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Abstract

We present a method for numerical wave propagation in a heterogeneous medium.

The medium is defined in terms of an extended scatterer or target which is surrounded

by many small scatterers. By extending the classic Foldy-Lax formulation we developed

an efficient algorithm for numerical wave propagation in two dimension. In the method

that we set forth multiple scattering among the point scatterers and the extended target

is fully taken into account via a boundary integral formulation coupled with the Foldy-

Lax formulation. This formulation forms the basis for our numerical procedure.



Keywords: Helmholtz equation, numerical wave propagation, Foldy-Lax, bound-

ary integral equation, scattering.

1 Introduction

The original Foldy-Lax formulation gives a model for the scattered wave-field, at a

particular frequency, in the case of a collection of point scatterers. In this idealized

situation of a cluttered medium the scattered field derives from the solution of a linear

system. Therefore, despite a very complicated scattering picture with multiples of all

orders, the scattered field can be computed very effectively. In many situations one

wishes however to simulate waves in a cluttered medium with an imbedded extended

scatterer. This is for instance the case when one wants to use the numerical scheme

for assessment of schemes for imaging in a cluttered environment. Then one typically

needs to solve a forward problem corresponding to numerical wave propagation in the

heterogeneous medium. This is a challenging task that in general involves phenomena

on many scales, in particular the scales of the medium variations, the wave-length and

the propagation distance. In the approach we take here the medium clutter is modeled

by a set of point scatterers and the extended object by a connected region with a smooth

boundary. We developed here an efficient numerical algorithm by extending the original

Foldy-Lax formulation to this case with an embedded extended scatterer. We remark

that in the motivating application to imaging it is important to resolve the geometry

of the extended target and the effect it has on the scattered field. In the case with

only an extended scatterer present the scattered field can be computed effectively using

various numerical methods, while in the case of only point scatterers the Foldy-Lax

method can be used. The challenge here is to combine methods such that the multiple

scattering in between the extended scatterer and the multiple scatterers is taken into

account, ideally without increasing significantly the computational complexity relative

to the original algorithms.
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In our approach we use the extended boundary condition method (EBCM), a bound-

ary integral formulation, to compute the scattering operator (matrix) associated with

the extended target with Dirichlet boundary condition. The method can generalize to

other boundary conditions without difficulty. Then, we derive a coupled linear system

to capture the multiple scattering between the extended target and the collection of

point scatterers. We consider the model problem in 2D only, it is possible to generalize

to three dimension case.

A main aspect of our approach is that the free space Green function can be used

for propagation in between the scatterers. As a consequence we do not have to solve

any partial differential equation numerically and we can deal with long propagation

distances and a large number of point scatterers, which is important when we are

dealing with phenomena in the far field.

The outline of the paper is as follows. In Section 2 we briefly review the Foldy-

Lax formation for point scatterers and in Section 3 the extended boundary condition

method for extended targets. In Section 4 we present our approach which integrates

the two methods. Finally, in Section 5, we present some numerical results. Through-

out the paper we consider a scalar wave field in the frequency domain so that the

governing equation is the Helmholtz equation. The problem set-up is illustrated in

Figure 1. A time-harmonic source generates a wave that is impinging on a heteroge-

neous medium consisting of an extended scatterer embedded in a background medium

of point scatterers. Our main objective is to compute the resulting scattered field.

2 Foldy-Lax System for Point Scatterers

We consider here a collection of N point scatterers in a homogeneous medium and

describe how the Foldy-Lax method can be used to model the scattered field, see

[5, 6, 7] for a more detailed description. Let φinc(r) denote the incident wave-field
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Figure 1: Physical setup of the problem. A source generates a wave that is impinging on

a heterogeneous medium consisting of an extended scatterer embedded in a background

medium of point scatterers.

generated by the source. Each scatterer will now have impinging upon it this incident

wave in addition to the total scattered field from all the other scatterers.

Given a single scatterer at rj, and a field φE
j ( the exciting field ) impinging upon

it, the scattered field from it and evaluated at r is then modeled by:

φj,sca(r) = σjg(r, rj)φ
E
j ,

where σj is the scattering amplitude and g(r, r′) is the free space Green function sat-

isfying the Helmholtz equation:

(∇2 + k2)g(r, r′) = −δ(r − r′).

