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Abstract. We consider Synthetic Aperture Radar (SAR) image formation in the

situation when the propagation medium is random and dispersive. The propagation

model is the Klein-Gordon equation with a random index of refraction and a random

dispersive term. We show via a multiscale analysis how the medium heterogeneities

and the dispersion affect the image. In fact, in the situation with a strong source

chirp signal the main effect of the medium heterogeneities is to introduce random

phase distortions in the SAR data. We carry out novel scaling analysis that gives a

precise characterization of this canonical phase perturbation and how it affects image

resolution and stability. The main effect of the phase perturbation is to reduce the

azimuthal resolution and the signal-to-noise ratio and we quantify this performance

degradation.

PACS numbers: 78A46, 78A48, 78M35
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1. Introduction

In spaceborne Synthetic Aperture Radar (SAR) and for imaging or communication

through the earth’s ionosphere the signal is affected by small scale fluctuations in

the index of refraction, these may for instance be associated with optical turbulence.

Moreover, the signal will be affected by a dispersive effect of the plasma whose strength

depends on the electron number density. As in [23] we model these effects and the

atmospheric propagation via the Klein-Gordon equation parameterized in terms of

a random index of refraction and a random Langmuir frequency. This frequency

characterizes the frequency response of the total electron content of the ionosphere.

Starting with an assumed model for propagation in terms of a random phase

correction the SAR image formation is analyzed in [17] in terms of resolution. In [15] an

approach to compensate for the effects of the medium clutter is set forth by using data

at several frequencies. These data can be used for explicit estimation and compensation

of the random phase resulting from the medium clutter. In the so-called phase gradient

autofocus (PGA) approach [24] one also uses redundancy in the observation of the

phase in order to estimate it and compensate for it. Regarding specific schemes for

compensation of atmospheric and ionospheric effects in SAR images we refer to [2, 19, 15]

and references therein. To construct atmospheric and ionospheric mitigation schemes it

is useful to have insight about how atmospheric and ionospheric heterogeneities affect

the measurements and the SAR resolution and stability and this is the focus of our paper.

Our point of view here is to push through an analytic discussion for how the propagated

wave field can be described in a distinguished scaling limit. Here, the distinguished limit

refers to the scale separation limit that reflects the typical physical scaling ratios in the

SAR regime and for which we can give a general description of the quantities of interest

via asymptotic analysis. We will show by a rigorous analysis how the propagation of

the wave field through the randomly heterogeneous medium gives rise to random phase

distortions. This gives a novel characterization of how the SAR data phase statistics

relates to the statistics of the medium. A notable feature of our analysis is that we

can give an explicit account for how the signal-to-noise ratio is affected depending of

the relative size of the medium fluctuations. The other main parameter that affects this

signal-to-noise ratio is the size of the aperture relative to the correlation range of the

medium fluctuations. It is interesting to note that the signal-to-noise ratio is mostly

affected in a mid range for this parameter ratio. For very small ratios the phase varies

little with respect to source location on the array and thus gives only an image shift

rather than a resolution degradation, while for very large ratios there is a self-averaging

effect as the phase correction becomes uncorrelated on the different positions of the

antenna. We remark that the SAR aperture will in practice be constrained by the

beam width, the illumination geometry, of the SAR apparatus. The explicit link that

we provide between medium statistics and SAR data perturbation is useful in order

to understand and tune phase compensation techniques like PGA. In addition to the

random phase correction in the SAR data affecting the azimuthal resolution there is
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Figure 1. Schematic of the SAR configuration: ~xn = (xn, 0, L) is the n-th position of

the antenna, ~yr is the reflector position, and ~y0 = (0, 0, 0) is the center of the search

area.

also an overall deterministic shift in the SAR image that is caused by a group delay

associated with the deterministic part of the Langmuir frequency.

The outline of the papers is as follows. In Section 2 we review the basic SAR

matched filter image formation procedure. Then we discuss the modeling and scaling

assumptions that we use in Section 3. We carry out the multiscale analysis of the Green’s

function in Section 4 and use this to characterize the ambiguity function associated with

the SAR image in Section 5. The analysis of the ambiguity function shows how resolution

and stability are affected by medium clutter.

2. Matched filter processing

In the classical SAR setup, an antenna located on a satellite moves along a straight

trajectory. At regularly spaced positions ~xn, n = 1, . . . , N along this trajectory and at

regularly spaced times nT , the antenna emits an electromagnetic pulse s(t − nT ) that

is reflected by the reflectors present in the medium, and the scattered wave Rn(t) is

detected by the same antenna. The collection of received signals (Rn(t))t,n is then used

to produce an image. Here the subscript in t, n refers to the fact that we regard the

observations as a random field in these arguments. In this section we give a simple but

accurate model that describes how the signals are produced and we also present the

usual SAR imaging process.

The antenna can be a point source, or a slotted waveguide [10], or a microstrip

antenna [21]. In this paper we carry out the analysis with a point source. The antenna

moves along a straight trajectory, along the x-axis. The successive positions of the

antenna are ~xn = (xn, 0, L), n = 1, . . . , N , with xn = (n/N − 1/2)D (see Figure 1).

Throughout the paper we will use boldface vector notation ~x = (x, y, z) to represent

three-dimensional vectors, while we use boldface notation x = (x, y) to represent two-

dimensional vectors for lateral spatial coordinates. The total length of the antenna
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trajectory is D. The antenna at ~xn emits the signal s(t− nT ). The source signal is the

chirped pulse

s(t) =
1

2
a
( t

Tp

)

exp (− iωct− iπγt2), (1)

where ωc is the carrier (angular) frequency, γ is the chirp parameter, a(t) is the

normalized pulse shape function, and Tp is the pulse width. For instance, we may

have a(t) = exp(−t2) or a(t) = 1[−1,1](t).

