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Abstract

In this paper the white-noise paraxial wave model is considered. This model de-
scribes for instance the propagation of laser beams in the atmosphere in some typical
scaling regimes. The closed-form equations for the second- and fourth-order moments of
the field are solved in two particular situations. The first situation corresponds to a ran-
dom medium with a transverse correlation radius smaller than the beam radius. This
is the spot-dancing regime: the beam shape spreads out as in a homogeneous medium
and its center is randomly shifted according to a Gaussian process whose variance grows
like the third power of the propagation distance. The second situation corresponds to a
plane-wave initial condition, a small amplitude for the medium fluctuations, and a large
propagation distance. This is the scintillation regime: the normalized variance of the
intensity converges to one exponentially with the propagation distance, corresponding
to strong intensity fluctuations and in agreement with the conjecture that the statistics
of the field becomes complex Gaussian.
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1 Introduction

We will consider wave propagation through time-independent media with a complex spatially
varying or “cluttered” velocity. It is then convenient to model the fluctuations in the velocity
or index of refraction as a random field. Typically we cannot expect to know this parameter
pointwise, but we may be able to characterize its statistics and we are interested in how the
statistics of the medium affect the statistics of the wave field. In its most common form,
the analysis of wave propagation in random media consists in studying the field u solution
of the scalar time-harmonic wave or Helmholtz equation

∆u+ k2
0n

2(z,x)u = 0, (z,x) ∈ R1+d (1.1)

where k0 is the free space homogeneous wavenumber and n is a randomly heterogeneous
index of refraction. Since the index of refraction n is a random process, the field u is also
a random process whose statistical behavior can be characterized by the calculations of its
moments. Even though the scalar wave equation is simple and linear, the relation between
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the statistics of the index of refraction and the statistics of the field is highly nontrivial and
nonlinear. For instance, the scintillation problem is a well-known paradigm, related to the
observation that the irradiance of a star fluctuates due to the light propagation through the
turbulent atmosphere. This common observation is far from being fully understood math-
ematically. However, experimental observations indicate that the statistical distribution of
the irradiance is exponential, with the irradiance being the square magnitude of the com-
plex wave field. Indeed it is a well-accepted conjecture that the statistics of the complex
field becomes circularly symmetric complex Gaussian when the wave propagates through
the turbulent atmosphere [33, 35] (so that the irradiance is the sum of the squares of the
two independent Gaussian random variables, which upto a scaling has χ-square distribution
with two degrees of freedom, that is an exponential distribution). However, so far there is
no mathematical proof of this conjecture, except in randomly layered media [12, Chapter 9].
One of the main contributions of this paper is to show that the normalized variance of the
irradiance converges to one (which is the normalized variance of the exponential distribu-
tion) as the wave propagates through a random medium in a fairly general situation. Here,
with “normalized variance” we mean the variance of the field over the square of its expected
value. This quantity is often referred to as the scintillation index. A better understanding
of the structure of the scintillation is important in order to design adaptive optics and other
schemes aimed at mitigating the effects that atmospheric turbulence has on a propagating
laser beams, this is an active area of research [22, 31].

There are various approaches to model wave propation in random media in order to
compute the moments of the field: Born or Rytov approximations, extended Huygens-
Fresnel principle and the white-noise paraxial model in particular. Here we will use the
white-noise paraxial model, but comment first on the other models.

The Born approximation looks for an expansion of the solution of the wave equation as
a sum of terms u = u0 + u1 + u2 + · · · , where u0 represents the unperturbed or unscattered
wave (solution of (1.1) with n2 ≡ 1) while u1 and u2 represent the first-order and second-
order scattered waves [20, Sec. 17.2]. The perturbations terms u1 and u2 are obtained
by substitution of a low-order approximation of the solution in the right-hand side of the
Lippmann-Schwinger equation (which is an integral formulation of (1.1)):

u(z,x) = u0(z,x) + k2
0

∫
R1+d

G(z,x, z′,x′)
(
n2(z′,x′)− 1

)
u(z′,x′)dx′dz′,

where G is the homogeneous Green’s function of the scalar wave equation. The Rytov ap-
proximation looks for an expansion of the solution in a multiplicative form: u = u0 exp(ψ1 +
ψ2+· · · ), where ψ1 and ψ2 are first-order and second-order complex phase perturbations [20,
Sec. 17.2]. It is possible to relate the Rytov perturbation terms to the Born approximation
terms. These two methods give explicit representation formulas of the field u and allow the
computation of all moments, but their validity is restricted to weak fluctuation regimes and
do not allow one to explore regimes in which the statistics of the wave is strongly affected
by the random medium [1].

The extended Huygens-Fresnel principle is a heuristic technique that states that the field
u(z,x) is given by the following extension of the Huygens-Fresnel formula (in a 1 + d = 3-
dimensional medium) [20, Sec. 20.18]:

u(z,x) =
ik0

2πz
exp(ik0z)

∫
Rd
u0(0,x′) exp

(
i
k0|x− x′|2

2z
+ ψ(z,x,x′)

)
dx′,
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where ψ(z,x,x′) is the random complex phase associated with a spherical wave emanating
from (0,x′) evaluated at (z,x) and which contains the first- and second-order perturbations
as in Rytov’s method. This method allows one to get a closed-form expression of the field
u and to compute its moments, but its range of validity is unknown [1].

The white-noise paraxial wave equation describes the propagation of waves along a priv-
ileged axis, say the z-direction, with negligible backscattering. This model is interesting for
three main reasons. First it appears as a very natural model in many applications where
the correlation length of the medium is smaller than the propagation distance. This is the
case in many situations, in laser beam propagation [27], time reversal in random media
[5, 24], underwater acoustics [28], or migration problems in geophysics [6]. Second it can be
derived rigorously from the wave equation in random media (1.1) by a separation of scales
technique in the high-frequency regime (see [2] in the case of a randomly layered medium
and [16, 17, 18] in the case of a 1 + d-dimensional random medium). Third it allows for the
use of Itô’s stochastic calculus, which in turn enables the closure of the hierarchy of mo-
ment equations [13, 20]. The analysis of important wave propagation problems, such as the
star scintillation due to atmospheric turbulence then seems tractable [30]. Unfortunately,
even though the equation for the second-order moments can be solved, the equation for the
fourth-order moments is very difficult and only approximations or numerical solutions are
available (see [10, 19, 29, 32, 34] and [20, Sec 20.18]). A formal high-frequency asymptotic
expansion of the moment equations gives the result that the n’th moment of the intensity
should be asymptotically n! [35]. By using additional hypotheses on decorrelation proper-
ties of the moments one can establish that the stationary solutions to the moment equations
correspond to the exponential distribution [13]. Note that scintillation cannot be universal
as self-averaging properties of the solution to the white-noise paraxial wave equation can
be obtained in some specific regimes [4, 3, 8, 25]. Here, with a self-averaging asymptotic
regime we mean that the scintillation index vanishes in the limit. This is in particular the
case with relative rapid decorrelation of the medium fluctuations (in both depth and lateral
coordinates). As shown in [3] the self-averaging also depends on the initial data and can
be lost for very rough initial data even with a high lateral diversity as considered there. In
[21, 26] the authors also consider a situation with rapidly fluctuating random medium fluc-
tuations and a regime in which the Wigner transform itself is weakly statistically stable or
self-averaging. They then consider the moment hierarchy of the rescaled Wigner transform
fluctuations. In this paper we focus rather on the moments of wave field itself in regimes
that are not self-averaging.