In our notation, we suppress the dependence of the Green function on the wave

number k. For N point scatterers at r1, r2, · · · , rN , the scattered field is given by:

φsca(r) =

N
∑

j=1

σjg(r, rj)φ
E
j , (1)

where φE
j is the exciting field at point scatterer rj. The exciting fields at the point

scatterers are now coupled via the linear system:

φE
j = φinc(rj) +

N
∑

l=1,l 6=j

σlg(rj, rl)φ
E
l . (2)
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We rewrite (2) in the following form:

φj = bj +

N
∑

l=1,l 6=j

Bjlφl,

where φj = φE
j , Bjl = σlg(rj, rl) and bj = φinc(rj).

Define now the matrix Z:

Zij =







1, if i = j,

−Bij , if i 6= j.
(3)

Then (2) is in the matrix form:

Z φ = b, (4)

where φ and b are vectors with φl and bl as components respectively. It is clear that Z

is invertible for the σj ’s sufficiently small.

After solving the above linear system, we obtain the scattered field from (2).

3 Extended Boundary Condition Method

We introduce next the Extended Boundary Condition Method for computing the scat-

tered field from an extended target in a homogeneous medium. We let D be a bounded

simply connected domain which define the support of the scatterer and we shall here

consider the case with two space dimensions. The smooth boundary of D is denoted

S = ∂D. We then consider the following scalar wave equation in the exterior of D:

(∇2 + k2)φ(r) = q(r) in R2\D, (5)

φ(r) = 0 on S. (6)

Note that we assume a Dirichlet boundary condition at the target. That is, for sim-

plicity we choose here a sound-soft obstacle, however, the method we shall introduce

generalizes to other boundary conditions.
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By applying Green’s theorem to the above Helmholtz equation, we obtain the fol-

lowing boundary integral equations:

φinc(r) −
∫

S

ds′n̂ · [g(r, r′)∇′φ(r′)] = 0, r ∈ D, (7)

φinc(r) −
∫

S

ds′n̂ · [g(r, r′)∇′φ(r′)] = φ(r), r ∈ R2\D, (8)

where we have used the expression

φinc(r) = −
∫

R2\D

dA′g(r, r′)q(r′),

for the incoming field generated by the source, and n̂ is the exterior unit normal

direction. We can now first solve for n̂ · ∇φ on the boundary S from the equation (7),

and then in a second step obtain the scattered field from (8).

The extended-boundary-condition method, developed by Waterman [9, 10] is an

alternative to solving the above boundary integral equation. In this method, the inte-

gral equations are imposed not on the boundary S, but on some extended boundary

S1 and S2 away from S. The boundary S2 is a circle inside of the domain D, while S1

is a circle which contains the region D. We choose the origin of the coordinate system

to be inside of S2 such that |rin| < |r| < |rout|, for rin ∈ S2, r ∈ S, rout ∈ S1. This

configuration is illustrated in Figure 3.

In a homogeneous medium, by the additional theorem [4], the Helmholtz Green’s

function can be expanded as:

g(r, r′) = i
∞
∑

n=−∞

Sn(r)Rn(r′), for |r| > |r′| (9)

where Sn represents an outgoing wave cylindrical harmonic, and Rn is the real part of

Sn: Rn = Real Sn.
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Figure 2: The figure shows the Physical Boundary, S, of the extended scatterer and

the “Extended Boundary” S1&S2.

We have explicitly, for r = (|r|, α) in polar coordinates

n = 0, S0(r) = H
(1)
0 (k|r|)/2,

R0(r) = J0(k|r|)/2,

n < 0, Sn(r) = H(1)
n (k|r|) cos(nα)/

√
2,

Rn(r) = Jn(k|r|) cos(nα)/
√

2,

n > 0, Sn(r) = H(1)
n (k|r|) sin(nα)/

√
2,

Rn(r) = Jn(k|r|) sin(nα)/
√

2,

whereH
(1)
n and Jn are Hankel function and Bessel functions of the first kind respectively.