The antenna records the backscattered signal Rn(t). A deramping is applied, that

is, a multiplication by the opposite quadratic phase which recompresses the signal [4],

so that we obtain the signals Sn(t) defined by

Sn(t) = exp[iωc(t− nT − 2τ0) + iπγ(t− nT − 2τ0)
2]Rn(t), (2)

where τ0 = |~xN/2 − ~y0|/c0, c0 is the reference background velocity, ~y0 = (0, 0, 0) is the

center of the search area, and ~xN/2 = (0, 0, L) is the center of the antenna trajectory

(and therefore τ0 = L/c0). The set of signals Sn(t), n = 1, . . . , N , is the SAR data

set. We remark that the variable t is sometimes referred to as the “fast time” and the

variable n as the “slow time” in the SAR literature. Moreover, centering with a fixed

τ0 that does not depend on n is sometimes referred to as strip map mode.

Let us assume that there is a single target in the medium, whose position is ~yr.

This target acts as a point reflector. Using the Born approximation, the backscattered

field measured at the antenna is [7]

Rn(t) =
ω2
c

2π

∫

Ĝ(ω, ~xn, ~yr)vrĜ(ω, ~yr, ~xn)ŝ(ω) exp [− iω(t− nT )]dω

=
ω2
cvr
2π

∫

Ĝ(ω, ~xn, ~yr)
2ŝ(ω) exp [− iω(t− nT )]dω, (3)

where vr is the reflectivity of the target reflector and we have used the reciprocity

identity Ĝ(ω, ~x, ~y) = Ĝ(ω, ~y, ~x). In a three-dimensional homogeneous non-dispersive

medium with constant background velocity c0, the Green’s function is

Ĝ(ω, ~x, ~y) |homo=
1

4π|~x− ~y| exp
(

i
ω

c0
|~x− ~y|

)

.

Therefore, in the case in which there is a single target at ~yr and the medium is

homogeneous and non-dispersive, the recorded signal (after deramping) has the form

Sn(t) |homo =
ω2
cvr

32π2|~yr − ~xn|2
a
(t− nT

Tp
− 2

|~xn − ~yr|
c0Tp

)

exp
[

2iωc(
|~xn − ~yr|

c0
− τ0)

]

× exp
[

4iπγ(t− nT − 2τ0)(
|~xn − ~yr|

c0
− τ0)− 4iπγ(

|~xn − ~yr|
c0

− τ0)
2
]

,

and in the Fourier domain

Ŝn(ω) |homo= ω2
cvrĤ(ω, ~xn, ~yr) exp(iω(nT + 2τ0)), (4)

where we have defined

Ĥ(ω, ~x, ~y) =
Tp

32π2|~y − ~x|2 â
[

Tp

(

4πγ(
|~x− ~y|
c0

− τ0) + ω
)]

exp
[

2iωc(
|~x− ~y|
c0

− τ0)
]

× exp
[

2iω(
|~x− ~y|
c0

− τ0) + 4iπγ(
|~x− ~y|
c0

− τ0)
2
]

. (5)
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Note that

- the support of the function Ĥ(ω, ~x, ~y) is concentrated around |~x − ~y| ≃ c0(τ0 − ω
4πγ

)

(this property gives the range resolution, as we will see below in Section 5.1 )

- if ωc ≫ πγTp, then the phase varies more rapidly than the amplitude (this property

gives the azimuthal resolution, as we will see below in Section 5.2).

In general, the medium is not known and the SAR matched filter (or adjoint

method) is the point spread function [7, 8]

In(~ys) =

∫

H(t− nT − 2τ0, ~xn, ~ys)Sn(t)dt

=
1

2π

∫

Ĥ(ω, ~xn, ~ys) exp(−iω(nT + 2τ0))Ŝn(ω)dω, (6)

where · stands for complex conjugation. The point spread function matches the received

signal Sn against the synthetic signal H that should be the one corresponding to the

situation in which there is a point reflector at the search point ~ys and the medium

is homogeneous with background velocity c0. It is the optimal filter in the sense of

providing the best signal-to-noise ratio in the presence of additive white noise [7, 8]. In

SAR the point spread function is summed over n, which gives the ambiguity function

of the SAR system that we define in our paper by

I(~ys) =
∣

∣

∣

N
∑

n=1

In(~ys)
∣

∣

∣

2

. (7)

As we shall see in the following, this imaging functional produces high-resolution images

and it is possible to quantify its performance in terms of resolution and signal-to-noise

ratio when the SAR data are collected in a randomly heterogeneous and dispersive

medium.

3. Modeling and scaling assumptions for the wave equation

The medium in which the waves propagate is heterogeneous and dispersive. The wave

equation is the Klein-Gordon equation

n2(~x)

c20
Ett −∆E +

ω2
pe(~x)

c20
E = s(t)δ(~x− ~ys), (8)

where c0 is the light velocity in the homogeneous background medium, ωpe is the

Langmuir (or plasma electronic) frequency (depending on the local electron density),

and n is the index of refraction. We use the notation Ett for the second-order partial

with respect to time and ∆E is the spatial Laplacian. Here we have assumed a point

source at ~ys emitting the signal s(t) given by (1).

