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Abstract. We consider the problem of locating perfectly conducting cracks and estimating
their geometric features from multi-static response matrix measurements at a single or multiple
frequencies. A main objective is to design specific crack detection rules and to analyze their
receiver operating characteristics and the associated signal-to-noise ratios. In this paper we in-
troduce an analytic framework that uses asymptotic expansions which are uniform with respect
to the wavelength-to-crack size ratio in combination with a hypothesis test based formulation to
construct specific procedures for detection of perfectly conducting cracks. A central ingredient in
our approach is the use of random matrix theory to characterize the signal space associated with
the multi-static response matrix measurements. We present numerical experiments to illustrate
some of our main findings.
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1. Introduction. The focus of this paper is on imaging small perfectly con-
ducting cracks from measurements at single or multiple frequencies. Our imaging
approach is based on asymptotic formulas for the signature of the crack which are
uniform with respect to the wavelength-to-crack size ratio.

We assume that we have coincident transmitter and receiver arrays of n ele-
ments. The multi-static response (MSR) matrix is the transmit-receive responses of
this array. The problem we consider is to detect, localize, and image the crack from
the MSR matrix measurements at single or multiple frequencies in the presence
of measurement noise. We construct different imaging functionals for imaging the
cracks from MSR measurements at a single or multiple frequencies. In particular,
MUSIC (which stands for MUltiple SIgnal Classification) and Kirchhoff-type algo-
rithms are investigated. Applying the techniques of statistical hypothesis testing we
derive a strategy for ruling on the presence/absence of a crack based on the intro-
duced imaging functionals. We revisit Berens’ modelling that was introduced in [7]
and derive, using our asymptotic formulas for the signature of the crack, appropri-
ate probability of detection functions. The detailed statistical analysis carried out
in this paper shows that the probability of false alarm is given in terms of a Tracy-
Widom distribution, which is a bell-shape function somewhat different from the
Gaussian distribution usually applied. Finally we perform numerical experiments
using the proposed algorithms to test their performance and efficiency.

The paper presents a general framework for imaging perfectly conducting cracks.
It proposes efficient imaging algorithms and establishes an approach for hypothesis
testing. The paper extends several recent results, concepts, and methods for imag-
ing cracks. Crack detection algorithms using electrostatic measurements have been
derived in [11, 10, 17]. In [5] a continuous model was considered and an asymptotic
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expansion of the boundary perturbations that are due to the presence of a small
crack was derived. Moreover, a MUSIC-type approach for locating the crack from
boundary measurements at a single frequency was designed. It was also shown that
the location and the length of the crack can be estimated from the projection onto
the noise space and the first significant singular value of the MSR matrix while
the direction of the crack can only be estimated from the second singular vector.
In this paper we integrate and extend these techniques by introducing an analytic
framework that uses asymptotic expansions which are uniform with respect to the
wavelength-to-crack size ratio in combination with a hypothesis test based formula-
tion to construct specific procedures for detection and characterization of cracks. A
central ingredient in our approach is the use of random matrix theory to characterize
the signal space associated with the MSR measurements.

The paper is organized as follows. In Section 2 an asymptotic formalism for
crack imaging is established. Imaging functionals to locate the cracks are introduced
in Section 3. Then, we present the test for detection of the crack, that is to rule on
whether it is present or not. This crucial test is based on analysis of the singular
values of the MSR matrix and is derived in Section 4. An extension of Berens’
modelling for crack detection is given in Section 5. In Section 6 we use the singular
vectors to estimate the location given that there is a crack present. In the location
estimation we introduce a location dependent threshold to the test whether a search
point is associated with a crack or not. In Section 7, an optimization algorithm for
reconstructing the crack orientation is presented. We illustrate with some numerical
examples in Section 8. The paper ends with a discussion in Section 9. Some
background on the probabilistic framework together with a proof of the uniform
asymptotic expansion of the effect of a small crack are given in the appendices.

2. Asymptotic Modelling of Cracks. We shall consider the case where the
crack is perfectly conducting and the space dimension is 2. The crack Σc is a segment
characterized by its (half) length lc ∈ R

+, location xc ∈ R
2, and orientation tc ∈ S

1:

Σc =
{

xc + xtc, −lc ≤ x ≤ lc
}

.

We assume a transducer array with the transducers located at (xj = (x
(j)
1 , 0); j =

1, . . . , n), moreover, that the full MSR matrix is available. First, we assume that
there is no noise. The governing equation for the time-harmonic field u(j) emitted
by a source at xj is































∆u(j) +
ω2

c2
0

u(j) = −δxj
in R

2 \ Σc,

u(j) = 0 on Σc,
∣

∣

∣

( ∂

∂|x| − i
ω

c0

)(

u(j)(x) − Ĝ(ω, x, xj)
)
∣

∣

∣
= O(|x|−3/2),

(2.1)

where Ĝ is the time-harmonic Green’s function

Ĝ(ω, x, y) =
i

4
H

(1)
0

( ω

c0
|y − x|

)

, (2.2)

using the notation |y| = ‖y‖2. Here, H
(1)
0 is the zeroth order Hankel function of

the first kind.
We assume a high-frequency regime in which the distance L from the array

center point to the crack is much larger than the wavelength, which is itself much
larger than the crack length lc:

ωL

c0
≫ 1, εω :=

ωlc
c0

≪ 1. (2.3)
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We define the MSR matrix entries by Ajl := u(j)(xl)−Ĝ(ω, xl, xj) for j, l = 1, . . . , n.
In Appendix B we prove that the following asymptotic formula is valid when (2.3)
holds:

Ajl(ω) =
ic0

4ω
√

|xj − xc||xl − xc|
exp

(

iω

c0
(|xj − xc| + |xl − xc|)

)

×
[

1

ln( εω

4 ) + γ − iπ
2

− ε2
ω

2

((xj − xc) · t)((xl − xc) · t)
|xj − xc||xl − xc|

+ o(ε2
ω)

]

, (2.4)

where γ ≃ 0.577 is the Euler constant. Formula (2.4) gives not only the leading-
order term but also the second one in the perturbations due to the presence of the
crack. It shows that the direction of the crack is a second-order information and
therefore, harder to reconstruct than the location.

3. Estimation of Crack Location. We first recall some common imaging
functionals, which are functions of a search point in the search domain where we
are looking for cracks. In Section 6 we shall relate this to a location-dependent test
that is derived in a probabilistic framework.