In our paper we compute the second- and fourth-order moments of the field in a rigorous
way in the white-noise paraxial model. We address two different situations using rigorous
methods. In the so-called spot-dancing regime we show that the transverse beam profile has
the same shape as in a homogeneous medium, but its center experiences random transversal
shifts that can be described in terms of a Gaussian process whose variance grows like the
third power of the distance. The variance of the intensity then grows with the propagation
distance as a power law as well, and therefore scintillation does not occur. In this regime it is
possible to give a probabilistic representation of the field in terms of a Gaussian process that
correctly reproduces all the finite-order moments, thus giving a convenient representation of
the solutions of the complicated partial differential equations that define the field moment
hierarchy. In the so-called scintillation regime we show that the normalized variance of the
intensity converges exponentially to one. This is the first mathematical proof of this result.
We give moreover the full structure of the second-order moments of the field and of the
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intensity distribution.
The paper is organized as follows. In Sections 2 and 3 respectively, we introduce the

Itô-Schrödinger equation and the moment equations. In Sections 2 and 4 we describe
the two main regimes of propagation that we consider in this paper. As a step towards
the computation of the scintillation index we describe the second-order moments in Section
5. The main results on the fourth-order moments and scintillation index are presented in
Section 6.

2 The White-Noise Paraxial Model

The white-noise paraxial model is widely used in the physical literature. It simplifies the
full wave equation (1.1) by replacing it with an initial value-problem in the half-space z > 0
with u(z = 0,x) given. It was studied mathematically in [7]. The proof of its derivation
from the three-dimensional wave equation in randomly scattering medium is given in [17].
We describe in the next proposition this model.

Proposition 2.1. The field (u(z,x))z∈[0,∞),x∈Rd is the solution of the Itô-Schrödinger dif-
fusion model

du(z,x) =
i

2k0
∆xu(z,x)dz +

ik0

2
u(z,x) ◦ dB(z,x), (2.1)

with the initial condition in the plane z = 0:

u(z = 0,x) = uic(x).

The symbol ◦ stands for the Stratonovich stochastic integral, B(z,x) is a real-valued Brow-
nian field with covariance

E[B(z1,x1)B(z2,x2)] = min{z1, z2}C(x1 − x2). (2.2)

The covariance function C is assumed to decay fast enough at infinity so that it belongs
to L1(Rd). Its Fourier transform is nonnegative (since it is the power spectral density of the
stationary process x → B(1,x)). In [7] the existence and uniqueness has been established
for the random process u(z,x). It is shown that the process u(z,x) is a continuous Markov
diffusion process in L2(Rd).

Remark. The model (2.1) can be obtained from the 1 + d-dimensional scalar wave
equation (1.1) by a separation of scales technique in which the 1+d-dimensional fluctuations
of the index of refraction n(z,x) are described by a zero-mean stationary random process
ν(z,x) with mixing properties: n2(z,x) = 1 + ν(z,x). The covariance function C(x) in
(2.2) is then given in terms of the two-point statistics of the random process ν by

C(x) =

∫ ∞
−∞

E[ν(z′ + z,x′ + x)ν(z′,x′)]dz. (2.3)

Note that, if σ is the standard deviation of the fluctuations of the index of refraction, if
lz (resp. lx) is the longitudinal (resp. transverse) correlation length of the fluctuations of
the index of refraction, then C(0) is of order σ2lz and the transverse scale of variation of
C(x) is of order lx.

Assume that ε a small dimensionless parameter. Denote by λ0 the carrier wavelength,
by L the propagation distance, and by R0 the radius of the inital transverse beam. The two
regimes that we consider in this paper are:
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• The spot-dancing regime. The random medium fluctuations are relatively strong, so
that σ2lzL/λ

2
0 is of order 1/ε2, the initial beam support is small, so that R0/lx is of

order ε, and the propagation distance is such that Lλ0/R
2
0 is of order one. This will

lead to a picture where the wave field center “dances” according to a random frame.

• The scintillation regime. The random medium fluctuations are relatively weak, so that
σ2lzL/λ

2
0 is of order 1, the initial beam support is broad, so that R0/lx is of order 1

(or even larger), while the propagation distance is relatively long, so that Lλ0/l
2
x is of

order 1/ε. This will lead to a picture consistent with random and Gaussian intensity
fluctuations.

We will consider the situation with plane wave initial data in the scintillation regime in
Section 6.3 which strictly should be considered as localized plane waves via a slowly decaying
modulation function (with large radius R0).

3 The General Moment Equations

The main tool for describing wave statistics are the finite-order moments. We show in this
section that in the context of the Itô-Schrödinger equation (2.1) the moments of the field
satisfy a closed system at each order [20, 13]. For p, q ∈ N, we define

Mp,q

(
z, (xj)

p
j=1, (yl)

q
l=1

)
= E

[ p∏
j=1

u(z,xj)

q∏
l=1

u(z,yl)
]
, (xj)

p
j=1 ∈ Rdp, (yl)

q
l=1 ∈ Rdq.

(3.1)
Using the stochastic equation (2.1) and Itô’s formula for Hilbert space valued processes [23],
we find that the function Mp,q satisfies the Schrödinger-type system:

∂Mp,q

∂z
=

i

2k0

( p∑
j=1

∆xj −
q∑
l=1

∆yl

)
Mp,q +

k2
0

4
Up,q

(
(xj)

p
j=1, (yl)

q
l=1

)
Mp,q, (3.2)

Mp,q(z = 0) =

p∏
j=1

uic(xj)

q∏
l=1

uic(yl), (3.3)

with the generalized potential

Up,q
(
(xj)

p
j=1, (yl)

q
l=1

)
=

p∑
j=1

q∑
l=1

C(xj − yl)−
1

2

p∑
j,j′=1

C(xj − xj′)−
1

2

q∑
l,l′=1

C(yl − yl′)

=

p∑
j=1

q∑
l=1

C(xj − yl)−
∑

1≤j<j′≤p

C(xj − xj′)−
∑

1≤l<l′≤q

C(yl − yl′)−
p+ q

2
C(0). (3.4)

We introduce the Fourier transform

M̂p,q

(
z, (ξj)

p
j=1, (ζl)

q
l=1

)
=

∫∫
Mp,q

(
z, (xj)

p
j=1, (yl)

q
l=1

)
× exp

(
− i

p∑
j=1

xj · ξj + i

q∑
l=1

yl · ζl
)
dx1 · · · dxpdy1 · · · dyq. (3.5)
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It satisfies

∂M̂p,q

∂z
= − i

2k0

( p∑
j=1

|ξj |2 −
q∑
l=1

|ζl|2
)
M̂p,q +

k2
0

4
Ûp,qM̂p,q, (3.6)

M̂p,q(z = 0) =

p∏
j=1

ûic(ξj)

q∏
l=1

ûic(ζl), (3.7)

where ûic is the Fourier transform of the initial field:

ûic(ξ) =

∫
uic(x) exp(−iξ · x)dx.

