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Abstract

The imaging of a small reflector embedded in a medium is a central problem in sensor
array imaging. The goal is to find a reflector embedded in a medium. The medium is probed
by an array of sources, and the signals backscattered by the reflector are recorded by an array
of receivers. The responses between all pairs of source and receiver are collected so that the
available information takes the form of a response matrix. When the data are corrupted by
additive measurement noise we show how tools of random matrix theory can help to detect,
localize, and characterize the reflector.

AMS subject classifications. Primary 78A46; Secondary 15B52.

1 Introduction

The imaging of a small reflector embedded in a medium is a central problem in wave sensor
imaging [6, 26]. Sensor array imaging involves two steps. The first step is experimental, it consists
in emitting waves from an array of sources and recording the backscattered signals by an array of
receivers. The data set then consists of a matrix of recorded signals whose indices are the index of
the source and the index of the receiver. The second step is numerical, it consists in processing the
recorded data in order to estimate the quantities of interest in the medium (reflector locations,. . . ).
The main applications of sensor array imaging are medical imaging, geophysical exploration, and
non-destructive testing.

Recently it has been shown that random matrix theory could be used in order to build a
detection test based on the statistical properties of the singular values of the response matrix
[7, 8, 9, 1, 2]. This paper summarizes the results contained in [1, 2] and extends them into several
important directions. First we address in this paper the case in which the source array and the
receiver array are not coincident, and more generally the case in which the number of sources is
different from the number of receivers. As a result the noise singular value distribution has the form
of a deformed quarter circle and the statistics of the singular value associated to the reflector is also
affected. Second we study carefully the estimation of the noise variance of the response matrix.
Different estimators are studied and an estimator that achieves an efficient trade-off between bias
and variance is proposed. The use of this estimator instead of the empirical estimator used in
the previous versions significantly improves the quality of the detection test based on the singular
value distribution of the measured response matrix when the number of sensors is not very large.
Third we propose an algorithm that can reconstruct not only the position of the reflector, but
also its scattering amplitude. The estimator of the scattering amplitude compensates for the level
repulsion of the singular value associated to the reflector due to the noise.
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2 The Response Matrix

We address the case of a reflector that can model a small dielectric anomaly in electromagnetism,
a small density anomaly in acoustics, or more generally a local variation of the index of refraction
in the scalar wave equation. We consider the case in which the contrast of the anomaly (its index
of refraction relative to the one of the background medium) can be of order one but its diameter
is assumed to be small compared to the wavelength. In such a situation it is possible to expand
the solution of the wave equation around the background solution, as we explain below [3, 4, 5].

Let us consider the scalar wave equation in a d-dimensional homogeneous medium with the
index of refraction n0. The reference speed of propagation is denoted by c. The index of refraction
of the reflector or inclusion D is nref 6= n0. The support of the inclusion is of the form D = xref +B,
where B is a domain with small volume and xref is the location of the reflector. Therefore the
scalar wave equation with the source S(t,x) takes the form

n2(x)

c2
∂2tE −∆xE = S(t,x),

where the index of refraction is given by

n(x) = n0 + (nref − n0)1D(x).

In this paper we consider time-harmonic point sources emitting at frequency ω. For any yn, zm far
from xref the field Re(Ê(yn, zm)e−iωt) observed at yn when a point source emits a time-harmonic
signal with frequency ω at zm can be expanded as powers of the volume of the inclusion as

Ê(yn, zm) = Ĝ(yn, zm) + k20ρrefĜ(yn,xref)Ĝ(xref , zm) +O(|B|
d+1
d ), (1)

where k0 = n0ω/c is the homogeneous wavenumber, ρref is the scattering amplitude

ρref =
(n2ref
n20
− 1
)
|B|, (2)

and Ĝ(x, z) is the Green’s function or fundamental solution of the Helmholtz equation with a point
source at z:

∆xĜ(x, z) + k20Ĝ(x, z) = −δ(x− z). (3)

More explicitly we have

Ĝ(x, z) =


i

4
H

(1)
0 (k0|x− z|) if d = 2,

eik0|x−z|

4π|x− z|
if d = 3,

where H
(1)
0 is the Hankel function of the first kind of order zero.