Note that in the presence of a crack at xc the MSR matrix has the approximate
form

A ≃ τ(ω, xc)d(ω, xc)d(ω, xc)
T , (3.1)

with d(ω, xc) the normalized illumination vector

d(ω, xc) =
1

√

∑n
j=1

1
|xj−xc|

(

1
√

|xj − xc|
exp

( iω

c0
|xj − xc|

)

)

j=1,...,n

(3.2)

and τ(ω, xc) given by

τ(ω, xc) =
ic0

∑n
j=1

1
|xj−xc|

4ω
(

ln( εω

4 ) + γ − iπ
2

) . (3.3)

Here T denotes the transpose. The first singular value and singular vectors of the
Singular Value Decomposition (SVD) of the data

A = UΣV
T
,

satisfy Av1 = σ
(n)
1 u1 with the relations

u1 ≃ exp(iθ1)d, v1 ≃ exp(−iθ2)d, σ
(n)
1 ≃ |τ(ω, xc)|, (3.4)

with θ1 + θ2 = arg(τ(ω, xc)).
A MUSIC imaging functional at a single frequency ω is given by

IMU(ω, xS) :=
1

∣

∣

∣
d(ω, xS) −

(

u1(ω), d(ω, xS)
)

u1(ω)
∣

∣

∣

, (3.5)

where (a, b) = a · b. We contrast this with a more classical Kirchhoff migration
formulation which migrates traces to the search point xS :

IKM(ω, xS) := d(ω, xS)
T
A(ω)d(ω, xS). (3.6)

In terms of the SVD decomposition of the MSR matrix the Kirchhoff migration
functional can be written as

IKM(ω, xS) =

n
∑

l=1

(

d(ω, xS), ul(ω)
) (

d(ω, xS), vl(ω)
)

σ
(n)
l (ω). (3.7)
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In the case with one (sufficiently small) crack we have σ
(n)
1 ≫ σ

(n)
l , for all l =

2, . . . , n, and the Kirchhoff migration functional is dominated by the contribution
of the first singular value and vectors:

IKM(ω, xS) ≃
(

d(ω, xS), u1(ω)
) (

d(ω, xS), v1(ω)
)

σ
(n)
1 (ω). (3.8)

With measurements of the MSR matrix at multiple frequencies, (ωk)k=1,...,K ,
we can construct the imaging functional by summing over frequencies

IKMF(xS) :=
1

K

∑

ωk

d(ωk, xS)
T

A(ωk)d(ωk, xS) (3.9)

where K is the number of frequencies (ωk). An alternative imaging functional when
searching for a single crack is

IMT(xS) :=
1

K

∑

ωk

(

d(ωk, xS), u1(ωk)
) (

d(ωk, xS), v1(ωk)
)

, (3.10)

in which we have renormalized the information provided by the different modes, yet
retained phase coherency. Finally, it is also possible to use a matched field imaging
functional:

IMF(xS) :=
1

K

∑

ωk

∣

∣

∣
d(ωk, xS)

T
A(ωk)d(ωk, xS)

∣

∣

∣

2

, (3.11)

in which the phase coherence between the different frequency-dependent compo-
nents is not exploited. As we will see in Section 6, this makes sense when the
different frequency-dependent components are incoherent.

4. Singular Values of the Symmetrized Noisy MSR matrix. The crack
detection test that we will propose relies on the statistical properties of the MSR
matrix in the presence of noise. Here we will make use of recent results of random
matrix theory.

Consider the MSR matrix A in the presence of additive measurement noise:

A = A0 + W, (4.1)

where W is a complex Gaussian matrix which models additive measurement noise.
We assume that the entries of W are with mean zero and variance a2. In the
absence of a crack, the matrix A0 is 0. In the presence of a crack, the matrix A0 is
assumed to be a rank-one matrix and we denote by σ0 the nonzero singular value
of A0. As shown in the previous section, this holds true if the crack is small and
then σ0 = |τ(ω, xc)|.

We know by reciprocity that the response matrix in the absence of noise A0 is
symmetric. In order to reduce the noise variance of the off-diagonal entries of A,
we consider the symmetrized matrix

As =
1

2

(

A + AT
)

= A0 + Ws.

Then the entries of the symmetric matrix Ws are independent complex Gaussian
random variables with mean zero and variance a2/2 off the diagonal (j 6= l) and
a2 on the diagonal j = l. The symmetrization of the MSR matrix reduces the
variance of its off-diagonal entries by a factor of

√
2. We introduce the parameter

σc =
√

n/2a.

We denote by σ
(n)
1 ≥ σ

(n)
2 ≥ · · · ≥ σ

(n)
n the singular values of the MSR matrix

As sorted by decreasing order. We introduce the corresponding spectral measure:

N (n)([σu, σv]) =
1

n
Card

{

j ∈ {1, . . . , n}, σ
(n)
j ∈ [σu, σv]

}

, for any σu < σv.
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Note that N (n) is a counting measure which consists of a sum of Dirac masses:

N (n) =
1

n

n
∑

j=1

δ
σ

(n)
j

.

The singular value distribution of the MSR matrix in the absence
of crack. We first consider the symmetrized MSR matrix As in the absence of a
crack.

Proposition 4.1. 1. When n → ∞ the spectral measure N (n) almost surely
converges to the absolutely continuous measure N with compact support:

N([σu, σv]) =

∫ σv

σu

ρ(σ)dσ, ρ(σ) =
1

σc
ρqc

( σ

σc

)

,

where ρqc is the quarter-circle law given by

ρ(σ) =
1

σc
ρqc

( σ

σc

)

, ρqc(σ) =

{

1
π

√
4 − σ2 if 0 < σ ≤ 2,

0 otherwise.
(4.2)

2. When n → ∞ the normalized l2-norm of the singular values satisfies

n
[ 1

n

n
∑

j=1

(σ
(n)
j )2 − σ2

c

]

dist.
= N (σ2

c , 2σ4
c ),

where N (µ, σ2) stands for the normal distribution with mean µ and variance σ2,

and
dist.
= means “equal in distribution”.

