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Abstract. This paper considers the statistical properties of the waves generated by a point
source in the subsurface and transmitted towards the surface through a randomly layered medium.
The problem is analyzed in a regime of separation of scales and with pressure release boundary
conditions at the surface. Using a probabilistic representation of the spectral density of the waves
received at the surface, the transmitted intensity is analyzed. Conserved quantities specific to the
pressure release boundary conditions are evaluated and the power delay spread is computed. In
particular a waveguiding effect that is produced by the reflections from the surface and from the
random medium is identified and analyzed. This effect is different from the propagation in a standard
waveguide from the point of view of the decay of the intensity.
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1. Introduction. Wave propagation in randomly layered media has been exten-
sively studied because it is both a mathematically tractable problem and a physically
relevant model, in particular for naturally occuring media such as the earth’s crust,
the atmosphere and the ocean. A separation of scales technique enables the asymp-
totic analysis of the statistical properties of the waves generated by a point source
and transmitted through or reflected by a random medium [1, 4, 6, 7, 8, 9, 13]. In
most papers regarding randomly layered media the boundary conditions are simple
and the authors typically choose to use matched boundary conditions in which the
boundaries are transparent. In this paper we show that the boundary conditions play
a primary role in the wave transmission through a random medium and may change
the picture quantitatively and qualitatively. Indeed, a partially or totally reflecting
boundary condition in addition to the localization phenomenon can induce a waveg-
uiding effect close to the surface [11, 15]. Here, we will explain how the effects of
the pressure release boundary conditions interact in an interesting way with the wave
localization phenomenon in a randomly layered medium.

In geophysics a randomly layered medium is often used as a model for the earth’s
crust [2, 3, 17, 18]. The boundary conditions at the surface are imposed by the large
contrast in density between the earth and the atmosphere, which means that the
pressure is vanishing and reflecting boundary conditions for the pressure field can
be used [5]. This situation is briefly mentioned in [1] in the case of a source at the
surface whose signal is reflected by the random medium. In our paper we address
the transmission of the waves generated by a point source located in the subsurface.
As we will see the problem can be analyzed using the separation of scales technique
presented in [7] and leads to original results in terms of the transmitted intensity and
the power delay spread (which is defined as the duration of the coda waves following
the arrival of the direct waves).

The paper is organized as follows. In Section 2 we describe the acoustic model
with the point source. We consider the wave transmitted through a random medium
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in Section 3, where we give the integral representation for the vertical velocity field
at the surface. In Section 4 we introduce some quantities of interest that we use to
characterize the field at the surface. In Section 5 we present the key theoretical tool
that allows us to analyze waves in random media, the spectral representation. In
Section 6 we discuss some special cases that illustrate how the spectral density and
its jump process interpretation relates to physical quantities such as the transmitted
intensity. We give in Section 7 the main results of the paper that characterize some
of the salient aspects of the interaction between the wave localization phenomenon
and the pressure release surface boundary conditions. In particular we discuss the
“trapping” of the wave by the pressure release boundary conditions and the medium
heterogeneities. We finally compare the theoretical predictions of our asymptotic
theory with numerical simulations in Section 8.

2. Acoustic Model. We consider linear acoustic waves propagating in a three-
dimensional layered medium and generated by a point source. The governing equa-
tions are

ρε(z)
∂~uε

∂t
+ ∇pε + σε(z)~uε = ~F ε(t,x, z),

1

Kε(z)

∂pε

∂t
+ ∇ · ~uε = 0, (2.1)

where pε is the pressure field, ~uε is the three-dimensional velocity field, ρε is the
density of the medium, Kε is the bulk modulus of the medium, σε is the dissipation,
and (x, z) ∈ R

2 × R are the space coordinates. The parameters of the medium ρε,

Kε, and σε vary only along the z-direction. The forcing term ~F ε models the source
located in the subsurface z < 0.

We consider in this paper the situation in which a layered medium occupying
the section z ∈ (−L, 0) is sandwiched in between two homogeneous half-spaces. The
homogeneous half-space z ≤ −L is matched to the layered section z ∈ (−L, 0). Moti-
vated by geophysical applications we assume that the density ρa in the homogeneous
half-space z ≥ 0 is much smaller than the density ρε(z) in the layered medium for
z ≤ 0. Since the velocity and pressure are continuous away from the sources, the
pressure in z > 0 goes to zero and hence, by continuity, also at z = 0. These are the
so-called pressure release boundary conditions.

We consider the case with a randomly layered medium in the region z ∈ (−L, 0).
The parameters of the medium are assumed to be of the form

(Kε)
−1

(z) =

{
K−1(z) if z ∈ (−∞,−L]
K−1(z)[1 + ν(z, z

ε2 )] if z ∈ (−L, 0)
, (2.2)

ρε(z) = ρ(z) if z ∈ (−∞, 0), (2.3)

σε(z) = σ(z) if z ∈ (−∞, 0). (2.4)

In this model the parameters of the medium have two types of variations: on the one
hand, deterministic, slow and smooth variations with a typical scale of variation of
the same order as the thickness L of the layer, and on the other hand random and
rapid fluctuations with a typical scale of variation much smaller than the thickness of
the layer. The small dimensionless parameter ε2 is the ratio between these two scales.
The small-scale random fluctuations are described by the random process ν(z, z′).
The process ν is bounded in magnitude by a constant less than one, so that Kε is
a positive quantity. For each z, the random process z′ 7→ ν(z, z′) is stationary and
zero mean and it has strong mixing properties. The z-dependence of ν(z, z′) models a
depth-dependence of the statistical properties of the medium. The important quantity
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from the statistical point of view is the integrated covariance of the fluctuations of
the random medium defined by

γ(z) =

∫ ∞

−∞

E[ν(z, 0)ν(z, z′)]dz′. (2.5)

By the Wiener-Khintchine theorem it is nonnegative valued. The integrated covari-
ance γ(z) plays the role of a depth-dependent scattering coefficient. As will become
clear in the sequel, the statistics of the wave field depends on the random medium via
this integrated covariance.

The source is modeled by the forcing term ~F ε. We assume that it is point-like,
located at (x, z) = (0,−L), and that it emits a short pulse whose carrier wavelength
is of order ε:

~F ε(t,x, z) = ~fε(t)δ(z + L)δ(x), ~fε(t) = ε1/2 ~f
( t
ε

)
, (2.6)

where we assume that the support of the Fourier transform of ~f = (fx, fz) is bounded

away from zero and of rapid decay at infinity. The particular scaling of ~fε in (2.6)
means that the carrier wavelength is large compared to the microscopic scale of varia-
tion of the random fluctuations of the medium and small compared to the macroscopic
scale of variation of the background medium. The normalizing amplitude factor ε1/2

multiplying the source term makes the total energy
∫
|∂t

~fε(t)|2dt released by the
point source independent of ε.

We observe the vertical velocity field at the surface z = 0:

uε(t,x) = ~ez · ~uε(t,x, z = 0),

where ~ez is the unit vector (0, 1) that is the outward unit normal vector of the
surface. This is typical of seismographs, which usually record only the vertical velocity
because it is less noisy and gives better records of some seismic waves. Note, moreover,
that with the idealized pressure release boundary conditions the horizontal velocity
components vanish along with the pressure at the surface.

3. Propagation though a Dissipative Layered Medium. We define the
background velocity and impedance by

c(z) =

√
K(z)√
ρ(z)

, ζ(z) =
√
K(z)ρ(z). (3.1)

The background bulk modulus K(z) and density ρ(z) in (2.2-2.4) are smooth. This
implies that the reflections induced by the macroscopic variations ofKε, ρε, and σε are
extremely small, they are dominated by incoherent reflections that are generated by
the interaction of the waves with the microscopic random fluctuations of the medium
modeled by the random process ν.

3.1. Integral Representation of the Recorded Field. The vertical velocity
field recorded at the surface z = 0 can be shown (see Appendix A) to have the integral
representation

uε(t,x) =
1

(2π)3ε3/2

∫∫
ĝε(ω,κ)T ε

ω,κ exp
(
− i

ω

ε

(
t− κ · x

))
ω2dκdω, (3.2)

ĝε(ω,κ) =
f̂z(ω)

ζ1/2(κ,−L)ζ1/2(κ, 0)
+

iωκ · f̂x(ω)

iωρ(−L)− εσ(−L)

ζ1/2(κ,−L)

ζ1/2(κ, 0)
. (3.3)
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Here, we have used the notation κ = |κ|, and:
• The Fourier transforms are defined by

f̂z(ω) =

∫
fz(t)e

iωtdt, f̂x(ω) =

∫
fx(t)eiωtdt.

• ζ(κ, z) and c(κ, z) are the mode- and depth-dependent impedance and velocity

ζ(κ, z) =
ζ(z)√

1 − κ2c(z)2
, c(κ, z) =

c(z)√
1 − κ2c(z)2

. (3.4)

• τ(κ, z) is the mode-dependent vertical travel time from the surface to the depth
z:

τ(κ, z) =

∫ z

0

dz′

c(κ, z′)
, (3.5)

which is negative for z < 0.
• The random complex coefficient T ε

ω,κ is the generalized transmission coefficient
(for pressure release boundary conditions). It captures the interaction of the wave
with the medium, both the scattering, the damping, and the pressure release bound-
ary conditions. It can be expressed in terms of the mode-dependent reflection and
transmission coefficients Rε

ω,κ and T ε
ω,κ of the random section (for matched boundary

conditions, that is, transparent boundary conditions), which are described in detail
in Appendix A, in the following way:

T ε
ω,κ = exp

(
− i

ω

ε
τ(κ,−L)

) T ε
ω,κ

1 −Rε
ω,κ

. (3.6)

We describe the statistial properties of the generalized transmission coefficient T ε
ω,κ

in Section 5. We remark that the expansion

T ε
ω,κ =

∞∑

j=0

exp
(
− i

ω

ε
τ(κ,−L)

)
T ε

ω,κ(Rε
ω,κ)j

reflects the physical situation that the waves recorded at the surface are the sum
of the contributions of the waves that have been transmitted through the random
medium from the source plane z = −L to the surface z = 0 (term j = 0) and the
contributions of the waves that have reached the surface and have then been reflected
back and forth by the surface and by the random region generating “multiples” (see
Figure 3.1). These reflections and multiples arise due to the pressure release boundary
conditions at the surface which is an important ingredient in our model.

• The integral in κ in (3.2) is limited to κ < κmax for

κmax = min
z∈(−L,0)

c−1(z). (3.7)

The restriction κ < c−1(−L) comes from the fact that modes generated with trans-
verse slownesses that violate this condition are exponentially damped and can be
neglected. The restriction κ < κmax means that there are no turning points in the
medium for the mode with slowness κ. Modes generated with transverse slownesses
that violate this condition do not reach the surface, so they can be neglected (re-
member that the random medium is layered so that scattering does not change the
slowness).
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Fig. 3.1. Schematic of the geometric configuration: The source is in the plane z = −L, the
medium is random in the section z ∈ (−L, 0), and the interface z = 0 is transparent (left, matched
boundary conditions) or reflecting (right, pressure release boundary conditions).