The operator Ûp,q is defined by

Ûp,qM̂p,q =
1

(2π)d

∫
Ĉ(k)

[ p∑
j=1

q∑
l=1

M̂p,q(ξj − k, ζl − k)−
∑

1≤j<j′≤p

M̂p,q(ξj − k, ξj′ + k)

−
∑

1≤l<l′≤q

M̂p,q(ζl − k, ζl′ + k)− p+ q

2
M̂p,q

]
dk, (3.8)

where we only write the arguments that are shifted. It turns out that the equation for the
Fourier transform M̂p,q is easier to solve. In particular it can be integrated readily if the
medium is homogeneous. In Equation (3.1 ) we define the moments relative to the field
at fixed depth z. In applications this is typically the quantity of interest since one wants
to characterize the wave field in distribution as it emerges at a particular depth and how
the microstructure affects the spreading and decorrelation of the field laterally. However,
the stochastic equation (2.1) can also be used (with Itô’s formula) to derive the equations
that give the moments of the wave fields when evaluated at different depths. The problem
giving the moments of the wave field when evaluated at different depths involve Schrödinger
systems of the above type, but with a potential term and a dispersive operator that change
at the set of depths were the field terms are being evaluated.

Remark. As a first application, we can consider the equation satisfied by the first-order
moment M1,0(z,x) = E[u(z,x)]:

∂M1,0

∂z
=

i

2k0
∆xM1,0 −

k2
0

8
C(0)M1,0, (3.9)

starting from M1,0(z = 0,x) = uic(x). Compared to the homogeneous case, the random
medium is responsible for an exponential damping of the wave solution. More exactly
the first-order moment is given by the solution of the homogeneous Schrödinger equation
multiplied by the damping factor exp(−k2

0C(0)z/8).

4 Regimes of Propagation

4.1 The Spot-Dancing Regime

In this subsection we review the results that can be found in [1, 7, 14, 15] and put them
in a convenient form for the forthcoming analysis. We consider the spot-dancing regime
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described at the end of Section 2. In this regime the covariance function Cε is of the form:

Cε(x) = ε−2C(εx), (4.1)

for a small dimensionless parameter ε. We want to study the asymptotic behavior of the
moments of the field in this regime, that we call spot-dancing regime for reasons that will
become clear in the analysis.

In the spot-dancing regime we assume that the power spectral density Ĉ(k) decays fast
enough so that

∫
|k|2Ĉ(k)dk is finite. This means that the covariance function C(x) is

at least twice differentiable at x = 0, which corresponds to a smooth random medium.
For simplicity, we also assume that the random fluctuations are isotropic in the transverse
directions, in the sense that the covariance function C(x) depends only on |x|. We denote

γ =
1

d(2π)d

∫
|k|2Ĉ(k)dk = −1

d
∆C(0). (4.2)

The operator Ûεp,q has then the form

Ûεp,qM̂p,q =
ε−2

(2π)d

∫
Ĉ(k)

[ p∑
j=1

q∑
l=1

M̂p,q(ξj − εk, ζl − εk)−
∑

1≤j<j′≤p

M̂p,q(ξj − εk, ξj′ + εk)

−
∑

1≤l<l′≤q

M̂p,q(ζl − εk, ζl′ + εk)− p+ q

2
M̂p,q

]
dk, (4.3)

and it can be expanded as

Ûεp,qM̂p,q =
γ

2

[
(q − p+ 1)

p∑
j=1

∆ξj + (p− q + 1)

q∑
l=1

∆ζl + 2

p∑
j=1

q∑
l=1

∇ξj · ∇ζl

+2
∑

1≤j<j′≤p

∇ξj · ∇ξj′ + 2
∑

1≤l<l′≤q

∇ζl · ∇ζl′
]
M̂p,q −

(p− q)2

2ε2
C(0)M̂p,q. (4.4)

As shown in [7], this implies that:
1) if p 6= q, then M̂p,q → 0 as ε→ 0 because of the strong damping factor of order ε−2.

2) if p = q, then, in the regime ε → 0, the function M̂p,p satisfies the partial differential
equation

∂M̂p,p

∂z
= − i

2k0

( p∑
j=1

|ξj |2 −
p∑
l=1

|ζl|2
)
M̂p,p

+
k2

0γ

8

( p∑
j=1

∇ξj +

p∑
l=1

∇ζl
)
·
( p∑
j=1

∇ξj +

p∑
l=1

∇ζl
)
M̂p,p, (4.5)

M̂p,p(z = 0) =

p∏
j=1

ûic(ξj)

p∏
l=1

ûic(ζl). (4.6)

Using the Feynman-Kac formula, we find that

M̂p,p(z) = E
[ p∏
j=1

ûsd(z, ξj)

p∏
l=1

ûsd(z, ζl)
]
, (4.7)
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where

ûsd(z, ξ) = ûic

(
ξ +

k0
√
γ

2
Wz

)
exp

(
− i

2k0

∫ z

0

∣∣ξ +
k0
√
γ

2
Wz′

∣∣2dz′), (4.8)

and W is a standard d-dimensional Brownian motion. Of course, when γ = 0, we recover
the expression of the field in the homogeneous case.

In the regime ε → 0, the representation formula (4.8) allows us to compute all the
moments of the field in which there is an equal number of field components and complex-
conjugated field components. Remember that moments for which the number p of field
components is different from the number q of complex-conjugated field components are zero
in this regime (in fact, they are of the order of exp(−C(0)(p− q)2z/(2ε2))). Consequently,
a representation formula that allows us to compute all possible moments of the form (3.1)
is:

ûsd(z, ξ) = ûic

(
ξ +

k0
√
γ

2
Wz

)
exp

(
− i

2k0

∫ z

0

∣∣ξ +
k0
√
γ

2
Wz′

∣∣2dz′) exp
(
iφz
)
, (4.9)

where φz is a random variable with uniform distribution over (0, 2π).

4.2 The Scintillation Regime

In this subsection We consider the scintillation regime described at the end of Section 2.
In this regime the covariance function Cε is of the form:

Cε(x) = εC(x). (4.10)

In order to observe a random effect of order one, we need to consider large propagation
distances, of the order of ε−1. Thus, in this regime we make the rescaling z = z′/ε and
suppress the “prime” below. For reasons that will become clear in the analysis we call this
regime the scintillation regime. The evolution equations (3.6) of the Fourier transforms of
the moments now become

∂M̂p,q

∂z
= − i

2k0ε

( p∑
j=1

|ξj |2 −
q∑
l=1

|ζl|2
)
M̂p,q +

k2
0

4
Ûp,qM̂p,q, (4.11)

which shows the appearance of a rapid phase. The asymptotic behavior as ε → 0 of the
moments is therefore determined by the solutions of partial differential equations with rapid
phase terms. Although we were not able to determine these asymptotic behaviors for all
moments, a key limit theorem will allow us to get a representation of the fourth-order
moments in Section 6 in the asymptotic regime ε→ 0.

5 The Second-Order Moments

The second-order moments play an important role in wave imaging problems and we will
need them to compute the scintillation index. We describe them in detail in this section.
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5.1 The Wigner Transform

The second-order moments

M1,1(z,x,y) = E
[
u(z,x)u(z,y)

]
(5.1)

satisfy the system:

∂M1,1

∂z
=

i

2k0

(
∆x −∆y

)
M1,1 +

k2
0

4

(
C(x− y)− C(0)

)
M1,1, (5.2)

M1,1(z = 0) = uic(x)uic(y). (5.3)

A convenient approach for solving the second-order moment equation is via the Wigner
transform. The Wigner transform of the field is defined by

W (z,x, q) =

∫
exp

(
− iq · y

)
E
[
u
(
z,x+

y

2

)
u
(
z,x− y

2

)]
dy. (5.4)

Using (5.2) we find that it satisfies the closed system

∂W

∂z
+

1

k0
q · ∇xW =

k2
0

4(2π)d

∫
Ĉ(k)

[
W (q − k)−W (q)

]
dk, (5.5)

starting from W (z = 0,x, q) = Wic(x, q), which is the Wigner transform of the initial field
uic. Eq. (5.5) has the form of a radiative transport equation for the angularly-resolved
wave energy density W . In this context k2

0C(0)/4 is the total scattering cross-section and
k2

0Ĉ(·)/[4(2π)d] is the differential scattering cross-section that gives the mode conversion
rate.

