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Abstract. It is known that cross correlation of waves generated by noise sources, propagating
in an unknown medium, and recorded by a sensor array, can provide information about the medium.
In this paper the medium is a three-dimensional small-scale randomly layered medium with slow
macroscopic variations. The main objective is here to set forth a framework for analysis of cross
correlations of waves generated by noise sources and propagating in such a medium, moreover, use
this framework to design estimators for macroscale medium features. The noise sources are located
at the bottom of a random medium slab and generate a random wave field that is scattered by the
rapid random fluctuations of the medium and then recorded at the surface. Taking into account
the pressure release boundary conditions at the surface, this situation corresponds to the so-called
daylight configuration. The analysis is carried out in the asymptotic framework where the typical
wavelength is small compared to the scale of the macroscopic variations of the background medium
and large compared to the decoherence length of the random fluctuations of the medium. It is shown
that the cross correlation of the waves recorded at the surface contains statistically stable information
about the background medium.
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1. Introduction. In this paper we consider background velocity estimation us-
ing noise sources in a geophysical context. We consider a medium (the earth’s crust)
that comprises two types of one-dimensional variations: slow, smooth, and determin-
istic variations that we want to image on the one hand, and rapid, possibly rough,
and random fluctuations that are responsible for the main wave scattering on the
other hand. One cannot hope to be able to, and typically one does not wish to, image
the rapid fluctuations in the medium. However, we will show that slow variations in
the medium can be imaged based on the deconvolution of correlations of wave fields
recorded at the surface and emitted by noise sources in the subsurface.

We shall assume that acoustic noise sources located deep in the earth crust gener-
ate random stationary signals that propagate through the medium and are recorded
at the surface. We study the properties of the cross correlation of the signals recorded
at the surface with the specific objective of showing that it is possible to reconstruct
the background properties of the medium, such as background velocity and dissipa-
tion. Travel time estimation and tomographic background velocity estimation using
wave field cross correlations were studied by physicists [12, 13] and by geophysicists
who have shown the efficiency of the method for travel time estimation [6, 14, 16, 18].
More recently the Green’s function estimation by cross correlation was analyzed by
mathematicians in different frameworks (geometric optics [2, 4, 5, 10], parabolic ap-
proximation [7]). In contrast to these works, we consider in this paper a situation in
which the random fluctuations of the medium play a very strong role and the obser-
vation region only consists of the surface of the random medium to be imaged. This is
a typical model situation in the context of many inverse problems where only surface
measurements are available.
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Compared to reflection seismology there are no coherent source in our configura-
tion. The sources are replaced by ambient or “internal” noise sources and we seek to
exploit the response of these to infer knowledge about the medium, that is, to use the
statistics of the transmitted wave field to solve an inverse problem. A main challenge
is then to construct a functional of the measurements that gets out the “imprint”
of the medium and to use this to solve an inverse problem. As mentioned, we will
consider the case when the medium is layered and can then use the asymptotic theory
developed in [8] for the analysis of wave propagation in randomly layered media. A
main feature of our approach is that the imaging function we arrive at is motivated by
this analytic framework and arises in a non-intuitive way. This is due to the fact that
the recorded signals are multiply-scattered by the small-scale random fluctuations of
the medium and therefore the imaging functional does not have a form which one
could identify via formal reasoning based on travel time considerations. In [9] the
problem of the identification of a source or a strong scatterer was considered in a
similar setting, while we here look for information on the background medium where
indeed there is no explicit or implicit travel time information that can be exploited.

The paper is organized as follows. In Section 2 we describe our model and in-
troduce the cross correlation of the recorded signals. In Section 3 we study the case
of a homogeneous medium and show that the depth of the sources can be estimated
from the cross correlations. In Section 4 we describe the statistical properties of
the generalized transmission coefficients of the medium (we here extend the results
obtained in [8] to the case of pressure release boundary conditions). We use the sta-
tistical properties of the generalized transmission coefficients in Section 5 to describe
the statistical properties of the cross correlation functions of the recorded signals. In
Section 6 we show that it is possible to reconstruct the background medium from the
cross correlation in a certain asymptotic regime. We present numerical simulations
in Section 7.1 and apply our results (both theoretically and numerically) to the de-
tection of an interface in Section 7.2. Our framework involves a number of different
wave functionals and we summarize in Section 8 the general lines of the approach for
medium inversion that we present in this paper.

2. Cross Correlations of Noise Signals. We consider linear acoustic waves
propagating in a three-dimensional randomly layered medium. The governing equa-
tions are

ρε(z)
∂~u

∂t
+ ∇p + σε(z)~u = ~F ε(t, x, z),

1

Kε(z)

∂p

∂t
+ ∇ · ~u = 0, (2.1)

where p is the pressure field, ~u is the three-dimensional velocity field, ρε is the density
of the medium, Kε is the bulk modulus of the medium, σε is the dissipation, and
(x, z) ∈ R

2 × R are the space coordinates. We consider in this paper the situation in
which a randomly layered medium occupies the section z ∈ (−L, 0). The medium z ≤
−L is homogeneous and matched to the random section. Motivated by geophysical
applications we assume that the density ρa in the homogeneous half-space z ≥ 0 is
much smaller than the density ρ(z) in the randomly layered medium for z ≤ 0. Since
the velocity and pressure are continuous away from the sources, the pressure in z > 0
goes to zero and hence, by continuity, also at z = 0. These are the so-called pressure
release boundary conditions.

The sources are modeled by the forcing term ~F ε. They are localized in the
earth subsurface at z = −L, they impose a three-dimensional forcing, and they emit
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Fig. 2.1. Acoustic daylight imaging configuration, with pressure release boundary conditions (a)
and with matched (transparent) boundary conditions (b). The circles are the sources, the triangles
are the sensors.

stationary random signals. We write the source term in the form

~F ε(t, x, z) = ~fε
( t

ε
,
x

ε

)
δ(z − L), (2.2)

where fε
x =

(
fε

x, fε
y

)
and fε

z are zero-mean, time-stationary, and uncorrelated pro-
cesses with the autocorrelation function

〈
fε

xj

( t

ε
,
x

ε

)
fε

xj

( t′

ε
,
x′

ε

)〉
= αxj

F
( t − t′

ε

)
G

(x − x′

ε

)
θ
(x + x′

2

)
. (2.3)

Here 〈·〉 stands for the expectation with respect to the distribution of the noise sources
and αx = αy and αz are nonnegative coefficients. The function F is the local time
covariance function, the function G is the local spatial covariance function, and the
nonnegative-valued function θ describes the spatial support of the source distribution.
The functions F and G are assumed to be in L1 ∩ L∞ and the function θ is assumed
to be compactly supported and bounded. The Fourier transforms of F and G:

F̂ (ω) =

∫
F (t)eiωtdt, Ĝ(k) =

∫
G(x)e−ik·xdx,

are nonnegative valued. Indeed the Fourier transform of the autocorrelation function
of a stationary process is proportional to its power spectral density by Bochner’s
theorem. We assume, moreover, that F̂ and Ĝ decay rapidly at infinity and that the
functions F and G are normalized so that F (0) = 1 and Ĝ(0) = 1. As is usual in
geophysics and other applications the power spectral density is zero at zero-frequency:
F̂ (0) = 0. In this scaling, the decoherence time and length of the sources are of order ε.
We remark here that in our setting the coherence time will play the role of a “typical”
or “central wavelength”. We shall thus consider an asymptotic setting corresponding
to a high-frequency situation with the central wavelength being of order ε. However,
we hasten to add that there will be an even finer scale in our model, namely the scale
of variation of the random fluctuations and we describe these aspects of the model
in more detail in Section 4, while we next describe the measurement configuration in
more detail.

We observe the vertical velocity field uε(t, x) at the surface z = 0 during a (long)
time interval of duration T . This is typical of seismographs, which usually record only
the vertical velocity because it is less noisy and gives better records of some seismic
waves. The set-up with pressure release boundary conditions at z = 0, noise sources
at z = −L, and velocity fields recorded at the surface z = 0 is called acoustic daylight
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imaging by Claerbout [3] (Figure 2.1). He showed that the reflection response can be
derived from the autocorrelation of the transmission response. The goal of our paper is
to exploit the scattering properties of the medium and insight about how this affects
wave statistics to estimate the (depth-dependent) background velocity, dissipation
and scattering coefficient of the medium from the empirical cross correlation of the
recorded signals defined by

Cε
T (t, x, x′) =

1

T

∫ T

0

uε(t′, x)uε(t′ + t, x′)dt′. (2.4)

The following proposition (proved in [10]) shows that the empirical cross correlation
is equivalent to the statistical cross correlation provided the recording time is large
enough.