When there are M sources (zm)m=1,...,M and N receivers (yn)n=1,...,N , the response matrix is
the N ×M matrix A0 = (A0nm)n=1,...,N,m=1,...,M defined by

A0nm := Ê(yn, zm)− Ĝ(yn, zm). (4)

This matrix has rank one:
A0 = σrefurefv

†
ref , (5)

where † stands for the conjugate transpose. The unique nonzero singular value of this matrix is

σref = k20ρref
( N∑
l=1

|Ĝ(yl,x)|2
)1/2( M∑

l=1

|Ĝ(zl,x)|2
)1/2

. (6)
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The associated left and right singular vectors uref and vref are given by:

uref = u(xref), vref = v(xref), (7)

where we have defined the normalized vectors of Green’s functions:

u(x) =
( Ĝ(yn,x)(∑N

l=1 |Ĝ(yl,x)|2
)1/2)n=1,...,N

, v(x) =
( Ĝ(zm,x)(∑M

l=1 |Ĝ(zl,x)|2
)1/2)m=1,...,M

. (8)

The matrix A0 is the complete data set that can be collected. In practice the measured matrix
is corrupted by electronic or measurement noise that has the form of an additive noise, with
uncorrelated entries. The purpose of this paper is to address the classical imaging problems given
the measured data set:
- is there a reflector in the medium ? This is the detection problem. In the absence of noise this
question is trivial in that we can claim that there is a reflector buried in the medium as soon as the
response matrix is not zero. In the presence of noise, it is not so obvious to answer this question
since the response matrix is not zero due to additive noise even in the absence of a reflector. Our
purpose is to build a detection test that has the maximal probability of detection for a given false
alarm rate.
- where is the reflector ? This is the localization problem. Several methods can be proposed,
essentially based on the back-propagation of the data set, and we will describe robust methods in
the presence of noise.
- what are the characteristic properties of the reflector ? This is the reconstruction problem. One
may look after geometric and physical properties. In fact, in view of the expression (1-2), only
the product of the volume of the inclusion times the contrast can be identified in the regime we
address in this paper.

The paper is organized as follows. In Section 3 we explain how the data should be collected to
minimize the impact of the additive noise. In Section 4 we give results about the distribution of
the singular values of the response matrix, with special attention on the maximal singular value.
In Section 5 we discuss how the noise level can be estimated with minimal bias and variance. In
Section 6 we build a test for the detection of the reflector and in Section 7 we show how the position
and the scattering amplitude of the reflector can be estimated.

3 Data Acquisition

In this section we consider that there are M sources and N receivers. The measures are noisy,
which means that the signal measured by a receiver is corrupted by an additive noise that can be
described in terms of a circular complex Gaussian random variable with mean zero and variance
σ2
n. The recorded noises are independent from each other.

In the standard acquisition scheme, the response matrix is measured during a sequence of M
experiments. In the mth experience, m = 1, . . . ,M , the mth source (located at zm) generates a
time-harmonic signal with unit amplitude and the N receivers (located at yn, n = 1, . . . , N) record
the backscattered waves which means that they measure

Ameas,nm = A0,nm +Wnm, n = 1, . . . , N, m = 1, . . . ,M,

which gives the matrix
Ameas = A0 + W, (9)

where A0 is the unperturbed response matrix of rank one (4) and Wnm are independent complex
Gaussian random variables with mean zero and variance σ2

n.
The Hadamard technique is a noise reduction technique in the presence of additive noise that

uses the structure of Hadamard matrices.
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Definition 3.1 A complex Hadamard matrix H of order M is a M ×M matrix whose elements
are of modulus one and such that H†H = MI.

Complex Hadamard matrices exist for all M . For instance the Fourier matrix

Hnm = exp
[
i2π

(n− 1)(m− 1)

M

]
, m, n = 1, . . . ,M, (10)

is a complex Hadamard matrix. A Hadamard matrix has maximal determinant among matrices
with complex entries in the closed unit disk. More exactly Hadamard [21] proved that the determi-
nant of any complex M×M matrix H with entries in the closed unit disk satisfies |det H| ≤MM/2,
with equality attained by a complex Hadamard matrix.

We now describe a general multi-source acquisition scheme and show the importance of Hadamard
matrices to build an optimal scheme. Let H be an invertible M ×M matrix with complex entries
in the closed unit disk. In the multi-source acquisition scheme, the response matrix is measured
during a sequence of M experiments. In the mth experience, m = 1, . . . ,M , all sources gener-
ate time-harmonic signals with unit amplitude (or smaller), the m′ source generating Hm′m for
m′ = 1, . . . ,M . In other words, in the mth experiment, we can use all the sources up to their
maximal transmission power (that we have normalized to one) and we are free to choose their
phases in order to minimize the effective noise level in the recorded data. In the mth experiment,
the N receivers record the backscattered waves, which means that they measure

Bmeas,nm =

M∑
m′=1

Hm′mA0,nm′ +Wnm = (A0H)nm +Wnm, n = 1, . . . , N.