Proof. The first point is standard in Random Matrix Theory [23]. The second
point follows from the explicit representation of the l2-norm of the singular values
in terms of the entries of the matrix:

n
∑

j=1

(σ
(n)
j )2 = Trace

(

(As)
T
As
)

=

n
∑

j=1

|As
jj |2 + 2

∑

j<l

|As
jl|2

and the use of the central limit theorem. Note that E(|As
jj |2) = a2, Var

(

|As
jj |2) =

a4, E(|As
jl|2) = a2/2, Var

(

|As
jl|2) = a4/4, for j 6= l, and As

jl are the entries of the
symmetric matrix As. Here E stands for the expectation (mean value), Var for the
variance. 2
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Fig. 4.1. Left figure: spectral measure for a complex symmetric Gaussian random matrix
with σc = 1 obtained from Monte Carlo simulations with n = 50 (solid) and compared with the
theoretical quarter-circle law (dashed). Right figure: probability density function of the normalized

maximal singular value Z1 = 22/3n2/3(max σ
(n)
j /σc − 2) obtained from Monte Carlo simulations

with n = 50 (solid) and compared with the theoretical Tracy-Widom distribution of type 1 (dashed).
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The largest singular value is 2σc up to a random correction of order σcn
−2/3:

σ
(n)
1

dist.
= σc

[

2 + 2−2/3n−2/3Z1 + o(n−2/3)
]

. (4.3)

The random correction Z1 follows a Tracy-Widom distribution of type 1 [20]:

P(Z1 ≤ z) =

∫ z

−∞

pTW1(x)dx = exp
(

− 1

2

∫ ∞

z

ϕ(x) + (x − z)ϕ2(x)dx
)

,

E(Z1) ≃ −1.21, Var(Z1) ≃ 1.61,

where ϕ is the solution to the Painlevé equation

ϕ′′(x) = xϕ(x) + 2ϕ(x)3, ϕ(x) ≃ Ai(x), x → ∞, (4.4)

Ai being the Airy function (see Fig. 4.1). Without the symmetrization of the MSR
matrix we have a similar result but with a Tracy-Widom distribution of type 2.

Note that the random correction to the maximal singular value has a relative
amplitude of the order of n−2/3, while the random correction to the l2-norm has a
relative amplitude of order n−1. Let the ratio R of the first singular value over the
l2-norm of the other singular values be defined by

R :=
σ

(n)
1

(

1
n−1

∑n
j=2

(

σ
(n)
j

)2)1/2
. (4.5)

Therefore, using Slutsky’s theorem, we obtain the following result:
Proposition 4.2. In the absence of any crack, the ratio R defined by (4.5)

has the following statistical distribution

R
dist.
= 2 +

1

22/3n2/3
Z1, (4.6)

when n is large, where Z1 is a random variable independent of all parameters fol-
lowing a Tracy-Widom distribution of type 1.

This proposition describes the statistical distribution of the ratio (4.5) in the
absence of a crack. As we will see, it allows us to compute explicitly the threshold
of the likelihood-ratio test which is the most powerful test for a given false alarm
rate by the Neyman-Pearson lemma.

The singular value distribution of the MSR matrix in the presence
of crack. Now we turn to the case where the symmetrized MSR matrix As is
obtained with a single crack. Recall that σ0 is the nonzero singular value of A0

and σ
(n)
1 ≥ σ

(n)
2 ≥ σ

(n)
3 ≥ · · · ≥ σ

(n)
n are the singular values of the matrix As. For

large n, we can expand the distribution of the singular values and we obtain the
following results.

Proposition 4.3. When n → ∞:
a) If σc > σ0, then the largest singular value σ

(n)
1 obeys the same non-Gaussian

statistics (4.3) as in the absence of the crack.

b) If σc < σ0, then the largest singular value σ
(n)
1 obeys Gaussian statistics

with the mean and variance

E(σ
(n)
1 ) = σ0 + σ2

cσ−1
0 , Var

(

σ
(n)
1

)

=
1

n
σ2

c

(

1 − σ2
cσ−2

0

)

.

c) For any σc the second singular value σ
(n)
2 is equal to 2σc to leading order.

d) The normalized l2-norm of the n − 1 smallest singular values satisfies

n
[ 1

n − 1

n
∑

j=2

(σ
(n)
j )2 − σ2

c

]

dist.
= N (2σ2

c + σ2
0 − σ̄2

1 , 2σ4
c ),

where σ̄1 = 2σc if σc > σ0 and σ̄1 = σ0σ
2
cσ−1

0 if σc < σ0.
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Proof. Points a) and b) are proved in [18]. Point c) is proved in [13]. Point d) can
be proved by using the explicit representation of the l2-norm of the singular values
in terms of the entries of the matrix and the use of the central limit theorem. 2

Several interesting features can be observed:

• The noise generates many small singular values, whose largest one is σ
(n)
2

which is of the order of 2σc.
• The first singular value, σ

(n)
1 , corresponding to the crack, increases as the

noise increases. This is a manifestation of the level repulsion well-known in random

matrix theory [23]: the small singular values (and in particular σ
(n)
2 ) increase as the

noise increases, and the strong singular value is repelled.
• The first singular value, corresponding to the crack, and the second singular

value, that is the largest singular value generated by the noise, are well separated

as long as E(σ
(n)
1 ) > E(σ

(n)
2 ), i.e., σc < σ0. In the opposite case σc > σ0 it is not

possible to see the crack from the singular values.
We can now describe the ratio of the maximal singular value over the normalized

l2-norm as follows.
Proposition 4.4. Let us consider the symmetrized MSR matrix obtained in

the presence of measurement noise with a crack. For σc < σ0, the ratio R defined
by (4.5) has the following statistical distribution

R
dist.
=

σ0

σc
+

σc

σ0
+

1√
n

√

1 − σ2
cσ−2

0 N (0, 1). (4.7)

For σc > σ0 we have (4.6).
This proposition describes the statistical distribution of the ratio (4.5) in the

presence of a crack. It allows us to compute explicitly the power of the likelihood-
ratio test which is the most powerful test for a given false alarm rate by the Neyman-
Pearson lemma.

5. Berens’ Modelling Revisited. In [7] A.P. Berens introduced a frame-
work for analyzing schemes for nondestructive inspection methods, testing for the
presence of flaws. In this reliability analysis the probability of detection (POD) as
function of flaw size played a central role. In our notation the “flaw size” corre-
sponds to the parameter εω and we are thus interested in designing reliability tests
with a desirable performance in terms of the corresponding POD(εω) function. In
[7] a maximum likelihood approach was used for parameter estimation, and a log
normal distribution was in particular postulated for the response variable’s relation
to crack size. One parameter to be estimated is then the variance of the Gaussian
residual. Our approach here is to introduce a physical model for the measurements,
as we have described above, and then infer a corresponding “optimal” POD func-
tion that can be associated with the MSR matrix measurements. We describe the
picture deriving from this approach below, in fact, the resulting picture deviates
somewhat from that deriving from Berens’ modelling.

Consider the imaging of cracks from measurements of the MSR matrix at a
single frequency ω in the presence of measurement noise, that is, we model with an
additive Gaussian noise. Assuming availability of previous and/or multiple mea-
surements we may assume that the variance of the entries of the MSR matrix (due
to the measurement noise) is known and equal to a2. In fact, we will see that we
do not need to know the value a2 in order to build the most powerful test with a
prescribed false alarm rate.

In the absence of the crack (hypothesis H0) the ratio R of the first singular
value of the symmetrized MSR matrix over the normalized l2-norm of the other
singular values is of the form (4.6) by Proposition 4.2.

