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Abstract. We study scalar waves probing a heterogeneous medium whose parameters are
modeled in terms of a statistically isotropic random field. The medium is terminated by an oblique
interface at one end (the bottom) and pressure release type boundary conditions at the other end
(the top). The tilt of the bottom interface is relatively small so that the dominant contributions
to the wave field are confined to a paraxial tube. This study generalizes the basic formulation in
terms of Itô-Schrödinger equations in a one-dimensional deterministic background, describing the
macrostructure, to the one in which the background is more complicated. It provides the first
step toward the analysis of scattered waves in general background media modulated by a random
microstructure. We discuss in detail the enhanced backscattering phenomenon or weak localization in
this setting, with a tilted interface imbedded in the random medium, and find that the backscattering
cone does not depend on the tilt. We also find that the enhanced backscattering phenomenon is not
affected by the replacement of a specular interface with a diffusive interface.

Key words. Paraxial approximation, enhanced backscattering, random media, oblique interface,
free surface boundary condition

1. Introduction. We consider scalar waves propagating in a heterogeneous medium.
We model the heterogeneities as a a realization of a random field with relatively short
scale fluctuations. We characterize the waves that have been reflected off the random
medium. The regime we consider here corresponds to beam or long range propaga-
tion. Such a situation is often modeled by paraxial wave equations. In the last decades
the paraxial wave equation has emerged as the dominant tool to describe small scale
scattering such as in radiowave propagation, radar, remote sensing, propagation in
urban environments and in underwater acoustics, as well as in propagation problems
in the Earth’s crust [1, 3]. In its basic formulation, this approximation leads to only
forward propagating waves, a forward-scattering approximation. Here we consider a
generalization that captures also the reflected wave.

In [6] we considered a configuration consisting of a random slab bounded at the
bottom by a horizontal interface. We showed that both the paraxial approximation
associated with the beam geometry and a white noise approximation associated with
the rapid medium fluctuations can be justified simultaneously. For the transmitted
field the limit equation takes the form of a random Schrödinger equation studied in
particular in [4].

In this paper, we generalize our previous results to the case with a tilted interface
at the bottom of the random slab, generating strong reflection, and the presence of
a pressure release, or free surface, boundary condition at the top of the slab. The
free surface generates multiple reflections, and we derive a characterization of these in
terms of a family of reflection operators the kernels of which satisfy Itô-Schrödinger
equations. We discuss in detail how these lead to specific problems for Wigner trans-
forms of the limit kernels which are useful for analyzing the characteristics of the
reflected wave field. We use the representation in terms of reflection operators to
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analyze the spreading and decorrelation of the reflected field.
As a specific application of our result, we consider the enhanced backscattering

phenomenon or weak localization effect [2, 11]: If a quasi-plane wave is incoming with
a given incidence angle, then the mean reflected intensity has a local maximum in
the backscattered direction, which is twice as large as the mean reflected intensity
in the other directions. This enhancement can be observed in a small cone around
the backscattered direction, and it can be interpreted as the result of constructive
interferences between reciprocal wave paths. The result we find here is interesting
in that in our configuration the backscattering cone depends on the presence of the
bottom interface, but does not depend on the tilt. This emphasizes the fact that the
enhanced backscattering phenomenon is a coherence effect. This observation is further
corroborated by the fact that the structure of the enhanced backscattering cone is not
affected by replacing the specular interface by a diffusive interface. We remark that,
in this paper, we analyze the partially coherent wave energy being reflected off the
interface and the free surface. This situation is different if one considers the wave
energy generated by the reflections by the random fluctuations only; such a situation
is discussed in [5].

The results obtained in this paper have applications, for example, in reflection
seismology. Here, the tilted interface would be a model, locally, of the top of a
reservoir, the bottom of the crust or the top of a subducting slab, and one is interested
in estimating the location of the interface as well as in characterizing the random
fluctuations (“microfabric”) using the (multiple) wave reflections at the top as the
data.

The outline of the paper is as follows. We introduce the model and the main
separation of scales assumption in Section 2. In Section 3 we carry out the basic wave
decomposition in locally up- and down-propagating wave components. This leads to
a boundary value formulation and we convert this to an initial value formulation via
invariant imbedding in Section 4. We present the main result in Section 5 which shows
how we can characterize the wave reflection process and the multiples associated with
our formulation via an Itô-Schrödinger equation for the reflection operator. After a
brief review of the form of the reflected field in the homogeneous case presented in
Section 6, we discuss in detail in Section 7 how the microstructure in our configuration
affects the first and second (cross) moments of the reflected field. We end with a
discussion of the enhanced backscattering phenomenon in Section 8.

2. Configuration, Scaling and Assumptions. We consider acoustic waves
propagating in 1 + d spatial dimensions with random medium fluctuations. The
governing equations are

(2.1) ρ(z,x)
∂u

∂t
+∇p = F ,

1

K(z,x)

∂p

∂t
+∇ · u = 0,

where p is the pressure field, u is the velocity field, ρ is the density of the medium,
K is the bulk modulus of the medium, and (z,x) ∈ R×Rd are the space coordinates.
The source is modeled by the forcing term F .

We consider in this paper the situation in which a random slab occupies the region

Ωr =
{

(z,x), x ∈ Rd, zi(x) ≤ z ≤ 0
}
.

The surface z = 0 is the top interface and the surface z = zi(x) < 0 is the bottom
interface. The medium fluctuations in the region Ωr vary rapidly in space while the
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Fig. 1. Configuration: The source is located at depth zs < 0 close to the surface. An oblique
interface is specified by (−L, 0) and θ.

“background” medium is constant. The density of the medium is assumed to be
evanescent in the region z > 0, which gives pressure release boundary conditions at
the top interface. We consider a mismatch at the boundary z = zi(x), which gives
jump conditions at the bottom interface. We denote by ρ0 and K0 the background
medium parameters in the half-space z ≤ zi(x), and by ρ1 and K1 the parameters in
the region Ωr:

1

K(z,x)
=


K−1

0 if z ≤ zi(x),
K−1

1 (1 + νK(z,x)) if z ∈ (zi(x), 0),
K−1

1 if z ≥ 0,

ρ(z,x) =

ρ0 if z ≤ zi(x),
ρ1 if z ∈ (zi(x), 0),
0 if z ≥ 0,

where the random field νK(z,x) models the medium fluctuations, the correlation
length of which is lK .

The source, F , is located in the region Ωr at z = zs, zs < 0, close to the surface
z = 0 (we will eventually take the limit zs → 0−). We shall refer to waves propagating
in the direction with a positive z component as up-going waves. The source generates
waves that propagate through the random medium and that are reflected by the
interface at z = zi(x) and propagate back through the medium. We are interested in
the waves that can be recorded at the surface z = 0.

The source has the form

F (t, z,x) = f(t,x)δ(z − zs)ez,

where ez is the unit vector pointing in the z-direction. We denote by ω0 the typical
frequency of the source term f and by R0 the diameter of its spatial support (which
gives the initial beam width). The typical wavelength associated with the typical
frequency ω0 is λ0 = 2πc1/ω0, for c1 =

√
K1/ρ1 the background speed in the region

Ωr, which is of the same order as the background speed c0 =
√
K0/ρ0 in the half-space

z ≤ zi(x).
We now introduce the scaling regime that we consider in this paper:
1) We assume that the correlation length lK of the medium is much smaller than

the typical propagation distance L (of the order of |zi|). We denote by ε2 the ratio
between the correlation length and the typical propagation distance.
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2) We assume that the transverse width of the source R0 and the correlation
length of the medium lK are of the same order. This means that we assume that
the ratio R0/L is of order ε2. This scaling is motivated by the fact that, in this
regime, there is a non-trivial interaction between the fluctuations of the medium and
the beam.

3) We assume that the typical wavelength λ0 is much smaller than the propagation
distance L; more precisely, we assume that the ratio λ0/L is of order ε4. This high-
frequency scaling is motivated by the following considerations. The Rayleigh length
for a beam with initial width R0 and central wavelength λ0 is of the order of R2

0/λ0 in
absence of random fluctuations (the Rayleigh length is the distance from beam waist
where the beam area is doubled by diffraction). In order to get a Rayleigh length
of the order of the propagation distance L, the ratio λ0/L must be of order ε4 since
R0/L ∼ ε2.