Using reciprocity we find that the incident wave from a point source at r0 can be

expanded as:

φinc(r) = g(r, r0) = i
∑

n

Sn(r0)Rn(r) ≡
∑

n

anRn(r),

so that

an = iSn(r0). (10)

We moreover expand the unknown on the boundary S as

n̂ · ∇φ(r) =
∑

m

bmn̂ · ∇Rm(r), r ∈ S, (11)
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We next describe the approach that gives these unknowns in terms of the incident

wave. First, on the interior boundary S2, we substitute the above expansion into

equation (7):

∑

n

anRn(r) = i

∫

S

ds′
∑

m

bmn̂ · ∇′Rm(r′)
∑

n

Sn(r′)Rn(r).

From the orthogonality of the cylindrical harmonics, we then have that:

an = i
∑

m

bm

∫

S

ds′[Sn(r′)n̂ · ∇′Rm(r′)]

≡ i
∑

m

bmQnm, (12)

where

Qnm =

∫

S

ds′ [Sn(r′)n̂ · ∇′Rm(r′)] . (13)

Once the above linear system (12) is solved for bm, the scattered field can be found

by the following. On the exterior boundary S1, we write

φsca(r) = φ(r) − φinc(r) (14)

≡
∑

n

fnSn(r).

Then we readily deduce from (8) and (9) that

fn = −i
∫

S

ds′Rn(r′)n̂ ·
[

∑

m

bm∇′Rm(r′)

]

(15)

= −i
∑

m

bm

∫

S

ds′ [Rn(r′)n̂ · ∇′Rm(r′)]

= −i
∑

m

bmReal[Qnm].

Consequently, we have

a = iQ · b
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f = −iReal[Q] · b = −Real[Q] ·Q−1 · a

where a,b and f are vectors with an, bn and fn as components respectively, and Q is a

matrix with elements Qmn. We remark here that what was important for us here was

the existence of S1 and S2 not their particular radii, however, we will see below that a

small condition number in the sense that these radii are close give a fast convergence

for the numerical method.

Note that the matrix Q is of infinite-dimensional, in numerical simulation, it is

truncated to finite-dimensional matrix.

We remark that if we want to compute the scattered field from another point source

we need only recompute a using (10) while Q is not affected. At the internal resonance

of the cavity formed by S, the matrix Q is ill-conditioned. This problem can be

overcome by using a complete set to expand the surface sources, see [11] for details.

Here, we exclude situations with internal resonances for simplicity.

We now define the scattering matrix T that relate the scattered wave amplitude to

the incoming wave amplitude

T = −Real[Q] · Q−1 (16)

f = T · a.

Note that once the scattering matrix T for one target is found, it can be used collec-

tively with the scattering matrices of the other scatterers to construct recursively the

scattered wave field by many targets [11].

The EBCM is also known as the null-field approach, and the convergence has been

studied in [1, 2].
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4 The Coupled Scattering System

We finally consider multiple scattering between the extended target and the point

scatterers. In this case we can write the scattered field as

φsca(r) =
N
∑

j=1

σjg(r, rj)φ
E
j −

∫

S

ds′n̂ · [g(r, r′)∇′φE(r′)], r ∈ R2\D, (17)

where we denoted the exciting ‘fields’ at the point scatterers by φE
j and at the extended

scatterer by φE(r′) respectively. Below we shall obtain a coupled infinite dimensional

system for the exciting field at the point scatterers and the coefficients in a cylindrical

harmonics expansion of the exciting field at the extended scatterer. The numerical

implementation in the Section 5 is based on a finite dimensional approximation of this

system.

For |r| > maxj |rj| we write the scattered field by all scatterers as

ψF
out =

∑

n

φF
out(n)Sn(r), (18)

and the incoming field due to the source by

ψF
inc =

∑

n

φF
inc(n)Rn(r). (19)

We now assume

Assumption 4.1 minj |rj| > maxr∈S |r|.

This means that we can define a non-empty annulus outside of the extended scatterer

and inside of the point scatterers. For r such that (max |r′| for r′ ∈ S) < |r| < minj |rj|
we write the incoming field due to the source and scattering off the point scatterers as

ψN
inc =

∑

n

φN
inc(n)Rn(r), (20)
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Figure 3: Multiple Scattering Operators

and the field scattered by the extended scatter as

ψN
out =

∑

n

φN
out(n)Sn(r). (21)

We now introduce the linear operators :

TRR = I + AZ−1C, (22)

TSS = I + HZ−1P, (23)

TRS = AZ−1P, (24)

TSR = HZ−1C, (25)

TX = −Real(Q)Q−1, (26)

with

Anj = iσjSn(rj), Hnj = iσjRn(rj), Cjn = Rn(rj), Pjn = Sn(rj).

