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Abstract. In this paper we study passive sensor imaging with ambient noise sources by suit-
ably migrating cross correlations of the recorded signals. We propose and study different imaging
functionals. A new functional is introduced that is an inverse Radon transform applied to a special
function of the cross correlation matrix. We analyze the properties of the new imaging functional
in the high-frequency regime which shows that it produces sharper images than the usual Kirchhoff
migration functional. Numerical simulations confirm the theoretical predictions.
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1. Introduction. Estimation of the Green’s function of the wave equation in an
inhomogeneous medium by cross correlation of noisy signals has recently attracted a
lot of attention. Consider the situation in which noise sources with unknown spatial
support emit stationary random signals, that propagate into the medium and are
recorded at observation points. The cross correlation of the recorded signals has
then been shown to provide a reliable estimate of the Green’s function and the travel
time between the observation points [14, 16, 20]. The mathematical analysis of cross
correlation of noisy signals was carried out in [9, 11, 12, 13]. The travel time estimates
can then be used for background velocity estimation [10, 18]. Tomographic travel time
velocity analysis, based on cross correlations, was applied successfully for surface-wave
velocity estimation in Southern California [17], in Tibet [21], and in the Alps [19].

Cross correlations of noisy signals recorded by a passive sensor array can also be
processed in order to image the medium. The idea presented in [13] is to backprop-
agate the cross correlation matrix by applying a simple Kirchhoff migration (KM)
functional, which is a technique widely used in active seismic imaging [3, 8]. The im-
ages are qualitatively good with cross range and range resolutions equivalent to those
that would be obtained by migrating the impulse response matrix obtained with an
active sensor array. However, direct backpropagation of the data set is known to be
sub-optimal in the context of active array imaging and improved imaging functionals
based on High-Frequency Inversion (HFI) have been obtained in this context [2, 4].
Our goal in this paper is to present an efficient imaging functional in the context of
passive array imaging.

In this paper we assume a typical configuration in geophysics in which the pas-
sive sensor array is at the surface of the half-space to be imaged. We consider the
situation in which the medium is two-dimensional. We analyze both the problem of
the localization of the noise sources (Section 3) and the problem of the localization
of scatterers embedded in the medium (Section 4) using the cross correlation matrix
of the recorded signals. We propose an imaging functional that is an inverse Radon
transform applied to a function of the cross correlation matrix. This function is ob-
tained by summing the cross correlations evaluated at some special travel times over
a limited offset range. By a high-frequency asymptotic analysis and by numerical
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simulations we will show that this new imaging functional produces sharper images
than the usual KM or HFI functionals.

2. Empirical and statistical cross correlations. We consider the solution u
of the wave equation in a two-dimensional inhomogeneous medium with background
velocity c(x):

1

c2(x)

∂2u

∂t2
− ∆xu = n(t,x), (2.1)

with x = (x, z). The source term n(t,x) models a random distribution of noise sources
and is supported in the halfspace z < 0. It is assumed to be a stationary process in
time. For the sake of simplicity, we will assume that it has Gaussian statistics and
that it is delta-correlated in space, so that its autocorrelation function has the form

〈n(t1,y1)n(t2,y2)〉 = F (t2 − t1)K(y1)δ(y1 − y2). (2.2)

Here the brackets stand for the statistical averaging with respect to the distribution
of the sources. The Fourier transform of the autocorrelation function F (t):

F̂ (ω) =

∫
F (t)eiωtdt

is proportional to the power spectral density of the signals emitted by the noise
sources. The function F̂ (ω) is nonnegative valued and we assume that its support is
bounded away from zero and from infinity. Note that this function is not known so
that we look for imaging procedures that are robust with respect to its form. The
function K(y) is supposed to be compactly supported and its support characterizes
the source region. It is possible to carry out the analysis with more complex models,
such as the one described in [1], but this would not change the main points of the
paper.

The empirical cross correlation of the signals recorded at two points x1 and x2 is
defined by:

CT (τ,x1,x2) =
1

T

∫ T

0

u(t,x1)u(t+ τ,x2)dt. (2.3)

As shown in [13], it is a statistically stable quantity in the sense that it converges to
its statistical mean when the integration time T goes to infinity:

CT (τ,x1,x2)
T→∞−→ C(τ,x1,x2),

where C(τ,x1,x2) is the statistical cross correlation defined by

C(τ,x1,x2) = 〈CT (τ,x1,x2)〉 = 〈u(0,x1)u(τ,x2)〉 . (2.4)

Writing the recorded field in terms of the Green’s function and the source term, and
using the particular form of the autocorrelation function of the sources, we obtain the
expression:

C(τ,x1,x2) =
1

2π

∫∫
Ĝ

(
ω,x1,y

)
Ĝ

(
ω,x2,y

)
e−iωτ F̂ (ω)K(y)dydω, (2.5)
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where Ĝ is the outgoing time-harmonic Green’s function. When the background
velocity is homogeneous c(x) = c0, the Green’s function is given by

Ĝ(ω,x,y) =
i sgn(ω)

4
H

(1)
0

( ω
c0
|y − x|

)
, (2.6)

where H
(1)
0 is the zeroth order Hankel function of the first kind. Using the asymptotic

form of the Hankel function H
(1)
0 (x) ≃

√
2/(π|x|) exp[ix − i sgn(x)π/4] for |x| ≫ 1,

we find that for |ω||x − y|/c0 ≫ 1:

Ĝ(ω,x,y) =

√
c0

2
√

2π

ei sgn(ω)π/4

√
|ω||y − x|

exp
(
i
ω

c0
|y − x|

)
. (2.7)

We remark that more generally in this regime the Green’s function can be approxi-
mated by the geometrical optics or WKB approximation

Ĝ(ω,x,y) = A
(
x,y, ω

)
eiωτ(x,y),

with A and τ being the geometrical optics amplitude and travel time (in between x

and y) that solve respectively transport and Eiconal equations. We shall here focus
on the case with constant background.