In the presence of a crack at position xc and with size lc (hypothesis HA),
Proposition 4.4 shows that the ratio is of the form (4.7). This result is correct as
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long as σ0 > σc. When σ0 < σc we have (4.6).
If the data gives the ratio R, then we propose to use a test of the form R > r

for the alarm corresponding to the presence of a crack. By the Neyman-Pearson
lemma (see Appendix A) the decision rule of accepting HA if and only if R > rα

maximizes the probability of detection for a given false alarm probability α

α = P(R > rα|H0)

with the threshold

rα = 2 +
1

22/3n2/3
Φ−1

TW1(1 − α),

where ΦTW1 is the cumulative distribution function of the Tracy-Widom distribu-
tion of type 1. The computation of the threshold is easy since it depends only on
the number of sensors n and on the false alarm probability α. This test is therefore
universal. Note that we should use a Tracy-Widom distribution table, and not a
Gaussian table. We have, for instance, Φ−1

TW1(0.9) ≃ 0.45, Φ−1
TW1(0.95) ≃ 0.98, and

Φ−1
TW1(0.99) ≃ 2.02.

The detection probability 1 − β is the probability to sound the alarm when
there is a crack:

1 − β = P(R > rα|HA).

For a given measurement array it depends on lc and xc through the value σ0(lc, xc)
and also on the noise level a. Here we find that the detection probability is

POD(lc, xc) = 1 − β(lc, xc) = Φ

(

√
n

σ0

σc
+ σc

σ0
− rα

√

1 − (σc/σ0)2

)

, (5.1)

where Φ is the cumulative distribution function of the normal distribution with mean
zero and variance one. This result is valid as long as σ0 > σc. When σ0 < σc, so that
the crack is “hidden in noise”, then we have 1− β = 1−ΦTW1

(

Φ−1
TW1(1−α)

)

= α.
Note that, as functions of the number of sensors n, the singular value σ0 scales as n,
while the noise level σc scales as

√
n. This shows that the detection power increases

with the number of sensors.

6. Conditional Localization. We assume that the spectral test described in
Section 5 identified the presence of a crack and we want to estimate its location.
Thus, we want to decide whether there is a crack or not at a particular location
based on the measured MSR matrix, A, at a single or for multiple frequencies.

6.1. Effective Imaging Functional. We shall assume that there is one crack
present as determined by the spectral detection test described above and seek to
estimate the location xc of the crack. We model the observations as

As(ω) = τ(ω, x)d(ω, x)d(ω, x)T + Ws(ω)

in order to specify the conditional distribution of the data As given the parameters
x, τ , and a. In this case, the observed symmetrized MSR matrix As(ω) has the
probability density function

p (As | x, τ, a) =
1

2nπ(n2+n)/2an2+n
exp

(

−‖As − τd(ω, x)d(ω, x)T ‖2
F

2a2

)

,

with respect to the measure over the space of complex symmetric matrices:

n
∏

j=1

dℜ(As
j,j)dℑ(As

j,j)
∏

1≤j<l≤n

dℜ(As
j,l)dℑ(As

j,l).
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Here the subscript F represents the Frobenius norm.
Next, we find the conditional distribution of the parameters given the observa-

tions As. The prior distribution is the uniform distribution for the parameter x over
the search window and the Jeffreys prior for the parameters τ, a (a non-informative
prior distribution that is proportional to the square root of the determinant of the
Fisher information matrix), which is proportional to a−1 [24, Section 2.7.1]. Using
Bayes theorem, we find that the likelihood function of the parameters x, τ , and a
is given by

l0 (x, τ, a | As) =
1

an2+n+1
exp

(

−‖As − τd(ω, x)d(ω, x)T ‖2
F

2a2

)

. (6.1)

The maximum likelihood estimator of xc and the nuisance parameters a and τ are
then found by maximizing the likelihood function (6.1) with respect to these:

(

x̂, τ̂ , â
)

= arg max
x,τ,al0 (x, τ, a | As) .

We first eliminate a by requiring

∂l0 (x, τ, a | As)

∂a

∣

∣

∣

∣

a=â

= 0,

which gives

â =
‖As − τd(ω, x)d(ω, x)T ‖F√

n2 + n + 1
,

and then the likelihood ratio is proportional to

l0
(

x, τ, â | As
)

≃ ‖As − τd(ω, x)d(ω, x)T ‖−(n2+n+1)/2
F .

Since As(ω) is complex symmetric, it admits a symmetric singular value decompo-
sition: there exist unitary vectors uj(ω) such that

As(ω) =
n
∑

j=1

σ
(n)
j (ω)uj(ω)uj(ω)T .

Therefore, we can write

‖As − τd(ω, x)d(ω, x)T ‖2
F = ‖u(2)(ω) − τd(2)(ω, x)‖2

2,

with u(2) =
∑n

j=1 σ
(n)
j uj⊗uj and d(2) = d⊗d. Since ‖d‖2 = 1, we have ‖d(2)‖2 = 1

and we then find that

τ̂ = arg min
τ

‖u(2)(ω) − τd(2)(ω, x)‖2
2 =

(

d(2)(ω, x), u(2)(ω)
)

.

Note also that ‖u(2)‖2
2 =

∑n
j=1(σ

(n)
j )2 = ‖As‖2

F . We therefore conclude that the
maximum likelihood estimator x̂ derives from maximizing the MUSIC-type function

x̂= arg min
x

∥

∥u(2)(ω) −
(

d(2)(ω, x), u(2)(ω)
)

d(2)(ω, x)
∥

∥

2

2
.

Note however that x̂ is not the maximizer of the MUSIC functional (3.5) since all
singular vectors (weighted by the singular values) contribute to u(2). We have in
fact

∥

∥u(2)(ω) −
(

d(2)(ω, x), u(2)(ω)
)

d(2)(ω, x)
∥

∥

2

2
= ‖u(2)(ω)‖2

2 −
∣

∣(u(2)(ω), d(2)(ω, x))
∣

∣

2

= ‖As(ω)‖2
F − |IKM(ω, x)|2,
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where IKM is the Kirchhoff migration functional (3.6). From this representation
we find that the estimation x̂ of the location xc can be expressed in terms of the
Kirchhoff migration functional as

x̂ = argmax
x
|IKM(ω, x)| . (6.2)

This indicates that Kirchhoff migration is more accurate in the presence of additive
noise than MUSIC in that the location of its maximum is exactly the maximum
likelihood estimator of the location of the crack.