Proposition 2.1. The empirical cross correlation is a self-averaging quantity
with respect to the distribution of the sources. We have

Cε
T (t, x, x′)

T→∞
−→ Cε(t, x, x′), (2.5)

in probability, where

Cε(t, x, x′) = 〈uε(0, x)uε(t, x′)〉 . (2.6)

From the practical point of view, the experimental data consists of the empirical
cross correlation Cε

T , while the theoretical analysis of the paper is carried out with
respect to the statistical cross correlation Cε. These quantities are however equivalent
assuming that T is large enough.

3. The Recorded Field for a Dissipative Homogeneous Medium. In this
section we assume that the density, bulk modulus, and dissipation of the medium are
constant and denoted by ρ0, K0, and σ0. The vertical velocity field recorded at the
surface z = 0 has the integral representation

uε(t, x) =
1

(2π)3

∫∫ [ f̂ε
z (ω, κ)

ζ0(κ)
+

iω

iωρ0 − εσ0
κ · f̂ε

x(ω, κ)
]
exp

(
− i

ω

ε
(t − κ · x)

)

× exp
(
i
ω

ε

L

c0(κ)
−

σ0c0(κ)

2ζ0c0
L

)
ω2dκdω. (3.1)

The derivation involves a decomposition into plane wave modes that propagate undis-
torted in a homogeneous medium section, the use of jump conditions to identify their
initial value at the source and the use of field continuity conditions to identify inter-
face reflection coefficients at depths with jump in macroscale parameters. We shall
explicitly go through this derivation in the more general case with random medium
modulations in Appendix A. In (3.1) we have used the notation κ = |κ| and:

• f̂ε
xj

(ω, κ) is the Fourier transform of the random “source” function

f̂ε
xj

(ω, κ) =

∫∫
fε

xj
(t, x)eiω(t−κ·x)dtdx.

Its generalized covariance function is

〈
f̂ε

xj
(ω, κ)f̂ε

xj
(ω′, κ′)

〉
=

2παxj

ε2
δ(ω − ω′)F̂ (ω)Ĝ

(
ω

κ + κ′

2

)
θ̂
(
ω

κ − κ′

ε

)
.

(3.2)
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• ζ0(κ) and c0(κ) are the mode-dependent impedance and velocity

ζ0(κ) =
ζ0√

1 − κ2c2
0

, c0(κ) =
c0√

1 − κ2c2
0

. (3.3)

We remark that the modes, as parameterized by the slowness vector κ and
the frequency ω, are evanescent if κ > 1/c0.

• exp[iωL/(εc0(κ))] gives the delay due to the mode-dependent vertical travel
time L/c0(κ) from the source plane to the surface.

• exp[−σ0c0(κ)L/(2ζ0c0)] is the damping of the waves propagating from the
source plane to the surface. Note that the damping depends on the mode
and that there is a strong damping as the slowness magnitude approaches
the evanescent regime.

Recall that we record the vertical velocity field at the surface and that we want
to use its cross correlations in order the estimate macroscale features of the medium.
We consider first the form of this cross correlation in the case when the medium is
homogeneous (constant for z < 0). This allows us to identify some principal relations
in between the wave statistics and the medium parameters. For the cross correlation
defined in (2.6) we have the following proposition.

Proposition 3.1. The recorded field is a zero-mean stationary (in time) process
whose cross correlation is given by:

Cε
(
− εs, x +

εy

2
, x −

εy

2

)
=

1

(2π)5

∫∫∫
Dε(ω, κ, λ)F̂ (ω)Ĝ(ωκ)θ̂(ωλ)

× exp
(
i
ω

ε
(

L

c0(|κ + ελ

2 |)
−

L

c0(|κ − ελ

2 |)
) −

σ0c0(|κ + ελ

2 |)

2ζ0c0
L −

σ0c0(|κ − ελ

2 |)

2ζ0c0
L

)

× exp
(
− iω(s − κ · y − λ · x)

)
ω4dκdλdω,

Dε(ω, κ, λ) =
ω2

ρ2
0ω

2 + ε2σ2
0

[
αx

(
κ2 −

ε2λ2

4

)
+

αz

ζ0(|κ + ελ

2 |)ζ0(|κ − ελ

2 |)

]
.

In the regime ε → 0 we have

Cε
(
− εs, x +

εy

2
, x −

εy

2

)
ε→0
−→ C(s, x, y), (3.4)

C(s, x, y) =
1

(2π)3

∫∫
D(κ)F̂ (ω)Ĝ(ωκ)θ

(
x − c0(κ)κL

)

× exp
(
−

σ0c0(κ)

ζ0c0
L − iω(s − κ · y)

)
ω2dκdω (3.5)

D(κ) =
1

ρ2
0

[αz

c2
0

+ (αx − αz)κ
2
]
.

If the sources are isotropic αx = αz ≡ α, then D(κ) = α/ζ2
0 . The proposition

shows that the decoherence time and length of the recorded fields are of oder ε. This
proposition moreover shows that accurate estimates of the depth L of the sources
and the background speed c0 can be obtained. Indeed, this can be seen by the
deconvolution step that we introduce next. We first introduce the Fourier transform:

Ĉ(ω, κ, λ) :=

∫∫∫
C(s, x, y) exp

(
iω(s − κ · y − λ · x)

)
dsdydx, (3.6)
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By (3.5) we find that:

Ĉ(ω, κ, λ) = D(κ)F̂ (ω)Ĝ(ωκ)θ̂(ωλ) exp
(
− iωλ · κc0(κ)L −

σ0c0(κ)

ζ0c0
L

)
.

Therefore, for (ω, κ, λ) such that F̂ (ω)Ĝ(ωκ)θ̂(ωλ) 6= 0, the quantity

V̂(ω, κ, λ) :=
Ĉ(ω, κ, λ)Ĉ(ω,0,0)

Ĉ(ω, κ,0)Ĉ(ω,0, λ)
, (3.7)

is well defined and its value is

V̂(ω, κ, λ) = exp
(
− iωc0(κ)λ · κL

)
.

We can use this result to design the following algorithm to estimate the depth L of
the noise sources and the background speed c0:
1) compute the empirical cross correlation Cε

T .

2) compute its Fourier transform Ĉε
T as in (3.6).

3) compute the quantity V̂ ε
T as in (3.7):

V̂ ε
T (ω, κ, λ) :=

Ĉε
T (ω, κ, λ)Ĉε

T (ω,0,0)

Ĉε
T (ω, κ,0)Ĉε

T (ω,0, λ)
. (3.8)

4) by a least-square fit of the phase of the empirical function V̂ ε
T (ω, κ, λ) with the

theoretical function −ωλ · κc0(κ)L one can estimate the depth L of the sources and
the background speed c0.

Note, however, that some special situations do not allow for the estimations of
L and c0. In particular, if σ0 = 0 and θ is constant, then (3.5) shows that the cross
correlation does not depend on L and c0. The conditions under which the estimation
is possible are discussed in Section 6.

We now proceed to consider the situation that is of principal interest to us, that
is, when there are microscale and random fluctuations in the medium and how these
provide additional possibilities for imaging.

4. The Recorded Field for a Dissipative Random Medium. We consider
the general case with a random medium in the region z ∈ (−L, 0). From now on the
parameters of the medium in this region are assumed to be of the form

(Kε)−1 (z) =

{
K−1(z) if z 6∈ (−L, 0)
K−1(z)[1 + ν(z, z

ε2 )] if z ∈ (−L, 0)
, (4.1)

ρε(z) = ρ(z), (4.2)

σε(z) = σ(z). (4.3)

The random process ν(z, z′) models the random fluctuations in the medium. It is
bounded in magnitude by a constant less than one, so that Kε is a positive quantity.
For each z, the random process z′ 7→ ν(z, z′) is stationary and zero mean and it has
strong mixing properties. The z-dependence of ν(z, z′) models a depth-dependence
of the statistical properties of the medium.