3.2. Special Case with Dissipative Homogeneous Medium. In this section
we consider the particular case with the density, bulk modulus, and dissipation of
the medium being constant and denoted by ρ0, K0, and σ0 for z < 0, moreover,
with pressure release boundary conditions. The vertical velocity field recorded at the
surface z = 0 then has the integral representation (see Appendix A):

uε(t,x) =
1

(2π)3ε3/2

∫∫ [ f̂z(ω)

ζ0(κ)
+

iω

iωρ0 − εσ0
κ · f̂x(ω)

]
exp

(
− i

ω

ε

(
t− κ · x

))

× exp
(
i
ω

ε

L

c0(κ)
− σ0c0(κ)

2ζ0c0
L

)
ω2dκdω. (3.8)

In this expression:
• The constant background parameters are

c0 =

√
K0√
ρ0
, c0(κ) =

c0√
1 − c20κ

2
, ζ0 =

√
K0ρ0, ζ0(κ) =

ζ0√
1 − c20κ

2
.

• L/c0(κ) is the mode-dependent travel time from the source to the surface.
• exp[−σ0c0(κ)/(2ζ0c0L)] is the damping of the waves propagating from the

sources to the surface.
Recall that we consider the limit ε → 0. In absence of microscopic random

fluctuations of the medium this is simply a high-frequency regime. We now exploit this
to obtain a simplified expression for the transmitted field by applying the stationary
phase method. We find that the leading order value for the integral (3.8) is given by
the contribution around the stationary slowness vector

κsp =
1

c0

x√
L2 + |x|2

,

and this gives a contribution that is concentrated around the critical time

tsp =

√
L2 + |x|2
c0

,

that is, the travel time from the source to the observation point. Denoting the source
point, (0,−L), by S and the point of observation, (x, 0), by M we get that the wave
energy is received only around the travel time SM/c0 in the form of a short pulse:

lim
ε→0

ε1/2uε
(SM
c0

+ εs,x
)

=
L

2πζ0c0SM2
e−

σ0
2ζ0

SM
−−→
SM · ~f ′(s)

SM
, (3.9)
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where
−−→
SM = (x, L), SM =

√
L2 + |x|2, and the prime stands here for the time-

derivative. This is characteristic of wave propagation in homogeneous media in
the high-frequency regime. From this follows the expression of the high-frequency
Green’s function in the homogeneous medium with pressure release boundary condi-
tions. With matched boundary conditions (MBC), which corresponds to a transparent
interface instead of a reflecting interface for the pressure, we find the same expression
up to a factor 1/2:

lim
ε→0

ε1/2uε
(SM
c0

+ εs,x
)
|MBC=

L

4πζ0c0SM2
e−

σ0
2ζ0

SM
−−→
SM · ~f ′(s)

SM
.

This factor 1/2 comes from the fact that the vertical velocity field for the pressure
release boundary conditions is the superposition of the right-going wave that comes
from the source and of the left-going wave that is reflected by the surface.

A more detailed discussion of the stationary phase calculation, the lateral slowness
and related concepts can be found in [7, Chapter 14 & 17].

4. Some Quantities of Interest. In this section we introduce some quantities
that subsequently will be used to characterize the effects of the free boundary and the
wave scattering by the random medium.

The transmitted wave statistics is characterized by the statistical distribution of
the generalized transmission coefficient. In the asymptotic regime ε→ 0 the general-
ized spectral density U (for pressure release boundary conditions) associated with the
generalized transmission coefficient plays a central role and it is defined by

E
[
T ε

ω,κ+ελ/2T ε
ω,κ−ελ/2

] ε→0−→
∫

U(ω, κ, ξ)e−iωκλξdξ, (4.1)

where the convergence holds in the sense of distribution with respect to frequency ω
and slowness κ. We describe the spectral density and its relation to an underlying
Markov jump stochastic process in detail in Section 5. We remark that, as explained
below, our focus will be on wave intensities and energies for which the spectral density
in (4.1) based on an offset in slowness only, and not in frequency, is the appropriate
one [7, Chapter 14]. Had we focused on the local power spectrum in general we would
have had to use an offset in frequency also, as in [1, 7].

The square modulus of the generalized transmission coefficient, |T ε
ω,κ|2, the power

transmission coefficient, is an important physical quantity that describes how wave
power, at a particular frequency and lateral slowness, is transmitted from the source to
the surface. Using the probabilistic representation of the spectral density in terms of a
jump process we discuss the statistical properties of the power transmission coefficient
in Subsection 7.1. We show in particular that the mean power transmission coefficient
is equal to one whatever the scattering properties of the medium in the absence of
dissipation.

In Section 6 we study the mean intensity observed at the surface, also in the
asymptotic regime ε→ 0:

I(t,x) = lim
ε→0

E
[
uε(t,x)2

]
.

We remark that
1) The convergence holds in the sense of distribution with respect to time t and
position x, and the mean time-dependent intensity t → I(t,x) possesses a singular
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component concentrated at the background travel time τ(S,M) from the source point
S = (−L,0) to the observation point M = (0,x) and an absolutely continuous com-
ponent supported in the semi-infinite interval starting from the background travel
time τ(S,M). The singular component corresponds to the contributions of the direct
waves and the absolutely continuous component correspond to the contributions of
the coda waves.
2) The intensity uε(t,x)2 is not a statistically stable quantity. If we apply the same
method as in Section 9.3.4 [7], then one finds that the intensity uε(t,x)2 at a time
t > τ(S,M) obeys an exponential distribution in the limit ε→ 0.
3) We have in the case when the medium in the region (−L, 0) has constant background
velocity and impedance c0 and ζ0, but possibly varying dissipation and scattering co-
efficients σ(z) and γ(z), that the mean intensity is given in terms of the spectral
density U by

I(t,x) =
1

(2π)3c20t
2

∫
U

(
ω,

|x|
c20t

, c20t
)∣∣∣

f̂z(ω)

ζ0(
|x|
c2
0
t
)

+
x

ζ0c0t
· f̂x(ω)

∣∣∣
2

ω2dω. (4.2)

This representation is derived in Appendix C.
It can be shown that the decoherence time and length of the intensity are short,

of the order of ε, see (C.3). The short decoherence time and length in turn give the
self-averaging property, or statistical stability, of averaged quantities. In Appendix D
we prove the self-averaging property of time-space averaged quantities: If φ(x) and
ψ(t) are two smooth compactly supported test functions, then

lim
ε→0

∫∫
φ(x)ψ(t)uε(t,x)2dxdt

ε→0−→
∫∫

φ(x)ψ(t)I(t,x)dxdt, in probability. (4.3)

This property is important because it indicates that space- and/or time-averaged
quantities should be used for imaging or communication in order to minimize random
fluctuations.

In Section 7.2 we discuss the total energy transmitted to the surface defined by

Eε =
ζ(0)

2

∫∫
uε(t,x)2dxdt.

We deduce the remarkable fact that this quantity does not depend on the details of the
microscale medium fluctuations model in the non-dissipative case. We show moreover
that this quantity is statistically stable so that it does not depend on the particular
realization of the random medium. Thus, the transmitted energy is invariant with
respect the microscale. This result is valid in the regime ε→ 0.

Then, in Section 7.3, we discuss the mean energy density associated with the
vertical velocity field transmitted to the surface. We compensate the density for
loss due to geometric spreading and define the “modified” surface energy density∫
t2I(t,x)dt. The interesting fact is that this quantity also does not depend on the

details of the model of the microscale medium fluctuations in the non-dissipative case,
it coincides with the density in the case without microscale fluctuations.

5. Statistical Analysis of the Generalized Transmission Coefficient. We
consider the model in (2.2-2.4) with a smooth background medium modulated by
random medium fluctuations. The spectral representation of the wave constitutes the
central theoretical tool to describe wave statistics and the derivation of the trapping
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results are based on this. Here, we present the basic theory associated with the
spectral representation. This is an extension of results in [7] which incorporates
the effect of the pressure release boundary conditions. We start by the following
proposition.

Proposition 5.1. The autocorrelation function of the generalized transmission
coefficient at two nearby slownesses satisfies

E
[
T ε

ω,κ+ελ/2T ε
ω,κ−ελ/2

] ε→0−→
∫

U(ω, κ, ξ)e−iωκλξdξ. (5.1)

The spectral density U(ω, κ, ξ) has the probabilistic representation:

U(ω, κ, ξ) = E

[
δ
(
ξ −

∫ 0

−L

c(κ, z)(2Nω,κ(z) + 1)dz
)

× exp
(
−

∫ 0

−L

σ(z)c(κ, z)

ζ(z)c(z)
(2Nω,κ(z) + 1)dz

)∣∣∣Nω,κ(−L) = 0
]
, (5.2)

where (Nω,κ(z))−L≤z≤0 is the jump Markov process with state space N and inhomo-
geneous infinitesimal generator

Lzφ(N) =
γ(z)c(κ, z)2ω2

4c(z)4
[
(N+1)2(φ(N+1)−φ(N))+N2(φ(N−1)−φ(N))

]
. (5.3)

The proof of Proposition 5.1 is given in Appendix B. From the probabilistic rep-
resentation (5.2) we can also write using the Kolmogorov equation that U(ω, κ, ξ) =
U0(ω, κ, ξ, 0), where Uj , j ≥ 0, are the solutions of the system of transport equations

∂Uj

∂z
+ (2j + 1)c(κ,−L− z)

∂Uj

∂ξ
= − (2j + 1)σ(−L− z)

ζ(−L− z)

c(κ,−L− z)

c(−L− z)
Uj

+
γ(−L− z)c(κ,−L− z)2ω2

4c(−L− z)4
(
(j + 1)2(Uj+1 − Uj) + j2(Uj−1 − Uj)

)
, (5.4)

starting from Uj(ω, κ, ξ, z = −L) = δ(ξ) for all j ∈ N.
The integral in ξ of the spectral density U gives the expectation of the square

modulus of the generalized transmission coefficient in the limit ε→ 0:

lim
ε→0

E
[
|T ε

ω,κ|2] =

∫
U(ω, κ, ξ)dξ

= E

[
exp

(
−

∫ 0

−L

σ(z)c(κ, z)

ζ(z)c(z)
(2Nω,κ(z) + 1)dz

)∣∣∣Nω,κ(−L) = 0
]
.(5.5)

The function ξ → U(ω, κ, ξ) is a scaled Fourier transform of the autocorrelation func-
tion of the generalized transmission coefficient at two nearby slownesses. It is a
nonnegative valued distribution. In the non-dissipative case it can be interpreted as
the probability density function of a random variable defined as a functional of the
jump Markov process Nω,κ. This interpretation gives both theoretical and numeri-
cal tools to study the spectral density. The system of transport equations (5.4) is
the Kolmogorov equation associated with this jump process. It does not describe a
physical transport of energy directly, but it is a way to compute the spectral density
(another way is to carry out Monte Carlo simulations of the jump process).
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In general, for a fixed pair (ω, κ), the function ξ → U(ω, κ, ξ) is a distribution
with a singular component and an absolutely continuous component:

Lemma 5.2. We have

U(ω, κ, ξ) = Us(ω, κ, ξ) + Uc(ω, κ, ξ),

with

Us(ω, κ, ξ) = δ
(
ξ −

∫ 0

−L

c(κ, z)dz
)

exp
(
−

∫ 0

−L

σ(z)c(κ, z)

ζ(z)c(z)
dz

)

× exp
(
−

∫ 0

−L

γ(z)c(κ, z)2ω2

4c(z)4
dz

)
(5.6)

and

Uc(ω, κ, ξ) = exp
(
−

∫ 0

−L

σ(z)c(κ, z)

ζ(z)c(z)
dz

)

×
∫ 0

−L

γ(z0)c(κ, z0)
2ω2

4c(z0)4
exp

(
−

∫ z0

−L

γ(z)c(κ, z)2ω2

4c(z)4
dz

)

×E

[
δ
(
ξ − 2

∫ 0

z0

c(κ, z)Nω,κ(z)dz −
∫ 0

−L

c(κ, z)dz
)

× exp
(
− 2

∫ 0

z0

σ(z)c(κ, z)

ζ(z)c(z)
Nω,κ(z)dz

)∣∣∣Nω,κ(z0) = 1
]
dz0. (5.7)

The singular component in (5.6) can be obtained from the probabilistic repre-
sentation (5.2) as the contributions of the trajectories (Nω,κ(z))−L≤z≤0 that do not
jump. In the expression (4.2) of the mean transmitted intensity this is the contribu-
tions of the direct waves that constitute the wave front and that are received around
the background travel time

∫ 0

−L c(κ, z)dz.
The absolutely continuous component in (5.7) can also be obtained from the prob-

abilistic representation (5.2) as the contributions of the trajectories that jump at least
once. In the expression (4.2) of the mean transmitted intensity this is the contribu-
tions of the waves that constitute the coda waves. Since Nω,κ(z) takes nonnegative

values, the support of the absolutely continuous component Uc is [
∫ 0

−L
c(κ, z)dz,∞).

In the case of a weakly scattering medium, i.e.
∫ 0

−L

γ(z)c(κ, z)2ω2

4c(z)4
dz ≪ 1,

we have

Uc(ω, κ, ξ) ≃ exp
(
−

∫ 0

−L

σ(z)c(κ, z)

ζ(z)c(z)
dz

)∫ 0

−L

γ(z0)c(κ, z0)
2ω2

4c(z0)4

×δ
(
ξ − 2

∫ 0

z0

c(κ, z)dz −
∫ 0

−L

c(κ, z)dz
)

exp
(
− 2

∫ 0

z0

σ(z)c(κ, z)

ζ(z)c(z)
dz

)
dz0. (5.8)

In the probabilistic interpretation this is the contribution of paths that jump exactly
once. In the expression (4.2) of the mean transmitted intensity this corresponds to
the first order reflections from the medium, that is, of the directly transmitted wave
that is returned by the pressure release boundary conditions and finally returned to
the surface again.



10 J. Garnier and K. Sølna

6. Spectral Density and Mean Intensity. We illustrate in this section how
the wave field components can be interpreted explicitly in terms of the spectral density
and its jump process representation in the case of additional homogeneity assump-
tions.

6.1. Homogeneous Dissipative Medium. We here briefly revisit the case of
a dissipative homogeneous medium, for which the spectral density is

Uhom(ω, κ, ξ) = δ
(
ξ − c0(κ)L

)
exp

(
− σ0c0(κ)

ζ0c0
L

)
,

as shown by Proposition 5.1 (in the case Nω,κ(z) = 0). Therefore

Ihom(t,x) =
L2

(2π)3c20ζ
2
0 (L2 + |x|2)2 exp

(
− σ0

ζ0

√
L2 + |x|2

)

×
∫ ∣∣∣

Lf̂z(ω) + x · f̂x(ω)√
L2 + |x|2

∣∣∣
2

ω2dω δ
(
t−

√
L2 + |x|2
c0

)
. (6.1)

This means that the signal emitted by the source at S = (0,−L) is received at position
M = (x, 0) at the time

√
L2 + |x|2/c0 = SM/c0, which is the travel time between

the two points S and M . The intensity exhibits

- the power law decay [
−−→
SM · ~ez/SM

2]2 due to geometric spreading,
- the exponential decay exp[−(σ0/ζ0)SM ] due to dissipation.
In absence of dissipation, if we compensate for the algebraic decay due to geometric
spreading, then the “modified” surface energy density at x = 0 is

∫
t2Ihom(t,0)dt =

1

(2π)3c40ζ
2
0

∫ ∣∣f̂z(ω)
∣∣2ω2dω. (6.2)

We will see in the next sections that the scattering induced by the random fluctuations
in the medium does not modify the “modified” energy density received at the surface.

6.2. Mean Intensity in a Statistically Homogeneous Dissipative Ran-
dom Medium. In this subsection we consider the case in which the medium in the
region z ∈ (−L, 0) is statistically homogeneous with constant scattering coefficient γ0,
background velocity c0, impedance ζ0, and dissipation σ0. We have the probabilistic
representation for the spectral density U :

U(ω, κ, ξ) = E

[
δ
(
ξ − c0(κ)

∫ 0

−L

(2Nω,κ(z) + 1)dz
)∣∣∣Nω,κ(−L) = 0

]
exp

(
− σ0

ζ0c0
ξ
)
,

(6.3)
where (Nω,κ(z))−L≤z≤0 is the jump Markov process with state space N and homoge-
neous infinitesimal generator:

Lω,κφ(N) =
γ0c0(κ)

2ω2

4c40

[
(N +1)2(φ(N +1)−φ(N))+N2(φ(N − 1)−φ(N))

]
. (6.4)

We note first that, since Nω,κ(z) takes nonnegative values, the function ξ →
U(ω, κ, ξ) is supported in [c0(κ)L,∞), and therefore the function t → I(t,x) is sup-
ported in [

√
L2 + |x|2/c0,∞). This can be interpreted as a consequence of the hy-

perbolicity of the acoustic wave equations with background velocity c0.
We also note that from the probabilistic representation (6.3) and the integral

representation (4.2) the expression of the mean transmitted intensity I(t,x) can be
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deduced from the one in the absence of dissipation by a simple multiplication by the
damping factor exp(−σ0c0t/ζ0).

There are two contributions in the mean transmitted intensity:

I(t,x) = Is(t,x) + Ic(t,x). (6.5)

1) Is is the contribution of the direct waves. It is a singular contribution received
at the travel time t =

√
L2 + |x|2/c0 (it is singular because it is supported on a time

window of the order of the pulse width which is of order ε). It corresponds to the
contributions of the trajectories of the jump process that do not jump

Is(t,x) = δ
(
t−

√
L2 + |x|2
c0

) L2

(2π)3ζ2
0 c

2
0(L

2 + |x|2)2 exp
(
− σ0

ζ0

√
L2 + |x|2

)

×
∫ ∣∣∣

Lf̂z(ω) + x · f̂x(ω)√
L2 + |x|2

∣∣∣
2

exp
(
− γ0ω

2

4c20

√
L2 + |x|2

)
ω2dω. (6.6)

For a source pulse with small bandwidth B and carrier frequency ω0, we observe an
exponential decay of the direct waves

Is(t,x)
B≪ω0≃ Ihom(t,x) exp

(
−

√
L2 + |x|2
Lloc

)
.

Here Lloc is the localization length defined by

Lloc =
4c20
γ0ω2

0

, (6.7)

which plays a central role in the wave localization phenomenon as we will see below.
2) Ic is the contribution of the coda waves. It is a continuous contribution sup-

ported in t ∈ [
√
L2 + |x|2/c0,∞). It correspond to the contributions of the trajecto-

ries of the jump process that jump at least once. In particular, for x = 0 it is given
by

Ic(t,0) =
γ0

32π3ζ2
0c0t

2
exp

(
− σ0c0t

ζ0

) ∫ 0

−L

dz

∫
exp

(
− γ0ω

2(L+ z)

4c20

)

×E

[
δ
(
c0t− 2

∫ 0

z

Nω,0(z
′)dz′ − L

)∣∣∣Nω,0(z) = 1
]
ω4|f̂z(ω)|2dω. (6.8)

As we will see in Proposition 7.5, in the case of strong scattering most of the received
energy is carried by the coda waves and the power delay spread (the time duration of
the received signal) can be very long.

6.3. A Thick Weakly Scattering and Statistically Homogeneous Layer.
We assume that the background velocity is constant and that the medium in (−L, 0)
consists of two different regions (−L,−zs) and (−zs, 0). The dissipation and inte-
grated covariance jump at the interface z = −zs:

σ(z) =

{
σ0 if z ∈ (−zs, 0)
σ1 if z ∈ (−∞,−zs)

, γ(z) =

{
γ0 if z ∈ (−zs, 0)
0 if z ∈ (−∞,−zs)

. (6.9)

Here σ0 and σ1 can be equal and we assume γ0 > 0. Thus, we can in particular consider
the situation when the interface only distinguishes itself via a jump in the scattering
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coefficient, that is, a change in the fluctuation magnitude and/or decoherence length of
the microscale medium fluctuations from a situation with relatively small fluctuations.
We assume that the top region is scattering which conforms with typical situations
in the earth’s crust with relative stronger scattering in the surface layer. We suppose
that there is no impedance and background velocity contrast (ζ and c are constant and
equal to ζ0 and c0). Therefore, the interface z = −zs does not generate reflections
itself, but the change in the scattering properties across the interface modifies the
spectral density of the waves observed at the surface. We now describe the theoretical
asymptotic behavior of the spectral density in this situation. The following lemma
follows directly from (5.6) and (5.8).

Lemma 6.1. If the top layer is weakly scattering (γ0ω
2zs)/(4c

2
0) ≪ 1, then we

have

U(ω, κ, ξ) = Us(ω, κ, ξ) + Uc(ω, κ, ξ),

where the singular and continuous components are given by

Us(ω, κ, ξ) = exp
(
− c0(κ)[σ0zs + σ1(L − zs)]

ζ0c0

)
exp

(
− γ0c

2
0(κ)ω

2

4c40
zs

)
δ
(
ξ − c0(κ)L

)
,

Uc(ω, κ, ξ) ≃
γ0c0(κ)ω

2

8c40
exp

(
− σ0ξ + c0(κ)(σ1 − σ0)(L − zs)

ζ0c0

)
1[L,L+2zs]

( ξ

c0(κ)

)
.