We then have the system




φN
inc

φF
out



 =





TRR TRS

TSR TSS









φF
inc

φN
out



 , (27)

moreover, we have

φN
out = TXφN

inc. (28)
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This gives then

φN
inc = TRRφF

inc + TRSTXφN
inc,

so that

φN
inc = (I − TRSTX)−1TRRφF

inc, (29)

φF
out =

(

TSR + TSSTX(I − TRSTX)−1TRR

)

φF
inc. (30)

We give the detailed derivation in Appendix A.

5 Numerical Examples

In this section, we will show four numerical examples. We used 31 terms in the wave

function expansions, n = −15, · · · , 15, in these simulation. Consequently, the size of

matrix Q is 31 × 31. With n = 15, the error in the expansion in (9) is less than 10−10

for our test examples.

The wavelength is chosen as the unit in our examples and figures. We used two

types of extended target. The first target is a disk, the second is a half disk plus a

cone, see Figure 4. The radius of disk is 3 wavelengths.

&%
'$

Target 1

'
&

@
@

�
�

Target 2

Figure 4: Geometries of the extended targets.

In the first example in Figure 5, the extended target is the disk. The source is 12

wavelength away from the left side of the target. We put one point scatterer on top
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of the target (3 wavelengths away). The left figure plots then the wave field, while

the right figure plots the difference wave field with or without the point scatterer. We

see clearly that the difference field contains strong reflections from the top part of the

target due to multiple scattering between the point scatterer and the extended target.

This information can be used to image the top part of the target.
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Figure 5: Example 1; Target 1 and one point scatterer.

In the second example, in Figure 6, the setting is as before, but the extended target

is the Target 2. We remark that we do not evaluate the wave field inside the disk

since we are interested in the scattered field. We see that the difference field has a

different pattern from Example 1. This phenomenon can be exploited for classification

purposes.

In the third example, in Figure 7, we randomly put 200 point scatterers surrounding

the Target 2. In this case the difference field corresponding to specular reflection from

the target and scattering from the tip of the cone (as in the previous example) is

relatively strongest. We remark that with our approach we can easily handle a large

number of point scatterers, e.g. thousands.

In the last example, in Figure 8, the source is 1000 wavelengths away from the

Target 2. There are 10 random point scatterers surrounding the target. Note how
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Figure 6: Example 2; Target 2 and one point scatterer.
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Figure 7: Example 3; Target 2 and 200 point scatterers.
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the difference field gives information about the location of the point targets and also

information about the geometry of the extended target via the point scatterers. The

example illustrates that we easily can resolve far field phenomena. The main computa-

tion is the formation of the matrix Q, in which we used adaptive Simpson quadrature.
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(1) a. Wave field (2) b. Difference field

Figure 8: Example 4. Source in far field.

We conclude that we have been able to calculate the scattered fields in the Foldy-

Lax formulation in the presence of an extended scatterer, a situation corresponding to

a strong separation of scales and where using discretization of the Helmholtz equation

would have been very expensive.

6 Conclusion

We have developed an efficient numerical algorithm to simulate multiple scattering

among point scatterers and extended targets in 2D. In our algorithm the free space

Green’s function is used and no partial differential equations need to be discretized

and solved. The main computational cost is the formation of the matrix Q. In our

approach we can easily deal with long propagation distances and large number of point

scatterers. Extension to 3D is being studied.
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A Generalized Foldy Lax System

In this appendix we derive the generalized Foldy Lax formulation that gives the exciting

field at the extended scatterer and the point scatterer. The excited field can then be

used to compute the scattered field at any point in the domain.

Let the exciting field at the scatterers be denoted by

φE
j = φ(rj), 1 ≤ j ≤ N.

The impinging (far field) source field may for instance be generated by a set of point

sources. We write it as in (19) :

ψF
inc(r) =

∑

n

φF
inc(n)Rn(r).