We define the background velocity and impedance by

c(z) =

√
K(z)√
ρ(z)

, ζ(z) =
√

K(z)ρ(z). (4.4)
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The background bulk modulus K(z) and density ρ(z) are smooth. This implies that
the reflections induced by the macroscopic variations of K, ρ, and σ are extremely
small, they are dominated by incoherent reflections that are generated by the inter-
action of the waves with the small scale random fluctuations of the medium.

4.1. Integral Representation of the Recorded Field. We discuss now how
the wave field, the vertical velocity field, at the surface can be described. The impor-
tant generalization from the situation in the above section is that the wave field is
defined in terms of a generalized transmission coefficient that captures the interaction
of the wave with the random medium. The vertical velocity field recorded at the
surface z = 0 has the integral representation

uε(t, x) =
1

(2π)3

∫∫ [ f̂ε
z (ω, κ)

ζ1/2(κ,−L)ζ1/2(κ, 0)
+

iωκ · f̂ε
x
(ω, κ)

iωρ(−L)− εσ(−L)

ζ1/2(κ,−L)

ζ1/2(κ, 0)

]

×T ε
ω,κ exp

(
− i

ω

ε
(t − κ · x)

)
ω2dκdω. (4.5)

Here:
• ζ(κ, z) and c(κ, z) are the mode- and depth-dependent impedance and velocity

ζ(κ, z) =
ζ(z)√

1 − κ2c(z)2
, c(κ, z) =

c(z)√
1 − κ2c(z)2

. (4.6)

• The random complex coefficient T ε
ω,κ is the generalized transmission coefficient

for the pressure release boundary conditions. It can be expressed in terms of the stan-
dard mode-dependent reflection and transmission coefficients of the random medium
(i.e. with matched or transparent boundary conditions) Rε

ω,κ and T ε
ω,κ, that are in-

troduced in appendix A:

T ε
ω,κ = exp

(
− i

ω

ε
τ(κ,−L)

) T ε
ω,κ

1 − Rε
ω,κ

, (4.7)

for τ(κ, z) the vertical mode-dependent travel time

τ(κ, z) =

∫ z

0

dz′

c(κ, z′)
. (4.8)

We describe the statistial properties of the generalized transmission coefficient T ε
ω,κ

in the next subsection. We remark here that the expansion

T ε
ω,κ =

∞∑

j=0

exp
(
− i

ω

ε
τ(κ,−L)

)
T ε

ω,κ(Rε
ω,κ)j ,

reflects the physical situation that the waves recorded at the surface are the sum of
the contributions of the waves that have been directly transmitted from the source
plane z = −L to the surface z = 0 and the contributions of the waves that have
reached the surface and have then been reflected back and forth by the surface and
by the random region generating “multiples”. These reflections and multiples arise
due to the pressure release boundary condition (j = 0) at the surface which is an
important ingredient in our model.

• The integral in κ is limited to κ ≤ κmax where κmax is defined by

κmax = min
z∈(−L,0)

c−1(z). (4.9)
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The condition κ < κmax means that there is no turning point for the wave mode with
slowness κ. Modes generated with transverse slownesses that violate this condition do
not reach the surface, so they can be neglected (remember that the random medium
is layered so that scattering does not change the slowness).

4.2. Statistical Analysis of the Reflection and Transmission Coeffi-
cients. The integrated covariance γ(z) of the fluctuations of the random medium
is defined by

γ(z) =

∫ ∞

−∞

E[ν(z, 0)ν(z, z′)]dz′. (4.10)

As we will see below it plays the role of a depth-dependent scattering coefficient. The
following proposition describes the statistical properties of the generalized transmis-
sion coefficient and it is proved in [11]. It is an extension of the well-known results in
the case of matched boundary conditions [8, Chapter 14-15].

Proposition 4.1. The autocorrelation function of the generalized transmission
coefficient at two nearby slownesses satisfies

E
[
T ε

ω,κ+ελ/2T
ε

ω,κ−ελ/2

] ε→0
−→

∫
U(ω, κ, ξ) exp

(
− iωκλξ

)
dξ. (4.11)

The spectral density U(ω, κ, ξ) has the probabilistic representation:

U(ω, κ, ξ) = E

[
δ
(
ξ −

∫ 0

−L

c(κ, z)(2Nω,κ(z) + 1)dz
)

× exp
(
−

∫ 0

−L

σ(z)c(κ, z)

ζ(z)c(z)
(2Nω,κ(z) + 1)dz

)∣∣∣Nω,κ(−L) = 0
]
, (4.12)

where (Nω,κ(z))−L≤z≤0 is a jump Markov process with state space N and inhomoge-
neous infinitesimal generator

Lzφ(N) =
γ(z)c(κ, z)2ω2

4c(z)4
[
(N +1)2(φ(N +1)−φ(N))+N2(φ(N−1)−φ(N))

]
. (4.13)

If the medium has no random fluctuations ν ≡ 0, then the Markov process does
not jump and we find that

U(ω, κ, ξ) = δ
(
ξ −

∫ 0

−L

c(κ, z)dz
)

exp
(
−

∫ 0

−L

σ(z)c(κ, z)

ζ(z)c(z)
dz

)
,

which allows us to recover the results of Section 3.
If the medium is not dissipative σ ≡ 0, then

U(ω, κ, ξ) = E

[
δ
(
ξ −

∫ 0

−L

c(κ, z)(2Nω,κ(z) + 1)dz
)∣∣∣Nω,κ(−L) = 0

]
,

which shows in particular that:

lim
ε→0

E
[
|T ε

ω,κ|
2
]

=

∫ ∞

0

U(ω, κ, ξ)dξ = 1. (4.14)

This energy conservation relation is easy to understand in the case of a homogeneous
medium, in which the wave is simply transmitted so that indeed |T ε

ω,κ| = 1. In the
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general random case the relation (4.14) is a deep result that is analyzed in detail in
[11]. It is a reflection of the fact that the pressure release boundary conditions and
the randomly layered medium traps the wave in a surface layer giving a waveguide
effect.

In general, for a fixed pair (ω, κ), the function ξ → U(ω, κ, ξ) is a distribution with
a singular (Dirac) component corresponding to the directly transmitted waves and an
absolutely continuous component corresponding to wave energy that has undergone
multiple scattering.

Lemma 4.2. We have

U(ω, κ, ξ) = Us(ω, κ, ξ) + Uc(ω, κ, ξ),

with

Us(ω, κ, ξ) = δ
(
ξ −

∫ 0

−L

c(κ, z)dz
)

exp
(
−

∫ 0

−L

σ(z)c(κ, z)

ζ(z)c(z)
dz

)

× exp
(
−

∫ 0

−L

γ(z)c2(κ, z)ω2

4c(z)4
dz

)
(4.15)

and

Uc(ω, κ, ξ) = exp
(
−

∫ 0

−L

σ(z)c(κ, z)

ζ(z)c(z)
dz

)

×

∫ 0

−L

dz0
γ(z0)c

2(κ, z0)ω
2

4c4(z0)
exp

(
−

∫ z0

−L

γ(z)c2(κ, z)ω2

4c4(z)
dz

)

×E

[
δ
(
ξ − 2

∫ 0

z0

c(κ, z)Nω,κ(z)dz −

∫ 0

−L

c(κ, z)dz
)

× exp
(
− 2

∫ 0

z0

σ(z)c(κ, z)

ζ(z)c(z)
Nω,κ(z)dz

)∣∣∣Nω,κ(z0) = 1
]
. (4.16)

The singular component in (4.15) can be obtained from the probabilistic represen-
tation (4.12) as the contributions of the trajectories that do not jump. In the wave
problem this is the contributions of the waves that would constitute the wave front if
the sources were emitting short pulses.

The continuous component in (4.16) can also be obtained from the probabilistic
representation (4.12), this is the contributions of the trajectories that jump at least
once. In the wave problem this is the contributions of the waves that would constitute
the coda wave if the sources were emitting short pulses. Since Nω,κ takes nonnegative

values, the support of the continuous component Uc in ξ is [
∫ 0

−L c(κ, z)dz,∞). In the
case of a weakly scattering medium, i.e.