Collecting the recorded signals of the M experiments gives the matrix

Bmeas = A0H + W,

where A0 is the unperturbed response matrix and Wnm are independent complex Gaussian random
variables with mean zero and variance σ2

n. The measured response matrix Ameas is obtained by
right multiplying the matrix Bmeas by the matrix H−1:

Ameas := BmeasH
−1 = A0HH−1 + WH−1, (11)

so that we get the unperturbed matrix A0 up to a new noise

Ameas = A0 + W̃, W̃ = WH−1. (12)

The choice of the matrix H should fulfill the property that the new noise matrix W̃ has independent
complex entries with Gaussian statistics, mean zero, and minimal variance. We have

E
[
W̃nmW̃n′m′

]
=

M∑
q,q′=1

(H−1)qm(H−1)q′m′E
[
WnqWn′q′

]
= σ2

n((H−1)†H−1)mm′1n(n′).

This shows that we look for a complex matrix H with entries in the unit disk such that (H−1)†H−1 =
cI with a minimal c. This is equivalent to require that H is unitary and that |det H| is maxi-
mal. Using Hadamard result we know that the maximal determinant is MM/2 and that a complex
Hadamard matrix attains the maximum. Therefore a matrix H that minimizes the noise variance
should be a Hadamard matrix, such as, for instance, the Fourier matrix (10). Note that, in the
case of a linear array, the use of a Fourier matrix corresponds to an illumination in the form of
plane waves with regularly sampled angles.
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When the multi-source acquisition scheme is used with a Hadamard technique, we have H−1 =
1
MH† and the new noise matrix W̃ in (12) has independent complex entries with Gaussian statistics,
mean zero, and variance σ2

n/M :

E
[
W̃nmW̃n′m′

]
=
σ2
n

M
1m(m′)1n(n′). (13)

This gain of a factor M in the signal-to-noise ratio is called the Hadamard advantage.

4 Singular Value Decomposition of the Response Matrix

4.1 Singular Values of a Noisy Matrix

We consider here the situation in which the measured response matrix Ameas consists of indepen-
dent noise coefficients with mean zero and variance σ2

n/M and the number of receivers is larger
than the number of sources N ≥ M . As shown in the previous section, this is the case when the
response matrix is acquired with the Hadamard technique and there is no reflector in the medium.

We denote by σ
(M)
1 ≥ σ

(M)
2 ≥ σ

(M)
3 ≥ · · · ≥ σ

(M)
M the singular values of the response matrix

Ameas sorted by decreasing order and by Λ(M) the corresponding integrated density of states
defined by

Λ(M)([σu, σv]) :=
1

M
Card

{
l = 1, . . . ,M , σ

(M)
l ∈ [σu, σv]

}
, for σu < σv. (14)

For large N and M with N/M = γ ≥ 1 fixed we have the following results which are classical in
random matrix theory [24, 23, 15].

Proposition 4.1 a) The random measure Λ(M) almost surely converges to the deterministic
absolutely continuous measure Λ with compact support:

Λ([σu, σv]) =

∫ σv

σu

1

σn
ργ

( σ
σn

)
dσ, 0 ≤ σu ≤ σv, (15)

where ργ is the deformed quarter-circle law given by

ργ(x) =

{
1

πx

√(
(γ

1
2 + 1)2 − x2

)(
x2 − (γ

1
2 − 1)2

)
if γ

1
2 − 1 < x ≤ γ 1

2 + 1,

0 otherwise.
(16)

b) The normalized l2-norm of the singular values satisfies

M
[ 1

M

M∑
j=1

(σ
(M)
j )2 − γσ2

n

]
M→∞−→ √

γσ2
nZ0 in distribution, (17)

where Z0 follows a Gaussian distribution with mean zero and variance one.

c) The maximal singular value satisfies

M
2
3

[
σ
(M)
1 − σn

(
γ

1
2 + 1

)] M→∞−→ σn
2

(
1 + γ−

1
2

) 1
3Z2 in distribution, (18)

where Z2 follows a type-2 Tracy Widom distribution.
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The type-2 Tracy-Widom distribution has the cumulative distribution function ΦTW2 given by

ΦTW2(z) = exp
(
−
∫ ∞
z

(x− z)ϕ2(x)dx
)
, (19)

where ϕ(x) is the solution of the Painlevé equation

ϕ′′(x) = xϕ(x) + 2ϕ(x)3, ϕ(x) ' Ai(x), x→∞, (20)

Ai being the Airy function. The expectation of Z2 is E[Z2] ' −1.77 and its variance is Var(Z2) '
0.81. Detailed results about the Tracy-Widom distributions can be found in [11] and their numer-
ical evaluations are addressed in [14].