The coefficients of the equation ωpe(~x) and n(~x) are spatially varying and we model

them to have the form

ω2
pe(~x) = ω2

0

(

1 + σνν(
~x

ℓν
)
)

, (9)

n2(~x) = 1 + σµµ(
~x

ℓµ
), (10)
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where ω0 is the central Langmuir frequency (corresponding to the average electron

density), and ν and µ are two stationary random processes with mean zero and ergodic

properties. They are normalized so that their standard deviations and correlation

lengths are of order one. The random process ν describes the fluctuations of the

Langmuir frequency (due to the fluctuations of the electron density), whose typical

relative amplitude is σν and correlation length is ℓν . Similarly the random process µ

describes the fluctuations of the index of refraction, whose typical relative amplitude

is σµ and correlation length is ℓµ. The fluctuations of the Langmuir frequency give

rise to random dispersive effects. The fluctuations of the index of refraction give rise to

random scattering effects. We will describe these effects in the next sections.

In this paper we set forth a multiscale approach to analyze the resolution and

stability of the SAR imaging functional. This multiscale approach is based on the

typical orders of magnitudes for the different quantities that play a role and it will

give a comprehensive description of the wave propagation in the SAR regime. It is an

extension of the results obtained in [14] in a different regime.

The typical numbers that can be found in the literature are [23]:

- carrier frequency ωc of the order of 109 Hz.

- bandwidth B = 2πγTp of the order of 107 Hz.

- pulse width Tp of the order of 5 10−5 s, which gives ωp = 2π/Tp of the order of 105 Hz.

- Langmuir frequency ω0 of the order of 107 Hz.

- propagation distance L (round trip from the satellite to the ground): 1600 km, which

corresponds to a frequency ωL = 2πc0/L of the order of 103 Hz.

Based on these values, we can introduce a small dimensionless parameter ε2 (of the

order of 10−2) such that the ratios between the different characteristic parameters obey

the scaling relations:

ωc

ωL

∼ ε−6,
B

ωL

∼ ω0

ωL

∼ ε−4,
ωp

ωL

∼ ε−2. (11)

We will here consider the scaling limit ε → 0. Physically it means that we

consider a regime of separation of scales as indicated above. In our paper we discuss

the simplification that follows in such a scaling regime by deriving an asymptotic

approximation for the quantities of interest in the SAR configuration.

We need also to specify the characteristic parameters of the random fluctuations.

From [1, 3] the electron density fluctuates in the ionosphere with a correlation radius ℓν
of the order of 10 km, which corresponds to a frequency ων = 2πc0

ℓν
= 105 Hz, and with

a typical relative amplitude of the order of 10%. Therefore we have

σν ∼ ε,
ων

ωL
∼ ε−2. (12)

We will consider fluctuations of the index of refraction with a correlation radius ℓµ of

the same order as the one of the electron density. The forthcoming analysis will show

that the effect of the fluctuations of the index of refraction are comparable to those of

the electron density when their typical amplitude is much smaller than the one of the
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electron density. More precisely we will assume that they are of order 10−5 (or smaller).

Therefore we have

σµ ∼ ε5,
ωµ

ωL
∼ ε−2. (13)

Such small fluctuations of the index of refraction are in fact typical in the atmosphere

[22, Chapter 2]. We stress here the above parameters are chosen as representing a

possible scaling scenario. In this scaling scenario random dispersive effects and random

scattering effects interact at a comparable level. If for instance σµ happens to be much

smaller in a considered situation, then we can indeed ignore the random scattering term.

However, here we consider the most delicate situation where both effects are present and

at a comparable level.

Finally we consider that the total length of the antenna trajectory D is of the order

of a few tens of kilometers, which corresponds to a frequency ωD = 2πc0
D

of the order

of 105 Hz, and we look for the reflector around the central position ~y0 = (0, 0, 0) in a

search window (for the search point ~ys) of the order of 10-100 meters, which corresponds

to a frequency ωys
= 2πc0/|~ys| of the order of 107 Hz. Therefore we have

ωD

ωL
∼ ε−2,

ωys

ωL
∼ ε−4. (14)

We now formulate the wave problem in the scaling regime described above. We

consider the scaled version of the wave equation, expressed in terms of the small

parameter ε and otherwise dimensionless parameters of order one where we retain the

parameter notation from our above discussion (with some abuse of notation):

1

c20

(

1 + ε5µ(
~x

ε2
)
)

Eε
tt −∆Eε +

ω2
0

ε8c20

(

1 + εν(
~x

ε2
)
)

Eε = sε(t)δ(~x− ~yε
s ), (15)

corresponding to the distance and travel time from the array to the scatterer being

of order one in these non-dimensionalized scaling with ε now giving relative scaling

relations. That is in Eq. (8) we normalize units by this reference time and this

reference length, to get quantities scaled by ε according to the above scaling discussion,

however, retain the parameter symbols from above to retain the interpretation of what

the parameters represent. Here we also assume that the source is localized at the point

~yε
s and emits the source pulse:

sε(t) =
1

2
a
( t

ε2Tp

)

exp
(

− i
ωc

ε6
t− iπ

γ

ε6
t2
)

, (16)

where the scaling of the last term by ε−6 follows from the magnitude of the bandwidth

given above. We introduce the scaled Fourier transform:

ŝε(ω) =

∫

sε(t) exp
(

i(
ωc

ε6
+
ω

ε4
)t
)

dt, (17)

which is the usual Fourier transform but evaluated at the frequency ωc

ε6
+ ω

ε4
. The

particular scaled and shifted Fourier transform is determined by the form of the source,
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whose spectrum is concentrated around the carrier frequency ωc/ε
6 with a bandwidth of

the order of ε−4, as can be seen from the limit (obtained by a stationary phase argument)

lim
ε→0

ε−3ŝε(ω) =
e−iπ/4

2
√
γ
a
( ω

2πγTp

)