∫ 0

−L

γ(z)c2(κ, z)ω2

4c4(z)
dz ≪ 1,

we have

Uc(ω, κ, ξ) ≃ exp
(
−

∫ 0

−L

σ(z)c(κ, z)

ζ(z)c(z)
dz

)∫ 0

−L

γ(z0)c
2(κ, z0)ω

2

4c4(z0)

×δ
(
ξ − 2

∫ 0

z0

c(κ, z)dz −

∫ 0

−L

c(κ, z)dz
)

exp
(
− 2

∫ 0

z0

σ(z)c(κ, z)

ζ(z)c(z)
dz

)
dz0. (4.17)
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In the probabilistic interpretation this is the contribution of paths that jump exactly
once. In the wave problem this corresponds to the first order reflections from the
medium, that is, of the directly transmitted wave that is reflected at the surface with
the pressure release boundary condition and finally returned to the surface again by
scattering induced by the microscale fluctuations. s

5. The Cross Correlation in a Random Medium. The next proposition is
the fundamental result that gives the relation between the statistical cross correlation
and the spectral density U .

Proposition 5.1. The statistical cross correlation is given by

Cε
(
− εs, x +

εy

2
, x −

εy

2

)
=

1

(2π)5

∫∫∫
Dε(ω, κ, λ)F̂ (ω)Ĝ(ωκ)θ̂(ωλ)

×T ε
ω,|κ+ελ/2|T

ε
ω,|κ−ελ/2| exp

(
− iω(s − κ · y − λ · x)

)
ω4dκdλdω, (5.1)

where

Dε(ω, κ, λ) =
αxω2(κ2 − ε2λ2/4)

ω2ρ(−L)2 + ε2σ(−L)2
ζ1/2(|κ + ελ/2|,−L)ζ1/2(|κ − ελ/2|,−L)

ζ1/2(|κ + ελ/2|, 0)ζ1/2(|κ − ελ/2|, 0)

+
αz

ζ1/2(|κ + ελ/2|, 0)ζ1/2(|κ − ελ/2|, 0)ζ1/2(|κ + ελ/2|,−L)ζ1/2(|κ − ελ/2|,−L)
.

In the regime ε → 0, the cross correlation is self-averaging with respect to the distri-
bution of the random medium and

Cε
(
− εs, x +

εy

2
, x −

εy

2

)
ε→0
−→ C(s, x, y), (5.2)

in probability, where

C(s, x, y) =
1

(2π)3

∫∫
D(κ)F̂ (ω)Ĝ(ωκ)

[ ∫
θ(x − ξκ)U(ω, κ, ξ)dξ

]

× exp
(
− iω(s− κ · y)

)
ω2dκdω, (5.3)

D(κ) =
ζ(κ,−L)

ζ(κ, 0)ρ(−L)2

[ αz

c(−L)2
+ (αx − αz)κ

2
]
. (5.4)

Proof. We first substitute the integral representation (4.5) into the expression of
Cε:

Cε(t, x1, x2) =
1

(2π)5ε2

∫∫∫
F̂ (ω)Ĝ

(
ω

κ1 + κ2

2

)
θ̂
(ω(κ1 − κ2)

ε

)
ei ω

ε
(t+κ1·x1−κ2·x2)

×T ε
ω,κ1

T ε
ω,κ2

[ αxω2κ1 · κ2

ω2ρ(−L)2 + ε2σ(−L)2
ζ1/2(κ1,−L)ζ1/2(κ2,−L)

ζ1/2(κ1, 0)ζ1/2(κ2, 0)

+
αz

ζ1/2(κ1,−L)ζ1/2(κ2,−L)ζ1/2(κ1, 0)ζ1/2(κ2, 0)

]
ω4dκ1dκ2dω.

Next we change of variables κ1 = κ + ελ/2, κ2 = κ − ελ/2:

Cε(t, x1, x2) =
1

(2π)5

∫∫∫
F̂ (ω)Ĝ(ωκ)θ̂(ωλ)Dε(ω, κ, λ)T ε

ω,|κ+ελ/2|T
ε

ω,|κ−ελ/2|

× exp
(
iω

t

ε
+ iωκ ·

x1 − x2

ε
+ iωλ ·

x1 + x2

2

)
ω4dκdλdω.
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If we take t = −εs, x1 = x + εy/2, and x2 = x − εy/2, then we obtain (5.1). The
decoherence frequency of the reflection coefficient is of order ε [8, Chapter 9], and
the decoherence (transverse) wavenumber is also of order ε [8, Chapter 14], so the
integral over a frequency band of order one and a wavenumber band of order one is
self-averaging (with respect to the distribution of the random medium) in the regime
ε → 0 we then find:

Cε
(
− εs, x +

εy

2
, x −

εy

2

)
ε→0
−→

1

(2π)5

∫∫∫
F̂ (ω) lim

ε→0
E[T ε

ω,|κ+ελ/2|T
ε

ω,|κ−ελ/2|]

×D(κ)Ĝ(ωκ)θ̂(ωλ) exp
(
− iω(s − κ · y − λ · x)

)
ω4dκdλdω.

Using Proposition 4.1 we obtain (5.3).
That the cross correlations are statistically stable and not “noisy” is important

when using them as data for imaging. We next make some comments regarding the
phenomenon of statistical stability.

• The proposition shows that the cross correlation is statistically stable with
respect to the distribution of the sources and with respect to the distribution of the
random medium, provided that T is large and ε is small.

• On the one hand, T is a parameter that can be chosen by the user. Statistical
stability with respect to the distribution of the sources can be obtained by integrating
over a long time window, which can always be done provided the signals can be
recorded over arbitrarily long times and that we can assume that the noise sources
are stationary.

• On the other hand, ε is a parameter that depends on the medium and on
the bandwidth of the sources. It cannot be chosen by the user. If ε is not small,
then statistical stability with respect to the distribution of the random medium is
not achieved and the cross correlation function will exhibit fluctuations around the
asymptotic value (5.3). As a result one should average over different realizations of
the medium and/or average over the space and time lags y and s.

6. Inverse Problem. In this section we show that it is possible to estimate
the cross spectral density U from the observation of the cross correlation Cε in the
regime ε → 0. Note that the cross correlation Cε is non-zero only for small offsets
corresponding to t and x − x′ being of order ε. The inverse problem is therefore
very different from surface tomography problems that has been considered in many
cases involving wave field correlations so far. In these tomography problems the cross
correlations give travel time estimates which subsequently are used for tomographic
estimation of velocity maps. In the present case we have to make the link in between
the macroscopic aspects of the medium and the local correlations in order to solve
the inverse problem. This link is indeed given by the cross spectral density U which
contains all information about the medium that we can derive from the correlations.

We first present a relation between a regularized Fourier transform of the cross
correlation Cε and the spectral density U . If we take a Fourier transform in y, x, and
s:

Ĉε(ω, κ, λ) :=

∫∫∫
Cε

(
−εs, x +

εy

2
, x −

εy

2

)
exp

(
iω(s−κ·y−λ·x)

)
dsdydx, (6.1)

then we obtain for any ε:

Ĉε(ω, κ, λ) = F̂ (ω)Ĝ(ωκ)θ̂(ωλ)T ε
ω,|κ+ελ/2|T

ε
ω,|κ−ελ/2|D

ε(ω, κ, λ). (6.2)
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This quantity is not self-averaging (with respect to the distribution of the random
medium) in the regime ε → 0, but its expectation converges as ε → 0:

E[Ĉε(ω, κ, λ)]
ε→0
−→ F̂ (ω)Ĝ(ωκ)θ̂(ωλ)D(κ)

[ ∫
exp

(
− iωκ · λξ

)
U(ω, κ, ξ)dξ

]
, (6.3)

and its decoherence frequency and wavenumber are of order ε. Therefore, if we con-
volve (or smooth) Ĉε(ω, κ, λ) in ω and κ with a kernel whose radius is large compared
to ε but small compared to 1, for instance

Ĉε
s (ω, κ, λ) :=

1

π3/2ε3p

∫∫
Ĉε(ω̃, κ̃, λ) exp

(
−

|ωκ − ω̃κ̃|2

ε2p
−

|ω − ω̃|2

ε2p

)
ω̃2dκ̃dω̃,

(6.4)
with p ∈ (0, 1), then we obtain in the regime ε → 0:

lim
ε→0

Ĉε
s (ω, κ, λ) = F̂ (ω)Ĝ(ωκ)θ̂(ωλ)D(κ)

[ ∫
exp

(
− iωκ · λξ

)
U(ω, κ, ξ)dξ

]
, (6.5)

in probability. This gives the expression of the smoothed Fourier transform Ĉε
s of the

cross correlation in terms of the spectral density U in the regime ε → 0. We next
show how we can get a more explicit expression for the spectral density.