By taking a Fourier transform in q and x of Eq. (5.5), we obtain a transport equation
that can be integrated and we find the following integral representation for W :

W (z,x, q) =
1

(2π)d

∫∫
exp

(
iξ ·

(
x− q z

k0

)
− iy′ · q

)
Ŵic

(
ξ,y′

)
× exp

(k2
0

4

∫ z

0

C
(
y′ + ξ

z′

k0

)
− C(0)dz′

)
dξdy′, (5.6)

where Ŵic is a partial Fourier transform of the initial field uic:

Ŵic(ξ,y) =

∫
exp

(
− iξ · x

)
E
[
uic

(
x+

y

2

)
uic

(
x− y

2

)]
dx. (5.7)

5.2 The Mutual Coherence Function

By taking an inverse Fourier transform the expression (5.6) can indeed be used to compute
and discuss the second-order moment of the field (or mutual coherence function):

Γ(2)(z,x,y) = E
[
u
(
z,x+

y

2

)
u
(
z,x− y

2

)]
=

1

(2π)d

∫
exp

(
iξ · x

)
Ŵic

(
ξ,y − ξ z

k0

)
× exp

(k2
0

4

∫ z

0

C
(
y − ξ z

′

k0

)
− C(0)dz′

)
dξ, (5.8)
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where x is the mid-point and y is the offset. Let us examine two particular initial conditions,
which corresponds to a Gaussian-beam wave and to a plane wave, respectively.

If the input beam spatial profile is Gaussian with radius ric:

uic(x) = exp
(
− |x|

2

2r2
ic

)
, (5.9)

then we have

Ŵic(ξ,y) =
(
πr2

ic

)d/2
exp

(
− r2

ic|ξ|2

4
− |y|

2

4r2
ic

)
, (5.10)

and we find from (5.8) that the second-order moment of the field has the form

Γ(2)(z,x,y) =
(r2

ic

4π

)d/2 ∫
exp

(
− 1

4r2
ic

∣∣y − ξ z
k0

∣∣2 − r2
ic|ξ|2

4
+ iξ · x

)
× exp

(k2
0

4

∫ z

0

C
(
y − ξ z

′

k0

)
− C(0)dz′

)
dξ. (5.11)

If the initial condition is a plane wave with unit amplitude (which can be viewed as a
limit of the Gaussian-beam wave situation in which ric → ∞), then Ŵic(ξ,y) = (2π)dδ(ξ)
and

Γ(2)(z,x,y) = exp
(k2

0z

4

(
C(y)− C(0)

))
, (5.12)

which depends only on the offset y as the field is statistically homogeneous in the transverse
direction.

5.3 The Spot-Dancing Regime

In the spot-dancing regime (when the covariance function of the medium fluctuations is of
the form (4.1)) with the covariance function C(x) depending only on |x| we have

Cε(y)− Cε(0) = −γ
2
|y|2 + o(1), (5.13)

as ε→ 0, and therefore we find from (5.11) that the second-order moment of the field for a
Gaussian beam-wave initial condition is

Γ(2)(z,x,y) =
(r2

ic

4π

)d/2 ∫
exp

(
− 1

4r2
ic

∣∣y − ξ z
k0

∣∣2 − r2
ic|ξ|2

4
+ iξ · x

)
× exp

(
− k2

0γ

8

(
|y|2z − y · ξ z

2

k0
+ |ξ|2 z

3

3k2
0

))
dξ. (5.14)

We remark that here and below, with some abuse of notation, the equality sign represents
also the asymptotic limit as ε→ 0.

By computing the integral in ξ we obtain that the second-order moment of the field has
the Gaussian form

Γ(2)(z,x,y) =
( ric

r
(2)
z

)d
exp

(
− |x|2

(r
(2)
z )2

− |y|2

4(ρ
(2)
z )2

+ i
x · y

(χ
(2)
z )2

)
. (5.15)
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The beam radius r
(2)
z , the correlation radius ρ

(2)
z , and the parameter χ

(2)
z are given by

r(2)
z = ric

(
1 +

z2

k2
0r

4
ic

+
γz3

6r2
ic

)1/2

, (5.16)

ρ(2)
z = r(2)

z

(
1 +

k2
0r

2
icγz

2
+
γz3

6r2
ic

+
k2

0γ
2z4

48

)−1/2

, (5.17)

χ(2)
z = r(2)

z

( z

k0r2
ic

+
k0γz

2

4

)−1/2

. (5.18)

Note in particular that the beam radius r
(2)
z increases at the anomalous rate z3/2 (which

was first obtained in the physical literature in Ref. [11] and confirmed mathematically in

Ref. [9]). Furthermore, the lateral correlation radius ρ
(2)
z decays to zero, which means that

the beam becomes partially coherent.
Note also that the energy conservation relation (the conservation of the L2-norm of the field)
is preserved: the mean intensity E[|u(z,x)|2] = Γ(2)(z,x,0) indeed satisfies∫

E[|u(z,x)|2]dx =

∫
|uic(x)|2dx.

Remark 1. In the case of a plane wave, i.e., in the limit ric →∞, we find that

Γ(2)(z,x,y) = exp
(
− k2

0γz|y|2

8

)
, (5.19)

which shows that the correlation radius is 2
√

2/(k0
√
γz). This can be obtained from (5.12)

as well (the spot-dancing limit ε→ 0 and the plane wave limit ric →∞ are exchangeable).
Remark 2. The previous results can also be obtained using the representation formula

(4.8), which gives after an inverse Fourier transform in ξ:

|usd(z,x)|2 =
( ric

r
(0)
z

)d
exp

(
− |x−Xz|2

(r
(0)
z )2

)
, (5.20)

where

r(0)
z = ric

(
1 +

z2

k2
0r

4
ic

)1/2

(5.21)

is the radius of the beam in the homogeneous medium and

Xz =

√
γ

2

(
zWz −

∫ z

0

Wz′dz
′
)

=

√
γ

2

∫ z

0

z′dWz′ (5.22)

is the random center of the beam (remember that W is a standard d-dimensional Brownian
motion), that is a Rd-valued Gaussian process with mean zero and covariance

E
[
XzX

T
z′
]

=
γ(z ∧ z′)3

12
I. (5.23)

This representation (5.20) justifies the name ”spot-dancing regime”: the beam has the same
transverse profile as in a homogeneous medium, but its center is randomly shifted by the
Gaussian process Xz.
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5.4 The Scintillation Regime

In the scintillation regime (when the covariance function of the medium fluctuations is of the
form (4.10) and the propagation distance is z/ε), the behavior of the second-order moment
for a plane-wave initial condition is given by (5.12) for any ε, and a fortiori in the limit
ε→ 0.

6 The Fourth-Order Moments

We consider the fourth-order moment M2,2 of the field, which is the main quantity of interest
in this paper, and parameterize the four points x1,x2,y1,y2 in (3.1) in the special way:

x1 =
r1 + r2 + q1 + q2

2
, y1 =

r1 + r2 − q1 − q2

2
,

x2 =
r1 − r2 + q1 − q2

2
, y2 =

r1 − r2 − q1 + q2

2
.