3. Imaging the source distribution. We consider an array of N passive sen-
sors located at the surface z = 0 at (xj)j=1,...,N , with xj = (xj , 0), xj ∈ R. The data
set consists of the empirical cross correlation matrix (CT (τ,xj ,xl))j,l=1,...,N . We want
to process this data set to build an imaging functional for the source locations.

3.1. High-frequency analysis. We will propose an imaging functional based
on the analysis of the statistical cross correlation in the continuum approximation
(C(τ, x1, x2))x1,x2∈R. Here C(τ, x1, x2) is a shorthand for C(τ, (x1, 0), (x2, 0)).

We introduce the coherence time τc of the sources, which is the width of the
autocorrelation function F . We say that we are in the high-frequency regime if τc
is much smaller than the typical travel time τ0 between the sources and the sensors.
Thus, we make

Assumption 1. τc ≪ τ0.
In the high-frequency regime, we can use the high-frequency (or geometric optics)

approximation (2.7) of the Green’s function and we find that the cross correlation
function has the form

C(τ, x1, x2) =
1

2π

∫
Ĉ(ω, x1, x2)e

−iωτdω, (3.1)

Ĉ(ω, x1, x2) =
F̂ (ω)

|ω|

∫
K(y)a

(
(x1, 0),y

)
a
(
(x2, 0),y

)
eiω[τ((x2,0),y)−τ((x1,0),y)]dy,(3.2)

where

a(x,y) =

√
c0

2
√

2π
√
|x − y|

and τ(x,y) =
|x − y|
c0

.

At this point, a typical strategy would be to backpropagate the data set, which is the
cross correlation matrix in our context. This means that, for the search point yS , one
would look for an imaging functional of the form

I(yS) =

∫∫
B̂(ω,yS , x1, x2)e

iω[τ((x1,0),yS)−τ((x2,0),yS)]Ĉ(ω, x1, x2)dωdx1dx2, (3.3)
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where the kernel B̂ is to be determined so that I(yS) is as close as possible to K(yS)
[2, 4] when the objective is to image the source distribution. We will show in the
following that it is possible to write the expression of the cross correlation matrix in
such a way that an efficient imaging formula can be obtained simply in terms of an
inverse Radon transform.

Up front we would like to stress two differences in our formulation relative to the
one in a classic seismic imaging situation with standard seismic reflection data. First,
the difference in travel times appears in the phase term of the high-frequency expres-
sion of the cross correlation (3.2) instead of the sum. Second, the cross correlation
function has both causal and anti-causal contributions [13].

We will now introduce the central functional of the cross correlations that will
be convenient for localizing scatterers and noise sources and describe next how this
functional in fact gives a Radon transform of the data. Let us consider for s ∈ R and
φ ∈ (−π/2, π/2) the function

R(s, φ) = cosφ

∫ ∞

−∞
C

( sinφ

c0
y,

s

cosφ
+
y

2
,

s

cosφ
− y

2

)
dy. (3.4)

In this integral function we sum the cross correlation over all pairs of surface sensors
with fixed midpoint s/ cosφ over all interstation offsets y and associated time delays
y sinφ/c0. This time delay corresponds to the delay observed between the signals
recorded at the two sensors for a signal emitted by a point source located in the far
field in the direction φ with respect to the vertical direction and a distance s from
the origin. Thus, this functional gives directional and support information about the
incoming wave field generated by the sources.

A key observation is now that the function R is essentially the Radon transform of
the source distribution K. In fact, the function R is related to the source distribution
function K is the following way:

Proposition 3.1. In the high-frequency regime the function R is proportional to
the Radon transform of K:

R(s, φ) ≃ r0 RT
(
K

)
(s, φ), (3.5)

RT
(
K

)
(s, φ) =

∫
K

(
s cosφ− u sinφ, s sinφ+ u cosφ

)
du, (3.6)

where r0 is the constant defined by:

r0 =
c0
8π

∫
F̂ (ω)

ω2
dω. (3.7)

This proposition shows that the application of the inverse Radon transform to the
function R gives the function K, which provides the principle for the imaging method
introduced in the next subsection.

Proof. We first consider for x ∈ R and α ∈ (−1, 1) the function

Ws(x, α) =
1 − α2

c0

∫
C

( α
c0
y, x+

y

2
, x− y

2

)
dy. (3.8)

The function Ws can also be seen as the frequency-averaged Wigner transform of the
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cross correlation:

Ws(x, α) =
1 − α2

2πc0

∫
W (ω, x, α)dω,

W (ω, x, α) =

∫∫
C

(
τ, x+

y

2
, x− y

2

)
exp

(
− i

ω

c0
αy + iωτ

)
dτdy.

In the high-frequency regime, we can use the high-frequency approximation of the
Green’s function. Substituting (3.1-3.2) into (3.8), we find that in the high-frequency
regime Ws is equal to

Ws(x, α) =
1 − α2

16π2

∫∫
K(xs, zs)√
z2

s + (xs − x)2
F̂ (ω)

|ω|

× exp
(
− i

ω

c0

[
α+

x− xs√
z2

s + (x− xs)2

]
y
)
dydzsdxsdω.

Integrating in y gives a Dirac distribution:

Ws(x, α) =
c0(1 − α2)

8π

∫∫
K(xs, zs)√
z2

s + (xs − x)2
F̂ (ω)

ω2
δ
(
α+

x− xs√
z2

s + (x − xs)2

)
dzsdxsdω.