Substituting into (4.2), we find that the intensity of the direct waves is:

Is(t,x) =
1

8π3ζ2
0 c

4
0t

2

L2

L2 + |x|2 exp
(
− σ0zs + σ1(L− zs)

ζ0

√
L2 + |x|2
L

)

×δ
(
t−

√
L2 + |x|2
c0

)

×
∫

exp
(
− γ0ω

2

4c20
zs
L2 + |x|2

L2

)∣∣∣
Lf̂z(ω) + x · f̂x(ω)√

L2 + |x|2
|2ω2dω,

and the intensity of the coda waves is of the form

Ic(t,x) ≃ 1

8π3ζ2
0 c

4
0t

2
exp

(
− σ0c0t

ζ0
− (σ1 − σ0)(L − zs)

ζ0

√
L2 + |x|2
L

)

×1
[
√

L2+|x|2,
√

(L+2zs)2+|x|2]
(c0t)

× γ0

8c0

∫ ∣∣∣
√
c20t

2 − |x|2
c0t

f̂z(ω) +
x

c0t
· f̂x(ω)

∣∣∣
2

ω4dω.

We can see that the duration of the coda waves in this weakly scattering regime,

∆Tcoda =
1

c0

(√
(L+ 2zs)2 + |x|2 −

√
L2 + |x|2

)
,

is directly related to the thickness of the scattering region and hence can be exploited
in the context of estimation.

7. Surface Trapping Results. In this section we give the main results of the
paper, that describe the waveguide features that can be observed with pressure release
boundary conditions in the context of a heterogeneous medium.
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7.1. Mean Power Transmission Coefficient Conservation. In the absence
of dissipation and medium fluctuations the power transmission coefficient |T ε

ω,κ|2 is
equal to one. The surprising fact is that in a certain sense this is the case also in the
situation with random medium fluctuations:

Proposition 7.1. In absence of dissipation, the mean power transmission coef-
ficient is equal to one in the limit ε→ 0:

lim
ε→0

E
[
|T ε

ω,κ|2
]

= 1. (7.1)

This results follows from the identity (5.5) which shows that the integral of the
spectral density with respect to ξ in the absence of dissipation is equal to one.

It is important to understand that this conservation relation is true only after
statistical averaging. The power transmission coefficient |T ε

ω,κ|2 has in fact large
fluctuations as shown by the next proposition (proved in Appendix E):

Proposition 7.2. In absence of dissipation, the variance of the power transmis-

sion coefficient Var
(
|T ε

ω,κ|2
)

= E
[
|T ε

ω,κ|4
]
− E

[
|T ε

ω,κ|2
]2

has the limit:

lim
ε→0

Var
(
|T ε

ω,κ|2
)

=
6

5
exp

( ∫ 0

−L

5γ(z)c(κ, z)2ω2

2c(z)4
dz

)
− 6

5
. (7.2)

The conservation relation (7.1) deserves some comments. In the case of a non-
dissipative homogeneous medium γ(z) ≡ 0, we have |T ε

ω,κ| = 1 and the result is clear.
In the case of a non-dissipative random medium this result is not obvious. In the case
of a strongly scattering medium in (−L, 0), the power transmission coefficient without
the pressure release boundary conditions, that is |T ε

ω,κ|2, is small. More precisely,
it is exponentially small as a function of the thickness L, which is a manifestation
of wave localization in three-dimensional randomly layered media [7, Chapter 14].
Therefore, only a small amount of the wave energy released by the source reaches the
surface. However this small amount of energy is then trapped in the region close to
the surface because of the pressure release boundary conditions at the surface z = 0.
The mechanism is the following one: the surface sends back the waves into the region
(−L, 0); the energy conservation equation |Rε

ω,κ|2 + |T ε
ω,κ|2 = 1 (see (A.8)) indicates

that the power reflection coefficient |Rε
ω,κ|2 of the random region (−L, 0) is close to

one, so that the waves are reflected back to the surface by the random medium. This
process repeats itself and generates a lot of multiples. The overall result is (7.1). This
process looks like a waveguiding effect. A similar effect can be seen when a strong
deterministic interface is present within the region (−L, 0) and we describe this in
Section 7.6. Finally, we note that the statistical average in (7.1) can be replaced
by a frequency average. Indeed the results obtained in [7, Chapter 14] show that the
transmission and reflection coefficients T ε

ω,κ and Rε
ω,κ have a decoherence frequency of

the order of ε, and this property is inherited by the generalized transmission coefficient
T ε

ω,κ. This decoherence property ensures that the average over a bandwidth of order
one of the power transmission coefficient |T ε

ω,κ|2 is equal to one in the limit ε → 0 in
probability.

7.2. Invariance of Total Surface Energy. We here consider, in the non-
dissipative case, the total energy transmitted to the surface defined by:

Eε =
ζ(0)

2

∫∫
suε(t,x)2dxdt.



14 J. Garnier and K. Sølna

Proposition 7.3. In absence of dissipation the total surface energy is conserved
in the limit ε→ 0:

Eε ε→0−→ E0, in probability, (7.3)

where E0 is the total surface energy obtained in absence of random fluctuations:

E0 =
ζ(0)

2(2π)3ρ(−L)2

∫∫ ∣∣∣
f̂z(ω)

c(κ,−L)
+ κ · f̂x(ω)

∣∣∣
2 ζ(κ,−L)

ζ(κ, 0)
ω2dκdω. (7.4)

This proposition shows that the total surface energy does not depend on the scattering
medium model in the small ε limit, moreover, the statistical fluctuations in the total
surface energy vanishes in this limit. The conservation of the total surface energy
is remarkable and follows from the pressure release boundary conditions. We will
discuss this further in the next subsection.

Proof. Using (3.2) and Parseval’s formula we find

Eε =
ζ(0)

2(2π)3

∫∫
|ĝε(ω,κ)|2|T ε

ω,κ|2ω2dκdω. (7.5)

From (7.1) it follows

lim
ε→0

E
[
Eε

]
= E0. (7.6)

This result gives the conservation of the mean total surface energy. Moreover, this
quantity is self-averaging. Indeed, we have

(Eε)2 =
ζ(0)2

4(2π)6

∫∫
|ĝε(ω1,κ1)|2|ĝε(ω2,κ2)|2|T ε

ω1,κ1
|2|T ε

ω2,κ2
|2ω2

1ω
2
2dκ1dω1dκ2dω2,

and by an argument that parallels the one presented in Appendix D, exploiting the
decoherence properties of the generalized transmission coefficient:

lim
ε→0

∣∣E
[
|T ε

ω1,κ1
|2|T ε

ω2,κ2
|2

]
− E[|T ε

ω1,κ1
|2

]
E
[
|T ε

ω2,κ2
|2

]∣∣ = 0, for ω1 6= ω2,

we find

lim
ε→0

E
[
(Eε)2

]
= E2

0 .

Therefore, the variance of Eε goes to zero as ε→ 0 which gives the desired result.

7.3. Mean Surface Energy Density Conservation. When the medium is
random, non-dissipative, and with constant background velocity c0 and impedance
ζ0, the mean transmitted intensity received at x = 0 can be expressed using (4.2) as:

I(t,0) =
1

(2π)3c20ζ
2
0 t

2

∫
U

(
ω, 0, c20t

)
|f̂z(ω)|2ω2dω. (7.7)

If we compensate for the algebraic decay due to geometric spreading, then using
the fact that

∫
U(ω, κ, ξ)dξ = 1 (see (5.5)) we find the following energy conservation

property.
Proposition 7.4. In absence of dissipation and with a constant background the

“modified” surface energy density at x = 0 does not depend on scattering:
∫
t2I(t,0)dt =

∫
t2Ihom(t,0)dt, (7.8)
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where the right-hand side is given by (6.2).

The “modified” surface energy density thus coincides with the one in a homoge-
neous medium. The conservation of the “modified” surface energy density is quite
remarkable and follows from the pressure release boundary conditions. Indeed, in the
case of matched boundary conditions at the surface and with a constant scattering
coefficient γ0, we have [7, Chapter 14]

∫
t2I(t,0)dt |MBC=

1

(2π)3c40ζ
2
0

∫
Ξ1

(γ0ω
2

4c20
L

)
|f̂z(ω)|2ω2dω,

with

Ξ1(Γ) = exp
(
− Γ

4

) ∫ ∞

0

e−µ2Γ 2πµ sinh(µπ)

cosh2(µπ)
dµ

Γ≫1≃ π5/2

2Γ3/2
exp

(
− Γ

4

)
.

Therefore, with matched boundary conditions and with a pulse source with small
bandwidth B and carrier frequency ω0, we have

∫
t2I(t,0)dt |MBC

B≪ω0≃
[ ∫

t2Ihom(t,0)dt
]
Ξ1

( L

Lloc

)
,

where the localization length Lloc is defined by (6.7). This exhibits the exponential
decay of the transmitted energy associated with the exponential localization of waves.
This exponential decay is not observed in Eq. (7.8), which deserves some explanations:

When scattering is weak (in the sense that L/Lloc ≪ 1), the transmission coeffi-
cient |T ε

ω,κ| of the random section (−L, 0) is close to one, and the “modified” surface
energy can indeed be expected to be close to the emitted energy. This holds true for
the matched boundary conditions and for the pressure release boundary conditions.

When scattering is strong (in the sense that L/Lloc > 1), the transmission coeffi-
cient |T ε

ω,κ| of the random section (−L, 0) is close to zero. That is why the “modified”
surface energy is small in the case of matched boundary conditions since only a very
small fraction of the wave energy reaches the surface. However, with pressure release
boundary conditions, the waves that reach the surface are sent back into the medium.
With strong scattering, the reflection coefficient |Rε

ω,κ| of the random section (−L, 0)
is close to one, so the waves are reflected back by the medium to the surface. This
is repeated many times and the waves are reflected back and forth between the sur-
face and the random medium. We observe again that the waves are trapped in this
waveguide and the overall result in terms of the energy received at the surface is (7.8).
Of course the multiples are received after a long delay, which means that the power
delay spread is long. We analyze the power delay spread in the next subsection.

7.4. Coda Enhancement. In order to study the power delay spread we look
at the mean reception time of the “modified” surface energy density at x = 0:

〈t〉 :=

∫
t3I(t,0)dt∫
t2I(t,0)dt

. (7.9)

To characterize this quantity we again look at the situation with a constant back-
ground medium. Using Appendix F we obtain the following proposition.

Proposition 7.5. Let us consider a source pulse with small bandwidth B and
carrier frequency ω0, and denote by Lloc the associated localization length (6.7).
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1) When scattering is weak, in the sense that L/Lloc ≪ 1, then the correction to
the deterministic travel time L/c0 is small and given by

〈t〉 B≪ω0, L≫Lloc≃ L

c0

[
1 +

L

Lloc
+O

( L2

L2
loc

)]
. (7.10)

2) When scattering is strong, in the sense that L/Lloc ≫ 1, then

〈t〉 B≪ω0, L≫Lloc≃ 2c0
γ0ω2

0

exp
(γ0ω

2
0

2c20
L

)
=
Lloc

2c0
exp

( 2L

Lloc

)
. (7.11)

The result (7.10) is in agreement with the fact that in this case most of the energy
is carried by the direct waves that are received at the deterministic travel time L/c0,
while the result (7.11) shows that the coda waves (and the power delay spread) are
very long and most of the energy is carried by the coda waves in the case with strong
medium fluctuations. This delay spread behavior is a striking and important aspect
of the pressure release boundary conditions.

