges as the signal penetrates into the medium
while ap(T,Z) is the oscillating “signal” component that is exponentially damped
with the propagation distance.

If δm → ∞, then we recover the statement of Proposition 5.1 in the low-frequency
regime, after the change of variables Z → δmZ and T → 1 + T/δm. Similarly, if
δm → 0 then we recover the asymptotic approximation (42) valid in the high-
frequency regime, after the change of variables Z → Z/δm and T → δmT . If
δm is of order one and Z is large, then the following corollaries show that the
peak amplitude of the precursor has a power law decay and that the shape of the
precursor is Gaussian as in the low-frequency regime δm → ∞.

Corollary A.2: The peak amplitude of the precursor decays as

max
τ

a(τ, z)
Z≫1≃ 1

√

4π/δm
Z−1/2 . (A4)

Corollary A.3: If Z is large and ωcτ is smaller than Z, then we have

a(τ, z) ≃ 1
√

4πZ/δm
exp

(

− δm(ωcτ)
2

4Z

)

. (A5)

In Figures A1, A2, A3 and A4 we show the transmitted pulse for four different
propagation distances: Z = 2, 10, 20, 100, moreover, with the mixing parameter
δm = 1. The solid lines in the figures correspond to numerical evaluations of the
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Figure A1. Pulse profile for Z = 2 and for a mixing random medium with δm = 1. The pulse is shown
as a function of T . The solid line is the exact transmitted pulse (32), the dashed line corresponds to the
approximation (A3), and the dashed-dotted line is the Gaussian approximation (A5).
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Figure A2. Pulse profile for Z = 10.
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Figure A3. Pulse profile for Z = 20.

integral in (32) using the FFT, while the dashed lines correspond to the approxima-
tion (A3) and the dashed-dotted lines correspond to the Gaussian approximation
(A5) with ωcτ = Z(T − 1) (according to (A2)) .

Appendix B. Proof of Lemma 6.1

We give here the proof of Lemma 6.1 in the short-range case H ∈ (0, 1/2). The
proof of Lemma 6.2 in the long-range case H ∈ (1/2, 1) can be addressed in the
same way. We first show the following lemma.
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Figure A4. Pulse profile for Z = 100.

Lemma B.1: The integrals

∫

|Ω|>1/2

1

1 − Ω
exp

(

ZΦs(Ω, T )
)

dΩ and

∫

|Ω|>1/2
exp

(

ZΦs(Ω, T )
)

dΩ

are exponentially decaying in Z.

Proof : We write

ZΦs(Ω, T ) = −Zψ(Ω) − iZΩT, ψ(Ω) = ψr(Ω) + iψi(Ω),

with ψr(Ω) = cos(π(H − 1/2))|Ω|1−2H and ψi(Ω) = sin(π(H − 1/2))|Ω|−2HΩ. We
first look at the integral from 1/2 to 3/2:

Re
[

∫ 3

2

1

2

1

Ω − 1
eZΦ(Ω,T )dΩ

]

= Re
[

∫ 3

2

1

2

1

Ω − 1
e−Zψ(1)e−iΩTdΩ

]

+Re
[

∫ 3

2

1

2

1

Ω − 1

(

e−Zψ(Ω) − e−Zψ(1)
)

e−iΩT dΩ
]

.

Using the fact that [1/2, 3/2] is an interval symmetric with respect to 1 we find

∣

∣

∣
Re

[

∫ 3

2

1

2

1

Ω − 1
e−Zψ(1)e−iΩTdΩ

]
∣

∣

∣
=

∣

∣

∣
Re

[

e−Zψ(1)e−iT
∫ 1

2

− 1

2

1

Ω
e−iΩTdΩ

]
∣

∣

∣

=
∣

∣

∣
Re

[

− ie−Zψ(1)e−iT
∫ T/2

−T/2

sin(u)

u
du

]
∣

∣

∣

≤ K1e
−Zψr(1), K1 = 2 sup

U>0

∣

∣

∣

∫ U

0

sin(u)

u
du

∣

∣

∣
,

Morevover

∣

∣

∣
Re

[

∫ 3

2

1

2

1

Ω − 1

(

e−Zψ(Ω) − e−Zψ(1)
)

e−iΩTdΩ
]
∣

∣

∣
≤

∫ 3

2

1

2

sup
Ω∈[ 1

2
, 3
2
]

| ∂
∂Ω

e−Zψ(Ω)
∣

∣

∣
dΩ

≤ K2Ze
−Zψr( 1

2
), K2 = (1 − 2H)22H ,
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and

∣

∣

∣
Re

[

∫ ∞

3

2

1

Ω − 1
eZΦs(Ω,T )dΩ

]∣

∣

∣
≤ 2

∫ ∞

3

2

e−Zψr(Ω)dΩ

= 2e−Zψr( 3

2
)

∫ ∞

0
e−Z[ψr( 3

2
+Ω)−ψr( 3

2
)]dΩ

≤ K3e
−Zψr( 3

2
), K3 = 2

∫ ∞

0
e−[ψr( 3

2
+Ω)−ψr( 3

2
)]dΩ ,

for any Z ≥ 1. This shows that the integral from 1/2 to ∞ is exponentially decaying
in Z. The integral from −∞ to −1/2 can be shown to be exponentially decaying
in Z by a similar argument. This shows that the first integral of the lemma is
exponentially decaying in Z.