First, we will carry out a deconvolution step to remove the effect of the random
sources:

Definition 6.1. Let us define

V̂ ε(ω, κ, λ) :=
Ĉε

s (ω, κ, λ)

Ĉε
s (ω, κ,0)

Ĉε
s (ω,0,0)

Ĉε
s (ω,0, λ)

. (6.6)

The deconvolved data is not available for all values of the parameters and to charac-
terize the available observations we define Ω by:

Definition 6.2. Let us define

Ω =
{
(ω, κ) ∈ R × R

+ | F̂ (ω) > 0 and Ĝ(ωκ̃) > 0 for a.e. κ̃ s.t. |κ̃| = κ
}

. (6.7)

We next preset the important result that shows how we can relate the observations
to the spectral kernel for the available observations when we make an additional
assumption of locality of θ:

Proposition 6.3. Assume that the vertical velocity field is observed everywhere
at the surface, and that θ satisfies:

θ̂(k) 6= 0 for almost every k. (6.8)

1. Define V(ω, κ, ξ) by

V(ω, κ, ξ) =
U(ω, κ, ξ)∫
U(ω, κ, ξ′)dξ′

(6.9)

for (ω, κ) ∈ Ω.
2. The density

V ε(ω, κ, ξ) :=
1

(2π)3

∫

∂B(0,κ)

∫

∂B(0,κξ)

∫
exp

(
iωλ̃ · x

)
V̂ ε(ω, κ̃, λ̃)ω2dλ̃dσ(x)dσ(κ̃),

(6.10)
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is such that

lim
ε→0

V ε(ω, κ, ξ) = V(ω, κ, ξ). (6.11)

Proof. Since θ̂ is non-zero almost everywhere, the quantity V̂ ε(ω, κ, λ) defined
by (6.6) is well defined for (ω, κ) in the support of F̂ (ω)Ĝ(ωκ), (the expression (6.5)
shows that the denominator is positive for ε small enough). Its limit as ε → 0 is given
by

lim
ε→0

V̂ ε(ω, κ, λ) =

∫
exp

(
− iωκ · λξ

)
U(ω, κ, ξ)dξ∫

U(ω, κ, ξ)dξ
=

∫
exp(−iωκ · λξ

)
V(ω, κ, ξ)dξ.

Taking the special inverse Fourier transform (6.6), and using the identity

∫

∂B(0,κ)

∫

∂B(0,κξ)

δ(x − κ̃ξ̃)dσ(x)dσ(κ̃) = 2πδ(ξ − ξ̃)

we obtain the desired result (6.11).
We remark here that:
• We can only estimate U(ω, κ, ξ) for (ω, κ) ∈ Ω, that is, the pairs (ω,κ) (frequency,

transverse wavenumber) in the support of the waves emitted by the noise sources).
Therefore, the bandwidth of the noise sources must be large enough so that the
procedure to extract the background velocity and scattering coefficient can be applied
to the estimate of V(ω, κ, ξ) when restricted to (ω, κ) ∈ Ω.

• The condition (6.8) is important. If, for instance, θ ≡ 1, that is, if the noise
sources are distributed uniformly, then we get from (5.3) that

C(s, x, y) =
1

(2π)3

∫∫
D(κ)F̂ (ω)Ĝ(ωκ) exp

(
− iω(s − κ · y)

)[ ∫
U(ω, κ, ξ)dξ

]
ω2dκdω,

which shows that we have access to the integrated cross spectral density only. This is
not enough to reconstruct the parameters of the medium. Indeed, we have seen that
in a non-dissipative medium the integrated cross spectral density (4.14) is equal to
one, whatever the background velocity or scattering properties.

• If the medium is not dissipative, then the integrated cross spectral density
(4.14) is equal to one and therefore V is equal to U , which means that indeed Vε is
an estimator of U .

7. Numerical Examples.

7.1. Dissipative Statistically Homogeneous Random Medium. Before we
discuss an important model estimation problem in Section 7.2, we describe here the
the situation when the medium is statistically homogeneous and dissipative in the
random medium section (−L, 0). This allows us to illustrate the performance of and
principle behind the spectral estimation. Thus, we assume the model: c(z) = c0,
σ(z) = σ0, and γ(z) = γ0. In this case the asymptotic spectral density is given by
(4.12) and we have in the asymptotic regime ε → 0:

E
[
T ε

ω,κ+ελ/2T
ε

ω,κ−ελ/2

] ε→0
−→ exp

(
−

(
iωκλ +

σ0

ζ0c0

)
c0(κ)L

)

×E

[
exp

(
− 2

(
iωκλ +

σ0

ζ0c0

)
c0(κ)

∫ 0

−L

Nω,κ(z)dz
)]

,
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where (Nω,κ(z))−L≤z≤0 is the jump Markov process starting from Nω,κ(−L) = 0 with
the homogeneous infinitesimal generator:

Lω,κφ(N) =
γ0c

2
0(κ)ω2

4c4
0

[
(N + 1)2(φ(N + 1) − φ(N)) + N2(φ(N − 1) − φ(N))

]
.

In the numerical simulations we use a stepwise constant layered medium. The
thickness of the elementary layers is lc = 0.05. The density of the medium is one,
the bulk modulus takes values 1/(1± δκ) independently in each layer with probability
1/2, with δκ = 0.5. The absorption coefficient is σ0 = 0.005. The thickness of
the random medium is L = 500. The dissipative distance is Ldis = ζ0/(2σ0) =
100. The localization length for the frequency ω = 1 and slowness κ = 0 is Lloc =
(4c2

0)/(δ2
κlcω

2)−1 = 320. We refer to [8] for a detailed discussion of the localization
length and its significance. It is sufficient here to observe that it articulates the
penetration depth of the wave energy. The sources are a collection of point sources
emitting independent stationary random signals with temporal power spectral density
F̂ (ω) supported in |ω| ∈ (0.5, 2). The typical wavelength λ0 is therefore of the order
of 5 and the ratio lc/λ0 ≃ λ0/L ≃ 0.01. These values are of the same order as the
ones encountered in exploration seismology [17], in which the decoherence length is
2 m, the typical wavelength is 150 m, and the probing depth of the order of 10 km.

We perform a series of numerical simulations with different realizations of the
random medium. The vertical velocity field is observed at the surface. We compute
the empirical cross correlation function Cε

T and its Fourier transform Ĉε
T :

Ĉε
T (ω, κ, λ) :=

∫∫∫
Cε

T

(
− s, x +

y

2
, x−

y

2

)
exp

(
iω(s−κ · y −λ ·x)

)
dsdydx, (7.1)

for |λ| ≤ λmax = 0.09, |κ| ≤ κmax = 0.9, and |ω| ≤ ωmax = 2. For T large enough

Ĉε
T (ω, κ, λ) is an estimator for

Ĉε(ω, κ, λ) =
α

ζ2
0

F̂ (ω)Ĝ(ωκ)θ̂(ωλ)T ε
ω,|κ+λ/2|T

ε
ω,|κ−λ/2|.

Recall that this quantity is not statistically stable with respect to the medium fluctu-
ations. Therefore, we smooth in ω (with a “frequency bandwidth” of 0.15) and in κ

(with a“slowness bandwidth” of 0.1) as in (6.4) so that we obtain Ĉε
T,s and we then

look at

V̂ ε
T (ω, κ, λ) =

Ĉε
T,s(ω, κ, λ)

Ĉε
T,s(ω,0, λ)

Ĉε
T,s(ω,0,0)

Ĉε
T,s(ω, κ,0)

, (7.2)

which is an estimator (for large T and small ε) of

V̂(ω, κ, λ) =

∫
exp

(
− iωκ · λξ

)
U(ω, κ, ξ)dξ∫

U(ω, κ, ξ)dξ

=
E

[
exp

(
− 2

(
iωκ · λ + σ0

ζ0c0

)
c0(κ)

∫ 0

−L
Nω,κ(z)dz

)]

E

[
exp

(
− 2 σ0

ζ0c0
c0(κ)

∫ 0

−L Nω,κ(z)dz
)] exp

(
− iωκ · λc0(κ)L

)
. (7.3)

The approximate identity V̂ ε
T (ω, κ, λ) ≃ V̂(ω, κ, λ) would be an equality in the asymp-

totic regime ε → 0, T → ∞, while in particular ε is finite in our numerical set up
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Fig. 7.1. Real parts of the theoretical function bH(ω, κ, λ) (a) and of the empirical function
bHε

T
(ω, κ, λ) (b-c-d). The empirical function is plotted without averaging over the random medium

(b), with an averaging over 10 realizations of the random medium (c), and with an averaging over
100 realizations of the random medium (d).

as in any real situation. The separation of scales in our configuration is not large
enough to give statistical stability of the estimation of the spectral density. As we
now show there is still statistical fluctuations in the estimated quantities after the
local smoothing in κ and ω.