7.5. Incoherent Interface Trapping. We assume here that the medium has
constant background velocity, impedance, and dissipation (denoted by c0, ζ0, and σ0)
and that it is homogeneous except in a layer located in z ∈ (−z0,−z0 + ∆z) in which
it is scattering. The integrated covariance has the form

γ(z) =





0 if z ∈ (−z0 + ∆z, 0)
γ0 if z ∈ (−z0,−z0 + ∆z]
0 if z ∈ (−∞,−z0]

, (7.12)

with −z0 ∈ (−L, 0). In the limit case of a thin and strong scattering layer:

∆z → 0 and γ0∆z → γ̃0 > 0,

we obtain in Appendix G the following result.
Proposition 7.6. The mean intensity at the surface at (x, 0) is of the form:

I(t,x) =
SnO

2

(2π)3ζ2
0c

2
0 SnM4

∞∑

n=0

δ
(
t− SnM

c0

)∫
αn(ω, κn)

∣∣∣
−−−→
SnM

SnM
· ~̂f(ω)

∣∣∣
2

ω2dω,

with c0κn = |x|/SnM , Sn = (0,−L − 2nz0) is the position of a virtual source, O =
(0, 0) is the position of the point at the surface just above the source, and M = (x, 0)
is the position of the observation point at the surface. For x = 0 one has:

I(t,0) =
1

(2π)3ζ2
0 c

4
0t

2

∞∑

n=0

δ
(
t− L+ 2nz0

c0

)∫
αn(ω, 0)|f̂z(ω)|2ω2dω.

The amplitudes αn(ω, κ) of the multiples are monotoneously decaying in n and they
are given by

αn(ω, κ) =

n∑

j=0

(
n

j

)
(−1)jΞj+1(Γω,κ), Γω,κ =

γ̃0ω
2c20(κ)

4c40
,

where

Ξn(Γ) = exp
(
− Γ

4

) ∫ ∞

0

e−µ2Γ 2πµ sinh(µπ)

cosh2(µπ)
K(n)(µ)dµ,
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Fig. 7.1. Left figure: the function αn(ω, κ) as a function of Γω,κ for different n. Right figure:
the function αn(ω, κ)/α0(ω, κ) as a function of n in the limit Γω,κ ≫ 1.

and

K(1)(µ) = 1, K(n)(µ) =

n−1∏

j=1

1

j2

[
µ2 +

(
j − 1

2

)2
]

for n ≥ 2.

We remark that:
1) The n-th multiple is not a short pulse of the same form as the source pulse, but it
is an incoherent wave packet that is localized in time around the arrival time SnM/c0
which corresponds to the travel time of a wave transmitted through the thin scattering
layer and reflected back and forth n times between the surface and the scattering layer.
2) The decay of the amplitudes of the multiples is not exponential, as it would have
been with a strong interface, see the next subsection. This is characteristic of a
scattering layer. As we now show, for a strongly incoherent scattering layer, the
decay can be very slow.

In the weakly scattering regime Γn,κ ≪ 1 we have for any n ≥ 0:

αn(ω, κ)
Γω,κ≪1

≃ n!Γn
ω,κ

(
1 +O(Γω,κ)

)
.

This result (which holds as long as n2Γω,κ ≪ 1) shows that the exponential decay
of the amplitudes of the multiples observed for a deterministic interface is not valid
anymore. This phenomenon is even more apparent in the strongly scattering regime
Γω,κ ≫ 1. The asymptotic behavior of the function Ξn(Γ) for large Γ is

Ξn(Γ)
Γ≫1≃ π5/2K(n)(0)

2Γ3/2
exp

(
− Γ

4

)
,

so that, for a strongly scattering thin layer, we have for n ≥ 1,

αn(ω, κ)

α0(ω, κ)

Γω,κ≫1
≃ 1 +

n∑

j=1

(
n

j

)
(−1)j

j∏

j′=1

(
1 − 1

2j′
)2
.

The amplitudes of the multiples αn(ω, κ) are plotted as functions of n and Γω,κ in
Figure 7.1. The slow decay in n can be observed.

7.6. Strong Interface Trapping. In this section we depart from the situation
with a smooth background medium modulated by random fluctuations, which is our
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main focus, and discuss the case of a background medium with a strong and determin-
istic interface and without random fluctuations. This allows us to contrast the wave
trapping seen in a random medium with the one obtained in a homogeneous medium
and generated by a jump in the background. We assume thus that the density, bulk
modulus, and dissipation of the medium are stepwise constant:

Kε−1(z) =

{
K−1

0 if z ∈ (−∞,−zi)
K−1

1 if z ∈ (−zi, 0)
, (7.13)

ρε(z) =

{
ρ0 if z ∈ (−∞,−zi)
ρ1 if z ∈ (−zi, 0)

, (7.14)

σε(z) =

{
σ0 if z ∈ (−∞,−zi)
σ1 if z ∈ (−zi, 0)

, (7.15)

giving a jump in the impedance at the interface z = −zi, where −zi ∈ (−L, 0). The
vertical velocity field recorded at the surface z = 0 has the integral representation

uε(t,x) =
1

(2π)3ε3/2

∫∫ [ f̂ε
z (ω)

ζ
1/2
0 (κ)ζ

1/2
1 (κ)

+
iω

iωρ0 − εσ0

ζ
1/2
0 (κ)

ζ
1/2
1 (κ)

κ · f̂ε
x(ω)

]

×T ε
ω,κ exp

(
− i

ω

ε
(t− κ · x)

)
ω2dκdω.(7.16)

The generalized transmission coefficient has now the form

T ε
ω,κ = Ti(κ) exp

(( iω

εc0(κ)
− σ0c0(κ)

2ζ0c0

)
(L− zi)

)
exp

(( iω

εc1(κ)
− σ1c1(κ)

2ζ1c1

)
zi

)

×
[
1 −Ri(κ) exp

(
2
( iω

εc1(κ)
− σ1c1(κ)

2ζ1c1

)
zi

)]−1

,

where

Ri(κ) =
ζ1(κ) − ζ0(κ)

ζ1(κ) + ζ0(κ)
and Ti(κ) =

2
√
ζ1(κ)ζ0(κ)

ζ1(κ) + ζ0(κ)

are the mode-dependent reflection and transmission coefficients of the interface at
z = −zi. The generalized transmission coefficient can be expanded as

T ε
ω,κ = Ti(κ) exp

(( iω

εc0(κ)
− σ0c0(κ)

2ζ0c0

)
(L − zi)

)

×
∞∑

j=0

Rj
i (κ) exp

(
(2j + 1)

( iω

εc1(κ)
− σ1c1(κ)

2ζ1c1

)
zi

)
.

Each term of the sum can be interpreted as the contribution of the waves trans-
mitted though the interface and then reflected back and forth j times between the
surface z = 0 and the interface z = −zi.

We next consider the vertical velocity field at the position O = (0, 0) in the limit
ε→ 0. We apply the stationary phase method and find that the value of the integral
(7.16) for the j-th multiple is given by the contribution around the stationary slowness
vector κsp,j = 0 and is concentrated around the time

tsp,j =
L− zi

c0
+

(2j + 1)zi

c1
,
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which is the travel time of the ray going from the source S = (0,−L) to the observation
pointO = (0, 0) after j reflections between the surface z = 0 and the interface z = −zi.
Finally, we find that the wave is transmitted in the form of train of short pulses that
are received at the travel times {tsp,j , j ∈ N} and we have for any j ∈ N:

lim
ε→0

ε1/2uε
(
tsp,j + εs,0

)
=

Ti(0)Rj
i (0)

2πζ
1/2
0 ζ

1/2
1 [c0(L− zi) + (2j + 1)c1zi]

× exp
(
− σ0(L− zi)

2ζ0
− (2j + 1)σ1zi

2ζ1

)
f ′

z(s). (7.17)

Beyond the power law decay due to the geometric spreading and the exponential decay
due to dissipation, the exponential decay of the energies carried by the multiples can be
observed due to the factor Rj

i (0). This exponential decay is typical of a deterministic
interface.

We now highlight that some of the particular features of the surface wave energy
that originate from the pressure release boundary conditions, and which we have
discussed in the context of a random medium, is also present in the case with a
deterministic interface. In absence of dissipation the power transmission coefficient
|T ε

ω,κ|2 is given by

|T ε
ω,κ|2 =

1 −R2
i (κ)

|1 −Ri(κ) exp
(
2i ω

εc1(κ)zi

)
|2 ,

where we have used the relation T 2
i (κ) = 1−R2

i (κ). For a given slowness κ, the power
transmission coefficient displays an interesting behavior as a function of the frequency
ω. It oscillates periodically between the two extremal values

min
ω

|T ε
ω,κ|2 =

1 − |Ri(κ)|
1 + |Ri(κ)|

, max
ω

|T ε
ω,κ|2 =

1 + |Ri(κ)|
1 − |Ri(κ)|

,

with the small period ωp = επc1(κ)/zi. The interesting point is that its frequency-
average is equal to one whatever the value of the reflectivity of the interface Ri(κ):

〈
|T ε

ω,κ|2
〉

ω
= 1. (7.18)

Note that this conservation relation is valid only after frequency averaging, and that
the variations of the transmission coefficient within the period are large when the
interface is strong |Ri(κ)| ∼ 1:

〈
|T ε

ω,κ|4
〉

ω
=

1 +R2
i (κ)

1 −R2
i (κ)

.

Eq. (7.18) shows that, if we compensate for dissipation, then the total energy received
at the surface and emitted by a broadband source such as (2.6) does not depend on
the reflectivity of the interface. With a weak interface |Ri(κ)| ≪ 1, most of the energy
is carried by the direct waves (the term j = 0) which have strong amplitudes. With
a strong interface |Ri(κ)| ∼ 1, the energy is distributed over a long train of short
pulses which have small and exponentially decaying amplitudes. Therefore, although
the energy distribution amongst the multiples depends strongly on the interface re-
flectivity, the total received energy does not. This is characteristic of the pressure
release boundary conditions and a similar phenomenon was observed in the case of a
randomly scattering medium in Subsections 7.1-7.3.
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8. Numerical simulations. In this section we present results of numerical sim-
ulations that illustrate some of the theoretical predictions obtained in this paper.

We consider the case of a statistically homogeneous and non-dissipative medium.
The medium in [−L, 0] is the concatenation of thin layers with constant density and
alternating bulk modulus with values K = K0/(1 ± σK). We address two different
values for σK : σK = 0.8 (simulation a) and σK = 0.4 (simulation b). The back-
ground density ρ0, bulk modulus K0, and speed of sound c0 are all equal to one. The
thicknesses of the layers are independent exponential random variables with mean
lc = 0.05 (simulation a) and lc = 0.2 (simulation b). The integrated covariance is
γ0 = σ2

K lc = 0.032 in cases a and b. The total thickness of the random slab is
L = 100 and the point source is located at (−L,0). The source pulse emits in the
vertical direction and has the form of the second derivative of a Gaussian, with Fourier
transform f̂z(ω) = ω2 exp(−ω2). The carrier (angular) frequency is ω0 = 1. The lo-
calization length is Lloc = 4c20/(γ0ω

2
0) = 125 for the carrier frequency ω0, which means

that the localization length Lloc is here of the order of the propagation distance L.