The analysis can be extended to the case in which the MSR matrices are
recorded at several frequencies (ωk)k=1,...,K and the additive noise matrices W(ωk),
k = 1, . . . , K, are independent and identically distributed. Then one finds that the
maximum likelihood estimator of the location of the crack is the maximum of the
matched field imaging functional:

x̂ = argmax
x
IMF(x), (6.3)

where IMF is the Matched Field functional (3.11). This shows that one should
look for the maximum of the sum of the square moduli of the KM functionals in
order to exploit the multi-frequency information optimally. Indeed, the fact that the
relevant operation is the sum of the squares comes from the fact that the additive
noise matrices are assumed to be independent for different frequencies. If some
correlation between frequency components exists, it is likely that a procedure such
as Coherent Interferometry [8] will be more appropriate.

To conclude this section, we remark on the case when there are several cracks.
We can then use a recursively applied and projected version of the approach above.
Let Π⊥

k denote the unitary projection matrix on the complement of the subspace
spanned by the illuminated vectors d(ω, x̂j), j = 1, . . . , k of the first k estimated
crack locations. We then form the modified MSR matrix by projecting as:

As
k(ω) = Π⊥

k As(ω)Π⊥
k . (6.4)

The test for presence of further cracks is then carried out as described in Section
5, but with respect to the projected MSR. In the case that the test predicts that
further cracks are present then the subsequent crack location is estimated by again
maximizing a Kirchhoff imaging functional IKM,k, associated with the projected
MSR As

k.

We remark that above we assumed that the cracks were well-resolved so that
the corresponding illumination vectors are orthogonal. In the case that clusters of
nearby cracks are present one can generalize the above approach by postprocessing
the data such that the location estimates for the cracks in the cluster is estimated
by maximizing the joint likelihood of the cracks.

6.2. Statistical Analysis of Location Estimate. We continue here the
analysis of the single frequency case and provide a location-dependent threshold for
the image function that we derived above. We remark that this is important since
the detection test introduced in Section 4 only tests whether there is something
present in the probed scenery or not. Here we want to test whether there is a
localized crack present at the particular search location xS. As a part of this test
we will then obtain a measure of confidence with which we can say that there is a
crack present.

We choose as a test statistics the image function derived above

IKM(ω, xS) =
(

d(ω, xS),As(ω)d(ω, xS)
)

=
(

d(ω, xS),A(ω)d(ω, xS)
)

.
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We observe that under the null hypothesis H0, there is no crack at xS , we have

IKM(ω, xS)
dist.≃ a√

2
(W1 + iW2),

with Wj being standard independent normal real Gaussian random variables with
mean zero and variance one. Here a2 is the variance of the entries of the random
matrix A and we have implicitly assumed that xS is far enough from the other
cracks so that the vector d(ω, xS) is approximately orthogonal to the illumination
vectors of other cracks. Under the alternate hypothesis HA, we have

IKM(ω, xS)
dist.≃ µKM(ω, xS) +

a√
2
(W1 + iW2),

where µKM(ω, xS) is given by

µKM(ω, xS) = τ(ω, xS)
∣

∣d(ω, xS)
∣

∣

4
= τ(ω, xS).

Here τ given by (3.3) with xc replaced by xS .
We now consider the real and imaginary parts of the statistics:

y1 = ℜ(IKM(ω, xS)), y2 = ℑ(IKM(ω, xS)),

and we denote similarly µ1 = ℜ(µKM(ω, xS)) and µ2 = ℑ(µKM(ω, xS)). From the
expression (3.3) of τ(ω, xS), it is clear that its argument is very close to π/2 so that
µ2 is positive and larger than µ1 and the relevant information is in the imaginary
part of the imaging functional y2 = ℑ(IKM(ω, xS)). Using the expression of the
normal density we find that the likelihood ratio for y2 is given by

Λ(y2) =
fA(y2)

f0(y2)
= exp

(

− µ2
2

a2
+

2µ2y2

a2

)

.

By the Neyman-Pearson lemma the decision rule of accepting HA if and only
if y2 = ℑ(IKM(ω, xS)) > η maximizes the probability of detection for a given false
alarm rate α with the threshold η = (a/

√
2)Φ−1(1 − α), where Φ is the cumulative

distribution function of the normal distribution. The power of the test is given by

1 − βKM(ω, xS) = Φ
(√

2
ℑ(µKM(ω, xS)) − η

a

)

. (6.5)

The power of the test can be expressed in terms of the SNR

SNR(ω, xS) :=

∣

∣E
(

IKM(ω, xS)
)∣

∣

Var1/2
(

IKM(ω, xS)
) =

|τ(ω, xS)|
a

,

as

1 − βKM(ω, xS) = Φ
(√

2SNR(ω, xS) − Φ−1(1 − α)
)

, (6.6)

where we have made the approximation |µKM(ω, xS)| ≃ ℑ(µKM(ω, xS)) since the
argument of τ(ω, xS) is close to π/2. Note that the order of magnitude of the SNR
is

SNR(ω0, x
S) ≃ SNR0 :=

c0n

4ω0L
∣

∣

∣
ln(

εω0

4 ) + γ − iπ
2

∣

∣

∣

, (6.7)

where ω0 is the typical frequency and L is the distance from the sensor array to the
search region.
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6.3. Multifrequency Measurements. In the case of (uncorrelated) mea-
surements at multiple frequencies, one can use the migration imaging functional
(3.9) which can be written as

IKMF(xS) =
1

K

∑

ωk

IKM(ωk, xS),

where K is the number of frequencies. Under the null hypothesis H0, there is no
crack at xS , the functional IKMF(xS) is distributed as

IKMF(xS)
dist.≃ a√

2K
(W1 + iW2)

with again Wj being standard independent normal real Gaussian random variables
with mean zero and variance one. Under the alternate hypothesis HA, we have

IKMF(xS)
dist.≃ µKMF(xS) +

a√
2K

(W1 + iW2),

where µKMF(xS) is given by

µKMF(xS) =
1

K

∑

ωk

µKM(ωk, xS).

A straightforward generalization of the arguments used in the previous subsection
shows that the test accepting HA if ℑ(IKMF(xS)) > η maximizes the probability of
detection for a given false alarm rate α with the threshold η = (a/

√
2K)Φ−1(1−α).

The power of this test is

1−βKMF(xS) = Φ
(√

2K
ℑ(µKMF(xS)) − η

a

)

≃ Φ
(√

2K SNR0−Φ−1(1−α)
)

, (6.8)

with SNR0 defined by (6.7). Therefore, the multiple frequencies enhance the detec-
tion performance via higher “effective” SNR.

One can also use the matched field imaging functional (3.11)

IMF(xS) =
1

K

∑

ωk

|IKM(ωk, xS)|2.

Under the null hypothesis H0, there is no crack at xS , the distribution of the
functional IMF(xS) is proportional to a χ2-distribution with 2K degrees of freedom
and it can be approximated when K is large enough (2K > 50 in practice) by

IMF(xS)
dist.≃ a2 +

a2

√
K

N (0, 1).