Denoting f(xs) = α+(x−xs)/
√
z2

s + (x − xs)2, there is a unique point Xs such that
f(Xs) = 0:

Xs = x− zs
α√

1 − α2
,

and we have the identity between distributions:

δ
(
f(xs)

)
=

1∣∣ df
dxs

(Xs)
∣∣δ

(
xs −Xs

)
.

We then find

Ws(x, α) = r0

∫
K

(
x− α√

1 − α2
zs, zs

)
dzs, (3.9)

with r0 given by (3.7).
The function R defined by (3.4) can be expressed as

R(s, φ) = Ws

( s

cosφ
, sinφ

) c0
cosφ

, (s, φ) ∈ R × (−π/2, π/2). (3.10)

Therefore, in the high-frequency regime we have (3.5), which is the standard form of
the Radon transform.

By looking at a transformation of the cross correlation, it is also possible to get
the following result.

Corollary 3.2. Let us consider for s ∈ R and φ ∈ (−π/2, π/2) the function

R(h)(s, φ) = − cosφ

∫ ∞

−∞
∂2

τC
( sinφ

c0
y,

s

cosφ
+
y

2
,

s

cosφ
− y

2

)
dy, (3.11)

In the high-frequency regime the function R(h) is proportional to the Radon transform
of K:

R(h)(s, φ) ≃ r
(h)
0 RT

(
K

)
(s, φ), (3.12)
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where r
(h)
0 is proportional to the energy released by the sources:

r
(h)
0 =

c0
8π

∫
F̂ (ω)dω. (3.13)

Note that this result involves the second τ -derivative of the cross correlation, which
is usually less stable than the cross correlation itself. That is why we will propose an
imaging functional based on the formulation of Proposition 3.1.

3.2. Imaging functional. From the empirical cross correlations we evaluate

RT (s, φ) = cosφ

∫ ∞

−∞
CT

( sinφ

c0
y,

s

cosφ
+
y

2
,

s

cosφ
− y

2

)
dy. (3.14)

In practice, the empirical cross correlation CT (τ, x, y) is known only for x, y corre-
sponding to sensor locations. Therefore, in order to evaluate RT (s, φ) for a given
pair (s, φ) it is necessary to use a quadrature formula whose points correspond to the
sensor locations. In the numerical applications we use a Riemann sum based on a
linear interpolation formula.

The Filtered Kirchhoff Migration (FKM) imaging functional is obtained by ap-
plying the Inverse Radon transform (IRT) to the empirical function RT :

IFKM
(
(x, z)

)
= IRT

(
RT

)
(x, z). (3.15)

We recall the principle of the IRT [15] in two dimensions:

RT (s, φ)
FT(s→ξ)−→ R̂T (ξ, φ)

×|ξ|−→ |ξ|R̂T (ξ, φ)
IFT(ξ→s)−→ R̃T (s, φ)

BP−→ IRT(RT )(x, z),

where FT (resp., IFT) is the direct (resp., inverse) Fourier transform and the final
backpropagation (BP) step is

IRT
(
RT

)
(x, z) =

∫ π/2

−π/2

R̃T

(
x cosφ+ z sinφ, φ

)
dφ.

In practice we use a Riemann sum approximation for the backpropagation step and
FFTs for the Fourier transforms.

The backpropagation step is natural: it consists in summing up the Radon pro-
jections along all angles passing through the same point (x, z):

IBP
(
(x, z)

)
=

∫ π/2

−π/2

RT

(
x cosφ+ z sinφ, φ

)
dφ. (3.16)

As mentioned above a Riemann sum approximation is used to evaluate the integral
in practice. However, the backpropagation alone gives a blurred recovery, and it is
important to apply the inverse filter in order to fully recover the original function.

In practice, it can be useful to truncate the evaluation of the function RT to a
limited offset range y ∈ (−ymax, ymax):

RT (s, φ) = cosφ

∫ ymax

−ymax

CT

(sinφ

c0
y,

s

cosφ
+
y

2
,

s

cosφ
− y

2

)
dy. (3.17)

There are two reasons that motivate this truncation:
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1) Contributions of cross correlations with large offsets y to RT may not bring
any new coherent information, but only noise. This happens when the medium is
cluttered, so that the signals recorded at two far points are not correlated anymore,
or when the background velocity is not known exactly, this results in a significant error
for the travel time quantity y sinφ/c0 for large y. The choice of the parameter ymax

results from a trade off between loss of resolution and noise reduction: When choosing
a small ymax, the noise level can be reduced, but the resolution can be reduced as well.
Such a phenomenon was studied in the context of coherent interferometric imaging
(CINT) for active array imaging [5, 6] and in the context of passive sensor imaging
with cross correlations in a scattering medium [13].

2) A second reason why we should truncate the evaluation of the function RT to
a limited offset range is that for large offset y, the difference in travel times is more
complicated than a linear function in y and this induces slight distortions in the image
when we apply the IRT to RT . In the limit τc/τ0 → 0 this distortion vanishes, which
is the result of the high-frequency analysis. However such distortions can appear in
practice when τc/τ0 is not very small.

Finally, in practice, it is important to use a regularized inverse filter in order to
have a stable inverse Radon transform algorithm and suppress noise. This means that
we do not apply a multiplication by |ξ| to the Fourier transform R̂T (ξ, φ) because it
may amplify high-frequency noise. Instead, we apply a multiplication by a function
of the form |ξ|A(ξ), where A is an apodizing function that goes to zero as |ξ| → ∞.
The optimal choice of the apodizing function is subject to considerable work and it
results from a trade-off between resolution and noise reduction. For instance A(ξ) =
sinc3(dξ/2) for the Shepp-Logan filter [15]. In this case the resolution is limited to d.