. (18)

By taking the scaled Fourier transform of the wave equation we get the Helmholtz

equation:

∆Êε +
[ 1

c20

(ωc

ε6
+
ω

ε4

)2(

1 + ε5µ(
~x

ε2
)
)

− ω2
0

ε8c20

(

1 + εν(
~x

ε2
)
)]

Êε = −ŝε(ω)δ(~x− ~yε
s ). (19)

According to (14), the antenna position is of the form

~xε
n = (ε2xn, L),

and the reflector and the search point are of the form

~yε
r = ε4(yr, zr), ~yε

s = ε4(ys, zs).

As discussed in Section 2 we would like to identify the Green’s function from ~yε
s or ~yε

r

to ~xε
n in order to characterize the SAR data. This Green’s function should be identified

for a frequency in the spectrum of the source signal, that is, for a frequency of the form
ωc

ε6
+ ω

ε4
.

4. Multiscale analysis of the Green’s function

The Green’s function Ĝε(ω, ~x; ~yε
s ) from the point ~yε

s = ε4~ys = ε4(ys, zs) to a point

~x = (x, z) at the frequency ωc

ε6
+ ω

ε4
is the solution of the Helmholtz equation (19) with

ŝε(ω) = 1 and ~yε
s = ε4~ys. This equation can be written as

∆Ĝε + qεω
2Ĝε +

1

ε7
Q(

~x

ε2
)Ĝε +

2ωcω

c20ε
5
µ(
~x

ε2
)Ĝε +

ω2

c20ε
3
µ(
~x

ε2
)Ĝε = −δ(~x− ε4~ys), (20)

where the effective wavenumber qεω is defined by

qεω
2 =

1

c20

(ωc

ε6
+
ω

ε4

)2

− ω2
0

c20ε
8
, (21)

and the zero-mean random process Q is

Q(~x) =
ω2
c

c20
µ(~x)− ω2

0

c20
ν(~x). (22)

We introduce the scaled space-time Fourier transform:

Ǧε(ω,k, z; ~yε
s ) =

∫

R2

Ĝε(ω,x, z; ~yε
s) exp

(

ik · x
ε4

)

dx. (23)

By taking the space-time Fourier transform of the wave equation we find

∂2Ǧε

∂z2
(k) + qεω,k

2Ǧε(k)

= −δ(z − ε4zs) exp (ik · ys)−
1

ε7(2π)2

∫

Q̌
(

k′,
z

ε2

)

Ǧε(k − ε2k′)dk′

− 2ωωc

ε5c20(2π)
2

∫

µ̌
(

k′,
z

ε2

)

Ǧε(k − ε2k′)dk′ − ω2

ε3c20(2π)
2

∫

µ̌
(

k′,
z

ε2

)

Ǧε(k − ε2k′)dk′,(24)
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where the effective wavenumber qεω,k is given by

(

qεω,k
)2

=
1

c20

[(ωc

ε6
+
ω

ε4

)2

− ω2
0

ε8

]

− |k|2
ε8

, (25)

and Q̌ is the unscaled Fourier transform of Q:

Q̌(k, z) =

∫

R2

Q(x, z) exp (ik · x)dx.

We next decompose the wave field into an upgoing and and downgoing wave modes

whose complex amplitudes are denoted by Ǎε and B̌ε respectively and are defined by:

Ǎε(ω,k, z; ~yε
s) =

[1

2
Ǧε(ω,k, z; ~yε

s) +
1

2iqεω,k

∂Ǧε

∂z
(ω,k, z; ~yε

s)
]

exp (− iqεω,kz),

B̌ε(ω,k, z; ~yε
s) =

[1

2
Ǧε(ω,k, z; ~yε

s)−
1

2iqεω,k

∂Ǧε

∂z
(ω,k, z; ~yε

s)
]

exp (iqεω,kz).

Here, with “upgoing” we mean propagation in the positive z-direction. The

decomposition then reads

Ǧε(ω,k, z; ~yε
s) = Ǎε(ω,k, z; ~yε

s) exp (iq
ε
ω,kz) + B̌ε(ω,k, z; ~yε

s ) exp (− iqεω,kz), (26)

and it then follows that the mode amplitudes satisfy

∂Ǎε

∂z
(ω,k, z; ~yε

s ) exp (iq
ε
ω,kz) +

∂B̌ε

∂z
(ω,k, z; ~yε

s) exp (− iqεω,kz) = 0.

Substituting into (24) we find the coupled system of equations that governs the

evolution of the wave mode amplitudes:

∂Ǎε

∂z
(k) =

i

qεω,kε
72(2π)2

∫

Q̌
(

k′,
z

ε2

)[

Ǎε(k − ε2k′) exp
(

i(qεω,k−ε2k′ − qεω,k)z
)

+ B̌ε(k − ε2k′) exp
(

i(− qεω,k−ε2k′ − qεω,k)z
)]

dk′, (27)

∂B̌ε

∂z
(k) = − i

qεω,kε
72(2π)2

∫

Q̌
(

k′,
z

ε2

)[

Ǎε(k − ε2k′) exp
(

i(qεω,k−ε2k′ + qεω,k)z
)

+ B̌ε(k − ε2k′) exp
(

i(− qεω,k−ε2k′ + qεω,k)z
)]

dk′. (28)

Here we have not written the last two terms that appear at the end of Eq (24) because

they turn out to be negligible (this can be guessed because 1/(ε5qεω,k) = O(ε)).