In particular r1/2 is the barycenter of the four points x1,x2,y1,y2:

r1 =
x1 + x2 + y1 + y2

2
, q1 =

x1 + x2 − y1 − y2

2
,

r2 =
x1 − x2 + y1 − y2

2
, q2 =

x1 − x2 − y1 + y2

2
.

In these new variables the function M2,2 satisfies the system:

∂M2,2

∂z
=

i

k0

(
∇r1 · ∇q1 +∇r2 · ∇q2

)
M2,2 +

k2
0

4
U2,2(q1, q2, r1, r2)M2,2, (6.1)

with the generalized potential

U2,2(q1, q2, r1, r2) = C(q2 + q1) + C(q2 − q1) + C(r2 + q1) + C(r2 − q1)

−C(q2 + r2)− C(q2 − r2)− 2C(0). (6.2)

Note in particular that the generalized potential does not depend on r1 as the medium is
statistically homogeneous.

The Fourier transform (in q1, q2, r1, and r2) of the fourth-order moment is defined by:

M̂2,2(z, ξ1, ξ2, ζ1, ζ2) =

∫∫
M2,2(z, q1, q2, r1, r2)

× exp
(
− iq1 · ξ1 − ir1 · ζ1 − iq2 · ξ2 − ir2 · ζ2

)
dr1dr2dq1dq2. (6.3)

It satisfies

∂M̂2,2

∂z
+

i

k0

(
ξ1 · ζ1 + ξ2 · ζ2

)
M̂2,2 =

k2
0

4(2π)d

∫
Ĉ(k)

[
M̂2,2(ξ1 − k, ξ2 − k, ζ2)

+M̂2,2(ξ1 − k, ξ2, ζ2 − k) + M̂2,2(ξ1 + k, ξ2 − k, ζ2) + M̂2,2(ξ1 + k, ξ2, ζ2 − k)

−2M̂2,2(ξ1, ξ2, ζ2)− M̂2,2(ξ1, ξ2 − k, ζ2 − k)− M̂2,2(ξ1, ξ2 + k, ζ2 − k)

]
dk. (6.4)
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The resolution of this transport equation would give the expression of the fourth-order
moment. However, in contrast to the second-order moment, we cannot solve this equation
and find a closed-form expression of the fourth-order moment in the general case. Therefore
we address in the next two subsections the two particular regimes described in Section 4 in
which explicit expressions can be obtained. These two regimes are very different in that the
spot-dancing regime that we address in Subsection 6.1 is characterized by a large variance of
the intensity distribution, while the scintillation regime that we address in Subsection 6.3 is
characterized by a normalized variance that stabilizes to the value one, which is characteristic
of complex Gaussian fields.

6.1 Spot-Dancing Regime

In the spot-dancing regime the equation for the Fourier transform of the fourth-order moment
can be simplified:

∂M̂2,2

∂z
+

i

k0

(
ξ1 · ζ1 + ξ2 · ζ2

)
M̂2,2 =

k2
0γ

2
∆ξ1M̂2,2. (6.5)

This equation can be solved (by a Fourier transform in ξ1):

M̂2,2(z, ξ1, ξ2, ζ1, ζ2) =

∫
M̂ic(ξ′1, ξ2, ζ1, ζ2) exp

(
−i z
k0
ξ′1·ζ1−i

z

k0
ξ2·ζ2

)
ψ(z, ξ1−ξ

′
1, ζ1)dξ′1

(6.6)
with

ψ(z, ξ, ζ1) =
1

(2πk2
0γz)

d/2
exp

(
− γz3

24
|ζ1|2 − i

z

2k0
ξ · ζ1 −

1

2k2
0γz
|ξ|2
)
, (6.7)

and M̂ic is the Fourier transform of the fourth-order moment M2,2 of the initial field uic.
In terms of the function M2,2, the second-order moment of the intensity defined by

Γ(4)(z,x,y) = E
[∣∣u(z,x+

y

2

)∣∣2∣∣u(z,x− y
2

)∣∣2] (6.8)

is given by

Γ(4)(z,x,y) = M2,2(z,0,0, r1 = 2x, r2 = y)

=
1

(2π)4d

∫∫
M̂2,2(z, ξ1, ξ2, ζ1, ζ2) exp

(
2ix · ζ1 + iy · ζ2

)
dξ1dξ2dζ1dζ2. (6.9)

In particular the mean square intensity is

E
[
|u(z,x)|4

]
= Γ(4)(z,x,0)

=
1

(2π)4d

∫∫
M̂2,2(z, ξ1, ξ2, ζ1, ζ2) exp

(
2ix · ζ1

)
dξ1dξ2dζ1dζ2. (6.10)

6.2 Spot-Dancing Regime with a Gaussian-beam Wave Initial Con-
dition

If we assume that the initial condition corresponds to a Gaussian-beam wave (5.9) with
width ric, so that

M̂ic(ξ1, ξ2, ζ1, ζ2) = (2πr2
ic)2d exp

(
− r2

ic

2

(
|ξ1|2 + |ξ2|2 + |ζ1|2 + |ζ2|2

))
, (6.11)
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then we find from (6.10) that

Γ(4)(z,x,0) = E
[
|u(z,x)|4

]
=
( r2

ic

r
(0)
z r

(4)
z

)d
exp

(
− 2|x|2

(r
(4)
z )2

)
, (6.12)

with r
(0)
z the radius (5.21) of the beam in the homogeneous medium and

r(4)
z = ric

(
1 +

z2

k2
0r

4
ic

+
γz3

3r2
ic

)1/2

. (6.13)

Note that the radius r
(4)
z is of the same order as the radius r

(2)
z of the mean intensity up to

a factor two in the last term.
Using (6.9) we obtain that the second-order moment of the intensity is given by

Γ(4)(z,x,y) = Γ(4)(z,x,0) exp
(
− |y|2

2(ρ
(4)
z )2

)
, (6.14)

with

ρ(4)
z = ric

(
1 +

z2

k2
0r

4
ic

)1/2

. (6.15)

The correlation radius ρ
(4)
z of the intensity is equal to the radius r

(0)
z of the beam in a

homogeneous medium. This is in agreement with the spot-dancing picture: the beam has
the same transverse profile as in a homogeneous medium, but its center is randomly shifted
by a Gaussian process whose standard deviation increases as z3/2, which gives a radius for
the average intensity or the average square intensity that increases as z3/2 as well.

Finally, the normalized variance of the intensity (or scintillation index):

S(z,x) =
E
[
|u(z,x)|4

]
− E

[
|u(z,x)|2

]2
E
[
|u(z,x)|2

]2 (6.16)

is given at the center of the beam by:

S(z,0) =
( (r

(2)
z )2

r
(0)
z r

(4)
z

)d
− 1 =

(
1 +

(
γz3

6(r
(0)
z )2

)2
1 + γz3

3(r
(0)
z )2

)d/2
− 1, (6.17)

which grows with the propagation distance as

S(z,0)
γz3�(r(0)z )2

' d

2

( γz3

6(r
(0)
z )2

)2

, S(z,0)
γz3�(r(0)z )2

'
( γz3

12(r
(0)
z )2

)d/2
. (6.18)

The large scintillation index reflects the spot dancing and a heavy-tailed intensity distribu-
tion (a non-central chi-square distribution with two degrees of freedom, also known as the
Rice-Nakagami distribution).