4.2 Singular Values of the Perturbed Response Matrix

The measured response matrix using the Hadamard technique in the presence of a reflector and in
the presence of measurement noise is

Ameas = A0 + W, (21)

where A0 is given by (4) and W has independent random complex entries with Gaussian statistics,
mean zero and variance σ2

n/M . We consider the critical and interesting regime in which the singular
values of the unperturbed matrix are of the same order as the singular values of the noise, that is
to say, σref is of the same order of magnitude as σn. The following proposition shows that there
is a phase transition:
- Either the noise level σn is smaller than the critical value γ−1/4σref and then the maximal
singular value of the perturbed response matrix is a perturbation of the non-zero singular value of
the unperturbed response matrix; this perturbation has Gaussian statistics with a mean of order
one and a variance of the order of 1/M .
- Or the noise level σn is larger than the critical value γ−1/4σref and then the non-zero singular
value of the unperturbed response matrix is buried in the deformed quarter circle distribution of
the pure noise matrix and the maximal singular value of the perturbed response matrix has a
behavior similar to the pure noise case (described in Proposition 4.1).

Proposition 4.2 In the regime M →∞:

a) The normalized l2-norm of the singular values satisfies

M
[ 1

M

M∑
j=1

(σ
(M)
j )2 − γσ2

n

]
M→∞−→ σ2

ref +
√

2γσ2
nZ0 in distribution, (22)

where Z0 follows a Gaussian distribution with mean zero and variance one.

b1) If σref < γ1/4σn, then the maximal singular value satisfies

σ
(M)
1

M→∞−→ σn
(
γ

1
2 + 1

)
in probability. (23)

More exactly

M
2
3

[
σ
(M)
1 − σn

(
γ

1
2 + 1

)] M→∞−→ σn
2

(
1 + γ−

1
2

) 1
3Z2 in distribution, (24)

where Z2 follows a type-2 Tracy Widom distribution.
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b2) If σref > γ1/4σn, then the maximal singular value satisfies

σ
(M)
1

M→∞−→ σref
(
1 + γ

σ2
n

σ2
ref

) 1
2
(
1 +

σ2
n

σ2
ref

) 1
2 in probability. (25)

More exactly

M
1
2

[
σ
(M)
1 − σref

(
1 + γ

σ2
n

σ2
ref

) 1
2
(
1 +

σ2
n

σ2
ref

) 1
2

]
M→∞−→ σn

2

(
1− γ σ4

n

σ4
ref

) 1
2
(
2 + (1 + γ)

σ2
n

σ2
ref

) 1
2(

1 + γ
σ2
n

σ2
ref

) 1
2
(
1 +

σ2
n

σ2
ref

) 1
2

Z0, (26)

in distribution, where Z0 follows a Gaussian distribution with mean zero and variance one.
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Figure 1: Mean and standard deviation of the maximal singular value. We compare the empirical
means (left) and standard deviations (right) obtained from 104 MC simulations (blue dots) with
the theoretical formulas given in Proposition 4.2 (red dashed lines). Here N = 200 and M = 50
(γ = 4).

These results are illustrated in Figure 1. Their proofs can be obtained from the method
described in [13]. Note however that, although the method used in [13] is correct, Theorem 2.19
there gives a formula for the asymptotic variance that seems in disagreement with our formula (26).
Our numerical simulations indicate however that our formula seems correct (and is quite far from
the formula in [13]). Extensions to heteroscedastic noise can also be obtained as in [16]. Note that
formula (26) seems to predict that the standard deviation of the maximal singular value cancels
when σref ↘ γ1/4σn, but this is true only to the order M−1/2, and in fact it becomes of order
M−2/3 (see Figure 1). Following [10] we can anticipate that there are interpolating distributions
which appear when σref = γ1/4σn + wM−1/3 for some fixed w. This problem deserves a detailed
study.

4.3 Singular Vectors of the Perturbed Response Matrix

It is of interest to describe the statistical distribution of the angle between the left singular vector

u
(M)
1 (resp. right singular vector v

(M)
1 ) of the noisy matrix Ameas and the left singular vector

u(xref) (resp. right singular vector v(xref)) of the unperturbed matrix A0. This justifies the
MUSIC-based algorithm for the reflector localization algorithm that we discuss in Section 7.1.

Proposition 4.3 We consider the case σref > γ
1
4σn. When γ = N/M is fixed and M → ∞, we

have in probability

∣∣(u(M)
1 )†u(xref)

∣∣2 M→∞−→ 1− γ σ4
n

σ4
ref

1 + γ
σ2
n

σ2
ref

and
∣∣(v(M)

1 )†v(xref)
∣∣2 M→∞−→ 1− γ σ4

n

σ4
ref

1 +
σ2
n

σ2
ref

. (27)
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Proposition 4.3 shows that the first singular vectors of the perturbed matrix Ameas have deter-
ministic angles with respect to the first singular vectors of the unperturbed matrix A0 provided
the first singular value emerges from the deformed quarter-circle distribution. These results are
proved in [13] and they are illustrated in Figure 2.
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Figure 2: Means of the square angles between the perturbed and unperturbed singular vectors. We
compare the empirical means obtained from 104 MC simulations (blue dots) with the theoretical
formulas given in Proposition 4.3 (red dashed lines). Here N = 200 and M = 50 (γ = 4).