The system (27-28) is complemented by the radiation conditions that mean that

no wave is incoming from infinity:

Ǎε(ω,k, z < ε4zs; ~y
ε
s ) = 0, B̌ε(ω,k, z > L; ~yε

s ) = 0, (29)

because the medium is homogeneous outside the region z ∈ (0, L). We also have the

jump condition at z = ε4zs:

Ǎε(ω,k, ε4z+s ; ~y
ε
s )− Ǎε(ω,k, ε4z−s ; ~y

ε
s ) =

i

2qεω,k
exp (− iε4qεω,kzs + ik · ys),
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which gives with the radiation condition:

Ǎε(ω,k, ε4z+s ; ~y
ε
s ) =

i

2qεω,k
exp (− iε4qεω,kzs + ik · ys). (30)

We remark that, as we show below, the field reflected from the random heterogeneities of

the medium are small and we do not give the jump condition for the down-propagating

field B̌ε.

We now carry out the asymptotic analysis.

1) We have

1

ε7qεω,k
=

c0
ωcε

+O(ε),

qεω,k−ε2k′ + qεω,k =
2ωc

ε6c0
+O(ε−4),

qεω,k−ε2k′ − qεω,k =
c0k · k′

ωc
+O(ε2).

The first expansion allows us to simplify the multiplicative factors in the right-hand

sides of the evolutions equations (27-28). The second expansion gives rapid phases

that average out the crossed terms between the up-going and down-going wave mode

amplitudes. The third expansion gives a simple form for the evolution equation of the

up-going wave mode amplitude:

∂Ǎε

∂z
(k) =

ic0
2(2π)2ωcε

∫

Q̌
(

k′,
z

ε2

)

Ǎε(k − ε2k′) exp
(

i
c0k · k′

ωc

z
)

dk′. (31)

A similar equation is obtained for the down-going wave mode amplitude:

∂B̌ε

∂z
(k) = − ic0

2(2π)2ωcε

∫

Q̌
(

k′,
z

ε2

)

B̌ε(k−ε2k′) exp
(

−ic0k · k′

ωc
z
)

dk′.(32)

2) We have

ε4qεω,k =
ωc

c0ε2
+
ω

c0
+O(ε2).

This expansion allows us to simplify the initial condition (30) for Ǎε:

Ǎε(ω,k, ε4z+s ; ~y
ε
s ) =

ic0ε
6

2ωc

exp
(

− i
ωc

c0ε2
zs − i

ω

c0
zs + ik · ys

)

. (33)

Note that the initial wave mode amplitude has no rapid variation in k, and the evolution

equation (31) does not give rise to such rapid variation either, so we can simplify (31)

into

∂Ǎε

∂z
(k) =

ic0
2(2π)2ωcε

∫

Q̌
(

k′,
z

ε2

)

Ǎε(k) exp
(

i
c0k · k′

ωc
z
)

dk′

=
ic0
2ωcε

Q
(

− c0k

ωc
z,
z

ε2

)

Ǎε(k). (34)

This equation can be integrated and we find (to leading order):

Ǎε(ω,k, z; ~yε
s) = Ǎε(ω,k, ε4z+s ; ~y

ε
s ) exp

[ ic0
2ωcε

∫ z

0

Q
(

− c0k

ωc
z′,

z′

ε2

)

dz′
]

, (35)
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for z ∈ (ε4zs, L]. Note that the random phase is of order one as ε → 0 by a classical

diffusion approximation argument and that it is smooth in k.

Using the evolution equation (32) for B̌ε and the boundary condition (29) for B̌ε

at z = L, we find that

B̌ε(ω,k, z; ~yε
s) = 0, (36)

for z ∈ (ε4zs, L]. Indeed this corresponds to no wave energy coming in from z = +∞.

3) We have

qεω,k = qεω − |k|2c0
2ε2ωc

+
|k|2c0ω
2ω2

c

+O(ε2).

This gives that the Fourier transformed Green’s function is of the form

Ǧε(ω,k, z; ~yε
s) = Ǎε(ω,k, z; ~yε

s) exp
(

− i
|k|2c0z
2ε2ωc

+ i
|k|2c0ωz

2ω2
c

+ iqεωz
)

, (37)

for z ∈ (ε4zs, L]. Therefore at a point ~x = (ε2xn, L) it is given by

Ĝε(ω, ε2xn, L; ~y
ε
s ) =

1

(2π)2ε8

∫

R2

Ǧε(ω,k, L; ~yε
s) exp

(

− i
k · xn

ε2

)

dk

=
1

(2π)2
ic0

2ωcε2
exp

(

iqεωL− i
ωc

c0ε2
zs − i

ω

c0
zs

)

×
∫

exp
[

− i

ε2
(
|k|2c0L
2ωc

+ k · xn) + i(
|k|2c0ω
2ω2

c

L+ k · ys)
]

× exp
[ ic0
2ωcε

∫ L

0

Q
(

− c0k

ωc
z′,

z′

ε2

)

dz′
]

dk.