3.3. Comparison with Kirchhoff migration. Kirchhoff migration (KM) con-
sists in backpropagating the cross correlations using the known background travel
times. It was studied in [13]. The KM imaging functional at a search point yS is

IKM
(
yS

)
=

N∑

j,l=1

CT

(
τ(yS ,xl) − τ(yS ,xj),xj ,xl

)
. (3.18)

In the frequency domain, this means that a matched filter is applied in order to
compensate for the phase term in the high-frequency expression of the cross correlation
(3.2).

In this subsection we compare the KM and FKM functionals in the high-frequency
regime.

The KM imaging functional in the continuum approximation is given by

IKM
(
(x, z)

)
=

∫∫
C

( 1

c0

[√
z2 + (x− x2)2 −

√
z2 + (x− x1)2

]
, x1, x2

)
dx1dx2 .

(3.19)
We then find that, in the high-frequency regime:

IKM
(
(x, z)

)
=

∫ ∞

−∞

∫ π/2

−π/2

C
(sinφ

c0
y′, x+ z tanφ+

y′

2
, x+ z tanφ− y′

2

) |z|
cos2 φ

dφdy′

= c0r0

∫∫
K

(
x+ ys

(
1 − z

zs

)
, zs

) |z|(y2
s + z2

s)

|zs|3
dysdzs, (3.20)

where r0 is the constant given by (3.7). Note that, if K is localized around some
point (x0, z0), then the integral in zs is concentrated at z0, and the integral over ys
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is stationary if and only if z ≃ z0 and x ≃ x0. That is why this imaging functional
gives a reasonable image, although it is not perfect.

If we apply the BP functional (3.16) to the cross correlation in the continuum
approximation (which amounts to apply the IRT without filtering), then we get in
the continuum approximation and in the high-frequency regime:

IBP
(
(x, z)

)
=

∫ ∞

−∞

∫ π/2

−π/2

C
( sinφ

c0
y′, x+ z tanφ+

y′

2
, x+ z tanφ− y′

2

)
cosφdφdy′

= c0r0

∫∫
K

(
x+ ys

(
1 − z

zs

)
, zs

) 1√
z2

s + y2
s

dysdzs, (3.21)

which is equal to (3.20) up to an amplitude factor in the integral.

Therefore, the KM functional is very close to the BP functional. Since the IRT is
known to perform better than BP in terms of resolution [15], we can claim that the
functional IFKM is more efficient than the functional IKM, with a computational cost
that is almost equivalent (N2 logN instead of N2 for each search point or for each
pixel of the reconstruction grid).

Finally, as in the case of the FKM imaging functional, it can be efficient to
truncate the double sum in the KM imaging functional (3.18) over a limited offset
range:

IKM
(
yS

)
=

N∑

j,l=1
|xj−xl|≤ymax

CT

(
τ(yS ,xl) − τ(yS ,xj),xj ,xl

)
. (3.22)

Indeed this truncation may be useful when the travel times are perturbed because of
lack of knowledge of the background velocity or because the medium is cluttered. In
this situation, the terms CT

(
τ(yS ,xl) − τ(yS ,xj),xj ,xl

)
for large offset |xj − xl|

are not reliable and bring only noise contributions. By truncating the double sum,
one removes these noisy contributions. The choice of the optimal ymax is a trade-off
between noise reduction and loss of resolution.

3.4. Comparison with High-Frequency Inversion. The comparison of our
imaging formula with the standard KM functional is not complete in that High-
Frequency Inversion (HFI) formulas have been proposed and studied that improve the
quality and resolution of the standard KM. In this section we follow the procedure
first proposed by Beylkin [2] and subsequently developed by many authors (see [4]
and references therein). The idea is once again to look at the inversion formula (3.3)
and to identify the kernel B̂ so that I(yS) is as close as possible to K(yS) in the
high-frequency regime. Writing the search point yS = (x, z) and making the change
of variables (x1, x2) = (ξ + h/2, ξ − h/2) in the integral, the inversion formula (3.3)
can be written as

I
(
(x, z)

)
=

1

2π

∫∫
B̂x,z,h(ω, ξ)eiω[τ((ξ+h/2,0),(x,z))−τ((ξ−h/2,0),(x,z))]

×Ĉ(ω, ξ + h/2, ξ − h/2)dωdξdh. (3.23)



Filtered Kirchhoff Migration of Cross Correlations 9

Substituting the high-frequency approximation (3.2) of the cross correlation we obtain

I
(
(x, z)

)
=

1

2π

∫∫
B̂x,z,h(ω, ξ)

F̂ (ω)

|ω| K(xs, zs)

×eiω[τ((ξ+h/2,0),(x,z))−τ((ξ−h/2,0),(x,z))]e−iω[τ((ξ+h/2,0),(xs,zs))−τ((ξ−h/2,0),(xs,zs))]

×a
(
(ξ + h/2, 0), (xs, zs)

)
a
(
(ξ − h/2, 0), (xs, zs)

)
dωdξdxsdzsdh.

If we choose B̂x,z,h(ω, ξ) = 1 then we obtain the standard KM functional (3.19). This
functional is somewhat close to the function K, but it is possible to improve the
quality of the inversion with a better choice for the kernel B̂x,z,h(ω, ξ). We anticipate
that the integral in (xs, zs) is concentrated around (x, z), so we expand the phase and
the amplitude terms into the Taylor series about the point (xs, zs) = (x, z) and h = 0
and we obtain:

I
(
(x, z)

)
=

1

2π

∫∫
B̂x,z,h(ω, ξ)

F̂ (ω)

|ω| K(xs, zs)a
2
(
(ξ, 0), (x, z)

)

× exp
(
i
ω

c0
h

z

((x− ξ)2 + z2)3/2
[z(xs − x) + (ξ − x)(zs − z)]

)
dωdξdxsdzsdh.