We consider the time-dependent surface intensity u2(t,0). On the one hand we
plot in Fig. 8.1 the theoretical asymptotic formula (7.7) with the power spectral
density obtained by Monte Carlo simulations of the probabilistic representation (6.3).
On the other hand we perform a series of 100 full numerical simulations of the wave
equation with independent realizations of the random medium in cases a and b, and
we plot the numerically averaged time-dependent surface intensity. The agreement
between the numerical averages and the theoretical asymptotic formulas shows that
the asymptotic theory is valid in this example in which the separation of scales is
not so large (ε ∼ 0.1). Note that in Fig. 8.1 we also plot the time-dependent surface
intensity for one realization, which indeed is not a statistically stable function. It is
also clear from the figure that we have a long power delay spread, consistently with
Proposition 7.5.

We also evaluate for each simulation the total surface energy
∫∫

u2(t,x)dtdx and
the “modified” surface energy density

∫
t2u2(t,0)dt. We plot in Figs. 8.2-8.3 the

histograms of the 100 total surface energies and “modified” surface energy densities
obtained with the independent realizations of the random medium. From the asymp-
totic theory, we can expect that these quantities should not depend on scattering
and that they should be equal to

∫∫
Ihom(t,x)dtdx and

∫
t2Ihom(t,0)dt, respectively,

which is indeed what is observed in the numerical simulations, although fluctuations
of the order of ε are still noticeable.

Finally, note that we have performed two series of 100 simulations, in cases a and
b, respectively, with two sets of parameters (lc = 0.2, σK = 0.4) and (lc = 0.05, σK =
0.8). The parameter γ0 is the same in cases a and b, so that the theoretical asymptotic
formulas are unchanged. It can be seen in Figs. 8.1-8.3 that the numerical results
obtained in cases a and b are indeed similar.

9. Conclusion. In this paper we have analyzed the propagation of waves gen-
erated by a point source located in a randomly layered medium in the presence of
pressure release boundary conditions at the surface. We have found conserved quan-
tities specific to pressure release boundary conditions that are different from the ones
obtained with matched boundary conditions. We have identified a probabilistic rep-
resentation for the spectral density of the waves received at the surface in terms of a
jump Markov process. We have seen that the power delay spread can be very long
due to the multiple reflections between the surface and the random medium. This
waveguiding effect is quite different from the one observed in a standard deterministic
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Fig. 8.1. The theoretical mean transmitted intensity (thick solid line), the transmitted intensity
for a particular realization of the medium (dotted line), and the transmitted intensity averaged over
100 realizations of the random medium (thin solid line). In figure a, lc = 0.05 and σK = 0.8. In
figure b, lc = 0.2 and σK = 0.4.
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Fig. 8.2. Histogram of the total surface energies obtained with 100 independent simulations.
The dashed line is the total surface energy obtained with a homogeneous medium. In figure a,
lc = 0.05 and σK = 0.8. In figure b, lc = 0.2 and σK = 0.4.

waveguide in that the decay of the intensity is not exponential.

The results of this paper have been obtained for randomly layered media, how-
ever, we anticipate that they are robust and can be extended qualitatively to locally
layered media as studied in [14, 16]. Other propagation regimes, such as the radiative
transport regime [12], or the parabolic regime [10], deserve specific analysis.

Appendix A. Derivation of the Integral Representation of the Recorded
Field. We consider the general model (2.2-2.4) for the parameters of the random
medium. We use the same approach as in [7] applying a propagator formulation. We
first take a scaled Fourier transform in time and transverse spatial coordinates:

p̂ε(ω,κ, z) =

∫∫
pε(t,x, z)ei ω

ε
(t−κ·x)dtdx,

ûε(ω,κ, z) =

∫∫
uε(t,x, z)ei ω

ε
(t−κ·x)dtdx.

We introduce the right- and left-going modes defined by

âε(ω,κ, z) =
( 1√

ζ(κ, z)
p̂ε(ω,κ, z) +

√
ζ(κ, z)ûε(ω,κ, z)

)
e−i ω

ε
τ(κ,z),

b̂ε(ω,κ, z) =
(
− 1√

ζ(κ, z)
p̂ε(ω,κ, z) +

√
ζ(κ, z)ûε(ω,κ, z)

)
ei ω

ε
τ(κ,z).
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Fig. 8.3. Histogram of the “modified” surface energy densities obtained with 100 independent
simulations. The dashed line is the “modified” surface energy density obtained with a homogeneous
medium. In figure a, lc = 0.05 and σK = 0.8. In figure b, lc = 0.2 and σK = 0.4.

The pressure release boundary conditions at the surface z = 0 is p̂ε = 0, or equivalently

âε(ω,κ, 0) = b̂ε(ω,κ, 0). (A.1)

The jump conditions across the source plane at z = −L are

[p̂ε]
(−L)+

(−L)− = ε3/2f̂z(ω), [ûε]
(−L)+

(−L)− =
iε3/2ω

ρ(−L)iω − εσ(−L)
κ · f̂x(ω),

which give with the radiation condition âε(ω,κ, (−L)−) = 0:

âε(ω,κ, (−L)+) = ε3/2
( f̂z(ω)√

ζ(κ,−L)
+

iω
√
ζ(κ,−L)

ρ(−L)iω − εσ(−L)
κ · f̂x(ω)

)
e−i ω

ε
τ(κ,−L).

(A.2)
We introduce the propagator matrix, that is the matrix such that, for any −L <

z0 ≤ z ≤ 0:

Pε(ω,κ, z0, z)

[
âε(ω,κ, z0)

b̂ε(ω,κ, z0)

]
=

[
âε(ω,κ, z)

b̂ε(ω,κ, z)

]
. (A.3)

It is the solution of the linear system

dPε

dz
= Mε(ω, κ, z)Pε, (A.4)

with the initial condition Pε(ω,κ, z0, z0) = I and the 2 × 2 matrix Mε given by

M ε
11(z) =

iωc(κ, z)

2c2(z)ε
ν
(
z,
z

ε2
)
− σ(z)

2ζ(z)

c(κ, z)

c(z)
,

M ε
21(z) =

[ iωc(κ, z)
2c2(z)ε

ν
(
z,
z

ε2
)
− σ(z)

2ζ(z)

c(κ, z)

c(z)
(1 − 2c2(z)κ2) +

∂zζ(κ, z)

2ζ(κ, z)

]
e2i ω

ε
τ(κ,z),

M ε
12(z) =

[
− iωc(κ, z)

2c2(z)ε
ν
(
z,
z

ε2
)

+
σ(z)

2ζ(z)

c(κ, z)

c(z)
(1 − 2c2(z)κ2) +

∂zζ(κ, z)

2ζ(κ, z)

]
e−2i ω

ε
τ(κ,z),

M ε
22(z) = − iωc(κ, z)

2c2(z)ε
ν
(
z,
z

ε2
)

+
σ(z)

2ζ(z)

c(κ, z)

c(z)
= −M ε

11(z).

Note that Pε(ω,κ, z0, z) depends on κ only through the modulus κ = |κ|.
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Fig. A.1. Reflection and transmission coefficients.

We introduce the transmission and reflection coefficients (T ε
ω,κ, R

ε
ω,κ) defined by

the relation

Pε(ω, κ,−L, z)
[

0
T ε

ω,κ(−L, z)

]
=

[
Rε

ω,κ(−L, z)
1

]
, (A.5)

which corresponds to the scattering problem for a unit-power incident plane wave
incoming from the right half-space and probing the inhomogeneous layer in (−L, z)
with transparent boundary conditions (see Figure A.1). By inverting this matrix-
vector relation we get

T ε
ω,κ(−L, z) =

1

P ε
22(ω, κ,−L, z)

, Rε
ω,κ(−L, z) =

P ε
12(ω, κ,−L, z)
P ε

22(ω, κ,−L, z)
. (A.6)

From the relation (A.3) evaluated at z = 0 and z0 = (−L)+, we get

âε(ω,κ, 0) =
P ε

11P
ε
22(ω, κ,−L, 0)− P ε

12P
ε
21(ω, κ,−L, 0)

P ε
22(ω, κ,−L, 0)− P ε

12(ω, κ,−L, 0)
âε(ω,κ, (−L)+)

=

(
detPε(ω, κ,−L, 0)

)
T ε

ω,κ(−L, 0)

1 −Rε
ω,κ(−L, 0)

âε(ω,κ, (−L)+).

Since Mε has trace zero we have ∂z

(
detPε

)
=

(
TrMε

)(
detPε

)
= 0, and there-

fore detPε = 1. This simplifies the expression of the transmitted right-going wave
amplitude

âε(ω,κ, 0) =
T ε

ω,κ(−L, 0)

1 −Rε
ω,κ(−L, 0)

âε(ω,κ, (−L)+). (A.7)

Substituting (A.2) into this expression and taking into account (A.1) gives (3.2) with
T ε

ω,κ = T ε
ω,κ(−L, 0) and Rε

ω,κ = Rε
ω,κ(−L, 0).

If we assume that the medium is not dissipative σ ≡ 0, then M ε
22 = M ε

11 and
M ε

12 = M ε
21, which implies that the entries of the propagator matrix satisfy P ε

22 = P ε
11

and P ε
12 = P ε

21. This gives the conservation of energy relation

|Rε
ω,κ|2 + |T ε

ω,κ|2 =
|P ε

12(−L, 0)|2 + 1

|P ε
22(−L, 0)|2

=
P ε

12P
ε
21(−L, 0) + P ε

11P
ε
22(−L, 0)− P ε

12P
ε
21(−L, 0)

P ε
11P

ε
22(−L, 0)

= 1. (A.8)

Note that this relation is not valid in a dissipative medium.
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If the medium is homogeneous c(z) = c0, ζ(z) = ζ0, σ(z) = σ0 and ν ≡ 0, then
the propagator matrix is diagonal

Pε(ω, κ,−L, 0) =

[
exp(−σ0c0(κ)

2c0
L) 0

0 exp(σ0c0(κ)
2c0

L)

]
,

and we obtain from (A.2)-(A.7):

âε(ω,κ, 0) = ε3/2
( f̂z(ω)√

ζ0(κ)
+

iω
√
ζ0(κ)

ρ0iω − εσ0
κ · f̂x(ω)

)
exp

(( iω

εc0(κ)
− σ0c0(κ)

2c0

)
L

)
.

This expression gives (3.8) in Section 3.2.