Note the presence of the rapid phase (of order ε−2) in the k-integral. By a stationary

phase argument, the value of the integral is concentrated around an ε-neighborhood of

the unique stationary point kst = −xnωc/(c0L) and we find

Ĝε(ω, ε2xn, L; ~y
ε
s ) =

1

4πL
exp

(

iqεωL− i
ωc

c0ε2
zs − i

ω

c0
zs

)

× exp
(

i
|xn|2ωc

2ε2c0L
+ i

|xn|2ω
2c0L

− iωc
xn · ys

c0L

)

× exp
[ ic0
2ωcε

∫ L

0

Q
(xn

L
z′,

z′

ε2

)

dz′
]

, (38)

where qεω can be expanded as

qεω =
1

c0

(ωc

ε6
+
ω

ε4
− ω2

0

2ε2ωc
+
ωω2

0

2ω2
c

+O(ε2)
)

. (39)

Eq. (38) is the asymptotic expression of the Green’s function that we will use in the

next section for the analysis of the SAR imaging functional.

Note that the phase in (38) is nothing else but the expansion of

1

c0

(ωc

ε6
+
ω

ε4

)

|ε4~ys − (ε2xn, L)|,
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up to the deterministic phase ψε
ω given by

ψε
ω =

1

c0

(

− ω2
0

2ε2ωc
+
ωω2

0

2ω2
c

)

L, (40)

which is due to the homogeneous Langmuir frequency ω0, and the random phase

φε(xn)/2 given by

φε(xn) =
c0
ωcε

∫ L

0

Q
(xn

L
z′,

z′

ε2

)

dz′, (41)

which is due to the spatial fluctuations of the index of refraction and of the Langmuir

frequency, over a path that to leading order is the straight line from the scatterer to

the n-th antenna position ~xε
n. Therefore the random Green’s function can be written

in terms of the background non-dispersive Green’s function as

Ĝε(ω, ε2xn, L; ~y
ε
s ) = Ĝε(ω, ε2xn, L; ~y

ε
s ) |homo exp

[ i

2
φε(xn) + iψε

ω

]

, (42)

Ĝε(ω, ε2xn, L; ~y
ε
s ) |homo =

1

4π|(ε2xn, L)− ~yε
s |
exp

[

i(
ωc

ε6
+
ω

ε4
)
|(ε2xn, L)− ~yε

s |
c0

]

. (43)

5. Multiscale analysis of the ambiguity function

Taking an inverse scaled Fourier transform, the signal received at the antenna position

~xε
n = (ε2xn, L) when there is a reflector at ~yε

r = ε4~yr = ε4(yr, zr) is

Rε
n(t) =

ω2
cvr

2πε16

∫

Ĝε(ω, ε2xn, L; ~y
ε
r )

2ŝε(ω) exp
[

− i(
ωc

ε6
+
ω

ε4
)(t− nT )

]

dω, (44)

where the source spectrum ŝε(ω) is given by (17) and the Green’s function by (38). The

deramped signal is of the form

Sε
n(t) = Sε

n(t) |homo exp
[

− i
ω2
0L

ε2ωcc0
+ iφε(xn)

]

exp
[

i
2πγL

ε2c0

ω2
0

ω2
c

(t− nT − 2L

c0
)
]

, (45)

where Sε
n(t) |homo is the signal that would have been obtained if the medium were

homogeneous and non-dispersive:

Sε
n(t) |homo=

ω2
cvr
ε12

Hε(t− nT − 2L

c0
,xn, ~yr), (46)

with

Hε(t,xn, ~yr) =
1

32π2L2
exp

[

− 2i
ωczr
ε2c0

− 2i
ωcxn · yr

c0L
+ i

|xn|2ωc

ε2c0L

]

× exp
[

− 2iπ
γ

ε2
t(
2zr
c0

− |xn|2
c0L

)
]

a
( t

ε2Tp

)

. (47)

The point spread function at the search point ~yε
s = ε4~ys = ε4(ys, zs) is

In(~y
ε
s ) =

∫

Hε(t− nT − 2L

c0
,xn, ~ys)S

ε
n(t)dt,
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where Hε is given by (47) and the deramped recorded signal Sε
n(t) can be expressed in

terms of the reflector at ~yε
r = ε4(yr, zr) as (45). We find that

In(~y
ε
s ) =

ω2
cvrTp

(32π2L2)2ε10
exp

[

2i
ωc

c0ε2
(zs − zr)− i

Lω2
0

ε2ωcc0

]

× exp
[

2i
ωcxn · (ys − yr)

c0L
+ iφε(xn)

]

WR(zs; zr), (48)

where we have defined

WR(zs; zr) = A
(4πγTp

c0
(zs − zr +

Lω2
0

2ω2
c

)
)

, (49)

A(ω) =

∫

|a(t)|2 exp (iωt)dt. (50)

Finally the ambiguity function (7), up to a multiplicative factor (proportional to

the reflectivity vr of the reflector), can be written as

I(~yε
s ) =

∣

∣

∣
WR(zs; zr)

∣

∣

∣

2∣
∣

∣
WA(ys;yr)

∣

∣

∣

2

, (51)

where we have defined

WA(ys;yr) =
1

N

N
∑

n=1

exp
[

2i
ωcxn · (ys − yr)

c0L
+ iφε(xn)

]

. (52)

Compared to the unperturbed (homogeneous and non-dispersive) case, we can easily

identify the differences:

- there is a shift in the function WR due to the homogeneous Langmuir frequency. It

will be responsible for a shift in the range resolution that is deterministic.

- there are random phases in the terms of the series that determines the function WA.

They will be responsible for a loss of azimuthal resolution and stability.