In the wings of the beam the scintillation index is even larger:

S(z,x) =

(
1 +

(
γz3

6(r
(0)
z )2

)2
1 + γz3

3(r
(0)
z )2

)d/2
exp

(
2|x|2

(r
(0)
z )2

γz3

6(r
(0)
z )2(

1 + γz3

6(r
(0)
z )2

)(
1 + γz3

3(r
(0)
z )2

))− 1, (6.19)
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which grows with the propagation distance as

S(z,x)
γz3�(r(0)z )2

' 2|x|2

(r
(0)
z )2

( γz3

6(r
(0)
z )2

)
+
d

2

( γz3

6(r
(0)
z )2

)2

, (6.20)

S(z,x)
γz3�(r(0)z )2

'
( γz3

12(r
(0)
z )2

)d/2
exp

(6|x|2

γz3

)
. (6.21)

Remember that (r
(0)
z )2 is the square beam width when γz3 � (r

(0)
z )2 and that γz3/6 is the

square beam width when γz3 � (r
(0)
z )2. This shows that the scintillation index in the wings

of the beam is larger than the scintillation index at the center of the beam. We remark
however that this does not mean that the wave field shape is random, the above moments
are consistent with self-averaging of this in the sense that the field observed in the random
frame is statistically stable or deterministic to leading order.

6.3 Plane-Wave Initial Condition

In the spot-dancing regime the beam is relatively narrow. Here we do not assume anymore
the spot-dancing regime and we consider the case with a plane-wave initial condition. We
will see in the next section that this is the situation that leads to a scintillation regime and
this is the motivation for analyzing the plane-wave configuration in detail. If the initial
condition corresponds to a plane wave with unit amplitude, which implies that the initial
condition for M2,2 is equal to one and thus does not depend on r1, then the fourth-order
moment M2,2 remains independent on r1 for any z. Moreover, the subfamily of fourth-order
moments for q1 = 0 satisfies a closed-form system. Let us denote

N(z, q, r) = E
[
u
(
z,
r + q

2

)
u
(
z,
−r − q

2

)
u
(
z,
r − q

2

)
u
(
z,
−r + q

2

)]
. (6.22)

Then this function satisfies

∂N

∂z
=

i

k0
∇r · ∇qN +

k2
0

4
U(r, q)N, (6.23)

with the initial condition N(z = 0, q, r) = 1 and the generalized potential

U(r, q) = 2C(q) + 2C(r)− C(q + r)− C(q − r)− 2C(0). (6.24)

Note that, if we take q = 0, then

N(z, q = 0, r = y) = E
[∣∣u(z, y

2

)∣∣2∣∣u(z,−y
2

)∣∣2] = Γ(4)(z,0,y) (6.25)

turns out to be the second-order moment of the intensity (with offset y). Note that here
the field and intensity are statistically homogeneous in the transverse direction and so
Γ(4)(z,x,y) = Γ(4)(z,0,y). Therefore (6.25) shows that the computation of the subfamily
N of fourth-order moments of the field gives the second-order moment of the intensity.

Let us take a Fourier transform in q and r:

N̂(z, ξ, ζ) =

∫∫
N(z, r, q) exp

(
− iq · ξ − ir · ζ

)
drdq. (6.26)
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It satisfies

∂N̂

∂z
+

i

k0
ξ · ζN̂ =

k2
0

4(2π)d

∫
Ĉ(k)

[
2N̂(ξ − k, ζ) + 2N̂(ξ, ζ − k)− 2N̂(ξ, ζ)

−N̂(ξ − k, ζ − k)− N̂(ξ + k, ζ − k)

]
dk, (6.27)

starting from N̂(z = 0, ξ, ζ) = (2π)2dδ(ξ)δ(ζ).
The new function Ñ defined by

Ñ(z, ξ, ζ) = N̂(z, ξ, ζ) exp
(
iξ · ζ z

k0

)
(6.28)

satisfies

∂Ñ

∂z
=

k2
0

4(2π)d

∫
Ĉ(k)

[
2Ñ(ξ − k, ζ)ei

z
k0
k·ζ + 2Ñ(ξ, ζ − k)ei

z
k0
k·ξ − 2Ñ(ξ, ζ)

−Ñ(ξ − k, ζ − k)ei
z
k0

(k·(ξ+ζ)−|k|2) − Ñ(ξ + k, ζ − k)ei
z
k0

(k·(ξ−ζ)+|k|2)

]
dk, (6.29)

starting from Ñ(z = 0, ξ, ζ) = (2π)2dδ(ξ)δ(ζ).

6.4 Scintillation Regime with a Plane-Wave Initial Condition

We now assume a plane-wave initial condition and we moreover consider the scintillation
regime, that is to say, the fluctuations of the medium are small, of the order of ε, as in
(4.10), and the propagation distance is large, of the order of ε−1. In this regime the rescaled
function Ñε defined by

Ñε(z, ξ, ζ) = Ñ
(z
ε
, ξ, ζ) (6.30)

satisfies the equation with fast phases

∂Ñε

∂z
=

k2
0

4(2π)d

∫
Ĉ(k)

[
2Ñε(ξ − k, ζ)ei

z
εk0

k·ζ + 2Ñε(ξ, ζ − k)ei
z
εk0

k·ξ − 2Ñε(ξ, ζ)

−Ñε(ξ − k, ζ − k)ei
z
εk0

(k·(ξ+ζ)−|k|2) − Ñε(ξ + k, ζ − k)ei
z
εk0

(k·(ξ−ζ)+|k|2)

]
dk, (6.31)

starting from Ñε(z = 0, ξ, ζ) = (2π)2dδ(ξ)δ(ζ). Our goal is now to study the asymptotic
behavior of Ñε as ε→ 0. We have the following result:

Proposition 6.1. The distribution Ñε(z, ξ, ζ) can be expanded as

Ñε(z, ξ, ζ) = φ(z, ξ)δ(ζ) + φ(z, ζ)δ(ξ) +K(z)δ(ξ)δ(ζ)

+Qε(z, ξ)δ(ξ + ζ) +Qε(z, ξ)δ(ξ − ζ) +Rε(z, ξ, ζ), (6.32)

where the functions φ and K are defined by

φ(z, ξ) = (2π)d
∫

exp
(
− iξ · x

){
exp

(k2
0

2
[C(x)− C(0)]z

)
− exp

(
− k2

0

2
C(0)z

)}
dx, (6.33)

K(z) = (2π)2d exp
(
− k2

0

2
C(0)z

)
, (6.34)

16



and the functions Rε ∈ L∞([0,∞), L1(Rd × Rd)) and Qε ∈ L∞([0,∞), L1(Rd)) satisfy
‖Rε‖L∞([0,Z],L1(Rd×Rd)) → 0 and ‖Qε‖L∞([0,Z],L1(Rd)) → 0 as ε→ 0, for any Z > 0.