5 The Evaluation of the Noise Level

5.1 Empirical Estimator

The truncated normalized l2-norm of the singular values satisfies (22). Therefore the truncated
normalized l2-norm of the singular values satisfies

M
[ 1

M − (1 + γ−
1
2 )2

M∑
j=2

(σ
(M)
j )2 − γσ2

n

]
M→∞−→ b1 +

√
γσ2

nZ0 in distribution,

where Z0 follows a Gaussian distribution with mean zero and variance one, and the asymptotic
bias is

b1 = σ2
ref − σ̄2

1 + σ2
n(1 + γ

1
2 )2. (28)

Here

σ̄1 = max
{
σref

(
1 + γ

σ2
n

σ2
ref

) 1
2
(
1 +

σ2
n

σ2
ref

) 1
2 , σn(1 + γ

1
2 )
}

(29)

is the deterministic leading-order value of the maximal singular value as shown in Proposition 4.2.
The normalization in the truncated l2-norm has been chosen so that, in the absence of a reflector,
the asymptotic bias is zero: b1 |σref=0= 0. This implies that

σ̂en := γ−
1
2

[ 1

M − (1 + γ−
1
2 )2

M∑
j=2

(σ
(M)
j )2

] 1
2

(30)

is an empirical estimator of σn with Gaussian fluctuations of the order of M−1. This estimator
satisfies

M
[
σ̂en − σn

]
M→∞−→ b1

2γσn
+

σn

2γ
1
2

Z0 in distribution,
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and therefore

σ̂en = σn + o(
1

M
2
3

) in probability. (31)

The empirical estimator is easy to compute, since it requires the evaluation of the Frobenius norm
of the measured matrix Ameas and the maximal singular value:

σ̂en = γ−
1
2

[∑N
n=1

∑M
m=1 |Anm|2 − (σ

(M)
1 )2

M − (1 + γ−
1
2 )2

] 1
2

. (32)

5.2 Corrected Empirical Estimator

It is possible to improve the quality of the estimation of the noise level and to cancel the bias of
the empirical estimator. Using Proposition 4.2 we can see that the quantity

σ̂eref =
σ̂en√

2

{(σ(M)
1

σ̂en

)2
− 1− γ +

([(σ(M)
1

σ̂en

)2
− 1− γ

]2
− 4γ

) 1
2
} 1

2

(33)

is an estimator of σref , provided that σref > γ1/4σn. Therefore, when σref > γ1/4σn, it is possible
to build an improved estimator of the noise variance by removing from the empirical estimator
an estimation of the asymptotic bias which is itself based on the empirical estimator σ̂en. The
estimator of the asymptotic bias that we propose to use is

b̂e1 = (σ̂eref)
2 − (σ

(M)
1 )2 + (σ̂en)2(1 + γ

1
2 )2, (34)

and therefore we can propose the following estimator of the noise level σn:

σ̂cn := σ̂en −
b̂e1

2γMσ̂en
. (35)

This estimator satisfies
M
[
σ̂cn − σn

]
M→∞−→ σn

2γ
1
2

Z0 in distribution. (36)

This estimator can only be used when σ̂eref > γ1/4σ̂en and it should then be preferred to the empirical
estimator σ̂en.

5.3 Kolmogorov-Smirnov Estimator

An alternative method to estimate σn is the approach outlined in [20] and applied in [25], which
consists in minimizing the Kolmogorov-Smirnov distance D(σ) between the observed sample dis-
tribution of the M −K smallest singular values of the measured matrix Ameas and that predicted
by theory, which is the deformed quarter circle distribution (16) parameterized by σn. Compared
to [20, 25] we here introduce a cut-off parameter K that can be chosen by the user. All choices
are equivalent in the asymptotic framework M → ∞, but for finite M low values for K give es-
timators with small variances but with bias, while large values for K increase the variance but
decay the bias (see Figure 3). We define the new estimator σ̂Kn of σn as the parameter that
minimizes the Kolmogorov-Smirnov distance. After elementary manipulations we find that the
Kolmogorov-Smirnov estimator is of the form

σ̂Kn := argmin
σ>0

D(M)
K (σ), (37)

where D(M)
K (σ) is defined by:

D(M)
K (σ) := max

m=1,...,M−K

∣∣∣Gγ(σ(M)
M+1−m
σ

)
− m− 1/2

M

∣∣∣+
1

2M
, (38)
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Gγ is the cumulative distribution function with density (16):

Gγ(x) =



0 if x ≤ γ 1
2 − 1,

1

2
+
γ

1
2

π

(
1−G(x)2

) 1
2 − γ + 1

π
arcsin

(
G(x)

)
−γ − 1

π
arctan

( 1− (γ
1
2 + γ−

1
2 )G(x)

(1−G(x)2)
1
2 (γ

1
2 − γ− 1

2 )

)
if γ

1
2 − 1 < x ≤ γ 1

2 + 1,

1 if γ
1
2 + 1 < x,

with

G(x) =
(1 + γ)− x2

2γ
1
2

.