Under the alternate hypothesis HA, we have for K large enough

IMF(xS)
dist.≃ a2 + µ2

MF(xS) +
a√
K

√

2µ2
MF(xS) + a2N (0, 1),

where µMF(xS) is given by

µ2
MF(xS) =

1

K

∑

ωk

|µKM(ωk, xS)|2 =
1

K

∑

ωk

|τ(ωk, xS)|2.

The test accepting HA if IMF(xS) > η maximizes the probability of detection for a
given false alarm rate α with the threshold

η = a2 +
a2

√
K

Φ−1(1 − α).
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The power of this test is

1 − βMF(xS) = Φ
(√

K
µ2

MF(xS)

a
√

a2 + 2µ2
MF(xS)

− a
√

a2 + 2µ2
MF(xS)

Φ−1(1 − α)
)

.

If the SNR is larger than one, then the power is

1 − βMF(xS) = Φ
(

√
K√
2

SNR0 − SNR−1
0 Φ−1(1 − α)

)

.

If the SNR is smaller than one, then the power is

1 − βMF(xS) = Φ
(√

KSNR2
0 − Φ−1(1 − α)

)

.

This shows that the power is smaller than with the test using the KMF functional.

7. Identification of Crack Orientation. Assume that one has detected a
crack. The location of the crack xc can be estimated by x̂ given by (6.2). Using

the expression (3.3) of the first singular value σ
(n)
1 = |τ(ω, xc)| of the MSR matrix

we obtain an estimate of the length l̂ of the crack:

γ + ln
ωl̂

4c0
=
( c2

0

16ω2(σ
(n)
1 )2

(

n
∑

j=1

1

|xj − x̂|
)2 − π2

4

)1/2

.

Here we seek to estimate the orientation tc of the crack. We have from (2.4)

|Ajl(ω)|2 ≃ A
(0)
jl (ω) + A

(1)
jl (ω)(nj · tc)(nl · tc),

where

A
(0)
jl (ω) =

c2
0

16ω2|xj − xc||xl − xc|
1

| ln( εω

4 ) + γ − iπ
2 |2 ,

A
(1)
jl (ω) = − ε2

ω

16ω2|xj − xc||xl − xc|
ℜ
(

1

ln( εω

4 ) + γ − iπ
2

)

,

nj = (xc − xj)/|xc − xj |, and εω = ωlc/c0. Since A
(0)
jl (ω) and A

(1)
jl (ω) can be esti-

mated by their respective expressions Â
(0)
jl (ω) and Â

(1)
jl (ω) in terms of the estimates

x̂ of xc and l̂ of lc, the procedure for estimation of t exploits the (j, l, ω)-dependence
of |Ajl(ω)|2 as follows:

t̂ = argmin
t
R(t), (7.1)

where

R(t) =
∑

j,l,ωk

∣

∣

∣
|Ajl(ωk)|2 − Â

(0)
jl (ωk) − Â

(1)
jl (ωk)(nj · t)(nl · t)

∣

∣

∣

2

. (7.2)

To conclude this section, we make one remark. It is possible to design a coherent
estimator by looking at the mismatch between Ajl(ω) and the theoretical expression
(2.4). However, this least-square problem is very sensitive to the estimate of the
location of the crack through the phase term of (2.4). Therefore, we have preferred
to introduce an incoherent estimator based on the mismatch between |Ajl(ω)|2 and
its theoretical expression that is much more robust.
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8. Numerical Experiments. This section presents results of numerical ex-
periments that give qualitative illustrations of some of the main findings in this
paper. We choose the two following cracks:

Σj = {xc,j + xtc,j , −lc ≤ x ≤ lc}, j = 1, 2,

where xc,1 = (0.2,−11.5), tc,1 = (1, 0), xc,2 = (−0.4,−10.5), tc,2 = (cos(π/6), sin(π/6)),
and lc = 0.01. Here we set c0 = 2π (so that εω = 0.5 for ω = 314) and suppose that

the transducers are equidistributed on the line going from (x
(1)
1 , 0) to (x

(n)
1 , 0).

8.1. Imaging Functionals. First, we consider imaging of a single crack using
the functionals IMU, IKM, IKMF, and IMT to illustrate their performance and lim-
itations. Recall that these are the “MUSIC”, “Kirchhoff”, “Multifrequency Kirch-
hoff” and “One Mode Kirchhoff” given in respectively (3.5), (3.6), (3.9) and (3.10)
in the situation with a crack. The test configurations are given in Table 8.1. Note
that the set of data is generated by numerically solving the forward problem, that
is solving (2.1), using an integral equation code.

Crack n x
(1)
1 x

(n)
1 Frequency Imaging functional Figure

Σ1 20 −1 1 ω ∈ [300, 360] IMT , IKMF Figs. 8.1, 8.4
Σ2 20 −1 1 ω ∈ [300, 360] IMT , IKMF Fig. 8.2
Σ1 20 −1 1 ω = 330 IKM , IMU Figs. 8.1, 8.4
Σ2 20 −1 1 ω = 330 IKM , IMU Fig. 8.2

Σ1 20 −1 1
ω = 300, 320,

340, 360
IMU Fig. 8.3

Table 8.1

Test configurations for Figures 8.1-8.4.

The interval [300, 360] is uniformly partitioned into K = 60 frequencies. The
discretization size of the search domain is chosen as 0.05. Localization results for
Σ1 and Σ2 are shown in Figs. 8.1 and 8.2, respectively. The locations of Σ1 and Σ2

are successfully identified, but we can observe that Kirchhoff Migration and MUSIC
have poor range resolution, since they use only a single frequency.

Fig. 8.3 shows that the performance of the MUSIC algorithm over the consid-
ered range of frequencies [300, 360] is almost invariant. In the the other examples,
we shall use the middle frequency, ω = 330, for this single-frequency algorithm.

Let us stress that using data computed by the asymptotic expansion formula
(2.4) yields closely resembling images. In Fig. 8.4, localization results for Σ1 using
the asymptotic expansion formula are shown. That the imaging functionals are
efficient when the forward problem is computed with the asymptotic formulas is
indeed expected as they have been constructed via this representation. The com-
parisons between Fig. 8.4 and Fig. 8.1, however, show that the imaging functionals
are efficient as well when the forward data is generated by solving (2.1) numerically,
giving data which reflects more closely a situation with “real data”.

8.1.1. Influence of the Transducer Array Setting. Next, we show the
influence of the configuration of the transducer array with the test configurations
being described in Table 8.2. The used imaging functional is IMT.

In Fig. 8.5, we can see that for a given number of transducers, if the size of the
array is small then the images are blurred (setting 1) while if it is large, then an
aliasing effect due to undersampling of the array can appear (setting 4).