The random phase φε(xn) has particular features. Assume that the random

processes ν and µ are independent for simplicity. As ε → 0 the random phase vector

indexed by antenna locations, (φε(xn))xn
, converges to a stationary Gaussian random

process (φ(xn))xn
with mean zero and covariance function

E[φ(xn)φ(xn′)] =
ω2
cL

c20
Cµ(xn − xn′) +

ω4
0L

ω2
cc

2
0

Cν(xn − xn′), (53)

where

Cµ(x) =

∫ 1

0

ds

∫ ∞

−∞
dzE[µ(0, 0)µ(sx, z)], Cν(x) =

∫ 1

0

ds

∫ ∞

−∞
dzE[ν(0, 0)ν(sx, z)].

If we assume that the covariance functions of the stationary random processes ν and µ

have the Gaussian forms

E[µ(0, 0)µ(x, z)] = σ2
µ exp

(

− |x|2 + z2

ℓ2µ

)

, (54)

E[ν(0, 0)ν(x, z)] = σ2
ν exp

(

− |x|2 + z2

ℓ2ν

)

, (55)
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then we get

E[φ(xn)φ(xn′)] =

√
πω2

cL

c20
σ2
µℓµC

( |xn − xn′|
ℓµ

)

+

√
πω4

0L

ω2
cc

2
0

σ2
νℓνC

( |xn − xn′|
ℓν

)

, (56)

with

C(x) = 1

x

∫ x

0

exp (− s2)ds =

√
π

2x
erf(x). (57)

We can observe that the covariance function of the random phase φ(xn) decays very

slowly, as the inverse of the distance between the points. This algebraic decay actually

holds true for a very large class of covariance functions for µ and ν. For instance,

any separable covariance function of the form E[µ(0, 0)µ(x, z)] = cµ,1(x)cµ,2(z) with

integrable functions cµ,1 and cµ,2 gives rise to the 1/x-decay for the phase covariance

function. In order to simplify the forthcoming analysis, but without loss of generality,

we will assume that the covariance functions of the random processes ν and µ have the

form (54-55) with ℓµ = ℓν = ℓ so that the phase covariance function takes the simple

form

E[φ(xn)φ(xn′)] = σ2C
( |xn − xn′|

ℓ

)

, (58)

with

σ2 =

√
πω2

cL

c20
σ2
µℓµ +

√
πω4

0L

ω2
cc

2
0

σ2
νℓν . (59)

5.1. Range resolution

The analysis of the range resolution follows from the study of the function |WR(zs; zr)|2
given by (49). It can be seen that the range resolution is not affected by the random

fluctuations of the medium and it is still given by the reciprocal of the bandwidth as

in the unperturbed non-dispersive case. The only noticeable effect is a shift by the

constant Lω2
0/(2ω

2
c).

5.2. Azimuthal resolution

The analysis of the azimuthal resolution shows more important differences with respect

to the unperturbed case. Let us denote the reflector position yr by (yr, 0), the search

point ys by (ys, 0), and assume a dense linear array in between points x1 and xN being

respectively (±D/2, 0). By (51) the azimuthal ambiguity function is

IA(ys) =
∣

∣

∣
WA(ys;yr)

∣

∣

∣

2

. (60)

In the unperturbed case we have

IA(ys) =
∣

∣

∣

∫ 1/2

−1/2

exp
[

i
2s(ys − yr)Dωc

c0L

]

ds
∣

∣

∣

2

= sinc2
((ys − yr)Dωc

c0L

)

, (61)
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where the function sinc is defined by sinc(s) = sin(s)/s. In the random case the

functional that gives the azimuthal resolution is random and it is of the form

IA(ys) =
∣

∣

∣

∫ 1/2

−1/2

exp
[

i
2s(ys − yr)Dωc

c0L
+ iφ(Dse1)

]

ds
∣

∣

∣

2

, (62)

where e1 = (1, 0). Using the Gaussianity of the phase φ the mean of the functional

can be expressed in terms of the phase covariance as

E[IA(ys)] = 2

∫ 1

0

cos
[2s(ys − yr)Dωc

c0L

]

exp
[

− σ2 + σ2C(sD
ℓ
)
]

(1− s)ds. (63)

In particular the maximum of the mean azimuthal functional, that we call mean peak

value, is reached at ys = yr and it is given by

E[IA(yr)] = 2

∫ 1

0

exp
[

− σ2 + σ2C(sD
ℓ
)
]

(1− s)ds. (64)

The mean peak value as a function of σ for different values of the ratio D/ℓ is plotted

in Figure 2a. If σ is small then the mean peak value can be expanded as follows

E[IA(yr)]
σ≪1≃ 1− σ2P

(D

ℓ

)

, (65)

where the function P is given by

P
(D

ℓ

)

= 2

∫ 1

0

(

1− C(sD
ℓ
)
)

(1− s)ds, (66)

it is plotted in Figure 2b, and it can be expanded for small and large ratios D/ℓ as

P
(D

ℓ

)

=











1

18

D2

ℓ2
, if D ≪ ℓ,

1−
√
π
ℓ

D
ln
D

ℓ
, if D ≫ ℓ.