Appendix B. Proof of Proposition 5.1. By differentiating (A.6) in z and
using (A.4) we obtain the closed system satisfied by the reflection and transmission
coefficients Rε

ω,κ(−L, z) and T ε
ω,κ(−L, z):

dRε
ω,κ

dz
=
iωc(κ, z)

2c2(z)ε
ν
(
z,
z

ε2
)(

− e−2i ω
ε

τ(κ,z) + 2Rε
ω,κ − e2i ω

ε
τ(κ,z)(Rε

ω,κ)2
)

−σ(z)

ζ(z)

c(κ, z)

c(z)

(
Rε

ω,κ − (1 − 2c2(z)κ2)(e−2i ω
ε

τ(κ,z) + e2i ω
ε

τ(κ,z)(Rε
ω,κ)2

)

+
∂zζ(κ, z)

2ζ(κ, z)

(
e−2i ω

ε
τ(κ,z) − e2i ω

ε
τ(κ,z)(Rε

ω,κ)2
)
, (B.1)

dT ε
ω,κ

dz
=
iωc(κ, z)

2c2(z)ε
ν
(
z,
z

ε2
)(

1 − e2i ω
ε

τ(κ,z)Rε
ω,κ

)
T ε

ω,κ

− σ(z)

2ζ(z)

c(κ, z)

c(z)

(
T ε

ω,κ − (1 − 2c2(z)κ2)e2i ω
ε

τ(κ,z)Rε
ω,κ

)

−∂zζ(κ, z)

2ζ(κ, z)
e2i ω

ε
τ(κ,z)Rε

ω,κT
ε
ω,κ, (B.2)

starting from Rε
ω,κ(−L, z = −L) = 0, T ε

ω,κ(−L, z = −L) = 1. This shows that,
for a fixed pair (ω, κ) the mode-dependent reflection and transmission coefficients
(Rε

ω,κ(−L, z), T ε
ω,κ(−L, z)) are the solution of the Riccati equations (B.1-B.2). The

equations for the mode-dependent reflection and transmission coefficients are uncou-
pled from the dynamical point of view, because the medium is time-independent and
layered. However the equations are statistically coupled because the process ν ap-
pear in all of them, and the correlations between the mode-dependent reflection and
transmission coefficients play a crucial role.

The asymptotic behavior of the statistics of the reflection and transmission coef-
ficients can be studied by using diffusion approximation theorems. We only consider
the moments of the reflection and transmission coefficients Rε

ω,κ = Rε
ω,κ(−L, 0) and

T ε
ω,κ = T ε

ω,κ(−L, 0) that are of interest to our situation. These specific moments of the
reflection and transmission coefficients at two nearby slownesses have the following
asymptotic behavior as ε→ 0 [7, Chapters 15 and 17]:

E
[
T ε

ω,κ+ελ/2(R
ε
ω,κ+ελ/2)

jT ε
ω,κ−ελ/2(R

ε
ω,κ−ελ/2)

j
] ε→0−→

∫
Vj(ω, κ, ξ, 0)e−iωκλξdξ, (B.3)

E
[
T ε

ω,κ+ελ/2(R
ε
ω,κ+ελ/2)

jT ε
ω,κ−ελ/2(R

ε
ω,κ−ελ/2)

l
] ε→0−→ 0 if j 6= l. (B.4)
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The Vj ’s are the solutions of the system of transport equations

∂Vj

∂z
+ 2jc(κ, z)

∂Vj

∂ξ
=
γ(z)c(κ, z)2ω2

4c(z)4
(
(j + 1)2(Vj+1 − Vj) + j2(Vj−1 − Vj)

)

− (2j + 1)σ(z)

ζ(z)

c(κ, z)

c(z)
Vj, (B.5)

starting from Vj(ω, κ, ξ, z = −L) = 10(j)δ(ξ). Here γ(z) is the integrated covariance
of the fluctuations of the random medium defined by (2.5).

By expanding the generalized transmission coefficient we obtain

E
[
T ε

ω,κ+ελ/2T ε
ω,κ−ελ/2

] ε→0−→
∫

U(ω, κ, ξ)e−iωκλξdξ, (B.6)

U(ω, κ, ξ) =

∞∑

j=0

Vj

(
ω, κ, ξ −

∫ 0

−L

c(κ, z)dz, 0
)
, (B.7)

which shows that we need to compute
∑

j Vj(ω, κ, ξ, 0).
Eq. (B.5) can be rewritten in terms of the generator Lz defined by (5.3) as:

∂Vj

∂z
= −2jc(κ, z)

∂Vj

∂ξ
+

(
LzV

)
j
− (2j + 1)σ(z)

ζ(z)

c(κ, z)

c(z)
Vj .

Let us fix some ξ0 ∈ R
+ and let us introduce the solution (Wj(ω, κ, ξ, z))j∈N of

∂Wj

∂z
+

[
2jc(κ, z)

∂Wj

∂ξ
+

(
LzW

)
j

]
− (2j + 1)σ(z)

ζ(z)

c(κ, z)

c(z)
Wj = 0, (B.8)

for z ∈ (−L, 0), with the terminal condition Wj(ω, κ, ξ, z = 0) = δ(ξ−ξ0) for all j ∈ N.
Using the fact that the generator Lz is self-adjoint, we have for any z ∈ (−L, 0):

d

dz

[ ∞∑

j=0

∫
Vj(ω, κ, ξ, z)Wj(ω, κ, ξ, z)dξ

]
= 0,

and therefore

∞∑

j=0

∫
VjWj(ω, κ, ξ, z = 0)dξ =

∞∑

j=0

∫
VjWj(ω, κ, ξ, z = −L)dξ.

Taking into account the initial condition satisfied by Vj at z = −L and the terminal
condition satisfied by Wj at z = 0 we find

∞∑

j=0

Vj(ω, κ, ξ0, 0) = W0(ω, κ, 0, z = −L). (B.9)

If we introduce the jump Markov process (Nω,κ(z))−L≤z≤0 with state space N and
infinitesimal generator Lz and (ξω,κ(z))−L≤z≤0 the process such that

dξω,κ(z)

dz
= 2c(κ, z)Nω,κ(z),
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then the pair (Nω,κ(z), ξω,κ(z))−L≤z≤0 is Markov with generator 2Nc(κ, z)∂ξ + Lz .
Eq. (B.8) can then be interpreted as a Kolmogogov backward equation with a poten-
tial. Using Feynmac-Kac formula we find the following probabilistic representation
for Wj :

Wj(ω, κ, ξ) = E

[
exp

(
−

∫ 0

−L

σ(z)c(κ, z)

ζ(z)c(z)
(2Nω,κ(z) + 1)dz

)

×δ
(
ξω,κ(0) − ξ0

)∣∣∣ξω,κ(−L) = ξ,Nω,κ(−L) = j
]
.

Substituting into (B.9) we obtain

∞∑

j=0

Vj(ω, κ, ξ0, 0) = E

[
δ
(
2

∫ 0

−L

c(κ, z)Nω,κ(z)dz − ξ0

)

× exp
(
−

∫ 0

−L

σ(z)c(κ, z)

ζ(z)c(z)
(2Nω,κ(z) + 1)dz

)∣∣∣Nω,κ(−L) = 0
]
,

which gives with (B.7) the probabilistic representation (5.2) for U .

Appendix C. Derivation of Equation (4.2). Let φ(x) and ψ(t) be two
smooth test functions compactly supported in the Fourier domain and define the
integrated quantity

Jε =

∫∫
φ(x)ψ(t)uε(t,x)2dxdt. (C.1)

Denoting

ĝε
0(ω,κ) =

f̂z(ω)

ζ0(κ)
+

iω

iωρ0 − εσ0
κ · f̂x(ω),

we have using (3.2)

Jε =
1

(2π)6ε3

∫∫
ĝε
0(ω1,κ1)ĝε

0(ω2,κ2)T ε
ω1,|κ1|

T ε
ω2,|κ2|

×ψ̂
(ω1 − ω2

ε

)
φ̂
(ω1κ1 − ω2κ2

ε

)
ω2

1ω
2
2dω1dω2dκ1dκ2,

where the time and space Fourier transforms are defined by

ψ̂(ω) =

∫
ψ(t)eiωtdt, φ̂(k) =

∫
φ(x)e−ik·xdx.

After the change of variable (ω1, ω2,κ1,κ2) → (ω, h,κ,λ) such that (ω1, ω2,κ1,κ2) =
(ω + εh/2, ω − εh/2,κ + ελ/2,κ − ελ/2), we get that, up to smaller terms in ε:

Jε =
1

(2π)6

∫∫
|ĝ0

0(ω,κ)|2T ε
ω+εh/2,|κ+ελ/2|T ε

ω−εh/2,|κ−ελ/2|

×ψ̂(h)φ̂
(
hκ + ωλ

)
ω4dωdhdκdλ, (C.2)

where ĝ0
0(ω,κ) = f̂z(ω)/ζ0(κ) + κ · f̂x(ω)/ρ0. Note that in (C.2) the integrals in

h and λ are limited by the test functions (while the integral in ω is limited by the
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function ĝ0
0 and the integral in κ is limited by |κ| < κmax given by (3.7)). Moreover,

the generalized transmission coefficients have offsets in both frequency and slowness
modulus in (C.2). In view of the Riccati equations (B.1-B.2) we see that the offsets
affect the rapid phase. Using the expansion

2
ω + εh/2

ε
τ
(
|κ + ελ/2|, z

)
= 2

ω

ε
τ(κ, z) + zc0(κ)

[ h

c20(κ)
− ωκ · λ

]
+ O(ε),

we find via a slight modification of the argument in Appendix B that

E
[
T ε

ω+εh/2,|κ+ελ/2|T ε
ω−εh/2,|κ−ελ/2|

] ε→0−→
∫

U(ω, κ, ξ)ei[h/c2
0(κ)−ωκ·λ]ξdξ. (C.3)

Here U is defined as in (5.2) in the situation with a constant background medium so
that c(κ, z) ≡ c0(κ). We remark that this expression also follows via replacing the
limit in (B.3) by the corresponding limit in [7, Eq. 15.82]. Therefore we obtain

lim
ε→0

E
[
Jε

]
=

1

(2π)3

∫∫
|ĝ0

0(ω,κ)|2U(ω, κ, ξ)G(ω,κ, ξ)ω2dξdωdκ, (C.4)

G(ω,κ, ξ) =
1

(2π)3

∫∫
ei[h/c2

0(κ)−ωκ·λ]ξψ̂(h)φ̂
(
hκ + ωλ

)
ω2dhdλ.

The function G can be computed:

G(ω,κ, ξ) =

∫∫
ψ(t)φ(x)δ

(
x − κξ

)
δ
(
t− κ · x − ξ

c20(κ)

)
dtdx = ψ

( ξ

c20

)
φ
(
κξ

)
.

Substituting into (C.4) and using the change of variables (ξ,κ) → (t,x) = (ξ/c20, ξκ)
(whose Jacobian is c20t

2), we find

lim
ε→0

E
[
Jε

]
=

1

(2π)3

∫∫
1

c20t
2

∣∣∣ĝ0
0

(
ω,

x

c20t

)∣∣∣
2

U
(
ω,

|x|
c20t

, c20t
)
ψ(t)φ(x)ω2dωdtdx

=

∫∫
I(t,x)ψ(t)φ(x)dtdx,

with I(t,x) defined by (4.2). This proves the desired result.