4) We assume that the distance from the surface z = 0 to the source z = zs is of
the order of the wavelength (or smaller), that is, of the order of ε4.

5) We assume that the bottom interface z = zi(x) is (locally) flat and its normal
vector makes a small angle with respect to ez. The magnitude of this angle is of
order ε2, so that Descartes’ law predicts that the beam generated by the source
and reflected by the interface will be recorded at the surface z = 0 with a lateral
shift of the order of the radius of the beam. This is the interesting configuration,
in which the incident and reflected waves propagate through the same region of the
random medium. Furthermore, the pressure release boundary conditions also reflect
the waves, so they will experience several round trips between the two interfaces z = 0
and z = zi(x).

Henceforth, we shall assume non-dimensionalized units chosen such that the back-
ground bulk modulus K1 and density ρ1 in the region Ωr are one; hence, the back-
ground speed c1 =

√
K1/ρ1 and impedance Z1 =

√
K1ρ1 are also equal to one. If we

consider the propagation distance, L, as our reference distance of order one in this
scaled regime, then

1) the equation of the bottom interface is z = −L − ε2θ · x where θ ∈ Rd with
|θ| = 1 and L > 0 is the depth of the interface,

2) the source is localized at z = −ε4z0 and it has the form

(2.2) F (t, z,x) = f
( t
ε4
,
x

ε2

)
δ
(
z + ε4z0

)
ez,

where z0 > 0 and f(t,x) is the normalized source shape function (with time and
spatial scales of variations of order one),

3) the medium fluctuations have the form

1

K(z,x)
=

K−1
0 if z ≤ −L− ε2θ · x,

1 + ε3ν( zε2 ,
x
ε2 ) if z ∈ (−L− ε2θ · x, 0),

1 if z ≥ 0,

ρ(z,x) =

ρ0 if z ≤ −L− ε2θ · x,
1 if z ∈ (−L− ε2θ · x, 0),
0 if z ≥ 0,

where the zero-mean, stationary random field ν has a correlation length of order one
and standard deviation of order one, see Figure 1. We also assume that it satisfies
strong mixing conditions in z. Here the amplitude ε3 of the fluctuations has been
chosen so as to obtain an effective regime of order one when ε goes to zero. That is, if
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the magnitude of the fluctuations is smaller than ε3, then the wave would propagate
as if the medium were homogeneous, while if the order of magnitude is larger, then
the wave would not penetrate the slab down to the bottom interface. The scaling that
we consider here corresponds to the physically most interesting situation.

3. The Boundary Value Problem. Since both the medium and the source
have transverse spatial variations at the scale ε2, it is convenient to rescale the trans-
verse coordinates x/ε2 → x and to introduce the rescaled fields uε and pε:

(3.1) uε(t, z,x) = u(t, z − ε4θ · x, ε2x) , pε(t, z,x) = p(t, z − ε4θ · x, ε2x).

In these new coordinates, the bottom interface is z = −L while the top surface is
z = ε4θ·x. This transformation is convenient for the invariant imbedding formulation
that we present below. In the region Ωr the fields satisfy

∂uε

∂t
+

[
∂z

ε2θ∂z + ε−2∇x

]
pε = f

( t
ε4
,x
)
δ
(
z + ε4(z0 − θ · x)

) [1
0

]
,(3.2) (

1 + ε3ν
( z
ε2
− ε2θ · x,x

))∂pε
∂t

+

[
∂z

ε2θ∂z + ε−2∇x

]
· uε = 0,(3.3)

where ∇x stands for the gradient with respect to the transverse spatial variables x.
The pressure field and its z-derivative in the region Ωr can be written as:

pε(t, z,x) =
1

2π

∫ (
ãε(k, z,x)eik

z
ε4 + b̃ε(k, z,x)e−ik

z
ε4

)
e−ik

t
ε4 dk,

∂pε

∂z
(t, z,x) =

1

2π

∫
ik

ε4

(
ãε(k, z,x)eik

z
ε4 − b̃ε(k, z,x)e−ik

z
ε4

)
e−ik

t
ε4 dk,

with the complex amplitudes ãε and b̃ε of the up- and down-propagating modes given
explicitly by

ãε(k, z,x) =
1

2

[∫ ( 1

ε4
pε(t, z,x) +

1

ik

∂pε

∂z
(t, z,x)

)
eik

t
ε4 dt

]
e−ik

z
ε4 ,

b̃ε(k, z,x) =
1

2

[∫ ( 1

ε4
pε(t, z,x)− 1

ik

∂pε

∂z
(t, z,x)

)
eik

t
ε4 dt

]
eik

z
ε4 .

The pressure release boundary conditions impose pε(t, z = ε4θ · x,x) = 0.
Using (3.2-3.3) we obtain after Fourier transform, elimination of uε, and the

use of the above definitions of ãε, b̃ε, that the mode amplitudes satisfy the coupled
equations

∂ãε

∂z
=

(
ik

2ε
ν
( z
ε2
,x
)

+
i

2k
∆x

)
ãε + e−2ik z

ε4

(
ik

2ε
ν
( z
ε2
,x
)

+
i

2k
∆x

)
b̃ε,(3.4)

∂b̃ε

∂z
= −e2ik z

ε4

(
ik

2ε
ν
( z
ε2
,x
)

+
i

2k
∆x

)
ãε −

(
ik

2ε
ν
( z
ε2
,x
)

+
i

2k
∆x

)
b̃ε,(3.5)

where we have neglected terms of order ε2. Note that the z-derivatives of ãε and
b̃ε are of the order of ε−1, so we have to leading order ãε(k, z,x) = ãε(k, 0+,x) and

b̃ε(k, z,x) = b̃ε(k, 0+,x) for z ∈ (−ε4z0 + ε4θ · x, ε4θ · x) (the region between the

source and the top surface), and we denote by ãε(k, 0−,x) and b̃ε(k, 0−,x) the values

of ãε(k, z,x) and b̃ε(k, z,x) just below the source.
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The system (3.4-3.5) is valid in z ∈ (−L, 0) and it is complemented with the
following boundary and jump conditions at z = 0+ (the top interface), z = 0− (the
source) and z = −L (the bottom interface):

ãε(k, 0+,x)eikθ·x + b̃ε(k, 0+,x)e−ikθ·x = 0,(3.6) [
ãε(k, 0+,x)e−ik(z0−θ·x) + b̃ε(k, 0+,x)eik(z0−θ·x)

]
−
[
ãε(k, 0−,x)e−ik(z0−θ·x) + b̃ε(k, 0−,x)eik(z0−θ·x)

]
= f̃(k,x),(3.7) [

ãε(k, 0+,x)e−ik(z0−θ·x) − b̃ε(k, 0+,x)eik(z0−θ·x)
]

−
[
ãε(k, 0−,x)e−ik(z0−θ·x) − b̃ε(k, 0−,x)eik(z0−θ·x)

]
= 0,(3.8)

ãε(k,−L,x)e−ik
L
ε4 −R0b̃

ε(k,−L,x)eik
L
ε4 = 0,(3.9)

where R0 = (Z0 − 1)/(Z0 + 1) is the reflection coefficient of the bottom interface,
Z0 =

√
K0ρ0 is the impedance of the bottom homogeneous half-space, and the Fourier

transforms are defined by

(3.10) f̃(k,x) =

∫
f(t,x)eiktdt, f̂(k,κ) =

∫
f̃(k,x)e−iκ·xdx.

We simplify condition (3.7) by taking z0 → 0 (which means that the distance
from the source to the top interface is smaller than the wavelength), and we find that
the system (3.4-3.5) in z ∈ (−L, 0) is complemented with boundary conditions (3.9)
at z = −L and

(3.11) b̃ε(k, 0−,x) + ãε(k, 0−,x)e2ikθ·x = −f̃(k,x)eikθ·x,

at z = 0−. The waves that can be observed at the surface z = 0+ are given by

ãε(k, 0+,x) =
1

2
ãε(k, 0−,x)− 1

2
b̃ε(k, 0−,x)e−2ikθ·x,(3.12)

b̃ε(k, 0+,x) = −1

2
ãε(k, 0−,x)e2ikθ·x +

1

2
b̃ε(k, 0−,x).(3.13)

The signals recorded at the surface are in practice the vertical velocity (normal to the
top surface) defined by

(3.14) vε(t,x) := ez · u(t, 0, ε2x),

which is such that

∂vε

∂t
(t,x) = −∂p

ε

∂z
(t, ε4θ · x,x).