In the homogeneous case we have

V̂(ω, κ, λ) = exp
(
− iωκ · λc0(κ)L

)
. (7.4)

We will therefore plot in the figures the normalized functions

Ĥε
T (ω, κ, λ) = exp

(
iωκ · λc0(κ)L

)
V̂ ε

T (ω, κ, λ), (7.5)

Ĥ(ω, κ, λ) = exp
(
iωκ · λc0(κ)L

)
V̂(ω, κ, λ). (7.6)

In Figure 7.1-7.2a we plot the (real and imaginary) parts of the theoretical function

Ĥ(ω, κ, λ) defined by (7.6) for κ = (0.5, 0) and λ = λ(1, 0) as a function of ω and λ. In

Figure 7.1-7.2b we plot the (real and imaginary) parts of the estimator Ĥε
T (ω, κ, λ) for

one realization of the random medium. In Figure 7.1-7.2c (respectively d) we plot the

(real and imaginary) parts of the estimator Ĥε
T (ω, κ, λ) averaged over 10 (respectively

100) realizations of the random medium. We can see that the agreement is qualitative
without averaging, quantitatively good after an averaging over 10 realizations and
excellent after an averaging over 100 realizations.

The agreement between theoretical formulas and empirical ones becomes better
when one looks at quantities integrated over ω and/or κ. For instance, even the

empirical function
〈
Ĥε

T (·, κ, λ)
〉

ω
integrated over ω without averaging with respect

to realizations is close to the theoretical function
〈
Ĥ(·, κ, λ)

〉

ω
(see Figure 7.3). We

will further illustrate this fact in the next section.
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Fig. 7.2. Same as in Fig. 7.1 but for the imaginary parts of the theoretical function bH(ω, κ, λ)

(a) and of the empirical function bHε

T
(ω, κ, λ) (b-c-d). The empirical function is plotted without

averaging over the random medium (b), with an averaging over 10 realizations of the random medium
(c), and with an averaging over 100 realizations of the random medium (d).
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Fig. 7.3. Real (a) and imaginary (b) parts of the theoretical function
D

bH(·, κ, λ)
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(thick solid

lines) and of the empirical function
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T
(·, κ, λ)

E

ω

integrated over ω without averaging (dot-dashed

lines) with averaging over 10 realizations (dashed lines), and with averaging over 100 realizations
(thin solid lines).

As an application of the results in this section, if we deal with a statistically
homogeneous and dissipative medium it is possible to extract the scattering and ab-
sorption parameters from a least-square fit of the theoretical integrated function to
the empirical integrated function.

7.2. Detection of an Interface. We describe here the detection of a weak in-
terface, an interface without coherent reflections. The medium is assumed to have
piecewise constant macroscale medium parameters. We assume that the background
velocity and impedance are constant in the whole section (−L, 0) and that the ran-
dom medium (−L, 0) consists of two different regions (−L,−zs) and (−zs, 0). The
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dissipation and integrated covariance jump at the interface

σ(z) =

{
σ0 if z ∈ (−zs, 0)
σ1 if z ∈ (−L,−zs)

γ(z) =

{
γ0 if z ∈ (−zs, 0)
0 if z ∈ (−L,−zs)

. (7.7)

Here σ0 and σ1 may be equal and we assume γ0 > 0. Thus, we can in particu-
lar consider the situation when the interface only distinguishes itself via a jump in
the scattering coefficient, that is, a change in the fluctuation magnitude and or spa-
tial decoherence length of the microscale medium fluctuations from a situation with
vanishingly small fluctuations. Note that we assume that the top region is scatter-
ing which conforms with typical situations in the earth’s crust with relative stronger
scattering in the surface layer. As already mentioned we suppose that there is no
impedance and background velocity contrast (ζ(z) and c(z) are constant and equal
to ζ0 and c0). We remark that a jump in these quantities typically would make the
inverse problem simpler since one could then exploit traveltime dependent features in
the recordings for imaging purposes. In our situation we want to use cross correlations
of the recorded field to estimate the position zs of the interface. We now describe the
theoretical asymptotic behavior of the spectral density in the situation described.

Lemma 7.1. If the top layer is weakly scattering γ0ω
2zs/(4c0) ≪ 1, then we have

U(ω, κ, ξ) = Us(ω, κ, ξ) + Uc(ω, κ, ξ),

with the singular and continuous components given by

Us(ω, κ, ξ) = exp
(
−

c0(κ)[σ0zs + σ1(L − zs)]

ζ0c0
−

γ0c0(κ)2ω2zs

4c4
0

)
δ
(
ξ − c0(κ)L

)
,

Uc(ω, κ, ξ) ≃
γ0ω

2

8c2
0

exp
(
−

σ0ξ + c0(κ)(σ1 − σ0)(L − zs)

ζ0c0

)
1[c0(κ)L,c0(κ)(L+2zs)](ξ).

The normalized density (6.9) is also of the form

V(ω, κ, ξ) = Vs(ω, κ, ξ) + Vc(ω, κ, ξ),

where the singular and continuous components are given by

Vs(ω, κ, ξ) ≃ δ
(
ξ − c0(κ)L

)
,

Vc(ω, κ, ξ) ≃
γ0ω

2

8c2
0

exp
(
−

σ0(ξ − c0(κ)L)

ζ0c0

)
1[0,2c0(κ)zs](ξ − c0(κ)L).

This shows that
i) the support of the singular component (corresponding to the direct waves) of the
cross spectral density gives the depth of the sources,
ii) the support of the continuous component (corresponding to the multiply-scattered
waves) of the cross spectral density gives the depth of the interface.

From the theoretical point of view, it seems straightforward to get the depth of
the interface. However, from the practical point of view, statistical stability (with
respect to the distribution of the random medium) is an issue and it is necessary to
integrate over ω and κ. As a consequence it is not easy to detect the jumps and the
support of the cross spectral density. It is in fact easier to work with the modified
functions Ĥε

T and Ĥ as we now explain.
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If the top region in (−zs, 0) in weakly scattering and weakly dissipative, in the

sense that γ0ω
2zs/(4c0) ≪ 1 and σ0zs/ζ0 ≪ 1, then we have for Ĥ defined as in (7.6):

Ĥ(ω, κ, λ) ≃ 1−
γ0ω

2c2
0(κ)zs

4c4
0

+
γ0ω

2c2
0(κ)zs

4c4
0

sin(ωκ · λc0(κ)zs)

ωκ · λc0(κ)zs
exp

(
−iωκ·λc0(κ)zs

)
.

(7.8)

Note in particular that ω−2c−2
0 (κ)Im

(
Ĥ(ω, κ, λ)

)
depends on (ω, κ, λ) only through

the product ωκ ·λc0(κ). This remark indicates how we should integrate over (ω, κ, λ)
in order to get a statistically stable quantity that can give a robust estimate of the
depth of the interface as described in step 3) below.

If we assume that the vertical velocity field is recorded everywhere at the surface,
then we can get the empirical cross correlation Cε

T . The practical identification of the
interface is as follows:
1) we compute from the recorded signals the smoothed Fourier transform of the cross

correlation Ĉε
T,s defined by (7.1) with a smoothing procedure as described just below

(7.1). We then compute the empirical function V̂ ε
T,s defined by (7.2).

2) we extract Ĥε
T (ω, κ, λ) as in (7.5), which is an estimator of Ĥ(ω, κ, λ).