If γ = 1, then we have

G1(x) =


0 if x ≤ 0,
1

2π

(
x
√

4− x2 + 4 arcsin
(x

2

))
if 0 < x ≤ 2,

1 if 2 < x.

5.4 Discussion

The three estimation methods described in the three previous subsections have been implemented
and numerical results are reported in Figure 3.
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Figure 3: Relative bias (left) and standard deviations (right) of different estimators of the noise
level. Here N = 200 and M = 50 (γ = 4).

As predicted by the asymptotic theory, the variance of the empirical estimator is equivalent to
the one of the corrected empirical estimator, and they are smaller than the ones of the Kolmogorov-
Smirnov estimator. The bias of the empirical estimator is larger than the bias of the Kolmogorov-
Smirnov estimator. The corrected empirical estilmator has a very small bias. The variance of the
Kolmogorov-Smirnov estimator increases with K, but its bias decreases with increasing K. From
these observations it turns out that:
- when σ̂eref > γ1/4σ̂en, then it is recommended to use the corrected empirical estimator (35). It is
the one that has the minimal bias and the minimal variance amongst all the estimators studied in
this paper, but it can only be applied in the regime when the singular value corresponding to the
reflector is outside the deformed quarter-circle distribution of the noise singular values.
- when σ̂eref < γ1/4σ̂en, then it is recommended to use the Kolmogorov-Smirnov estimator (37) with
K = 1. Although its variance is larger than the one of the empirical estimator, its bias is much
smaller and, as a result, it is the one that has the minimal quadratic error (sum of the squared
bias and of the variance).
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To summarize, the estimator of the noise variance that we will use in the following is:

σ̂fn = 1σ̂e
ref≤γ1/4σ̂e

n
σ̂K=1
n + 1σ̂e

ref>γ
1/4σ̂e

n
σ̂cn. (39)

Its bias and standard deviation are plotted in Figure 4.
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Figure 4: Relative bias (left) and standard deviations (right) of the final estimator (39) of the noise
level. Here N = 200 and M = 50 (γ = 4).

6 Detection Test

Consider the response matrix in the presence of measurement noise:

Ameas = A0 + W,

where A0 is zero in the absence of a reflector and equal to (4) when there is a reflector. The matrix
W models additive measurement noise and its complex entries are independent and identically
distributed with Gaussian statistics, mean zero and variance σ2

n/M .
The objective is to propose a detection test for the reflector. Since we know that the presence

of a reflector is characterized by the existence of a significant singular value, we propose to use a
test of the form R > r for the alarm corresponding to the presence of a reflector. Here R is the
quantity obtained from the measured response matrix and defined by

R =
σ
(M)
1

σ̂n
, (40)

where σ̂n is the known value of σn, if known, or the estimator (39) of σn. Here the threshold value
r of the test has to be chosen by the user. This choice follows from Neyman-Pearson theory as we
explain below. It requires the knowledge of the statistical distribution of R which we give in the
following proposition, which is a corollary of Proposition 4.2 (and Slutsky’s theorem).

Proposition 6.1 In the asymptotic regime M � 1 the following statements hold.

a) In absence of a reflector we have up to a term of order o(M−2/3):

R ' 1 + γ
1
2 +

1

2M
2
3

(
1 + γ−

1
2

) 1
3Z2, (41)

where Z2 follows a type-2 Tracy Widom distribution.

b) In presence of a reflector:
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b1) If σref > γ1/4σn, then we have up to a term of order o(M−1/2):

R ' σref
σn

(
1 + γ

σ2
n

σ2
ref

) 1
2
(
1 +

σ2
n

σ2
ref

) 1
2 +

1

2M
1
2

((1− γ σ4
n

σ4
ref

)(
2 + (1 + γ)

σ2
n

σ2
ref

)
(
1 + γ

σ2
n

σ2
ref

)(
1 +

σ2
n

σ2
ref

) 1
2

) 1
2

Z0, (42)

where Z0 follows a Gaussian distribution with mean zero and variance one.

b2) If σref < γ1/4σn, then we have (41).