Therefore

(3.15) vε(t,x) =
1

2π

∫ (
ãε(k, 0+,x)eikθ·x − b̃ε(k, 0+,x)e−ikθ·x

)
e−ik

t
ε4 dk.

4. The Reflection Operator. We define the lateral Fourier modes

(4.1) âε(k, z,κ) =

∫
ãε(k, z,x)e−iκ·xdx, b̂ε(k, z,κ) =

∫
b̃ε(k, z,x)e−iκ·xdx.
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They satisfy for z ∈ (−L, 0)

dâε

dz
(k, z,κ) =

∫
L̂
ε

(k, z,κ,κ′) âε(k, z,κ′)dκ′

+e−
2ikz
ε4

∫
L̂
ε

(k, z,κ,κ′) b̂ε(k, z,κ′)dκ′,

db̂ε

dz
(k, z,κ) = −e−

2ikz
ε4

∫
L̂
ε

(k, z,κ,κ′) âε(k, z,κ′)dκ′

−
∫

L̂
ε

(k, z,κ,κ′) b̂ε(k, z,κ′)dκ′,

where

(4.2) L̂
ε

(k, z,κ1,κ2) = − i

2k
|κ1|2δ(κ1 − κ2) +

ik

2(2π)dε
ν̂
( z
ε2
,κ1 − κ2

)
,

with ν̂(z,κ) the partial Fourier transform (in x) of ν(z,x). The boundary conditions
(3.9) and (3.11) at z = −L and z = 0− read

âε(k,−L,κ)e−ik
L
ε4 −R0b̂

ε(k,−L,κ)eik
L
ε4 = 0,(4.3)

b̂ε(k, 0−,κ) + âε(k, 0−,κ− 2kθ) = −f̂(k,κ− kθ).(4.4)

We now apply an invariant imbedding technique to obtain that

b̂ε(k,−L,κ) =

∫
T̂
ε
(k, z,κ,κ′)b̂ε(k, z,κ′)dκ′,(4.5)

âε(k, z,κ) = e2ik L
ε4

∫
R̂
ε
(k, z,κ,κ′)b̂ε(k, z,κ′)dκ′,(4.6)

where the kernels of the operators T̂
ε

and R̂
ε

satisfy

d

dz
R̂
ε
(k, z,κ,κ′) = e−

2ik(z+L)

ε4 L̂
ε

(k, z,κ,κ′)

+

∫
L̂
ε

(k, z,κ,κ1) R̂
ε
(k, z,κ1,κ

′)dκ1 +

∫
R̂
ε
(k, z,κ,κ1)L̂

ε
(k, z,κ1,κ

′) dκ1

+e
2ik(z+L)

ε4

∫∫
R̂
ε
(k, z,κ,κ1)L̂

ε
(k, z,κ1,κ2) R̂

ε
(k, z,κ2,κ

′) dκ1dκ2,(4.7)

d

dz
T̂
ε
(k, z,κ,κ′) =

∫
T̂
ε
(k, z,κ,κ1)L̂

ε
(k, z,κ1,κ

′) dκ1

+e
2ik(z+L)

ε4

∫∫
T̂
ε
(k, z,κ,κ1)L̂

ε
(k, z,κ1,κ2) R̂

ε
(k, z,κ2,κ

′) dκ1dκ2.(4.8)

This system is complemented with the initial conditions at z = −L, which are obtained
from (4.3):

R̂
ε
(k,−L,κ,κ′) = R0δ(κ− κ′), T̂

ε
(k,−L,κ,κ′) = δ(κ− κ′).

The transmission and reflection operators evaluated at z = 0− carry all the relevant
information about the random medium from the point of view of the transmitted and
reflected waves.
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Using (4.4) and (4.6) we find

b̂ε(k, 0−,κ) = −f̂(k,κ− kθ)− e2ik L
ε4

∫
R̂
ε
(k, 0,κ− 2kθ,κ′)b̂ε(k, 0−,κ′)dκ′.

The solution of this equation can be expanded as a series:

b̂ε(k, 0−,κ) = −f̂(k,κ− kθ) + e2ik L
ε4

∫
R̂
ε
(k, 0,κ− 2kθ,κ1 + kθ)f̂(k,κ1)dκ1

−e4ik L
ε4

∫
R̂
ε
(k, 0,κ− 2kθ,κ1 + kθ)R̂

ε
(k, 0,κ1 − kθ,κ2 + kθ)f̂(k,κ2)dκ1dκ2

+e6ik L
ε4 · · · ,

âε(k, 0−,κ) = −f̂(k,κ+ kθ)− b̂ε(k, 0−,κ+ 2kθ),

and therefore

b̂ε(k, 0+,κ) = b̂ε(k, 0−,κ) +
1

2
f̂(k,κ− kθ),

âε(k, 0+,κ) = âε(k, 0−,κ) +
1

2
f̂(k,κ+ kθ),

âε(k, 0+,κ− kθ)− b̂ε(k, 0+,κ+ kθ) = f̂(k,κ)

−e2ik L
ε4

∫
R̂
ε
(k, 0,κ− kθ,κ1 + kθ)f̂(k,κ1)dκ1

+e4ik L
ε4

∫
R̂
ε
(k, 0,κ− kθ,κ1 + kθ)R̂

ε
(k, 0,κ1 − kθ,κ2 + kθ)f̂(k,κ2)dκ1dκ2

+e6ik L
ε4 · · · .(4.9)

It is straightforward to establish the convergence of the series in the absence of a
random field. In the presence of random fluctuations the convergence requires that
ν̂(z,κ) decays sufficiently fast in |κ|.

Our objective is to characterize the reflected vertical velocity field (3.15) around
the sequence of expected arrival times 2jL (which is j times the round trip time from
the surface to the bottom interface):

vεj (s,x) := vε(2jL+ ε4s,x)

=
1

(2π)d+1

∫∫ [
âε(k, 0+,κ− kθ)− b̂ε(k, 0+,κ+ kθ)

]
×ei(κ·x−ks)e−2ijk L

ε4 dκdk.(4.10)

The presence of the rapid phase factor in (4.10) selects the term with the opposite
rapid phase in the sum (4.9) in the limit ε→ 0. The kernel of the reflection operator
in spatial coordinates is given by

R̃
ε
(k, z,x,x′) =

1

(2π)d

∫∫
ei(x·κ−x

′·κ′)R̂
ε
(k, z,κ,κ′)dκdκ′.(4.11)

In the next section, we will discuss an “effective” scaling limit representation of this,
in the sense that it is a representation that gives the correct statistics for the reflected
wave field.
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5. The Asymptotic Representation of the Reflected Field. We consider
the reflected fields vεj defined by (4.10) and use diffusion approximation theorems to
identify a limit random Schrödinger model. The main result is the following one.

Proposition 5.1. For all j, the processes (vεj (s,x))s∈R,x∈Rd converge in distri-

bution as ε→ 0 in the space C0(R, L2(Rd,R))∩L2(R, L2(Rd,R)) to the limit process
(vj(s,x))s∈R,x∈Rd . We have in particular

v0(s,x) =
1

2π

∫
f̃(k,x)e−iksdk,(5.1)

v1(s,x) = − 1

2π

∫∫
R̃(k, 0,x,x′)eikθ·x+ikθ·x′ f̃(k,x′)dx′e−iksdk,(5.2)

v2(s,x) =
1

2π

∫∫∫
R̃(k, 0,x,x′)R̃(k, 0,x′,x′′)eikθ·x+2ikθ·x′+ikθ·x′′

×f̃(k,x′′)dx′dx′′e−iksdk.(5.3)

Here C0(R, L2(Rd,R)) is the space of continuous functions (in s) with values in

L2(Rd,R) and L2(R, L2(Rd,R)) = L2(R×Rd,R). The kernel of the operator R̃(k, z,x,x′)
is the solution of the following Itô-Schrödinger model

dR̃(k, z,x,x′) =
i

2k
(∆x + ∆x′) R̃(k, z,x,x′) dz

+
ik

2
R̃(k, z,x,x′) ◦ (dB(z,x) + dB(z,x′)) ,(5.4)

with the initial condition at z = −L:

R̃(k,−L,x,x′) = R0δ(x− x′).