We next make the change of variables (ω, ξ) → (k1, k2) with

k1 =
ω

c0
h

z2

((x− ξ)2 + z2)3/2
, k2 =

ω

c0
h

z(ξ − x)

((x− ξ)2 + z2)3/2
,

whose Jacobian is

Jh(ω, ξ) =

∣∣∣∣
∂k1

∂ω
∂k2

∂ω
∂k1

∂ξ
∂k2

∂ξ

∣∣∣∣ =
h2|ω|
c20

|z|3
((x− ξ)2 + z2)3

and inverse function is

ωh(k1, k2) =
c0|z|
h

(k2
1 + k2

2)3/2

k2
1

sgn(k1), ξh(k1, k2) = x+ z
k2

k1
.

By following Beylkin’s idea we choose B̂x,z,h(ω, ξ) = B̂HFI
x,z,h(ω, ξ), where B̂HFI

x,z,h(ω, ξ)
is such that

B̂HFI
x,z,h(ω, ξ)

a2
(
(ξ, 0), (x, z)

)

|ω|Jh(ω, ξ)
=

1

2π
,

or equivalently

B̂HFI
x,z,h(ω, ξ) =

4h2ω2

c30

|z|3
(
(x− ξ)2 + z2

)5/2
. (3.24)

With this choice the kernel is proportional to h2. This means that it enhances the
contributions of the cross correlations of observation points with large offsets (i.e.,
that are far from each other). This makes sense since the zero-offset cross correlations
do not carry information in their phases because the differences of travel times are
zero. This is fundamentally different from reflection seismology in which the sum of
travel times appears and the zero-offset contributions of the impulse response matrix
carries useful information [4].
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With the choice (3.24) the HFI functional defined by

IHFI
(
(x, z)

)
=

∫∫
B̂HFI

x,z,h(ω, ξ)eiω[τ((ξ+h/2,0),(x,z))−τ((ξ−h/2,0),(x,z))]

×Ĉ(ω, ξ + h/2, ξ − h/2)dωdξdh (3.25)

has the following expression in the high-frequency regime

IHFI
(
(x, z)

)
=

1

(2π)2

∫∫
F̂

(
ωh(k1, k2)

)
K(xs, zs)e

ik1(xs−x)+ik2(zs−z)dk1dk2dxsdzsdh.

If F̂ is constant, then the integrals over k1 and k2 produce Dirac distributions at
xs = x and zs = z and we obtain that the HFI functional is proportional to the
function K:

IHFI
(
(x, z)

)
∼ K(x, z).

The hypothesis that F̂ is constant is reasonable in the context of reflection seismology,
in which the sources are (more or less) known and broadband. That is partly why
this procedure is very popular in this domain. Note also that the integral over the
offset enhances the amplitude of the functional, but is not a crucial ingredient. The
procedure would work with a limited number of offset values, in fact, it may also
work well even though F̂ is relatively strongly varying, see the numerical experiments
below.

The hypothesis that F̂ is constant is certainly not realistic in the context of noise
sources. However, it is possible instead to integrate over many offsets, say with respect
to an even function ψ(h) whose support is in [−hmax, hmax]. In such a situation, we
obtain after the change of variable h→ ω = ωh(k1, k2):

IHFI
(
(x, z)

)
=

c0|z|
(2π)2

∫∫
F̂ (ω)

ω2
K(xs, zs)

(k2
1 + k2

2)
3/2

k2
1

sgn(k1)ψ
(c0|z|

ω

(k2
1 + k2

2)
3/2

k2
1

)

×eik1(xs−x)+ik2(zs−z)dk1dk2dxsdzsdω.

We can see here that the HFI functional is not optimal in this context since the
integration over k1 and k2 does not produce exact Dirac distributions anymore, but
smoothed versions of them. The FKM functional may then be a better choice in the
case when we can sum over many offsets.

3.5. Numerical simulations. In this section we carry out numerical simula-
tions in an open two-dimensional homogeneous medium. The source distribution is
modeled by a collection of point sources randomly distributed in a compactly sup-
ported domain. The point sources emit stationary random signals with Gaussian
statistics and zero-mean. The power spectral density is F̂ (ω) = ω4 exp(−ω2/100).
The background velocity is one. Therefore the carrier frequency is ω0 ≃ 14 and
the carrier wavelength is λ0 ≃ 0.45. There are 100 sensors at the surface z = 0
separated by δx = 0.125 in the interval x ∈ (−6.25, 6.25). This corresponds to a
dense array for (almost) all frequencies in the bandwidth. There are 150 independent
point sources randomly distributed in the three rectangles [−1.5,−1]× [−10.5,−9.5],
[−1,−0.5]× [−8.5,−8], and [−0.5, 0]× [−10.5,−9.5]. The simulations are carried out
in the frequency domain with the explicit form (2.6) of the Green’s function for the
background medium and 256 frequencies regularly sampled from 0 to 2π×255× δt−1,



Filtered Kirchhoff Migration of Cross Correlations 11

−10 0 10
−15

−10

−5

0

x

z

−4 −2 0 2 4
−15

−10

−5

x

z

BP

−4 −2 0 2 4
−15

−10

−5

x

z

KM

−4 −2 0 2 4
−15

−10

−5

x

z

HFI

−4 −2 0 2 4
−15

−10

−5

x

z

FKM

Fig. 3.1. Imaging the sources. The numerical set-up is plotted in the top figure, where the
triangles represent the sensors at the surface z = 0 and the independent point sources lie in the
three rectangles in the subsurface. The images obtained with the different methods are plotted in the
other figures (the BP function (3.16), the KM function (3.18), the HFI function (3.25), and the
FKM function (3.15)).