As a corollary, by taking an inverse Fourier transform in ξ and ζ, we obtain that, in the
regime ε→ 0, the rescaled fourth-order moment Nε defined by

Nε(z, q, r) = N
(z
ε
, q, r) (6.35)

is given by

Nε(z, q, r) =
1

(2π)2d

∫∫ [
φ(z, ξ)δ(ζ) + φ(z, ξ)δ(ξ) +K(z)δ(ξ)δ(ζ)

]
exp

(
iq · ξ + ir · ζ

)
dξdζ

=
1

(2π)2d

[
φ̌(z, q) + φ̌(z, r) +K(z)

]
, (6.36)

up to terms that go to zero in ε uniformly in q, r, where

φ̌(z, q) =

∫
φ(z, ξ) exp

(
iq · ξ

)
dξ

= (2π)2d
{

exp
(k2

0

2
[C(q)− C(0)]z

)
− exp

(
− k2

0

2
C(0)z

)}
. (6.37)

Consequently, using (6.25) the second-order moment of the intensity (6.8) has the following
form in the regime ε→ 0:

Γ(4)(z,x,y) = 1 + exp
(k2

0

2
[C(y)− C(0)]z

)
− exp

(
− k2

0

2
C(0)z

)
. (6.38)

In particular,

Proposition 6.2. In the scintillation regime the normalized variance of the intensity (or
scintillation index) (6.16) is

S(z,x) =
E
[
|u(z,x)|4

]
− E

[
|u(z,x)|2

]2
E
[
|u(z,x)|2

]2 = 1− exp
(
− k2

0

2
C(0)z

)
. (6.39)

Thus, S(z,x) ∼ 1 for k2
0C(0)z � 1 . Moreover, when z is large (in the sense that

k2
0C(0)z � 1), then

Γ(4)(z,x,y) ' 1 + exp
(
− k2

0γz

4
|y|2

)
(6.40)

and therefore we have

Proposition 6.3. The correlation function of the intensity for k2
0C(0)z � 1 is

E
[
|u(z,0)|2|u(z,y)|2

]
− E

[
|u(z,0)|2

]
E
[
|u(z,y)|2

]
E
[
|u(z,0)|2|

]
E
[
u(z,y)|2

] ' exp
(
− k2

0γz

4
|y|2

)
. (6.41)

This shows that the correlation radius of the intensity distribution is 2/(k0
√
γz), which

is of the same order as the correlation radius of the field as seen from (5.19). We remark
that this picture is consistent with the one in which the field looses its coherence and attains
the form of Gaussian fluctuations. This is in contrast to a scaling regime with localized
initial data and where one looks at smoothed versions of the intensity which may become
statistically stable in the situation with additional later diversity in the random potential
[25].

17



7 Conclusion

In this paper we have considered the white-noise paraxial wave model and computed the
second-order moment of the field distribution and of the intensity distribution. We have
identified a regime with a plane wave initial condition in which the normalized variance of
the intensity converges to one with the propagation distance. This is consistent with the
scintillation conjecture, that states that the field should acquire complex Gaussian statistics
when it propagates through a three-dimensional scattering medium. The full proof requires
analysis of all the moments while we here considered only moments up to fourth order. In
practical applications however the moments up to order four are the most important ones.
Moreover, we started with the Ito-Schrödinger equation rather than the full wave equation.
An interesting and challenging next step would be to derive these results for the fourth
moment starting with the wave equation itself.
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A Proof of Proposition 6.1

The strategy is to choose the function Qε in such a way that the first terms in the right-hand
side of (6.32) capture all the singular terms, that the remainder Rε belongs to L1, satisfies
an equation with zero initial condition and small source terms, and that the singular terms
with Qε and the absolutely continuous remainder Rε can be shown to vanish as ε→ 0 by a
Gronwall-type argument.

First note that the functions φ and K defined in (6.33-6.34) are solution of

∂φ

∂z
(z, ξ) =

k2
0

2(2π)d

∫
Ĉ(k)

[
φ(z, ξ − k)− φ(z, ξ)

]
dk +

k2
0

2(2π)d
K(z)Ĉ(ξ), (A.1)

∂K

∂z
(z) = −k

2
0

2
C(0)K(z), (A.2)

starting from φ(0, ξ) = 0 and K(0) = (2π)2d. The function φ has nice properties.

Lemma A.1. The function φ is nonnegative real-valued and it belongs to C0([0,∞), L1(Rd)).

Proof. We introduce the function φ̃(z, ξ) = φ(z, ξ) exp(k2
0C(0)z/2). It satisfies the differ-

ential equation

∂φ̃

∂z
(z, ξ) =

k2
0

2(2π)d

∫
Ĉ(k)φ̃(z, ξ − k)dk +

k2
0

2
(2π)dĈ(ξ), (A.3)

with the initial condition φ̃(z = 0, ξ) = 0, which shows that φ̃ is increasing in z and nonneg-
ative for all ξ. Taking a Fourier transform in ξ gives an equation that can be integrated and
gives the formula (6.33). Furthermore, by integrating (A.3) in ξ one finds that the L1-norm
satisfies:

∂‖φ̃‖L1

∂z
=
k2

0

2
C(0)‖φ̃‖L1 +

k2
0

2
(2π)2dC(0),
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which shows that the L1-norm of φ is bounded and given by

‖φ(z, ·)‖L1 = (2π)2d
(

1− exp
(
− k2

0

2
C(0)z

))
,

as confirmed by a direct integration of (6.33). It also gives the fact that φ is Lipschitz-
continuous:

‖φ(z2, ·)− φ(z1, ·)‖L1 ≤ (2π)2d|z2 − z1|(k2
0C(0)/2).

Let us define the function Qε(z, ξ) as the solution of the differential equation

∂Qε

∂z
(z, ξ) = −k

2
0

2
C(0)Qε(z, ξ)− k2

0

4(2π)d

∫
Ĉ(k)Qε(z, ξ − k)ei

z
k0ε

(2k·ξ−|k|2)dk

−(2π)d
k2

0

4
Ĉ(ξ)e−

k20
2 C(0)zei

z
k0ε
|ξ|2 , (A.4)

starting from Qε(0, ξ) = 0. Then, using (6.31), the function Rε(z, ξ, ζ) defined by

Rε(z, ξ, ζ) = Ñε(z, ξ, ζ)(z, ξ, ζ)− φ(z, ξ)δ(ζ)− φ(z, ζ)δ(ξ)−K(z)δ(ξ)δ(ζ)

−Qε(z, ξ)δ(ξ + ζ)−Qε(z, ξ)δ(ξ − ζ) (A.5)

is solution of

∂Rε

∂z
(z, ξ, ζ) = [FεzRε(z, ·, ·)](ξ, ζ) +Gε(z, ξ, ζ) exp

(
iξ · ζ z

k0ε

)
, (A.6)

starting from Rε(0, ξ, ζ) = 0, with

[FεzR](ξ, ζ) =
k2

0

4(2π)d

∫
Ĉ(k)

[
2R(ξ − k, ζ)ei

z
εk0

k·ζ + 2R(ξ, ζ − k)ei
z
εk0

k·ξ − 2R(ξ, ζ)

−R(ξ − k, ζ − k)ei
z
εk0

(k·(ξ+ζ)−|k|2) −R(ξ + k, ζ − k)ei
z
εk0

(k·(ξ−ζ)+|k|2)

]
dk, (A.7)

and

Gε(z, ξ, ζ) = G1(z, ξ, ζ) +Gε2(z, ξ, ζ), (A.8)

G1(z, ξ, ζ) =
k2

0

4(2π)d

{
2Ĉ(ξ)φ(z, ζ) + 2Ĉ(ζ)φ(z, ξ)

−[Ĉ(ξ) + Ĉ(ζ)][φ(z, ζ − ξ) + φ(z, ζ + ξ)]
}
, (A.9)

Gε2(z, ξ, ζ) =
k2

0

4(2π)d

{
2Ĉ(ξ + ζ)

[
Qε(z, ξ)ei

z
k0ε
|ξ|2 +Qε(z, ζ)ei

z
k0ε
|ζ|2]

+2Ĉ(ξ − ζ)
[
Qε(z, ξ)e−i

z
k0ε
|ξ|2 +Qε(z, ζ)e−i

z
k0ε
|ζ|2]

−2−dĈ
(ξ + ζ

2

)
Qε
(
z,
ξ − ζ

2

)
ei

z
4k0ε
|ζ−ξ|2

−2−dĈ
(ξ − ζ

2

)
Qε
(
z,
ξ + ζ

2

)
e−i

z
4k0ε
|ζ+ξ|2

}
. (A.10)

Here we have used the fact that Qε(z,−ξ) = Qε(z, ξ). Lemmas A.2 and A.4 are the two
results that give the proof of the proposition.
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Lemma A.2. There exists K such that for any ε ∈ (0, 1) and for any z > 0

‖Qε(z, ·)‖L1 ≤ Kε
d
d+2 z

2
d+2 exp

(
− k2

0

4
C(0)z

)
. (A.11)

Proof. We define

Q̃ε(z, ξ) = Qε(z, ξ) exp
(k2

0

2
C(0)z

)
.