The symbol ◦ stands for the Stratonovich stochastic integral, B(z,x) is a real-valued
Brownian field with covariance

(5.5) E[B(z1,x1)B(z2,x2)] = min{z1, z2}D(x1 − x2),

and we have used the notations

C(z,x) = E[ν(z′ + z,x′ + x)ν(z′,x′)],(5.6)

D(x) =

∫ ∞
−∞

C(z,x)dz.(5.7)

The moments of the finite-dimensional distributions also converge, in the sense that

E
[ q∏
l=1

vεj (sl,xl)
ml

]
ε→0−→ E

[ q∏
l=1

vj(sl,xl)
ml

]
,(5.8)

for any q ∈ N, (sl)l=1,...,q ∈ Rq, (xl)l=1,...,q ∈ Rdq, and (ml)l=1,...,q ∈ Nq.
The convergence of the reflected kernel was studied in [6] in the scaling regime

outlined in Section 2. As mentioned before we assume that the random process ν
has mixing properties in z which ensures that the integrated covariance D in (5.7) is
finite. Moreover

v0(s,x) = f(s,x)

9



is the field directly emitted upward by the source to the surface, while v1(s,x) is the
field emitted downward by the source and that has been reflected once by the bottom
interface. The fields vj , j ≥ 2 are the multiples that have been reflected j times by
the bottom interface and by the top surface. The statistical properties of the operator
R̃ have been studied in [6]. Therefore we can use the results contained in that paper
in order to analyze the statistical properties of the recorded vertical velocity field.

6. Absence of random fluctuations – Explicit representations. If the
medium is homogeneous, then

R̃(k, 0,x,x′) = R0

( k

4πL

)d/2
e−i

πd
4 exp

(
− ik|x− x

′|2

4L

)
.

Let us assume that the source has the form

f(t,x) = f0(t)e−ik0t exp
(
− |x|

2

2r2
0

)
,

and that the bandwidth of f0(t) is smaller than the carrier frequency k0. Then

(6.1) |v1(t,x)|2 = R2
0

(
1 +

4L2

k2
0r

4
0

)−d
|f0(t)|2 exp

(
− |x+ 2θL|2

r2
0

(
1 + 4L2

k20r
4
0

)).
The classical diffraction spreading due to the round trip from the surface to the
bottom interface and the shift of the envelope of the beam due to the small tilt θ of
the bottom interface are identifiable in (6.1).

7. Scaling revisited – Explicit representations. In this section we state
the assumptions regarding the random medium that allow us to get convenient and
explicit expressions for quantities of interest. We remark that the essential scaling
assumptions are the scaling of the source, the medium fluctuations and the travel
time in terms of the small parameter ε as described in Section 2. We also remark
that the expressions for the coherent and incoherent fields and how they depend on
the interface depth and tilt can be used for estimation and we will treat this in detail
elsewhere. Here, we make some subsequent scaling assumptions that are useful to
evaluate the expressions deriving from Proposition 5.1.

We assume that
(a) the pulse has carrier frequency k0 and it is narrowband,
(b) the input beam spatial profile is Gaussian with radius r0.

According to assumptions (a) and (b) we assume the initial conditions

(7.1) f(t,x) = fδ0 (t)e−ik0t exp
(
− |x|

2

2r2
0

)
, fδ0 (t) = δf0 (δt) ,

with δ � 1 (suppressing the complex conjugate part here and below). We remark that
the Gaussian shape assumption serves to simplify expressions, but it is not essential.

We furthermore assume that
(c) the random fluctuations are statistically isotropic with correlation length l and
l� r0, moreover, k0r0l ∼ L.

This assumption ensures that diffractive effects are of order one over a propagation
distance of order L. We remark that in the random medium case diffractive effects
are of order one when k0r0l ∼ L. This is when the Rayleigh length associated with

10



the Fresnel length,
√
r0l, is of the order of the depth of the slab. Note that in

this configuration the random medium fluctuations give an earlier onset of diffractive
effects than in the homogeneous case when the Rayleigh length associated with r0 is
of order k0r

2
0.

We let C0 and D0 represent non-dimensionalized quantities so that

C(z,x) = σ2C0

(z
l
,
x

l

)
, D(x) = σ2lD0

(x
l

)
.

We next assume smooth random medium fluctuations so that the autocovariance
function satisfies:
(d) D(x) is at least twice differentiable at x = 0 and we can write

D(x) = D(0)− γ

2
|x|2 + o(|x|2), γ = −1

d
∆D(0) =

σ2

l
γ0,(7.2)

with γ0 = −∆D0(0)/d.
We introduce the parameter β characterizing the strength of the forward scatter-

ing

(7.3) β(k0, L) = L
σ2k2

0l

4
.

Note that β corresponds to total scattering cross-section and βD̂0(·) a differential
scattering cross-section, see (B.3) and the discussion below. We shall then assume a
relatively strong medium interaction:
(e) β(k0, L)� 1.
We remark that this corresponds to k2

0D(0)L� 1.
The other important parameter that characterizes the microstructure is α(k0, L) =

L/(k0l
2). This parameter scales the strength of the diffraction at the scale l of the

random fluctuations, see (B.3). Note that then assumption (c) implies, and is in fact
equivalent to,

α0 =
L

k0r2
0

� αe =
L

k0lr0
= O(1)� α = α(k0, L) =

L

k0l2
.

The parameters α0, αe and α are inverse Fresnel numbers with the aperture corre-
sponding respectively to the source aperture r0, random medium effective aperture√
lr0 and the medium correlation length l. They describe the strength of diffractive

effects for respectively a homogeneous medium with source aperture r0, the random
medium with again source aperture r0, and a homogeneous medium with source aper-
ture l.

7.1. Coherent Field. Under (a,b) the limit of the coherent (or mean) reflected
field defined by

vcoh,1(t,x) = lim
ε→0

E
[
vε1(t,x)

]
is given by

vcoh,1(t,x) = −R0e
−ik0tfδ0 (t)eik0θ·xe−

k20
2 D(0)L

×
∫
ψcoh(0,x− x′)eikθ·x

′
exp

(
− |x

′|2

2r2
0

)
dx′.
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where ψcoh(z,x) is the solution of the Schrödinger equation with damping

∂ψcoh

∂z
=

i

k0
∆xψcoh −

k2
0

4
D(x)ψcoh

starting from ψcoh(−L,x) = δ(x). Under (a-c),

ψcoh(0,x) =
( k0

4πL

)d/2
e−i

πd
4 exp

(
− ik0|x|2

4L

)
,

and therefore

(7.4) |vcoh,1(t,x)|2 = R2
0e
−k20D(0)L|fδ0 (t)|2

(
1 +

4L2

k2
0r

4
0

)−d
exp

(
− |x+ 2θL|2

r2
0

(
1 + 4L2

k20r
4
0

)).
This expression is of the form (6.1) representing the reflected field in the homoge-
neous case with an exponential damping. If moreover, random scattering is strong,
assumption (e), then the coherent field is vanishing.

7.2. Incoherent Field. Under (a-c), the coherence function of the reflected
field defined by

(7.5) A1(s, t,x,y) = lim
ε→0

E
[
vε1

(
s+

t

2
,x+

y

2

)
vε1

(
s− t

2
,x− y

2

)]
has the form

A1(s, t,x,y) = R2
0f
δ
0

(
s+

t

2

)
fδ0

(
s− t

2

)
e−ik0te2ik0θ·y

×
( r0

2
√
π

)d ∫
e
− r

2
0|η|

2

4 − |y|
2

4r20 e−iη·x−2iLθ·ηe
k20
4

∫ 2L
0

D(η z
k0

+y)−D(0)dzdη.(7.6)

We give the details of the derivation of this result in Appendix A.
If moreover, random scattering is strong, assumption (e), and the random medium

fluctuations are smooth, assumption (d), then we obtain that the coherence function
has the Gaussian shape

A1(s, t,x,y) = R2
0f
δ
0

(
s+

t

2

)
fδ0

(
s− t

2

)
e−ik0t

( r0

rR(L)

)d
× exp

(
− |x+ 2θL|2

rR(L)2
− |y|2

4ρR(L)2
+ i

(x+ 2θL) · y
χR(L)2

+ i2k0θ · y
)
.(7.7)

The beam radius rR(L), the correlation radius ρR(L), and the parameter χR(L) are
characterized by

rR(L) = r0

√
1 +

4γL3

3r2
0

,(7.8)

ρR(L) = r0

√
1 + 4γL3

3r20√
1 + k2

0r
2
0γL+

k20γ
2L4

3

,(7.9)

χR(L) =
rR(L)√
k0γL2

,(7.10)
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where we have taken into account that k0r
2
0 � L in the considered regime. The

correlation radius ρR(L) of the reflected field describes the lateral separation at which
the field decorrelates and hence its scale of variation. Thus, the field amplitude has
transverse random fluctuations at the scale of the correlation radius ρR(L) within
an overall envelope whose width is rR(L). It is seen that the correlation radius is
small relative to the initial lateral support of the source, that is r0, in our scaling
regime. The same holds true for the parameter χR(L) which describes a scale of
phase decoherence of the reflected field.