8.1.2. Estimation of the Tangential Direction of a Crack. We now es-
timate the tangential direction t of a single crack. Based on formula (7.1), the
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|IMT(xS)| for ω ∈ [300, 360]
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Fig. 8.1. Localization results for Σ1 using IMT (top left), IKMF (top right), IKM (bottom
left) and IMU (bottom right). The data set is generated solving (2.1) numerically.

|IMT(xS)| for ω ∈ [300, 360]
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Fig. 8.2. Localization results for Σ2.

Crack n x
(1)
1 x

(n)
1 Frequency Imaging functional Setting

Σ2 20 −0.5 0.5 ω ∈ [300, 360] IMT setting 1
Σ2 20 −1 1 ω ∈ [300, 360] IMT setting 2
Σ2 20 −5 5 ω ∈ [300, 360] IMT setting 3
Σ2 20 −10 10 ω ∈ [300, 360] IMT setting 4

Table 8.2

Test configuration for Figure 8.5.
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|IMU(xS)| for ω = 300
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|IMU(xS)| for ω = 340
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Fig. 8.3. Localization results for Σ1 using IMU with ω = 300, 320, 340, and 360.

|IMT(xS)| for ω ∈ [300, 360]
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Fig. 8.4. Localization results for Σ1 using IMT (top left), IKMF (top right), IKM (bottom
left) and IMU (bottom right). The data set is generated using the asymptotic formula (2.4).

direction t of a single crack minimizes the functional R(t) defined by (7.2). use 8
and 12 search directions ti in the situations with Σ1 and Σ2, respectively.

The values of R(ti) for the crack Σ1 are given in Table 8.3. Note that the values
of R(ti) are normalized with respect to the maximum value.

l 1 2 3 4 5 6 7 8
Value of R(ti) 0.171 1.000 0.204 0.025 0.171 1.000 0.204 0.025

Table 8.3

Recovering the direction of the small crack Σ1.
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|IMT(xS)| for ω ∈ [300, 360]
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Fig. 8.5. Results for Σ2 and different arrays. Top left: setting 1, top right: setting 2, bottom
left: setting 3 and bottom right: setting 4.

Crack n x
(1)
1 x

(n)
1 Frequency Imaging functional Figure

Σ(m) 30 −1 1 ω ∈ [300, 360] IMT, IKMF Figs. 8.6, 8.7

Σ(m) 30 −1 1 ω = 330 IKM, IMU Figs. 8.6, 8.7
Table 8.4

Test configuration for Σ(m).

From the data in Table 8.3, the estimated tangential direction t̂ of the crack Σ1

is given by t̂ ≃ t4, t8 = (1, 0), (−1, 0). Thus, the approach set forth for estimation
of crack orientation worked well in this case.

8.2. Imaging of Multiple Small Cracks. Consider the functionals IMT,
IKMF, IKM, and IMU for imaging multiple cracks. We need to use slight general-
izations of formulas (3.10) and (3.5) for IMT and IMU in which we keep as many
singular values as there are cracks. We choose for illustration the following example
with two cracks:

Σ(m) = {xc,3 + xtc,3 : −lc ≤ x ≤ lc} ∪ {xc,4 + xtc,4 : −lc ≤ x ≤ lc},

with xc,3 = (−0.7,−10.8), tc,3 = (1, 0), xc,4 = (0.6,−11.3), and tc,4 = (cos(π/4), sin(π/4)).

The test configurations and localization results can be found in Table 8.4 and
Fig. 8.6. Note that for IKMF, IKM, and IMU there is a peak of much smaller mag-
nitude at the rotated crack (the one on the right). Note also that the normalization
of the modes in the functional IMT gives a more balanced contrast.

8.3. Robustness With Respect to Measurement Noise. Suppose that
the measured data is polluted by a white Gaussian noise so that the SNR is 10 dB.
In order to test the robustness of the proposed imaging functionals, we consider the
imaging of the two-closely located cracks Σ(m). The test configuration is the same
as in the noiseless case.

Again, in the imaging of Σ(m) a peak of much smaller magnitude at the rotated
crack (the one on the right) results when using functionals IKMF and IKM as shown
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Fig. 8.6. Localization results for Σ(m) with IMT (top left), IKMF (top right), IKM (bottom
left) and IMU (bottom right).
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Fig. 8.7. Localization results for Σ(m) using IMT (top left), IKMF (top right), IKM (bottom
left) and IMU (bottom right) with noise with 10 dB SNR.

in Fig. 8.7. Note that KM, KMF, and MT functionals are not significantly affected
by measurement noise while IMU is much more sensitive to noise.

8.4. Probability of Detection. In this subsection we show the validity of
formula (5.1). We fix α and n = 20 and vary the ratio σ0/σc. For each value
σ0/σc, we generate 1000 MSR matrix, by adding a Gaussian noise to a MSR matrix
corresponding to a small crack. Then, we compute the ratio R for each noisy matrix
and then count the number of matrices such that R is larger than rα.

The theoretical curve for the probability of detection given by (5.1) and the
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Fig. 8.8. Comparison between simulated and theoretical PODs for α = 0.01 (left), 0.05 (mid-
dle), and 0.1 (right), respectively.

simulated ones as a function of the ratio σ0/σc are compared in Fig. 8.8. We can
see that the higher the ratio σ0/σc, the better the accuracy of (5.1) is.

9. Conclusion. We have presented a framework for detection and localization
of cracks. The approach is based on physical modelling, modelling the formation
of the response function using the governing equation for the wave propagation
phenomenon and evaluating this via asymptotic techniques. The explicit tests are
then based on singular value decomposition statistical decision rules in the context
when there is additive Gaussian noise. An important aspect of the detection rule is
that it is universal in that it depends only on the number of measurements and the
prescribed false alarm rate. The approach also addresses the important question of
identifying the dimension of the signal space. Our probabilistic approach identifies
a Kirchhoff imaging functional as the optimal one in the localization step. Finally,
the asymptotic framework answers the question about what aspects of cracks can
be estimated based on the measurements and we set explicit schemes of estimation
of these geometric features.

Our approach in this paper can be extended for imaging perfectly insulating
small cracks (i.e., with Neumann boundary conditions). The approximation is in
this case a dipole-type one. The framework that we have presented can also be
generalized to the case with cluttered media and the situation with multiple and
clustered defaults. This requires to determine the statistical properties of the MSR
matrix in this framework, using the theory of wave propagation in complex media
[19]. Results on this will be reported elsewhere.

Appendix A. Statistical Test. As in the standard statistical hypothesis
testing [16, 21], we postulate two hypotheses and derive a decision rule for deciding
in between them based on the measured MSR matrix.

We define H0 the (null) hypothesis to be tested and HA the (alternative) hy-
pothesis:

• H0: there is no crack,
• HA: there is a crack.