δt = 0.125. The reconstruction grid is a 100 × 100 uniform grid on the square
[−4, 4] × [−15,−5]. There is no need to introduce a cut-off parameter ymax here
as the medium is homogeneous.

We compare the images obtained with the BP function (3.16), the KM function
(3.18), the HFI function (3.25), and the FKM function (3.15) in Figure 3.1. We
observe a resolution enhancement obtained with the FKM method as compared to
the standard KM method or the BP method. These numerical simulations are in
agreement with the theoretical predictions obtained in the high-frequency regime.

4. Imaging the medium. In this section we assume that the sensors are at the
surface z = 0 and that the sources are in the subsurface below some depth −z0. The
medium is homogeneous in the half-space z ∈ (−∞,−z0). The goal is to image the
inhomogeneous region located in the section z ∈ (−z0, 0).
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4.1. Born approximation. We model the scattering region as a perturbation
V (x) in the propagation speed as follows:

1

c2(x)
=

1

c20
+ V (x), (4.1)

where V (x) is a function that has a compact support in the section z ∈ (−z0, 0).
It is the function (or at least, its support) that we want to identify from the cross
correlations of the signals recorded at the surface.

The solution of the wave equation with inhomogeneous speed c(x) can be written
as a sum

u(t,x) = u0(t,x) + u1(t,x).

Here the direct field u0 satisfies the homogeneous wave equation (2.1) with the back-
ground velocity c0 and it is given by:

u0(t,x) =

∫∫
G(t− s,x,y)n(s,y)dsdy, (4.2)

where G is the homogeneous Green’s function whose Fourier transform is (2.6). The
scattered field u1 is given by

u1(t,x) = −
∫∫

G(t− s,x,y)V (y)
∂2u

∂s2
(s,y)dsdy.

This expression is exact. The Born approximation (or single-scattering approxima-
tion) consists in replacing u on the right side by the field u0 [7]:

u1(t,x) ≈ −
∫∫

G(t− s,x,y)V (y)
∂2u0

∂s2
(s,y)dsdy. (4.3)

This approximation is valid if the scattered field u1 is small compared to the incident
field u0, which corresponds to assuming that we are in the weakly scattering regime
and that contributions of multiply-scattered waves can be neglected compared to the
contributions of singly-scattered waves.

4.2. High-frequency analysis in the Born approximation. As in Subsec-
tion 3.1 we introduce the coherence time τc of the sources and the typical travel time
τ0. We also introduce the Wigner transform of the function V :

Γ̂(x; k) =

∫
V

(
x +

y

2

)
V

(
x − y

2

)
e−ik·ydy

and denote by 1/ρc the typical width of k → Γ̂(x; k). The length ρc is the correlation
radius of the scattering region. We say that the scattering region is smooth if ρc ≫ c0τc
and that it is rough if ρc ≪ c0τc.

Proposition 4.1. We consider the high-frequency regime τc ≪ τ0.
Case 1) If the scattering region is rough ρc ≪ c0τc, and if the sources are much

deeper than the scattering region, then by denoting

Γ̂1(x) = Γ̂(x;0), (4.4)
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the function R defined by (3.4) has a contribution proportional to the Radon transform
of Γ̂1:

R(s, φ) ≃ r0 RT
(
K

)
(s, φ) + r1(K)RT

(
Γ̂1

)
(s, φ), (4.5)

where the Radon transform is defined by (3.6) and the constant r1(K) is

r1(K) =
c20

64π2

[ ∫
|ω|F̂ (ω)dω

][ ∫
K(x)

|x| dx
]
. (4.6)

Case 2) If the scattering region is smooth ρc ≫ c0τc and if the local correlation is
isotropic, i.e. Γ̂(x; k) = Γ̂(x; |k|(1, 0)), then by denoting

Γ̂2(x) =

∫
Γ̂(x;κ(1, 0))dκ,

the function R defined by (3.4) is of the form

R(s, φ) ≃ r0 RT
(
K

)
(s, φ) + r2 RT

(
K

)
(s, φ)RT

(
Γ̂2

)
(s, φ), (4.7)

where the constant r2 is

r2 =
c30

64π2

∫
F̂ (ω)dω. (4.8)

It is very striking that the function R can be written in terms of the Radon
transforms of K and Γ̂j. We can give the following interpretation of the different
formulas.

In Case 1 the scattering region is rough so that scattering is isotropic. This induces
an isotropization of the scattered field which forgets the directionality of the incident
energy flux coming from the noise sources. That is why we find that the contributions
of the scattered field to the function R is proportional to the Radon transform of Γ̂1

and depends on the source function K only through an averaged quantity. Note that
Γ̂1(x) characterizes the support of the scattering region. Since the support of the
source region is well separated from the support of the scattering region, Eq. (4.5)
shows that the inverse Radon transform of R in the region z ∈ (−z0, 0) will give the
function x → Γ̂1(x) up to a multiplicative constant.

In Case 2 the scattering region is smooth so that scattering is highly directional
(in the forward direction). Therefore the scattered field keeps the memory of the
incident energy flux coming from the noise sources. That is why we find that the
contributions of the scattered field to the function R has the form of the product of
the Radon transforms of the source function K and of the function Γ̂2. Moreover:
i) If the noise source distribution is (more or less) uniform, then the Radon transform
of K is (more or less) constant and the inverse Radon transform of R in the region
z ∈ (−z0, 0) gives the function x → Γ̂2(x) up to a multiplicative constant.
ii) If the noise source distribution is not uniform and not known, then the inverse
Radon transform of R in the region z ∈ (−z0, 0) gives

IRT(R)
(
y
)

=
r2
4π2

∫
eik·yKK

̂̂
Γ2(k)dk, KK Γ̂2(k) =

∫
K̂

(
κ

k

|k|
)̂̂
Γ2

(
k − κ

k

|k|
)
dκ

This shows that we get a smeared version of
̂̂
Γ2, through the special convolution with

K̂, and of course the smearing is small when K̂ has a small support.
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iii) If the noise source distribution is not uniform but known (up to a multiplicative
constant), then we can deconvolve the effects of the energy flux anisotropy in the
sense that the inverse Radon transform of R/RT(K) in the region z ∈ (−z0, 0) will
give the function x → Γ̂2(x).