Note that we can write respectively

γL3

4r2
0

= γ0αeβ,
4γL3

r2
0

1

k2
0γ

2L4
=

1

γ0

(l/r0)2

β
,

γL3

r2
0

1

k0γL2
= α0,

so that in our scaling regime

rR(L)

r0
� 1,

ρR(L)

r0
� 1,

χR(L)

r0
� 1,

respectively. In the regime that we consider it is not possible to observe in the spa-
tial coherence function (7.5) any coherent effect building up between the forward and
backward propagations. In fact, one can check that the expressions for the beam ra-
dius rR and correlation radius ρR coincide to leading order to the ones that we would
have obtained by considering propagation through independent random medium re-
alizations in the transmission and reflection directions of propagation [6]. However,
there is an interesting coherence phenomenon that can be observed in a small angular
cone and we discuss the so-called enhanced backscattering phenomenon in the next
section.

8. Enhanced Backscattering. In this section, we show that the reflected inten-
sity exhibits a singular picture in a very narrow cone (in lateral slowness κ), of angular
width of order α−1, around the backscattered direction. This phenomenon called en-
hanced backscattering or weak localization is widely discussed in the physics literature
[2, 11] and it has been observed in several experimental contexts [12, 10, 9, 8]. We
remark that we here consider enhanced backscattering as associated with a random
medium rather than with a rough surface as discussed in for instance [7]. Enhanced
backscattering can be described as follows: Let a quasi-monochromatic quasi-plane
wave be incident with a certain angle, then the mean reflected power has a local max-
imum in the backscattered direction, which is twice as large as the mean reflected
power in the other directions. In this section, we give a mathematical proof of en-
hanced backscattering and we deduce the maximum, the angular width, and the shape
of the enhanced backscattering cone.

8.1. Enhanced Backscattering from a Strong Interface. We assume that
the incoming wave is generated by a source function with

f(t,x) = fδ0 (t)e−ik0tginc(x)

representing an incident beam. Here, f is narrowband as before, while ĝinc(κ) is
concentrated at some κinc. Essentially, f(t,x) is a wave packet as before, oriented
in a direction corresponding with an incident direction of propagation determined by
κinc. The scaling is such that the angular width of the incoming beam is smaller than
α−1.
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The first reflected constituent in the direction κ0 is

ṽε1(s,κ0) =

∫
vε1(s,x)e−iκ0·xdx.

From (4.9-4.11-4.10) it follows that

ṽε1(s,κ0) = − 1

2π

∫∫
R̃
ε
(k + k0, 0,x,x

′)ei(k+k0)(θ·x+θ·x′)f̂

(
k

δ

)
ginc(x′)dx′

× e−i(k+k0)sdke−iκ0·xdx.

We then find that

ṽε1(s,κ0) = − 1

2π

∫∫
R̂
ε
(k + k0, 0,κ0 − (k + k0)θ,κ′ + (k + k0)θ)f̂

(
k

δ

)
ĝinc(κ′)

× e−i(k+k0)sdkdκ′.(8.1)

The mean of the square modulus of ṽε1(s,κ0) only involves the mean of the product
of a pair of reflection kernels, and it follows that this mean converges to the mean of
the square modulus of the limit process ṽ1(s,κ0) defined as the Fourier transform in
x of v1(s,x) given by (5.2) [6]. This means that the mean reflected intensity in the
direction κ0 satisfies

lim
ε→0

E
[
|ṽε1(s,κ0)|2

]
= R2

0|fδ0 (s)|2IR(κ0),(8.2)

IR(κ0) = 2−dldx

∫
VR
(

1,
κ0 − κ′1 − 2k0θ

2
l, (κ0 + κ′1)l,0

)
|ĝinc(κ′1)|2dκ′1.

Here VR is a transformed Wigner transform and is introduced in Appendix B. We
derive this result in Appendix C. Using the fact that ĝinc(κ) is concentrated at κinc,
we get

(8.3) IR(κ0) ' PincVR
(

1,
κ0 − (κinc + 2k0θ)

2
l, (κ0 + κinc)l,0

)
,

where Pinc = 2−dldx
∫
|ĝinc(κ′1)|2dκ′1. This formula gives the mean reflected intensity

in the direction κ0 and is valid for arbitrary values of α and β.
We consider the regime α� 1. The mean reflected intensity, far enough from the

backscattered direction −κinc, that is, for |κ0 + κinc|l� α−1, is of the form

IR(κ0) = PincVR
0

(
1,
κ0 − (κinc + 2k0θ)

2
l
)

(8.4)

=
Pinc

(2π)d

∫
e−il(κ0−(κinc+2k0θ))·u/2e2β(D0(u2 )−D0(0))du,

where we used the second statement of Lemma B.1. In a narrow angular cone around
the backscattered direction −κinc, the reflected intensity is locally larger:

IR(−κinc + α−1κ) = Pinc

[
VR
0 (1,−(κinc + k0θ)l) + VR

κl(1,−(κinc + k0θ)l)
]

(8.5)

=
Pinc

(2π)d

[ ∫
eil(κinc+k0θ)·ue2β(D0(u2 )−D0(0))du

+

∫
eil(κinc+k0θ)·ueβ

∫ 1
−1

D0(u2 +κlζ′)−D0(0)dζ′du
]
,
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where we used the third statement of Lemma B.1. Note that in the regime of β � 1
we see from (8.4) that we have sharp specular reflection in the direction κinc + 2k0θ
and from (8.5) that the enhanced backscattering cone vanishes in this limit. If we
assume that β � 1, then the main contribution to the integral in (8.4) is concentrated
to small |u| and we can replace

e2β(D0(u2 )−D0(0)) ≈ eβ∆D0(0)|u|2/(4d) = e−βγ0|u|
2/4,

so that

IR(κ0) =
Pinc

(πγ0β)d/2
exp

(
− |κ0 − (κinc + 2k0θ)|2l2

4γ0β

)
,(8.6)

again, for |κ0 + κinc|l � α−1, where γ0 is the dimensionless version of γ given by
(7.2): γ = σ2l−1γ0. This formula gives the width of the diffusive cone around the
“specular direction” κinc + 2k0θ:

(8.7) ∆κspec =
2
√
γ0β

l
=
√
γLk0 =

2

ρR(L)
.

This implies that a rapid decorrelation of the reflected field corresponds with a diffuse
and broad specular cone.

On the top of this broad cone, we have a narrow cone of relative maximum equal
to 2 centered along the backscattered direction −κinc:

IR(−κinc + α−1κ) =
Pinc

(πγ0β)d/2
exp

(
− |κinc + k0θ|2l2

γ0β

)
×
[
1 + exp

(
− γ0β

3
|κ|2l2

)]
.(8.8)

This shows that the width of the enhanced backscattering cone is

(8.9) ∆κEBC =

√
3

l
√
γ0βα

=
2
√

3√
γL3

=
4

rR(L)
.