The incoming field on S2, see Figure 3, is now

φinc(r) =

∞
∑

n=−∞

Rn(r)φF
inc(n) +

N
∑

j=1

σjφ
E
j g(r, rj)

=
∞
∑

n=−∞

Rn(r)φF
inc(n) + i

N
∑

j=1

σjφ
E
j

∞
∑

n=−∞

Sn(rj)Rn(r)

=
∞
∑

n=−∞

(

φF
inc(n) +

N
∑

j=1

Anjφ
E
j

)

Rn(r)

= R(r) ·
(

φF
inc + AφE

)

,

with

Anj = iσjSn(rj) .

We then use (7) and (11) to find for r ∈ S2

(

φF
inc + AφE

)

· R(r) = i
∑

m

bm

∫

S

ds′
∞
∑

n=−∞

[Sn(r′)n̂ · ∇′Rm(r′)]Rn(r)

= iQb · R(r),
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and in view of the orthogonality of the cylindrical harmonics

φF
inc + AφE = iQb, (31)

which generalizes the relation (12).

Next, let |r| > maxr∈S |r| and write the field scattered by the extended scatterer as

φsca(r) =

∞
∑

n=−∞

fX
n Sn(r),

then we have as in (15)

fX = −iReal(Q)b,

with b defined as in (11). In view of (31) we then find

fX = −Real(Q)Q−1
(

φF
inc + AφE

)

. (32)

The exciting field at the scatterers can now be identified as

φE
j = R(rj) · φF

inc +

N
∑

l=16=j

σlg(rj, rl)φ
E
l +

∞
∑

n=−∞

fX
n Sn(rj), 1 ≤ j ≤ N.

We write these relations in the form

ZφE = CφF
inc + PfX, (33)

for Z defined in (3) and

Cjn = Rn(rj), Pjn = Sn(rj).

From (32) and (33) we then find

fX = −Real(Q)Q−1
(

φF
inc + AZ−1

(

CφF
inc + PfX

))

,

so that

fX =
[

I +Real(Q)Q−1AZ−1P
]−1 (−Real(Q)Q−1

(

I + AZ−1C
))

φF
inc.
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Recall the operators introduced in Figure 3 and below:

TRR = I + AZ−1C,

TX = −Real(Q)Q−1,

TRS = AZ−1P,

then we have

fX = [I − TXTRS]−1
TXTRR φF

inc = TX [I − TRSTX ]−1
TRR φF

inc.

Finally, we derive the expression for the scattered field that is generated by the exciting

field at both the point scatterers and the extended scatterer. Let the point of field

evaluation, r, be such that |r| > maxj |rj|. The field generated by the exciting field at

the scatters is

φP
sca =

N
∑

j=1

φE
j σjg(r, rj) =

N
∑

j=1

φE
j σj

∞
∑

n=−∞

iSn(r)Rn(rj)

=
∞
∑

n=−∞

(

N
∑

j=1

Hnjφ
E
j

)

Sn(r) ≡
∞
∑

n=−∞

fP
n Sn(r),

for

Hnj = iσjRn(rj).

The total scattered wave field coefficients are then

fX + f
P

=
{

TX [I − TRSTX ]−1
TRR φF

inc + HZ−1
(

CφF
inc + PfX

)}

=
{

TX [I − TRSTX ]−1
TRR + HZ−1C + HZ−1PTX [I − TRSTX ]−1

TRR

}

φF
inc.

We again use a notation as in Figure 3:

φF
out = fX + f

P
,

TSS = I + HZ−1P, TSR = HZ−1C,
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to obtain

φF
out =

(

TSR + TSSTX [I− TRSTX ]−1
TRR

)

φF
inc,

which is (30).

We finally turn our interest to the total field impinging on the extended scatterer.

We write for r < minj |rj|

φinc(r) =
∞
∑

n=−∞

φN
inc(n)Rn(r)

and have then

φN
inc =

(

φF
inc + AφE

)

=
(

φF
inc + AZ−1CφF

inc + AZ−1PTX [I −TRSTX ]−1
TRR φF

inc

)

=
(

TRR + TRSTX [I− TRSTX ]−1
TRR

)

φF
inc

= [I − TRSTX ]−1
TRRφF

inc,

which is (29).
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