The hypothesis “the sources are much deeper than the scattering region” (case
1) or “the local correlation is isotropic” (case 2) allows us to get an explicit relation
between the function R and the Radon transform of Γ̂j . If this does not hold, then
we do not get the simple relation in terms of the multiplicative constant rj but the
relation still holds true qualitatively and the IRT of R still gives a good approximation
of the support of the function Γ̂j . In more detail:

In Case 1, if the sources are not much deeper than the scattering region, then by
denoting

K̃(x) =

∫
K(x − y)

|y| dy, r̃1 =
c20

64π2

∫
|ω|F̂ (ω)dω,

the function R defined by (3.4) is of the form

R(s, φ) ≃ r0 RT
(
K

)
(s, φ) + r̃1 RT

(
K̃Γ̂1

)
(s, φ).

In Case 2, if the local correlation is not isotropic, then by denoting

Γ̂φ
2 (x) =

∫
Γ̂
(
x;κ(cosφ, sinφ)

)
dκ,

the function R defined by (3.4) is of the form

R(s, φ) ≃ r0 RT
(
K

)
(s, φ) + r2 RT

(
K

)
(s, φ)RT

(
Γ̂φ

2

)
(s, φ). (4.9)

Proof. Using the high-frequency approximation of the Green’s function and the
Born approximation, we obtain

C(τ,x1,x2) = Cdd(τ,x1,x2) + Cds(τ,x1,x2) + Csd(τ,x1,x2) + Css(τ,x1,x2),

where Cdd is the cross correlation of the direct waves with themselves:

Cdd(τ,x1,x2) =
1

2π

∫∫
a(ys,x1)a(ys,x2)K(ys)

×e−iω[τ+τ(ys,x1)−τ(ys,x2)]
F̂ (ω)

|ω| dysdω,

Cds and Csd are the cross correlations of the direct and scattered waves:

Csd(τ,x1,x2) =
1

2π

∫∫
a(ys,y1)a(y1,x1)a(ys,x2)K(ys)V (y1)

×e−iω[τ+τ(ys,y1)+τ(y1,x1)−τ(ys,x2)]e−i sgn(ω)π/4|ω|1/2F̂ (ω)dysdy1dω,

Cds(τ,x1,x2) =
1

2π

∫∫
a(ys,x1)a(ys,y2)a(y2,x2)K(ys)V (y2)

×e−iω[τ+τ(ys,x1)−τ(ys,y2)−τ(y2,x2)]ei sgn(ω)π/4|ω|1/2F̂ (ω)dysdy2dω,
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and Css are the cross correlations of the scattered waves with themselves:

Css(τ,x1,x2) =
1

2π

∫∫
a(ys,y1)a(y1,x1)a(ys,y2)a(y2,x2)K(ys)V (y1)V (y2)

×e−iω[τ+τ(ys,y1)+τ(y1,x1)−τ(ys,y2)−τ(y2,x2)]ω2F̂ (ω)dysdy1dy2dω.

The contribution Cdd of the direct waves to the function R is known and is
described in Proposition 3.1.

The evaluations of the contributions Cds and Csd can be carried out as the one
for Css, as given below, and leads to the conclusion that the contributions of Cds and
Csd to the IRT of the function R in (3.4) are negligible compared to the ones for Css

in the high-frequency regime and in the region z ∈ (−z0, 0).
We now consider Css at two points x1 = (x+ y/2, 0) and x2 = (x− y/2, 0) at the

surface z = 0. We make the change of variables y1 = ya + yb/2 and y2 = ya − yb/2
in order to exhibit the Wigner transform Γ̂(x,k) of V . We proceed as in the proof of
Proposition 3.1 and we find that the contribution of Css to the function Ws defined
by (3.8) is

Ws(x, α) =
c20

64π2

∫∫
|ω|F̂ (ω)

K(xs, zs)√
(z − zs)2 + (xs − x+ α√

1−α2
z)2

×Γ̂
(
x− α√

1 − α2
z, z;− ω

c0
βx,−

ω

c0
βz

)
dxsdzsdzdω, (4.10)

where the last two arguments of Γ̂ are:

βx =
xs − x+ α√

1−α2
z

√
(zs − z)2 + (xs − x+ α√

1−α2
z)2

− α,

βz =
zs − z√

(zs − z)2 + (xs − x+ α√
1−α2

z)2
+

√
1 − α2.

Case 1: If we assume that the scattering region is rough and sources are much
deeper than the scattering region, then the geometric term in (4.10) can be approxi-
mated by 1/

√
z2

s + x2
s and the last two arguments of Γ̂ can be replaced by 0, so that

we get

Ws(x, α) = r1

∫
Γ̂
(
x− α√

1 − α2
z, z; 0, 0

)
dz,

with r1 given by (4.6). The contributions of the scattered field to the function R
defined by (3.4) can be expressed as (3.10), which gives the desired result.