Therefore, a wide broadening of the reflected wave energy goes with a relatively
sharp enhanced backscattering cone. We remark that the results (8.6) and (8.8) are
based on the assumption of a smooth correlation function, assumption (d); indeed,
then the shapes of the specular and backscattering cones are smooth in general and
Gaussian when β � 1. Note also that the enhancement can be seen when the source
is concentrated in wave vector so that the angular width of the incoming beam is
smaller than α−1. In the case of a parabolic beam with an angular width of order
one the coherence between the downward and upward paths is not anymore focused
to a narrow angular cone and the enhanced backscattering becomes lower order. In
the case when the backscattering comes from the medium fluctuations only, then the
shapes of the specular and backscattering cones depend sensitively on the roughness
of the medium. In particular the backscattering cone can have a cusp for rough media
[5]. Note that the angular width of the backscattering cone

(8.10) ∆θEBC =
∆κEBC

k0
=

4

k0rR(L)
15



is proportional to the wavelength, as predicted by physical arguments based on dia-
grammatic expansions [11].

We remark that the reciprocal relation to the beam spreading is also in agree-
ment with the physical interpretation of enhanced backscattering as a constructive
interference between pairs of wave ”paths” and reversed paths (see Figure 2). The
sum of all these constructive interferences should give an enhancement factor of 2 in
the backscattered direction as follows from the following heuristic argument. Assume
that the reflected wave is observed with an angle A. For paths corresponding to A = 0
there are two perfectly correlated paths, while for A large they become independent.
The factor of two then corresponds to the variance of two perfectly correlated random
variables relative to the variance when they are independent. Note that the cone of
correlated directions then will give the width of the enhanced backscattering cone.
Now, if the reflected wave is observed with an angle A compared to the backscattered
direction, then the phase shift between the direct and reversed paths is ke = kd sinA,
where d is the typical transverse size of a wave path, which is in our setting of the
order of the beam width rR. Therefore, constructive interference is possible in the
approximate range k0rRA ≤ π, which gives the angular aperture of the enhanced
backscattering cone. This ”path” interpretation is not used in our paper, but we
recover the physical result by exploiting our Itô-Schrödinger model.

Fig. 2. Physical interpretation of the scattering of a plane wave by a random medium. The
output wave in direction A is the superposition of many different scattering paths. One of these
paths is plotted as well as the reversed path. The phase difference between the two outgoing waves
is ke = kd sinA.

8.2. Enhanced Backscattering from a Diffusive Interface. We discuss in
this subsection the enhanced backscattering cone in the case of a diffusive interface,
and show that it is robust with respect to such a model generalization. In the previous
sections we considered the case of a specular reflection at a homogeneous interface.
Here, we revisit the analysis in the case in which an inhomogeneous interface is inserted
in the plane z = −L−ε2θ ·x, with impedance ZM (x/ε2), so that the second boundary
condition (3.9) attains the form

ãε(k,−L,x)e−ik
L
ε4 −RM (x)̃bε(k,−L,x)eik

L
ε4 = 0,

where RM (x) = (ZM (x) − 1)/(ZM (x) + 1) is the local reflection coefficient of the
interface. In this case, the initial condition at z = −L for the reflection operator is

R̃
ε
(k,−L,x,x′) = RM (x)δ(x− x′).

We assume here that RM is a stationary random process, with mean zero and auto-
covariance function

E[RM (x)RM (x′)] = R2
0ψ(x− x′).
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We can repeat the arguments of Appendix C and find that the reflected intensity
is still given by (8.3). In fact the only change is in the initial condition for the
transformed Wigner transform VR. The enhanced backscattering cone can then be
found by an argument as in the previous section, using the results of Lemma B.2
rather than Lemma B.1.

Now the mean reflected intensity, far enough from the backscattered direction
−κinc, that is, for |κ0 + κinc|l� α−1, is of the form

IR(κ0) =
Pinc

(2π)d

∫
ψ
( lu

2

)
e−il(κ0−(κinc+2k0θ))·u/2e2β(D0(u2 )−D0(0))du,(8.11)

where we have used the second statement of Lemma B.2. To get simple explicit
expressions for the characteristics of the reflected wave we assume that ψ is Gaussian:

(8.12) ψ(x) = e−
|x|2

a2 ,

where a is the correlation radius of the diffusive interface. We then find when β � 1
that

(8.13) IR(κ0) =
Pinc

(π(γ0β + (l/a)2)d/2
exp

(
− |κ0 − (κinc + 2k0θ)|2l2

4(γ0β + (l/a)2)

)
,

again, for |κ0 + κinc|l � α−1. This formula gives the width of the diffusive cone
around the “specular direction” κinc + 2k0θ:

(8.14) ∆κaspec =
2
√
γ0β + (l/a)2

l
= k0

√
γL+ 4/(ak0)2,

which shows that the diffusive interface broadens the specular cone and the angular
broadening becomes strong when k0a� 1. Correspondingly, in a narrow angular cone
around the backscattered direction −κinc, the reflected intensity is locally larger, now
given by:

IR(−κinc + α−1κ) =
Pinc

(2π)d

[ ∫
ψ
( lu

2

)
eil(κinc+k0θ)·ue2β(D0(u2 )−D0(0))du

+

∫
ψ
( lu

2

)
eil(κinc+k0θ)·ueβ

∫ 1
−1

D0(u2 +κlζ′)−D0(0)dζ′du
]
,

where we have used the third statement of Lemma B.2. It then again follows that,
when β � 1, on the top of the broad cone, we have a narrow cone of relative maximum
equal to 2 centered along the backscattered direction −κinc:

IR(−κinc + α−1κ) =
Pinc

(π(γ0β + (l/a)2)d/2
exp

(
− |κinc + k0θ|2l2

γ0β + (l/a)2

)
×
[
1 + exp

(
− γ0β

3
|κ|2l2

)]
.(8.15)

We observe that the relative magnitude and width of the cone are not affected by the
replacement of the specular interface with a diffusive interface.
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9. Conclusions. We analyzed multiple reflections from a random slab termi-
nating in a tilted interface and with pressure release boundary conditions on top.
The tilt is relatively small so that we can retain the overall slab geometry but it is
non-negligible in that it produces a deviation in the specular reflection of a normally
incident beam of the order of the beam width. We use an invariant imbedding formu-
lation and a representation of the associated reflection and transmission operators in
terms of Itô-Schrödinger equations to obtain a description of the wave field statistics.
The thickness of the slab is large enough so that the waves transmitted through and
reflected by the random medium are partly coherent. In other words the thickness of
the slab is of the order of the mean free path. We use this representation in particular
to analyze the correlation structure of the transmitted field and the structure of the
enhanced backscattering cone. From a physics point of view, the cone arises as a
coherence phenomenon and hence one could expect that the cone will be independent
of the small tilt of the bottom interface; indeed, this is confirmed by our analysis.
Moreover, the cone is not affected by making the terminating interface diffuse which
again can be understood in that the cone comes from coherence in retro-reflected
paths. The angular width of the cone is proportional to the ratio of the wavelength
over the beam width. Since the beam width is enhanced by scattering by the random
medium this shows that strong medium fluctuations and a relatively deep slab gives
a narrow cone. This result holds as long as the Itô-Schrödinger equations are valid,
which means that the beam width should remain smaller than the interface depth,
and as long as the tilt is not too large, otherwise the backscattered direction is not in
the diffusive specular cone and the enhanced backscattering peak is too small to be
observable.

Appendix A. Coherence Function of the Reflected Wave.

We derive expression (7.6) for the form of the coherence function of the reflected
wave defined by (7.5). We find using (5.2) that

A1(s, t,x,y) =
1

(2π)2

∫∫
E
[
R̃(k, 0,x+

y

2
,x′)R̃(k, 0,x− y

2
,x′′)

]
×eikθ·(x+y

2 +x′)f̃δ(k,x′)dx′e−ik(s+ t
2 )dke−ik

′θ·(x−y2 +x′′)f̃δ(k′,x′′)dx′′eik
′(s− t2 )dk′.

We note that

f̃δ(k,x) = e
− |x|

2

2r20 f̂
(k − k0

δ

)
.

In view of the narrow bandwidth assumption we then get

A1(s, t,x,y) =
1

(2π)2

∫∫
E
[
R̃(k0, 0,x+

y

2
,x′)R̃(k0, 0,x−

y

2
,x′′)

]
e
− |x

′|2

2r20 e
− |x

′′|2

2r20

×f̂
(
k

δ

)
f̂

(
k′

δ

)
eik0θ·(x

′−x′′+y−t)e−i(k+k′)t/2e−i(k−k
′)sdkdk′dx′dx′′

=

∫∫
E
[
R̃(k0, 0,x+

y

2
,x′)R̃(k0, 0,x−

y

2
,x′′)

]
e
− |x

′|2+|x′′|2

2r20

×fδ0 (s+ t/2)fδ0 (s− t/2)eik0(θ·(x′−x′′+y)−t)dx′dx′′.