We want to test H0 against HA. Two types of independent errors can be made:
• Type I errors correspond to rejecting the null hypothesis H0 when it is

correct (false alarm). Their probability is given by

α := P [accept HA|H0 true].

• Type II errors correspond to accepting H0 when it is false (missed detection)
and have probability

β := P [accept H0|HA true].

The success of the test (probability of detection or detection power) is therefore
given by 1 − β.
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Given the data the decision rule for accepting H0 or not can be derived from
the Neyman-Pearson lemma which asserts that for a prescribed false alarm rate α
the most powerful test corresponds to accepting HA for the likelihood ratio of HA

to H0 exceeding a threshold value determined by α.

Neyman-Pearson Lemma: Let Y be the set of all possible data and let f0(y)
and f1(y) be the probability densities of Y under the null and alternative hypotheses.
The Neyman-Pearson lemma [16, p. 335] states that the most powerful test has a
critical region defined by

Yα :=

{

y ∈ Y
∣

∣

∣

f1(y)

f0(y)
≥ ηα

}

, (A.1)

for a threshold ηα satisfying

∫

y∈Yα

f0(y)dy = α. (A.2)

If the data is y, we reject H0 if the likelihood ratio f1(y)
f0(y) > ηα and accept H0

otherwise. The power of the (most powerful) test is

1 − β =

∫

y∈Yα

f1(y)dy. (A.3)

Appendix B. Proof of the Uniform Asymptotic Formula (2.4). Assume
for the sake of simplicity that xc = 0 and t = (1, 0) so that

Σc =
{

(x, 0) : −lc ≤ x ≤ lc
}

. (B.1)

We will need the two following lemmas in this appendix.
Lemma B.1. Cf. [5, Lemma 2.1]. The weighted L2-space X defined by

X =

{

ϕ :

∫ 1

−1

√

1 − x2 |ϕ(x)|2dx < +∞
}

(B.2)

is a Hilbert space. The operator L defined by

Lϕ(x) =

∫ 1

−1

ϕ(y) ln |x − y|dy

is invertible from X to Y = {ϕ ∈ C0(−1, 1), ϕ′ ∈ X} and its inverse is

L−1ϕ(x) = − 1

π2
√

1 − x2

∫ 1

−1

√

1 − y2ϕ′(y)

x − y
dy +

a(ϕ)

π ln(1/2)
√

1 − x2
,

where a(ϕ) is a constant.

Lemma B.2. Cf. [1, Chap. 9]. The following behavior of H
(1)
0 near 0 holds:

− i

4
H

(1)
0 (r) =

1

2π
ln r + α +

+∞
∑

n=1

(βn ln r + θn)r2n, for r ≪ 1, (B.3)

where

βn =
(−1)n

2π

1

22n(n!)2
, θn = −βn

(

γ − ln 2 − πi

2
−

n
∑

j=1

1

j

)

,
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and the constant α = (γ − ln 2)/(2π) − i/4, γ being the Euler constant.

The following behavior of H
(1)
0 and its derivative at infinity holds:

i

4
H

(1)
0 (r) ≃ 1√

8πr
exp

(

ir+i
π

4

)

,
i

4

d

dr
H

(1)
0 (r) ≃ 1√

8πr
exp

(

ir+i
3π

4

)

, for r ≫ 1.

(B.4)

We have the integral representation of the field u(j) emitted by a source at xj

for x 6= xj :

u(j)(x) = Ĝ(ω, x, xj) +

∫ lc

−lc

φ(j)(y)Ĝ(ω, (y, 0), x)dy, (B.5)

where the density φ(j) is the solution to the integral equation

∫ lc

−lc

φ(j)(y)Ĝ(ω, (y, 0), x)dy = −Ĝ(ω, x, xj), for x = (x, 0) ∈ Σc.

Using (2.2) the normalized function φ̃(j)(ỹ) = lcφ
(j)(lcỹ) is solution to

∫ 1

−1

φ̃(j)(ỹ)
[

− i

4
H

(1)
0 (εω|x̃ − ỹ|)

]

dỹ =
i

4
H

(1)
0

(

| ω
c0

xj − εω(x̃, 0)|
)

for x̃ ∈ (−1, 1).

In the regime εω ≪ 1, for any x̃ ∈ (−1, 1) the right-hand side can be expanded as

i

4
H

(1)
0

(

| ω
c0

xj − εω(x̃, 0)|
)

=
i

4
H

(1)
0

(

| ω
c0

xj |
)

− εωx̃
∂

∂x

i

4
H

(1)
0

(

| ω
c0

xj |
)

+ O(ε2
ω),

and we get from (B.3) that the left-hand side can be expanded as

∫ 1

−1

φ̃(j)(ỹ)
[

− i

4
H

(1)
0 (εω|x̃− ỹ|)

]

dỹ =
1

2π
Lφ̃(j)(x̃)+

( 1

2π
ln εω +α

)

C(j)+O(ε2
ω ln εω),

where O(ε2
ω ln εω) is in the X -norm and

C(j) =

∫ 1

−1

φ̃(j)(ỹ)dỹ

It then follows that φ̃(j) is the solution in X to

1

2π
Lφ̃(j)(x̃) = −C(j)

( ln εω

2π
+ α

)

+ Ĝ(ω, xc, xj) + εωx̃
∂Ĝ

∂x
(ω, xc, xj) + O(ε2

ω ln εω),

where xc is the location of the crack and ∂/∂x is the tangential derivative on the
crack Σc defined by (B.1). Using the explicit form of L−1 yields

φ̃(j)(x̃) = C(j) ln εω + 2πα

π ln(2)
√

1 − x̃2
− 2Ĝ(ω, xc, xj)

ln(2)
√

1 − x̃2
− 2εω

∂Ĝ

∂x
(ω, xc, xj)

x̃√
1 − x̃2

+O(ε2
ω ln εω),

and therefore (by integrating in x̃)

C(j) =
2πĜ(ω, xc, xj)

ln(εω/2) + 2πα
+ O(ε2

ω ln εω).
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Finally, plugging the expansion of φ̃(j) in (B.5) we get the asymptotic formula for
Ajl = u(j)(xl):

Ajl =
2πĜ(ω, xj, xc)Ĝ(ω, xc, xl)

ln( εω

4 ) + γ − iπ
2

− πl2c
∂

∂x
Ĝ(ω, xj, xc)

∂

∂x
Ĝ(ω, xc, xl) + o(ε2

ω),

(B.6)
which is uniform in εω. If, additionally, we have ωL/c0 ≫ 1, then the Green’s

function can be expanded using the asymptotic form (B.4) of H
(1)
0 and we get

finally the form (2.4).
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