3) we compute

W ε
T (k) = −

∫∫∫
ω−2c−2

0 (κ)Im
(
Ĥε

T

(
ω, κ, λ

))
δ(k − ωc0(κ)κ · λ)dκdλdω∫∫∫

δ(k − ωc0(κ)κ · λ)dκdλdω
. (7.9)

Here the integration is carried out over frequencies ω and transverse wavenumbers κ
for which we can estimate the spectral density, i.e. (ω, κ) ∈ Ω where Ω is defined by
(6.7). By a comparison (for instance, a least-square fit) with the theoretical formula:

W(k) = −

∫∫∫
ω−2c−2

0 (κ)Im
(
Ĥ

(
ω, κ, λ

))
δ(k − ωc0(κ)κ · λ)dκdλdω∫∫∫

δ(k − ωc0(κ)κ · λ)dκdλdω

=
γ0zs

4c4
0

sin2(kzs)

kzs
, (7.10)

we can estimate the position of the interface zs. We now apply this idea.
The numerical setup is the following. The randomly layered medium is stepwise

constant. The thickness of the elementary layers is lc = 0.05. The density is one, the
bulk modulus takes values 1/(1±δκ) independently in each layer with probability 1/2,
the parameter δκ = 0.1 for z ∈ (−zs, 0) and δκ = 0 for z ∈ (−L,−zs), with L = 500
and zs = 100. Therefore γ0 = δ2

κlc = 0.0005. The background velocity and impedance
are both equal to one, and the dissipation coefficient is constant σ0 = σ1 = 0.0005.
This means that the interface is characterized by a jump in the statistical properties
of the medium fluctuations only. Note that the dissipation distance Ldis = ζ0/(2σ0) =
1000 and the localization length (4c2

0)/(γ0ω
2) = 2000 for ω = 2 are both larger than

zs, which means that the approximate formula (7.8) for the theoretical function Ĥ is
relevant.

We have performed 1000 simulations. For each of them we compute the function
W ε

T (k). Note that we do not average over the realizations of the random medium. In
Figure 7.4a we plot the theoretical function W(k) and the empirical functions W ε

T (k)
corresponding to the first 100 simulations. One can see that the empirical functions
are reasonably stable, in particular the location of the minimum is always close to
the theoretical value. Motivated by this observation, we propose to use this minimum
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Fig. 7.4. Picture a: Empirical functions k 7→ W ε

T
(k) (dashed lines) and theoretical function

k → W(k) (thick solid line). Picture b: Histogram of the estimated values of the depth of the
interface over 1000 simulations. The real depth is zs = 100.

to estimate the depth of the interface. In Figure 7.4b we plot the histogram of the
estimations, whose numerical mean value is 102 and numerical standard deviation
is 11. This means that the proposed method for the estimation of the depth of the
interface has an accuracy of the order of 10%.

8. Summary. We summarize here the main aspects of the framework that we
have set forth.

Deep-Earth Noise Sources. The sources in our problem are a zero-mean
stationary in time random field located at the depth z = −L. The spectrum of the
noise sources is given in (2.3). In our context F plays the role of source wavelet, G
describes the spatial source coherence, θ gives the spatial locality of the noise sources
and α corresponds to a source directivity vector. Here we make an assumption about
separability, that is, factorization into microscale coherence factors (F and G) and a
macroscale modulation (θ) factor. This property is used in the source deconvolution
step described below. We also assume spatial diversity of the noise source probing, so
that in particular θ is not constant, only then will the data contain useful information
about the medium.

Scale Separation. From (2.3) it is clear that the decoherence time and length
of the random sources are of order ε ≪ 1. This corresponds to a situation with
high-frequency waves. We also assume that the microscale random fluctuations have
a characteristic scale of variation which is ε2, while the depth of the random section L
is O(1). This separation of scales assumption enables us to make use of asymptotic
results to describe the wave field correlations via diffusion or white-noise approxima-
tions [8] combined with a high-frequency analysis and from this we can get expressions
for the wave field spectrum, as in Proposition 4.1.

Measurements and Second Moment Information. A main aspect of our
framework is that we use incoherent waves generated by deep random noise sources
and emerging at the surface from a randomly layered medium to image for the macro-
scale parameters of the medium. The observations are therefore incoherent and we
convert them to the empirical cross correlations in (2.4) in order to extract useful
medium information. We assume that the recording time T is large so that the
empirical cross correlations can be replaced by the statistical cross correlations in
(2.6). We remark that in our idealized setup we assume observations everywhere on
the surface. The case with more restricted sampling would entail a degradation of
resolution and stability.
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Quantities of Interest. The quantities of interest are the macroscopic medium
properties, that is, the background or effective medium local speed of sound c(z), the
effective impedance ζ(z), the dissipation σ(z), and the scattering coefficient γ(z) of the
random microstructure, see Section 4. We assume that the background impedance
ζ(z) is smooth. This means that there are no strong coherent reflectors in our formu-
lation, the main scattering is the one associated with the microstructure. Here, the
background velocity is also chosen to be smooth, see [8, Chapter 11] for an example
with an inverse problem in the context where this has a jump.

Source Deconvolution and Mesoscale Smoothing. A main result in the
paper is the expression (5.3) for the correlation data (in the limit of separation of
scales). The spectral kernel U gives the second moment of the generalized transmis-
sion coefficient T ε (in the limit of separation of scales) that in turn gives the coupling
of the medium to the vertical velocity at the surface. This kernel contains all use-
ful information about the medium that can be obtained from the correlation data.
To elucidate this information we carry out the specific Fourier transform in (6.1).
We have now identified the medium information more explicitly, but at a cost. The
resulting information, given in (6.2), directly gives the cross moment of the general-
ized transmission coefficient, however, it is noisy and exhibits statistical fluctuations
around its mean in (6.3). To reduce the fluctuations around the mean we therefore
carry out an a priori mesoscale smoothing step as in (6.4), exploiting rapid decoher-
ence in frequency and wavenumber. In order to articulate the medium information
further we then compute the source deconvolution in (6.6), to remove the effect of the
source. To “lay bare” the spectral kernel itself we next carry out the specific Fourier
inverse in (6.10). We have then arrived at the important preprocessed imaging data.
The theoretical expression for the imaging data is given in (6.9). We see that indeed
this is essentially the spectral kernel that we aimed to identify, it is exactly so in the
non-dissipative case. The further processing depends on the specific imaging objective
and our prior hypothesis for the structure of the macroscale that we want to identify,
we discuss the specific case of interface detection in the paper. We stress however
that until this point the framework is general and can be used in the context of other
imaging problems. Note that in [1] it is shown how knowledge of a spectral kernel
can be used for estimation of smooth background parameters. We remark however
here that the principal challenge in practical imaging is that the imaging data is not
statistically stable due to a finite scale separation, this essentially means that we are
not quite in the averaging limit of the imaging data to its mean in (6.9).

Background Deconvolution and Interface Imaging. The underlying theo-
retical result of this paper is described in Section 4.2. It describes the autocorrelation
function of the generalized transmission coefficient in terms of the spectral density
U . This can be used to relate the imaging functional to macroscopic medium fea-
tures and guide the construction of the imaging functional. At present inverting for
a general background profile seems challenging due to lack of statistical stability of
imaging data for realistic levels of scale separation. It is however remarkable that we
can invert for the location of a jump in the scattering coefficient assuming a constant
background profile (c0, ζ0). This procedure takes the quantity V̂ ε

T defined by (7.2) as
it starting point. We deconvolve with respect to the background, that is, we divide by
its value in the case without microscale fluctuations, given in (7.4), to form the source

and background deconvolved data Ĥε
T . The main challenge is to regain statistical

stability and, rather than inverting for the spectral kernel, we are able to integrate
partially in κ, λ and ω in a way that is intended to create optimal stability while
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leaving information about the location of the jump intact to create W ε
T in (7.9). We

finally remark that the imaginary part of Ĥε
T is most sensitive to the location and

the one we use in creating W ε
T , in fact this corresponds to filtering out the directly

transmitted wave and retaining the imaginary part of the regular spectral component
that exhibits the interface location.

We remark that the framework we have presented can be generalized to the case
with random sources at the surface. The coinage backlight has been used for this
configuration [10]. The situation can be analyzed in terms of analytic expressions for
the spectral density of the associated reflection operators [8], with the corresponding
kernel replacing U , however, the image processing parallels the one presented here.
The situation with weak interface zones and imaging of these in the case of ambient
noise can be handled using an adaption of the techniques presented in [11]. In the
paper [11] is also presented a further discussion of the spectral density U , which indeed
is the central quantity in the context of imaging with incoherent waves.