In order to characterize the coherence function A1 we introduce the Wigner transform
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of the reflection operator defined by

WR
k (z,x,x′,κ,κ′) =

∫∫
e−i(κ·y+κ′·y′)(A.1)

× E
[
R̃
(
k,−z,x+

y

2
,x′ +

y′

2

)
R̃
(
k,−z,x− y

2
,x′ − y

′

2

)]
dydy′ .

It satisfies a set of transport equations:

∂WR
k

∂z
+
κ

k
· ∇xWR

k +
κ′

k
· ∇x′WR

k =
k2

4(2π)d

∫
D̂(u)

×
[
WR
k

(
z,x,x′,κ− u,κ′

)
+WR

k

(
z,x,x′,κ,κ′ − u

)
+2WR

k

(
z,x,x′,κ− 1

2
u,κ′ − 1

2
u
)

cos
(
u · (x− x′)

)
−2WR

k

(
z,x,x′,κ− 1

2
u,κ′ +

1

2
u
)

cos
(
u · (x− x′)

)
−2WR

k

(
z,x,x′,κ,κ′

)]
du,(A.2)

starting from WR
k (z = L,x,x′,κ,κ′) = (2π)dR2

0δ(x − x′)δ(κ + κ′). The coherence
function can now be expressed as

A1(s, t,x,y) = H(x,y)R2
0f
δ
0 (s+ t/2)fδ0 (s− t/2)eik0(θ·y−t),(A.3)

H(x,y) =
1

(2π)2dR2
0

∫∫
WR
k0(0,x,

x′ + x′′

2
,κ,κ′)ei(κ·y+κ′·(x′−x′′))dκdκ′

×e
− |x

′|2+|x′′|2

2r20 eik0θ·(x
′−x′′)dx′dx′′.

From (B.1) and (B.2) we have

WR
k (0,x,x′,κ,κ′) = R2

0(l/2)d
∫
eiκ
′′·(x′−x)eiz(κ−κ

′)·κ′′/k

×VR
(

1, l(κ+ κ′)/2, l(κ− κ′), lκ′′;α(k, L), β(k, L)
)
dκ′′,

with α(k, z) = z/(kl2) scaling the diffraction strength and β(k, z) = zσ2k2l/4 charac-
terizing the strength of forward scattering. We then find that

H(x,y) =
1

(2π)2d

(
l

2

)d ∫∫
eiκ
′′·((x′+x′′)/2−x)eiL(κ−κ′)·κ′′/k0

×VR
(

1, l(κ+ κ′)/2, l(κ− κ′), lκ′′;α(k0, L), β(k0, L)
)
dκ′′ei(κ·y+κ′·(x′−x′′))dκdκ′

×e
− |x

′|2+|x′′|2

2r20 eik0θ·(x
′−x′′)dx′dx′′

=

(
1

2(2πl)2

)d ∫∫
eis·((x

′+x′′)/2−x)/leiLr·s/(k0l
2)

×VR
(

1, q, r, s;α(k0, L), β(k0, L)
)
ei((q+r/2)·y+(q−r/2)·(x′−x′′))/ldqdrds

×e
− |x

′|2+|x′′|2

2r20 eik0θ·(x
′−x′′)dx′dx′′.
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Integrating in x′,x′′ we get

H(x,y) =

(
r2
0

4πl2

)d ∫∫
e−is·x/leiα(k0,L)r·sei(q+r/2)·y/l

×VR
(

1, q, r, s;α(k0, L), β(k0, L)
)
e−r

2
0(|k0θ+(q−r/2)/l|2+|s/(2l)|2)dqdrds.

We change variables of integration, r 7→ r + 2q, s 7→ s/(2α(k0, L)), and get

H(x,y) =

(
r2
0

8πl2α(k0, L)

)d ∫∫
e−is·x/(2lα(k0,L))ei(q+r/2)·sei(2q+r/2)·y/l

×VR
(

1, q, r + 2q,
s

2α(k0, L)
;α(k0, L), β(k0, L)

)
×e−r

2
0(|k0θ−r/(2l)|2+|s/(4α(k0,L)l)|2)dqdrds.

Next, we use Lemma B.1 to obtain

H(x,y) =

(
r2
0

16π2l2α(k0, L)

)d ∫∫
e−is·x/(2lα(k0,L))ei(r/2+q)·sei(2q+r/2)·y/l

×e−iq·ueβ(k0,L)
∫ 1
−1

D0(u2 + s
2 ζ)−D0(0)dζe−r

2
0(|k0θ−r/(2l)|2+|s/(4α(k0,L)l)|2)dqdrdsdu.

Integrating in q and evaluating the associated Dirac function, we get

H(x,y) =

(
r2
0

8πl2α(k0, L)

)d ∫∫
e−is·x/(2lα(k0,L))eir·(s+y/l)/2

×e2β(k0,L)
∫ 1
0
D0(yl +sζ)−D0(0)dζ × e−r

2
0(|k0θ−r/(2l)|2+|s/(4α(k0,L)l)|2)drds.

Integrating in r yields

H(x,y) =

(
r0

4
√
πlα(k0, L)

)d ∫
e−is·x/(2lα(k0,L))eik0θ·(y+sl)e

− |y+sl|
2

4r20

×e−
∣∣∣ r0s

4α(k0,L)l

∣∣∣2
e2β(k0,L)

∫ 1
0
D0(yl +sζ)−D0(0)dζds.

Using that D(x) = σ2lD0(x/l) we can rewrite the right-hand side as

H(x,y) =

(
r0

2
√
π

)d ∫
e−iη·xeik0θ·(y+2ηL/k0)e

− |y+2ηL/k0|
2

4r20

×e−
|r0η|

2

4 e
k20
4

∫ 2L
0

D(y+ηζ
k0

)−D(0)dζdη

'
(

r0

2
√
π

)d ∫
e−iη·xeik0θ·(y+2ηL/k0)e

− |y|
2

4r20

×e−
|r0η|

2

4 e
k20
4

∫ 2L
0

D(y+ηζ
k0

)−D(0)dζdη,

where we used that L/(k0r
2
0)� 1. Substituting this result into (A.3) gives (7.6).

Appendix B. Wigner Asymptotics.
We cast the Wigner distribution in a suitable dimensionless form and present

an asymptotic approximation valid in the regime given by the scaling relation in
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Assumption (c). We state the result here for completeness; see [6] for a comprehensive
discussion.

We consider the following Fourier transform V R of the Wigner distribution WR
k :

WR
k (z,x,x′,κ,κ′) =

1

(2π)d

∫
V Rk

(
z,
κ+ κ′

2
,κ− κ′,κ′′

)
eiκ
′′·(x′−x)dκ′′,(B.1)

which we introduce because the stationary maps that we will identify in Lemma B.1,
in the asymptotic regime α→∞, have simple representations in this new frame. Note
also that this ansatz incorporates the fact that WR

k does not depend on x+ x′, only
on x−x′, κ, and κ′, which follows from the stationarity of the random medium. The
Fourier-transformed kernel V Rk (z,κ,κ′,κ′′) satisfies

V Rk (0,κ,κ′,κ′′) = R2
0(πl)de

iz
k κ
′·κ′′VR

(
1,κl,κ′l,κ′′l;α(k, L), β(k, L)

)
,(B.2)

where (VR(ζ, q, r, s;α, β))ζ∈[0,1] is the solution of the dimensionless system

∂VR

∂ζ
=

β

(2π)d

∫
D̂0(u)

[
VR
(
ζ, q − 1

2
u, r − u, s

)
e−iαs·uζ

+VR
(
ζ, q − 1

2
u, r + u, s

)
eiαs·uζ + VR

(
ζ, q − 1

2
u, r, s− u

)
e−iαr·uζ

+VR
(
ζ, q − 1

2
u, r, s+ u

)
eiαr·uζ − 2VR

(
ζ,κ, r, s

)
−VR

(
ζ, q − 1

2
u, r − u, s+ u

)
eiα[(r−s)·u−|u|2]ζ

−VR
(
ζ, q − 1

2
u, r − u, s− u

)
e−iα[(r+s)·u+|u|2]ζ

]
du,(B.3)

starting from VR(ζ = 0, q, r, s;α, β) = δ(q). Recall that α(k, L) = L/(kl2) and
β(k, L) = σ2k2lL/4.