Appendix D. Statistical Stability Property. The self-averaging property
(4.3) is proved by showing that the variance of the quantity Jε defined by (C.1) that
appears in the left-hand side of (4.3) is going to zero. Using (C.2) the second moment
of Jε is

E
[
(Jε)2

]
=

1

(2π)12

∫∫
|ĝ0

0(ω,κ)|2|ĝ0
0(ω

′,κ′)|2

×E
[
T ε

ω+εh/2,|κ+ελ/2|T ε
ω−εh/2,|κ−ελ/2|T

ε
ω′+εh′/2,|κ′+ελ′/2|T ε

ω′−εh′/2,|κ′−ελ′/2|

]

×ψ̂(h)φ̂
(
hκ + ωλ

)
ψ̂(h′)φ̂

(
h′κ′ + ω′λ′

)
ω4ω′4dωdhdκdλdω′dh′dκ′dλ′,

The results obtained in [7, Chapter 14] show that the transmission and reflection
coefficients T ε

ω,κ and Rε
ω,κ have a decoherence frequency of the order of ε, and this

property is inherited by the generalized transmission coefficient T ε
ω,κ. Using [7, Eq.

14.72] we have, for any ω 6= ω′:

lim
ε→0

∣∣∣E
[
T ε

ω+εh/2,|κ+ελ/2|T ε
ω−εh/2,|κ−ελ/2|T

ε
ω′+εh′/2,|κ′+ελ′/2|T ε

ω′−εh′/2,|κ′−ελ′/2|

]

−E
[
T ε

ω+εh/2,|κ+ελ/2|T ε
ω−εh/2,|κ−ελ/2|

]
E
[
T ε

ω′+εh′/2,|κ′+ελ′/2|T ε
ω′−εh′/2,|κ′−ελ′/2|

]∣∣∣ = 0,
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and we also have (from the next section) that the fourth-order moments of the gener-
alized transmission coefficient are uniformly bounded in ε for ω, ω′, h, h′ in compact
domains. Therefore we obtain

lim
ε→0

E
[
(Jε)2

]
=

1

(2π)12

∫∫
|ĝ0

0(ω,κ)|2|ĝ0
0(ω

′,κ′)|2

× lim
ε→0

E
[
T ε

ω+εh/2,|κ+ελ/2|T ε
ω−εh/2,|κ−ελ/2|

]
E
[
T ε

ω′+εh′/2,|κ′+ελ′/2|T ε
ω′−εh′/2,|κ′−ελ′/2|

]

×ψ̂(h)φ̂
(
hκ + ωλ

)
ψ̂(h′)φ̂

(
h′κ′ + ω′λ′

)
ω4ω′4dωdhdκdλdω′dh′dκ′dλ′

= lim
ε→0

E[Jε]2,

which shows that the variance of Jε goes to zero as ε→ 0.

Appendix E. Higher-order Moments of the Generalized Transmission
Coefficient. The goal of this appendix is to compute the limiting moments of the
generalized transmission coefficient of the form

lim
ε→0

E
[
(T ε

ω,κ+ελ/2)
k(T ε

ω,κ−ελ/2)
k
]
,

for any integer k ≥ 2. The method follows the lines of the one used in Appendix B.
We first consider the limits of the following moments of reflection and transmission
coefficients:

E
[
(T ε

ω,κ+ελ/2)
k(Rε

ω,κ+ελ/2)
j(T ε

ω,κ−ελ/2)
k(Rε

ω,κ−ελ/2)
j
]

ε→0−→
∫

V(k)
j (ω, κ, ξ, 0)e−iωκλξdξ,

where the V(k)
j ’s are the solutions of the systems of transport equations

∂V(k)
j

∂z
+ 2jc(κ, z)

∂V(k)
j

∂ξ
=
γ(z)c(κ, z)2ω2

4c(z)4
(
(j + k)2(V(k)

j+1 − V(k)
j ) + j2(V(k)

j−1 − V(k)
j )

)

− (2j + k)σ(z)

ζ(z)

c(κ, z)

c(z)
V(k)

j ,

starting from V(k)
j (ω, κ, ξ, z = −L) = 10(j)δ(ξ). By expanding the k-th power of the

generalized transmission coefficient (3.6):

(T ε
ω,κ)k = exp

(
− ik

ω

ε
τ(κ,−L)

) ∞∑

j=0

β(k)(j)(T ε
ω,κ)k(Rε

ω,κ)j ,

β(k)(j) =
(j + k − 1)!

j!(k − 1)!
,

we obtain

E
[
(T ε

ω,κ+ελ/2)
k(T ε

ω,κ−ελ/2)
k
] ε→0−→

∫
U (k)(ω, κ, ξ)e−iωκλξdξ,

U (k)(ω, κ, ξ) =

∞∑

j=0

β(k)(j)2V(k)
j

(
ω, κ, ξ − k

∫ 0

−L

c(κ, z)dz, 0
)
.
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We then find the following probabilistic representation for U (k)(ω, κ, ξ):

U (k)(ω, κ, ξ) = E

[
β(k)

(
N (k)

ω,κ(0)
)2
δ
(
ξ −

∫ 0

−L

c(κ, z)(2N (k)
ω,κ(z) + k)dz

)

× exp
(
−

∫ 0

−L

σ(z)c(κ, z)

ζ(z)c(z)
(2N (k)

ω,κ(z) + k)dz
)∣∣∣N (k)

ω,κ(−L) = 0
]
, (E.1)

where (N
(k)
ω,κ(z))−L≤z≤0 is the jump Markov process with state space N and inhomo-

geneous infinitesimal generator

L(k)
z φ(N) =

γ(z)c(κ, z)2ω2

4c(z)4
[
(N + k)2(φ(N + 1) − φ(N)) +N2(φ(N − 1) − φ(N))

]
.

In particular, in absence of dissipation σ(z) ≡ 0, we obtain (since β(2)(j) = j + 1):

lim
ε→0

E
[
|T ε

ω,κ|4
]

=

∫
U (2)(ω, κ, ξ)dξ = E

[(
N (2)

ω,κ(0) + 1
)2

∣∣∣N (2)
ω,κ(−L) = 0

]
. (E.2)

Using the fact that, for φ(N) = (N + 1)2, we have

L(2)
z φ(N) =

γ(z)c(κ, z)2ω2

2c(z)4
[
5φ(N) + 1

]
,

we can solve the Kolmogorov backward equation and find that

lim
ε→0

E
[
|T ε

ω,κ|4
]

=
6

5
exp

(∫ 0

−L

5γ(z)c(κ, z)2ω2

2c(z)4
dz

)
− 1

5
, (E.3)

which gives the desired result (7.2).

Appendix F. Proof of Proposition 7.5. By using (4.2) and Lemma 5.1, we
find that, for any q ≥ 0:

∫
t2+qI(t,0)dt =

1

(2π)3c4+q
0 ζ2

0

∫
E0

[(∫ 0

−L

2Nω,0(z) + 1dz
)q]

|f̂z(ω)|2ω2dω,

where (Nω,0(z))−L≤z≤0 is the jump process with the homogeneous infinitesimal gen-
erator Lω,0 and E0[·] is the expectation with respect to the jump process Nω,0 starting
from Nω,0(−L) = 0. The moments of Nω,κ up to order q satisfy a closed linear system
that can be solved. In particular we have

dE0[Nω,0(z)]

dz
= E0

[
Lω,0Nω,0(z)

]
=
γ0ω

2

4c20

(
2E0[Nω,0(z)] + 1

)
,

so that we obtain

E0[Nω,0(z)] =
1

2

[
exp

(γ0ω
2

2c20
(L+ z)

)
− 1

]
,

which gives:

∫
t3I(t,0)dt =

1

(2π)3c50ζ
2
0

∫
2c20
γ0ω2

[
exp

(γ0ω
2

2c20
L

)
− 1

]
|f̂z(ω)|2ω2dω, (F.1)



30 J. Garnier and K. Sølna

and the proposition now follows.

Appendix G. Proof of Proposition 7.6. Taking into account the fact that
the jump process can jump only between −z0 and −z0 + ∆z, the probabilistic repre-
sentation of the spectral density can be written in the form

U(ω, κ, ξ) = E

[
δ
(
ξ − c0(κ)L − 2c0(κ)

∫ −z0+∆z

−z0

Nω,κ(z)dz

−2c0(κ)(z0 − ∆z)Nω,κ(−z0 + ∆z)
)∣∣∣Nω,κ(−z0) = 0

]
,

where (Nω,κ(z))−L≤z≤0 is the jump process with the infinitesimal generator Lω,κ

defined by (6.4). In the limit case of a thin and strong scattering layer ∆z → 0 and
γ0∆z → γ̃0 > 0, we thus find

U(ω, κ, ξ) = E

[
δ
(
ξ − c0(κ)L− 2c0(κ)z0Ñω,κ(1)

)∣∣∣Ñω,κ(0) = 0
]

=

∞∑

n=0

P
(
Ñω,κ(1) = n | Ñω,κ(0) = 0

)
δ
(
ξ − c0(κ)L− 2nc0(κ)z0

)
,

where Ñω,κ is the jump Markov process with the homogeneous infinitesimal generator:

L̃ω,κφ(N) = Γω,κ

[
(N + 1)2(φ(N + 1) − φ(N)) +N2(φ(N − 1) − φ(N))

]
.

The intensity at the surface at (x, 0) is therefore a series of the form:

I(t,x) =
SnO

2

(2π)3ζ2
0 c

2
0 SnM4

(G.1)

×
∞∑

n=0

P
(
Ñω,κn

(1) = n | Ñω,κ(0) = 0
)
δ
(
t− SnM

c0

) ∫ ∣∣∣
−−−→
SnM

SnM
· ~̂f(ω)

∣∣∣
2

ω2dω.

Using (B.3), (B.5), and the probabilistic representation given in Proposition 5.1 we
find

P
(
Ñω,κ(1) = 0 | Ñω,κ(0) = n

)
= lim

ε→0
E
[
|T̃ ε

ω,κ|2|R̃ε
ω,κ|2n

]
,

with T̃ ε
ω,κ, R̃

ε
ω,κ being the transmission and reflection coefficients associated with the

section (0, 1) for the medium corresponding to the generator L̃ω,κ. Moreover, using

the self-adjointness of L̃ω,κ we have P(Ñω,κ(1) = 0 | Ñω,κ(0) = n) = P(Ñω,κ(1) = n |
Ñω,κ(0) = 0), which then shows that the amplitudes of the multiples are decaying in

n since |R̃ε
ω,κ| ≤ 1. Using the energy conservation relation (A.8), we get

P(Ñω,κ = n | Ñω,κ(0) = 0) =

n∑

j=0

(
n

j

)
(−1)j lim

ε→0
E
[
|T̃ ε

ω,κ|2j+2
]
. (G.2)

The limits of the high-order moments of the power transmission coefficient |T̃ ε
ω,κ|2 are

given in [7, Section 7.1.5]:

lim
ε→0

E
[
|T̃ ε

ω,κ|2j+2
]

= Ξj+1(Γω,κ),

with the notations introduced in Proposition 7.6. This gives the expression of the am-
plitudes of the multiples. The proposition now follows with αn(ω, κ) = P(Ñω,κ(1) =

n | Ñω,κ(0) = 0).
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