9. Conclusion. In this paper we have investigated how information about the
background medium and macroscale parameters can be retrieved from cross correla-
tions of noisy signals when the medium is randomly layered. We have considered the
situation when the noise sources are located in the subsurface and the wave fields are
recorded at the surface. The recorded wave fields are the waves transmitted through
the medium and they contain information about the slowly varying background and
the statistical properties of the small-scale random fluctuations.

We have shown that it is theoretically possible to reconstruct the slowly varying
background velocity, scattering coefficient and dissipation parameter if the bandwidth
of the noise sources is large enough and if the spatial support function θ(x) of the

noise sources satisfies the condition θ̂(k) 6= 0 for almost every k. This result holds
in an asymptotic framework where the decoherence length of the medium is much
smaller than the typical wavelength of the signals generated by the noise sources,
which is itself much smaller than the macroscopic scale of variation of the background
medium. If, for instance, the spatial support of the noise sources is uniform, then it
is not possible to reconstruct the background medium.

We have emphasized in our discussion that an important practical issue is sta-
tistical stability. The cross correlation is statistically stable with respect to the dis-
tribution of the sources, provided the integration time is large enough. However the
statistical stability of the cross correlation with respect to the distribution of the ran-
dom medium requires a large separation of scales between the decoherence length of
the random fluctuations of the medium and the typical wavelength of the noise sources
on the one hand, and a large separation of scales between the typical wavelength of
the noise sources and the macroscopic scale of variations of the background medium
on the other hand. This large separation of scales may not be achieved in practice
and it is therefore desirable to seek ways of averaging to regain statistical stability.
In typical situations averaging over the medium is not possible. There is only one
realization of the random earth say. We remark that there may be situations in which
the medium is not perfectly layered and in which the microscale variations decorrelate
faster than the background changes, so that one can exploit averaging over measure-
ments with lateral offsets. This situation is however delicate, the full analysis of such
a situation is an open question. What is important here is that we have been able
to show that even in the case with a perfectly layered model and scale parameters
that are motivated by typical acquisition situations we have been able to stabilize the
data and invert for medium parameters. This we have achieved via averaging over
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frequency and wavenumbers. In conclusion, we have proposed a robust algorithms to
detect an interface in the medium and we have shown that it is possible to retrieve
the interface position under reasonable conditions. Detection of such interfaces or
boundaries in between geological facies is an important model problem in seismology.
From the theoretical viewpoint much more is however possible. We have shown that
in fact the whole (assumed smooth) background velocity profile of the medium can be
reconstructed from the observations of the incoherent waves measured at the surface
that is induced by the (statistically stationary in time) noise sources that are located
deep inside the medium. What prevents us from exploiting this theoretical result at
present is the lack of statistical stability with respect to the medium fluctuations in
situations where the scale separations are chosen to reflect typical acquisition configu-
rations. The reconstruction of an arbitrary background velocity profile is thus possible
in theory, albeit seems difficult in practice, unless several independent realizations of
the medium can be exploited for averaging.

Appendix A. Derivation of the Integral Representation of the Recorded
Field. We use the same approach as in [8] using a propagator formulation. We first
take a Fourier transform in the time and transverse spatial coordinates:

p̂ε(ω, κ, z) =

∫∫
pε(t, x, z)ei ω

ε
(t−κ·x)dtdx,

ûε(ω, κ, z) =

∫∫
uε(t, x, z)ei ω

ε
(t−κ·x)dtdx.

We next introduce the right- and left-going modes defined by

âε(ω, κ, z) =
( 1√

ζ(κ, z)
p̂ε(ω, κ, z) +

√
ζ(κ, z)ûε(ω, κ, z)

)
e−i ω

ε
τ(κ,z),

b̂ε(ω, κ, z) =
(
−

1√
ζ(κ, z)

p̂ε(ω, κ, z) +
√

ζ(κ, z)ûε(ω, κ, z)
)
ei ω

ε
τ(κ,z).

The pressure release boundary condition is p̂ε = 0, or equivalently

âε(ω, κ, 0) = b̂ε(ω, κ, 0). (A.1)

The jump conditions across the source plane at z = −L are

[p̂ε]
(−L)+

(−L)− = f̂z, [ûε]
(−L)+

(−L)− =
iω

ρ(−L)iω − εσ(−L)
κ · f̂x,

which gives with the radiation condition âε(ω, κ, (−L)−) = 0:

âε(ω, κ, (−L)+) =
( f̂z√

ζ(κ,−L)
+

iω
√

ζ(κ,−L)

ρ(−L)iω − εσ(−L)
κ·fx

)
(ω, κ)e−i ω

ε
τ(κ,−L). (A.2)

We introduce the propagator matrix, that is the 2 × 2 matrix such that, for any
−L ≤ z0 ≤ z ≤ 0:

Pε(ω, κ, z0, z)

[
âε(ω, κ, z0)

b̂ε(ω, κ, z0)

]
=

[
âε(ω, κ, z)

b̂ε(ω, κ, z)

]
. (A.3)

The propagator matrix is the solution of the linear system

dPε

dz
= Mε(ω, κ, z)Pε, (A.4)
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Fig. A.1. Reflection and transmission coefficients.

with the initial condition Pε(ω, κ, z0, z0) = I and the 2 × 2 matrix Mε given by

M ε
11(z) =

iωc(κ, z)

2c2(z)ε
ν
(
z,

z

ε2

)
−

σ(z)

2ζ(z)

c(κ, z)

c(z)
,

M ε
21(z) =

[ iωc(κ, z)

2c2(z)ε
ν
(
z,

z

ε2

)
−

σ(z)

2ζ(z)

c(κ, z)

c(z)
(1 − 2c2(z)κ2) +

ζ′(κ, z)

2ζ(κ, z)

]
e2i ω

ε
τ(κ,z),

M12(z) =
[
−

iωc(κ, z)

2c2(z)ε
ν
(
z,

z

ε2

)
+

σ(z)

2ζ(z)

c(κ, z)

c(z)
(1 − 2c2(z)κ2) +

ζ′(κ, z)

2ζ(κ, z)

]
e−2i ω

ε
τ(κ,z),

M ε
22(z) = −

iωc(κ, z)

2c2(z)ε
ν
(
z,

z

ε2

)
+

σ(z)

2ζ(z)

c(κ, z)

c(z)
= −M ε

11(z).

Note that Pε(ω, κ, z0, z) depends on κ only through the modulus κ = |κ|.
We introduce the transmission and reflection coefficients (T ε

ω,κ, Rε
ω,κ) defined by

the relation

Pε(ω, κ,−L, z)

[
0

T ε
ω,κ(−L, z)

]
=

[
Rε

ω,κ(−L, z)
1

]
, (A.5)

which corresponds to the scattering problem for a unit-power incident plane wave
incoming from the right half-space and probing the inhomogeneous layer in (−L, z)
with matched (transparent) boundary conditions (see Figure A.1). By inverting this
matrix-vector relation we get

T ε
ω,κ =

1

P ε
22(ω, κ,−L, z)

, Rε
ω,κ =

P ε
12(ω, κ,−L, z)

P ε
22(ω, κ,−L, z)

.

From the relation (A.3) with z0 = −L and z = 0, we get

âε(ω, κ, 0) =
P ε

11P
ε
22(ω, κ,−L, 0)− P ε

12P
ε
21(ω, κ,−L, 0)

P ε
22(ω, κ,−L, 0)− P ε

12(ω, κ,−L, 0)
âε(ω, κ, (−L)+)

=

(
detPε(ω, κ,−L, 0)

)
T ε

ω,κ(−L, 0)

1 − Rε
ω,κ(−L, 0)

âε(ω, κ, (−L)+).

Since Mε has trace zero we have ∂z

(
detPε

)
=

(
TrMε

)(
detPε

)
= 0, and there-

fore detPε = 1. This simplifies the expression of the transmitted right-going wave
amplitude

âε(ω, κ, 0) =
T ε

ω,κ

1 − Rε
ω,κ

âε(ω, κ, (−L)+).

Substituting (A.2) into this expression and taking into account (A.1) gives (4.5).
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