Let us consider the second integral. We have

∣

∣

∣
Re

[

∫ ∞

1

2

eZΦs(Ω,T )dΩ
]∣

∣

∣
≤

∫ ∞

1

2

e−Zψr(Ω)dΩ

= e−Zψr( 1

2
)

∫ ∞

0
e−Z[ψr( 1

2
+Ω)−ψr( 1

2
)]dΩ

≤ K4e
−Zψr( 1

2
), K4 =

∫ ∞

0
e−[ψr( 1

2
+Ω)−ψr( 1

2
)]dΩ ,

for any Z ≥ 1. The integral from −∞ to −1/2 can be shown to be exponentially
decaying in Z by the same argument. This shows that the second integral of the
lemma is exponentially decaying in Z. �

We can now consider the difference (67):

∣

∣

∣
a(T,Z) − 1

π
Re

[

∫ ∞

0
eZΦs(Ω,T )dΩ

]∣

∣

∣
≤ K̃1e

−δHZ +
1

2π

∫ 1

2

− 1

2

∣

∣

∣
1 − 1

1 − Ω

∣

∣

∣
e−Zψr(Ω)dΩ

≤ K̃1e
−δHZ +

2

π

∫ 1

2

0
Ωe−Zψr(Ω)dΩ

≤ K̃1e
−δHZ + K̃2Z

− 2

1−2H , K̃2 =
2

π

∫ ∞

0
Ωe−ψr(Ω)dΩ .

This completes the proof of Lemma 6.1.

Appendix C. Analysis of the large-Y behavior of As(Y ) and Al(Y )

Let us first address the short-range case H < 1/4 and denote

Bs(u) = exp
(

− exp
(

iπ(H − 1/2)
)

u1−2H
)

.

We have

As(Y ) =
1

π
Re

[

∫ ∞

0
Bs(u)e

−iuY du
]

.
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We seek the large-Y behavior of As(Y ). General Abelian theorems indicate that it
should be related to the small-u behavior of the function Bs(u), thus, we write the
function Bs(u) in such a way that its small-u behavior can be clearly identified.
Motivated by the expansion of the function Bs(u) for small u, we write the function
Bs(u) in the form

Bs(u) = f1

(

[2H cos(π(1/2 −H))]
1

1−2H u
)

+ if2

(

[sin(π(1/2 −H))]
1

1−2H u
)

+ Cs(u) ,

where f1 and f2 are defined by

f1(u) =
(

1 − 1

2H
u1−2H +

1 − 2H

2H
u
)

1[0,1](u) , (C1)

f2(u) =
(

u1−2H − (1 + 2H)u+ 2Hu2
)

1[0,1](u) . (C2)

Note that the linear and quadratic terms in the definitions of f1 and f2 have been
added so that these functions are continuously differentiable over (0,∞) (even
at u = 1) and piecewise twice differentiable over (0,∞). The function Cs(u) is
continuously differentiable and piecewise twice differentiable over (0,∞), because
Bs, f1 and f2 are continuously differentiable and piecewise twice differentiable over
(0,∞). Moreover, Cs, C

′
s, and C ′′

s are absolutely integrable over (0,∞), Cs(0) = 0,
and C ′

s(0
+) is well defined (here we use the fact that 2−4H > 1, so that the terms

in u2−4H that come from the expansions of the exponential are differentiable at
zero). Consequently a double integration by parts yields:

∫ ∞

0
Cs(u)e

−iY udu = −C
′
s(0

+)

Y 2
− 1

Y 2

∫ ∞

0
C ′′
s (u)e

−iY udu
Y→∞

= O
( 1

Y 2

)

. (C3)

Moreover, by performing an integration by parts step, we obtain

∫ ∞

0
f1(u)e

−iY udu
Y→∞≃ − i

Y
+ i

1 − 2H

2HY 2−2H

∫ ∞

0
v−2He−ivdv + o

( 1

Y 2−2H

)

,

∫ ∞

0
f2(u)e

−iY udu
Y→∞≃ −i1 − 2H

Y 2−2H

∫ ∞

0
v−2He−ivdv + o

( 1

Y 2−2H

)

.

The computation of the definite integral (see formula 3.761 in [15])

∫ ∞

0
v−2He−ivdv = Γ(1 − 2H)e−i(1−2H) π

2 , (C4)

gives then

Re
[

∫ ∞

0
f1(u)e

−iY udu
]

Y→∞≃ Γ(2 − 2H)

2HY 2−2H
sin((1 − 2H)

π

2
) + o

( 1

Y 2−2H

)

,

Re
[

i

∫ ∞

0
f2(u)e

−iY udu
]

Y→∞≃ Γ(2 − 2H)

Y 2−2H
cos((1 − 2H)

π

2
) + o

( 1

Y 2−2H

)

.(C5)

Using (C3), (C5), and the identity

2 cos((1 − 2H)
π

2
) sin((1 − 2H)

π

2
) = sin(2Hπ) ,

we obtain the desired result.
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If H ∈ [1/4, 1/2), then one needs to consider the terms uk(1−2H), 1 ≤ k ≤
1+⌊1/(1−2H)⌋, that come from the expansion of the exponential in the expression
of Bs(u) in the same way we have addressed u1−2H . This gives corrective terms
proportional to Y −k(1−2H)−1 which are negligible compared to Y 2H−2.

The long-range case H ∈ (1/2, 1) can be analyzed as the short-range case with
H ∈ (0, 1/4).
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