From (A.4) it satisfies the integral equation

Q̃ε(z, ξ) = − k2
0

4(2π)d

∫ z

0

∫
Rd
Ĉ(k)ei

z′
k0ε

(2k·ξ−|k|2)Q̃ε(z′, ξ − k)dkdz′ −W ε(z, ξ),

where

W ε(z, ξ) = (2π)d
k2

0

4
Ĉ(ξ)

∫ z

0

ei
z′
k0ε
|ξ|2dz′ = (2π)d

k2
0

4
Ĉ(ξ)

ei
z
k0ε
|ξ|2 − 1

i 1
k0ε
|ξ|2

.

This gives

‖Q̃ε(z, ·)‖L1 ≤ k2
0C(0)

4

∫ z

0

‖Q̃ε(z′, ·)‖L1dz′ + ‖W ε(z, ·)‖L1 . (A.12)

We have for any δ > 0:

sup
z∈[0,Z]

‖W ε(z, ·)‖L1 ≤ (2π)d
k2

0

4

[
Z

∫
|ξ|≤δ

Ĉ(ξ)dξ + 2k0εδ
−2

∫
|ξ|>δ

Ĉ(ξ)dξ
]

≤ k2
0

4

[
Z(4π)dδd‖Ĉ‖∞ + 2k0εδ

−2C(0)
]
,

where ‖Ĉ‖∞ ≤ ‖C‖L1 . Choosing δ = ε
1
d+2Z−

1
d+2 , we find

sup
z∈[0,Z]

‖W ε(z, ·)‖L1 ≤ Kε
d
d+2Z

2
d+2 .

Substituting into (A.12) and using Gronwall’s lemma yields:

‖Q̃ε(z, ·)‖L1 ≤ Kε
d
d+2 z

2
d+2 exp

(k2
0C(0)

4
z
)
,

which reads in terms of Qε as (A.11).

Lemma A.3. Let us denote

G̃ε(z, ξ, ζ) = Gε(z, ξ, ζ) exp
(
iξ · ζ z

k0ε

)
For any Z > 0 we have

sup
z∈[0,Z]

∥∥∥∫ z

0

G̃ε(z′, ·, ·)dz′
∥∥∥
L1

ε→0−→ 0. (A.13)
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Proof. We first note from (A.10) and Lemma A.2 that supz∈[0,Z] ‖Gε2(z, ·, ·)‖L1 → 0 as
ε→ 0. Therefore, if we denote

G̃εj(z, ξ, ζ) = Gεj(z, ξ, ζ) exp
(
iξ · ζ z

k0ε

)
, j = 1, 2,

then the contribution from Gε2 in (A.13) goes to zero trivially:

sup
z∈[0,Z]

∥∥∥∫ z

0

G̃ε2(z′, ·, ·)dz′
∥∥∥
L1

ε→0−→ 0.

Second we observe that the function G1 defined by (A.9) belongs to C0([0, Z], L1) and
does not depend on ε. Indeed, this follows since ξ → Ĉ(ξ) is integrable since it is nonnegative
and C(0) <∞, and φ has been shown to be C0([0, Z], L1) in Lemma A.1.
For any δ > 0 we introduce the domain of Rd × Rd:

Ωδ =
{

(ξ, ζ) ∈ Rd × Rd , |ξ · ζ| ≤ δ
}
.

Since ∣∣∣ ∫ z

0

G1(z′, ξ, ζ) exp
(
iξ · ζ z′

k0ε

)
dz′
∣∣∣ ≤ ∫ z

0

|G1(z′, ξ, ζ)|dz′,

we obtain

sup
z∈[0,Z]

∫
Ωδ

∣∣∣ ∫ z

0

G1(z′, ξ, ζ) exp
(
iξ · ζ z′

k0ε

)
dz′
∣∣∣dξdζ ≤ ∫ Z

0

∫
Ωδ

|G1(z′, ξ, ζ)|dξdζdz′. (A.14)

For any integer n we have∣∣∣ ∫ z

0

G1(z′, ξ, ζ) exp
(
iξ · ζ z′

k0ε

)
dz′ −

n−1∑
k=0

∫ k+1
n z

k
n z

G1

(kz
n
, ξ, ζ

)
exp

(
iξ · ζ z′

k0ε

)
dz′
∣∣∣

≤
n−1∑
k=0

∫ k+1
n z

k
n z

∣∣G1

(
z′, ξ, ζ

)
−G1

(kz
n
, ξ, ζ

)∣∣dz′.
Since ∣∣∣ ∫ k+1

n z

k
n z

exp
(
iξ · ζ z′

k0ε

)
dz′
∣∣∣ =

∣∣∣exp
(
iξ · ζ z

nk0ε

)
− 1

iξ · ζ 1
k0ε

∣∣∣ ≤ 2k0ε

δ
if (ξ, ζ) 6∈ Ωδ,

we obtain

sup
z∈[0,Z]

∫
Ωcδ

∣∣∣ ∫ z

0

G1(z′, ξ, ζ) exp
(
iξ · ζ z′

k0ε

)
dz′
∣∣∣dξdζ

≤ sup
z∈[0,Z]

‖G1(z, ·, ·)‖L1

2k0nε

δ
+ Z sup

z1,z2∈[0,Z], |z1−z2|≤Z/n

∥∥G1(z1, ·, ·)−G1(z2, ·, ·)
∥∥
L1 .(A.15)

If we sum (A.14) and (A.15) and take the lim sup in ε then we find:

lim sup
ε→0

sup
z∈[0,Z]

∥∥∥ ∫ z

0

G̃1(z′, ·, ·)dz′
∥∥∥
L1

≤
∫ Z

0

∫
Ωδ

|G1(z′, ξ, ζ)|dξdζdz′ + Z sup
z1,z2∈[0,Z], |z1−z2|≤Z/n

∥∥G1(z1, ·, ·)−G1(z2, ·, ·)
∥∥
L1 .
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We then take the limit δ → 0 and n → ∞ in the right-hand side to obtain the desired
result.

Lemma A.4. For any Z > 0

sup
z∈[0,Z]

‖Rε(z, ·, ·)‖L1
ε→0−→ 0. (A.16)

Proof. From (A.7) we have for any z∥∥FεzRε(z, ·, ·)‖L1 ≤ 2k2
0C(0)

∥∥Rε(z, ·, ·)‖L1 .

Therefore using the integral version of (A.6) we obtain

∥∥Rε(z, ·, ·)‖L1 ≤ 2k2
0C(0)

∫ z

0

∥∥Rε(z′, ·, ·)‖L1dz′ +
∥∥∥∫ z

0

G̃ε(z′, ·, ·)dz′
∥∥∥
L1
.

Using Lemma A.3 and Gronwall’s lemma gives the desired result.
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