Case 2: If we assume that the scattering region is smooth then the arguments βx

and βz are constrained to be small. This happens only if xs is close to x−zsα/
√

1 − α2.
Motivated by this remark we make the change of variable

xs → κ =
ω

c0

1 − α2

|zs − z|
[
xs − x+

α√
1 − α2

zs

]
,

and we obtain

Ws(x, α) =
c30

64π2
√

1 − α2

∫∫
F̂ (ω)K

(
x− α√

1 − α2
zs, zs

)

×
[ ∫

Γ̂
(
x− α√

1 − α2
z, z;−κ

√
1 − α2,−κα

)
dκ

]
dzsdzdω.
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If, additionally, Γ̂ is isotropic, then the term in the square brackets becomes equal to
Γ̂2 and the function Ws can be factorized as

Ws(x, α) =
r2√

1 − α2

[ ∫
K

(
x− α√

1 − α2
zs, zs

)
dzs

][ ∫
Γ̂2

(
x− α√

1 − α2
z, z

)
dz

]
.

The contributions of the scattered field to the function R defined by (3.4) can be
expressed as in (3.10), which gives the desired result.

4.3. Imaging functional. Based on the high-frequency analysis of the previous
subsection, we propose to image the medium from the empirical cross correlation
matrix (CT (τ, xj , xl))j,l=1,...,N with the FKM functional

IFKM
(
(x, z)

)
= IRT

(
RT

)
(x, z), (4.11)

where z ∈ (−z0, 0), x ∈ R, and RT is a quadrature approximation of the integral
function

RT (s, φ) = cosφ

∫ ∞

−∞
CT

(sinφ

c0
y,

s

cosφ
+
y

2
,

s

cosφ
− y

2

)
dy (4.12)

on points corresponding to the sensor locations. This imaging functional is expected
to provide a good image provided the illumination of the scattering region by the
energy flux coming from the noise sources is isotropic enough. We will see in the
numerical simulations of the next subsection that the method is in fact robust with
respect to this point.

The standard KM method in this context was studied in [13]. In the terminology
introduced in that paper, we deal with a backlight illumination configuration in which
the region to be imaged is between the sources and the sensors. The analysis carried
out in [13] then shows that the suitable KM imaging functional is once again IKM

defined by (3.18). The comparative analysis of the FKM and KM functionals goes
along the same lines as in Subsection 3.3 and gives the same conclusion, proving the
superiority of the FKM functional in terms of resolution enhancement in the high-
frequency regime.

4.4. Numerical simulations. In the numerical simulations the background ve-
locity is one and there are 100 sensors at the surface z = 0 separated by δx = 0.125
in the interval x ∈ (−6.25, 6.25). We consider different sources/scatterers configu-
rations. There are either 1 point source located at (−20,−100) (Figure 4.1) or 4
point sources located at (−20,−100), (0,−100), (20,−100), and (40,−100) emitting
independent noise signals (Figures 4.2-4.3). There are also 150 point scatterers with
reflectivities 0.1 randomly distributed in the three rectangles [−1.5,−1]×[−10.5,−9.5],
[−1,−0.5]× [−8.5,−8], and [−0.5, 0]× [−10.5,−9.5]. Note that the scattering regions
that we want to image in these simulations have the same spatial supports as the
source regions that we imaged in the simulations of Subsection 3.5. This means that
we try in both sets of simulations to image the same spatial region, but here this
region is a scattering region illuminated by noise sources, while we tried to image
the source region in Subsection 3.5. The power spectral density of the noise sources
is F̂ (ω) = ω4 exp(−ω2/40) in Figures 4.1-4.2, so that |ω|3F̂ (ω) is quite similar to
the spectral density used in the simulations of Subsection 3.5 and the spectrum of
the noise signals scattered by the scattering region is similar to the one of the noise
signals emitted by the sources in Subsection 3.5. The power spectral density of the
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Fig. 4.1. Imaging the medium when there is one point source located at (−20,−100), three

scattering regions (the three rectangles), and the power spectral density of the source is F̂ (ω) =
ω4 exp(−ω2/40).

noise sources is F̂ (ω) = ω2(1 + ω2)−2 exp(−ω2/400) in Figure 4.3 so that the source
has relatively stronger low frequency in contents.

The situation in which there is only one point source (Figure 4.1) shows the
improved resolution obtained with the FKM method compared to the BP and KM
methods. One can see, however, that the direction of the energy flux coming from
the source point has an impact on the image (the energy flux has approximately the
direction of the vector (1, 5) since the point source is located at (−20,−100)).

When there are four independent point sources (Figures 4.2-4.3), then the illu-
mination of the scatterers has more directional diversity. Although the energy flux is
still far from being isotropic, the directional diversity is sufficient to suppress the arte-
facts observed in Figure 4.1 in the case in which there is only one source. The FKM
method produces an image which has a better resolution than the ones produced by
BP, KM, or HFI. The improved resolution is especially striking in Figure 4.3.

5. Conclusions. In this paper we have set forth a promising passive imaging
technique combining two well-known ideas: migration of cross correlation of noisy
signals and inverse Radon transform. The theoretical high-frequency analysis and
numerical simulations show the improved performance of the new imaging functional
compared to the usual KM method. The KM method is almost equivalent to the
new functional when the inverse filter is not used in the inverse Radon transform.
Generalizations to three-dimensional media and non-homogeneous but slowly varying
background using generalized Radon transforms, as well as a detailed resolution and
signal-to-noise analysis, are in progress.
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Fig. 4.2. Imaging the medium when there are four point sources located at (−20,−100),
(0,−100), (20,−100), and (40,−100), three scattering regions (the three rectangles), and the power

spectral density of the source is F̂ (ω) = ω4 exp(−ω2/40).
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Fig. 4.3. Imaging the medium when there are four point sources located at (−20,−100),
(0,−100), (20,−100), and (40,−100), three scattering regions (the three rectangles), and the power

spectral density of the source is F̂ (ω) = ω2(1 + ω2)−2 exp(−ω2/400).
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