The data (i.e. the measured response matrix) gives the value of the ratio R. We propose to use
a test of the form R > r for the alarm corresponding to the presence of a reflector. The quality of
this test can be quantified by two coefficients:
- The false alarm rate (FAR) is the probabilty to sound the alarm while there is no reflector:

FAR = P(R > rα| no reflector ).

- The probability of detection (POD) is the probability to sound the alarm when there is a reflector:

POD = P(R > rα| reflector ).

As is well-known in statistical test theory, it is not possible to find a test that minimizes the FAR
and maximizes the POD. However, by the Neyman-Pearson lemma, the decision rule of sounding
the alarm if and only if R > rα maximizes the POD for a given FAR α, provided the threshold is
taken to be equal to

rα = 1 + γ
1
2 +

1

2M
2
3

(
1 + γ−

1
2

) 1
3 Φ−1TW2(1− α), (43)

where ΦTW2 is the cumulative distribution function (19) of the Tracy-Widom distribution of type 2.
The computation of the threshold rα is easy since it depends only on the number of sensors N
and M and on the FAR α. We have, for instance, Φ−1TW2(0.9) ' −0.60, Φ−1TW2(0.95) ' −0.23
and Φ−1TW2(0.99) ' 0.48. These values are used in the detection tests whose POD are plotted in
Figure 5.

The POD of this optimal test (optimal amongst all tests with the FAR α) depends on the value
σref and on the noise level σn. The theoretical test performance improves very rapidly with M
when σref > γ1/4σn. When σref < γ1/4σn, so that the reflector is buried in noise (more exactly, the
singular value corresponding to the reflector is buried in the deformed quarter-circle distribution
of the other singular values), then we have POD = 1− ΦTW2

(
Φ−1TW2(1− α)

)
= α.
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Figure 5: Probability of detection (POD) for the detection test calibrated with the threshold values
rα with α = 0.1 (left), α = 0.05 (center), and α = 0.01 (right). Here N = 200 and M = 50. The
blue solid and dotted lines correspond to the results of 104 MC simulations, in which the noise
level is known (thick solid lines) or estimated by (39) (thick dotted lines). The dashed lines are
the FAR desired in the absence of a reflector, that should be obtained when σref = 0.
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The POD of the test (40) calibrated for different values of the FAR is plotted in Figure 5. One
can observe that the calibration with rα gives the desired FAR and that the POD rapidly goes
to one when the singular value σref of the reflector becomes larger than γ1/4σn. Furthermore, the
use of the estimator (39) for the noise level σn is also very efficient in that we get almost the same
FAR and POD with the true value σn as with the estimator σ̂fn . In Figure 6 we plot the POD
obtained with other estimators of the noise level in order to confirm that the estimator σ̂fn defined
by (39) is indeed the most appropriate.
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Figure 6: Probability of detection (POD) for the detection test calibrated with the threshold values
rα with α = 0.1 (left), α = 0.05 (center), and α = 0.01 (right). Here N = 200 and M = 50. The
blue lines correspond to the results of 104 MC simulations, in which the noise level is known (thick
solid lines) or estimated by (39) (thick dotted lines) or estimated by the estimators (30) and (37)
(thin dashed lines).

7 Target Localization and Reconstruction

In this section we would like to present simple and robust way to localize the reflector and recon-
struct its properties once the detection test has passed. By simple we mean that we will only use
the first singular value and left singular vector of the response matrix, and by robust we mean a
procedure that allows for estimations with bias and variance as small as possible.

7.1 Localization

A standard imaging functional is the MUSIC functional defined by [1]

IMUSIC(x) :=
∥∥u(x)−

(
u
(M)
1

†
u(x)

)
u
(M)
1

∥∥− 1
2 =

(
1−

∣∣u(x)
†
u
(M)
1

∣∣2)− 1
2 ,

where u(x) is the normalized vector of Green’s functions (8) and u
(M)
1 is the first left singular

vector of the measured response matrix Ameas. The MUSIC functional is the projection of the
Green’s vector u(x) from the receiver array to the search point x onto the noise space of the
measured response matrix.