The rapid transverse variations regime is particularly interesting to study because
WR
k has a multi-scale behavior. In (B.3) this regime gives rise to rapid phases and

this allows us to identify a simplified description and the multiscale behavior strongly
influences the correlations. The following lemma describes the asymptotic behavior
of VR as α → ∞. The presence of singular layers at r = 0 and at s = 0 requires
particular attention and is responsible for instance for the enhanced backscattering
phenomenon [6], (corresponding to part (3) in Lemma B.1). In general (part (1) in
Lemma B.1) the Fourier-transformed operator decays exponentially according to the
parameter βD0(0) corresponding to the total scattering cross section. This decay
follows from a partial loss of coherence by random forward scattering. However, as
articulated in parts (2) and (3) of the lemma below the coupling of wave modes
depends on the full medium autocorrelation function if we look at nearby specular
reflection and small spatial offset frequencies. We have [6]

Lemma B.1.
(1) For any r 6= 0, s 6= 0:

(B.4) VR(ζ, q, r, s;α, β)
α→∞−→ δ(q)e−2βD0(0)ζ .

(2) For any s 6= 0 we have VR(ζ, q, rα , s;α, β)
α→∞−→ VRr (ζ, q;β) where VRr (ζ, q;β)

is the solution of

(B.5)
∂VRr
∂ζ

=
2β

(2π)d

∫
D̂0(u)

[
VRr
(
ζ, q − 1

2
u
)

cos
(
r · uζ

)
− VRr

(
ζ, q
)]
du,

21



and is given explicitly by

(B.6) VRr (ζ, q;β) =
1

(2π)d

∫
e−iq·ueβ

∫ ζ
0
D0(u2 +rζ′)+D0(u2 −rζ

′)−2D0(0)dζ′du.

Similarly, for any r 6= 0 we have VR(ζ, q, r, sα ;α, β)
α→∞−→ VRs (ζ, q;β).

(3) For any r and s we have

(B.7) VR
(
ζ, q,

r

α
,
s

α
;α, β

)
α→∞−→ VRr (ζ, q;β) + VRs (ζ, q;β)− δ(q)e−2βD0(0)ζ .

We next discuss the modification of the above result that follows from using
a diffusive interface as introduced in Section 8.2. Under these conditions, the initial
condition for the Wigner distribution isWR(z = L,x,x′, q, q′) = R2

0δ(x−x′)ψ̂(q+q′).

The associated initial condition for VR is VR(ζ = 0, q, r, s) = (πl)−dψ̂(2q/l). Lemma
B.1 is then modified as follows

Lemma B.2.
(1) For any r 6= 0, s 6= 0:

(B.8) VR(ζ, q, r, s;α, β)
α→∞−→ (πl)−dψ̂(2q/l)e−2βD0(0)ζ .

(2) For any s 6= 0 we have VR(ζ, q, rα , s;α, β)
α→∞−→ VRr (ζ, q;β) where VRr (ζ, q;β)

is solution of

(B.9)
∂VRr
∂ζ

=
2β

(2π)d

∫
D̂0(u)

[
VRr
(
ζ, q − 1

2
u
)

cos
(
r · uζ

)
− VRr

(
ζ, q
)]
du,

and is given explicitly by
(B.10)

VRr (ζ, q;β) =
1

(2π)d

∫
ψ

(
lu

2

)
e−iq·ueβ

∫ ζ
0
D0(u2 +rζ′)+D0(u2 −rζ

′)−2D0(0)dζ′du.

Similarly, for any r 6= 0 we have VR(ζ, q, r, sα ;α, β)
α→∞−→ VRs (ζ, q;β).

(3) For any r and s we have
(B.11)

VR
(
ζ, q,

r

α
,
s

α
;α, β

)
α→∞−→ VRr (ζ, q;β)+VRs (ζ, q;β)−(πl)−dψ̂(2q/l)e−2βD0(0)ζ .

Proof. In case (1), the rapid phases cancel the contributions of all but the term
VR (ζ, q, r, s) in (B.3), and we get

∂VR

∂ζ
= −2

β

(2π)d

∫
D̂0(u)VRdu = −2βD0(0)VR,

which gives (B.4) and (B.8) in view of the corresponding initial conditions. In case
(2), we obtain in the limit α→∞ the simplified system

∂VRr
∂ζ

=
β

(2π)d

∫
D̂0(u)

[
VRr
(
ζ, q − 1

2
u, s− u

)
e−ir·uζ

+VRr
(
ζ, q − 1

2
u, s+ u

)
eir·uζ − 2VRr

(
ζ, q, s

)]
du.

We then Fourier transform this equation in q and s, and we obtain that the solution
does not depend on s, that it satisfies (B.5), and that it is given by (B.6) and (B.10).
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In case (3) we obtain the simplified system for VRr,s
(
ζ, q
)

= limα→∞ VR
(
ζ, q, rα ,

s
α

)
:

∂VRr,s
∂ζ

=
2β

(2π)d

∫
D̂0(u)

[
VRs
(
ζ, q − 1

2
u
)

cos
(
s · uζ

)
+VRr

(
ζ, q − 1

2
u
)

cos
(
r · uζ

)
− VRr,s

(
ζ, q
)]
du.

Using the equation (B.5) satisfied by VRs and VRr , we get

∂VRr,s
∂ζ

=
∂VRr
∂ζ

+
∂VRs
∂ζ

+ 2βD0(0)
[
VRr + VRs − VRr,s

]
,

which yields (B.7) and (B.11). 2

Appendix C. Enhanced Backscattered Intensity.
We derive result (8.2). Using (8.1) we first find that

lim
ε→0

E
[
|ṽε1(s,κ0)|2

]
= R2

0|fδ0 (s)|2IR(κ0),

for

IR(κ0) =
1

R2
0

∫∫
E
[
R̂
ε
(k0, 0,κ0 − k0θ,κ

′
1 + k0θ)

×R̂
ε
(k0, 0,κ0 − k0θ,κ′2 + k0θ)

]
ĝinc(κ′1)ĝinc(κ′2)dκ′1dκ

′
2.

In view of (4.11) and (A.1) we have

E
[
R̂
ε
(k0, 0,κ0,κ

′
1)R̂

ε
(k0, 0,κ0,κ′2)

]
=

1

(2π)4d

∫∫
e−i(x·κ0−x′·κ′1)ei(x̃·κ0−x̃′·κ′2)

×eiq·(x−x̃)eiq
′·(x′−x̃′)WR

k0(0, (x+ x̃)/2, (x′ + x̃′)/2, q, q′)dxdx′dx̃dx̃′dqdq′

=
1

(2π)4d

∫∫
e−iκ0·zei(z̃

′+z′/2)·κ′1e−i(z̃
′−z′/2)·κ′2

×eiq·zeiq
′·z′WR

k0(0, z̃, z̃′, q, q′)dzdz′dz̃dz̃′dqdq′

=
1

(2π)2d

∫∫
eiz̃
′·(κ′1−κ

′
2)δ(q − κ0)δ(q′ + κ′1/2 + κ′2/2)

×WR
k0(0, z̃, z̃′, q, q′)dz̃dz̃′dqdq′.

This gives

IR(κ0) =
1

(2π)2dR2
0

∫∫
WR
k0(0, z̃, z̃′,κ0 − k0θ,−(κ′1 + κ′2)/2− k0θ)

×eiz̃
′·(κ′1−κ

′
2)ĝinc(κ′1)ĝinc(κ′2)dz̃dz̃′dκ′1dκ

′
2.

In view of (B.1) we have∫∫
WR
k0(0, z̃, z̃′,κ0,−(κ′1 + κ′2)/2)eiz̃

′·(κ′1−κ
′
2)dz̃dz̃′

= (2π)dV R(0, (κ0 − κ′1)/2,κ0 + κ′1,0)δ(κ′1 − κ′2).
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Then, using (B.2) we find that

IR(κ0) = (l/2)d
∫
VR(1, l(κ0 − κ′ − 2k0θ)/2, l(κ0 + κ′),0;α(k0, L), β(k0, L))

×|ĝinc(κ′)|2dκ′.
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