In the absence of noise the MUSIC functional presents a peak at x = xref . Indeed, in this

case, we have u
(M)
1 = u(xref) (up to a phase term) and therefore IMUSIC(x) becomes singular at

x = xref . Furthermore, we can quantify the accuracy of the reflector localization as follows. When
the arrays surround the search region, the singular vectors u(x) can be shown to be orthogonal to
u(xref) when the distance between the search point x and the reflector point xref becomes larger
than half-a-wavelength. This can be shown using Hemlholtz-Kirchhoff identity and this gives the
resolution of the imaging functional: one can get the position of the reflector within the accuracy
of half-a-wavelength. When the arrays are partial, then the accuracy can be described in terms of
the so-called Rayleigh resolution formulas [17, 19].
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In the presence of noise the peak of the MUSIC functional is affected. By Proposition 4.3, in
the regime M � 1, the value of the MUSIC functional at an arbitrary point x 6= xref is one while
the theoretical value at x = xref is given by

IMUSIC(xref) = (1− cu)−
1
2 ,

where cu is the theoretical angle between the first left singular vector u(xref) of the unperturbed

matrix A0 and the first left singular vector u
(M)
1 of the measured response matrix Ameas:

cu =


1− γ σ4

n

σ4
ref

1 + γ
σ2
n

σ2
ref

if σref > γ
1
4σn,

0 if σref < γ
1
4σn.

Therefore, provided the detection test has passed, which means that the reflector singular value
is larger than the noise singular values, the MUSIC algorithm gives a robust and simple way to
estimate the position of the reflector. The estimator of xref that we propose is

x̂ref := argmax
x

IMUSIC(x). (44)

Note that more complex and computationally expensive algorithms (using reverse-time migration)
can improve the quality of the estimation as shown in [2].

7.2 Reconstruction

Using Proposition 4.2 we can see that the quantity

σ̂ref =
σ̂n√

2

{(σ(M)
1

σ̂n

)2
− 1− γ +

([(σ(M)
1

σ̂n

)2
− 1− γ

]2
− 4γ

) 1
2
} 1

2

(45)

is an estimator of σref , provided that σref > γ
1
4σn. Here σ̂n is the known value of σn, if known, or

the estimator (39) of σn. In practice, if the detection test passes, then this implies that we are in
this case. From (6) we can therefore estimate the scattering amplitude ρref of the inclusion by

ρ̂ref =
c20
ω2

( N∑
n=1

|Ĝ(ω, x̂ref ,yn)|2
)− 1

2
( M∑
m=1

|Ĝ(ω, x̂ref , zm)|2
)− 1

2

σ̂ref , (46)

with σ̂ref the estimator (45) of σref and x̂ref is the estimator (44) of the position of the inclusion.
This estimator is not biased asymptotically because it compensates for the level repulsion of the
first singular value due to the noise.

7.3 Numerical Simulations

We consider the following numerical set-up: the wavelength is equal to one. There is one reflector
with scattering amplitude ρref = 1, located at xref = (0, 0, 50). We consider a linear array of
N = 200 transducers located at half-a-wavelength apart on the line from (−50, 0, 0) to (50, 0, 0).
Each transducer is used as a receiver, but only one of four is used as a source (therefore, M = 50
and γ = 4). The noise level is σn = σref/4 or σref/2, where σref is the singular value associated to
the reflector (given by (6)).

We have carried out a series of 104 MC simulations (using the estimator (39) of σn). The results
are reported in Figure 7 (for σn = σref/4) and in Figure 8 (for σn = σref/2):

- the reflector is always detected when σn = σref/4 and it is detected with probability 97%
when σn = σref/2 (in agreement with the POD plotted in Figure 5).
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Figure 7: Left: Histogram of the estimated cross-range position x̂ref given by (44). Center: His-
togram of the estimated range position ẑref given by (44). Right: Histogram of the estimated
scattering amplitude ρ̂ref given by (46) (solid lines) or ρ̂eref given by (47) (dashed lines). Here
σn = σref/4.

- the estimator x̂ref defined by (44) of the position of the reflector has good properties. The
histograms of the estimated positions x̂ref = (x̂ref , 0, ẑref) are plotted in Figures 7-8 (left and
center).

- the estimator ρ̂ref defined by (46) of the scattering amplitude has no bias because it uses the
inversion formula (45) which compensates for the level repulsion of the first singular value. We
plot in Figures 7-8 (right) the histogram of the estimated scattering amplitude and we compare
with the empirical estimator

ρ̂eref =
c20
ω2

( N∑
n=1

|Ĝ(ω, x̂ref ,yn)|2
)− 1

2
( M∑
m=1

|Ĝ(ω, x̂ref , zm)|2
)− 1

2

σ
(M)
1 , (47)

which has a large bias.
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Figure 8: The same as in Figure 7, but here σn = σref/2.

8 Conclusion

In this paper we have presented a few results that show how random matrix theory can be used
in sensor array imaging. It turns out that most of the needed results are already available in
the literature in the case addressed in this paper, i.e. when the response matrix is perturbed by
an additive measurement noise. However, the most interesting questions arise in the presence of
clutter noise, which is the case in which the data are corrupted by perturbations due to random
heterogeneities present in the medium. In this case the random perturbation of the response
matrix cannot be described in terms of an additive uncorrelated noise, but it has special correlation
structure [9, 18]. This case certainly deserves more attention and more work.
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