(67)

The Half Width at Half Maximum (HWHM) YA of the mean functional is defined

by

E[IA(yr + YA)] =
1

2
E[IA(yr)]. (68)

The HWHM as a function of σ for different values of the ratio D/ℓ is plotted in Figure

3a. If σ is small then the HWHM can be expanded as follows

YA
σ≪1≃ YA0

[

1 + σ2R
(D

ℓ

)]

, (69)

where YA0 is the unperturbed HWHM (ie the HWHM of (61)) given by

YA0 = α
c0L

ωcD
with sinc2α =

1

2
or α ≃ 1.39, (70)

and the function R is defined by

R
(D

ℓ

)

=
( 2

1−
√
2 cos(α)

)

∫ 1

0

(

cos(2αs)− 1

2

)

C(sD
ℓ
)(1− s)ds, (71)
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it is plotted in Figure 3b, and it can be expanded for small and large ratios D/ℓ as

R
(D

ℓ

)

=











c1
D2

ℓ2
, if D ≪ ℓ,

c2
√
π
ℓ

D
ln
D

ℓ
, if D ≫ ℓ,

(72)

where c1 = [−5/36 + 5/(12α2) −
√
2− α2/(3α2)]/(1 −

√
2− α2) ≃ 0.044, c2 =

1/[2(1 −
√
2− α2)] ≃ 0.669. Note that the fact that the random perturbation φ has

long-range correlation induces enhanced perturbations in the HWHM (in the form of a

log factor) in the regime D ≫ ℓ.

The SNR of the azimuthal functional is defined as

SNR =
E[IA(yr)]

Var(IA(yr))
1/2
, (73)

where Var(IA(yr)) = E[IA(yr)
2]− E[IA(yr)]

2 and

E[IA(yr)
2] = 4

∫ 1/2

−1/2

dx

∫ 1/2−|x|

−1/2+|x|
dy

∫ 1/2

−1/2

dx′
∫ 1/2−|x′|

−1/2+|x′|
dy′

× exp
[

− σ2
(

2− C(2yD
ℓ
)− C(2y′D

ℓ
)− C((x− x′ + y − y′)

D

ℓ
)− C((x− x′ − y + y′)

D

ℓ
)

+C((x− x′ + y + y′)
D

ℓ
) + C((x− x′ − y − y′)

D

ℓ
)
)]

.

The SNR as a function of σ for different values of the ratio D/ℓ is plotted in Figure 4a.

If σ is small the SNR can be expanded as follows

SNR
σ≪1≃ σ−2Ψ(

D

ℓ
), (74)

where the function Ψ is defined by

Ψ(
D

ℓ
) =

{

2

∫ 1/2

−1/2

dx

∫ 1/2−|x|

−1/2+|x|
dy

∫ 1/2

−1/2

dx′
∫ 1/2−|x′|

−1/2+|x′|
dy′

×
[

C((x− x′ + y − y′)
D

ℓ
) + C((x− x′ − y + y′)

D

ℓ
)

− C((x− x′ + y + y′)
D

ℓ
)− C((x− x′ − y − y′)

D

ℓ
)
]2}−1/2

, (75)

it is plotted in Figure 4b, and it can be expanded for small and large ratios D/ℓ as

Ψ(
D

ℓ
) =















9
√
2
ℓ2

D2
, if D ≪ ℓ,

( D

ℓ ln D
ℓ

)1/2

, if D ≫ ℓ.
(76)

Note that the mean peak value and HWHM are not affected when D ≪ ℓ, and the

SNR is very high. Indeed, when D ≪ ℓ, the random perturbation to the point spread

function In is an overall phase that does not depend on the antenna location xn and it

vanishes when the ambiguity function is evaluated.

The HWHM and SNR are also weakly affected when D ≫ ℓ because the sum in the

ambiguity function contains many independent components and it self-averages. As a
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Figure 2. Mean peak value for the azimuthal ambiguity functional (a) and function

P(D/ℓ) (b), that gives the correction to the mean peak value for small σ.
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Figure 3. Radius (HWHM) normalized by YA0 for the azimuthal ambiguity functional

(a) and function R(D/ℓ) (b), that gives the correction to the HWHM for small σ. In

Figure (a) the radius is plotted as long as the SNR is larger than 2.

result one observes only a decay in the mean peak value but the azimuthal ambiguity

functional is statistically stable with a HWHM that is close to the unperturbed value.

This self-averaging is, however, not very efficient because the random perturbations have

long-range correlations.

Eventually it turns out that the more dramatic effects on the HWHM and SNR due

to the random fluctuations of the medium are obtained when D/ℓ ∈ [5, 20] (Figures

3b-4b). This is when the random perturbations of the medium induce the strongest

deformations on the azimuthal ambiguity functional.

Note finally that, when σ is large, the picture is very different. In this case the

azimuthal imaging functional IA(ys) defined by (62) is a speckle pattern, that is, the

square modulus of a complex field EA(ys) with Gaussian statistics:

IA(ys) = |EA(ys)|2.
The field EA(ys) acquires Gaussian statistics when σ becomes large because the

correlation radius of the random process s 7→ exp (iφ(Dse1)) becomes small (of the

order of ℓ/(σD) in view of the parameterization of the covariance of the phase φ) and

the integral in (62) becomes the superposition of many independent components. The
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Figure 4. SNR for the azimuthal ambiguity functional (a) and function Ψ(D/ℓ) (b),

that gives the behavior of the SNR for small σ.

complex field EA(ys) has mean zero and covariance function of the form

E[EA(ys)EA(ys′)] =
√
3πℓ

σD
sinc

(ys′ − ys
c0L
Dωc

)

exp
(

− (
ys+y

s′

2
− yr)

2

σ2c2
0
L2

3ℓ2ω2
c

)

.

This means that the field has on the one hand an overall, deterministic, slowly varying

envelope with Gaussian shape whose center is yr and whose width is σc0L√
3ℓωc

, and on the

other hand random, rapid fluctuations with mean zero and correlation radius c0L
Dωc

. As

a result of the complex Gaussian statistics, IA(yr) follows an exponential distribution

and the SNR value is one (this can also be seen in Figure 4a). The mean and variance

of IA(ys) are

E[IA(ys)] =

√
3πℓ

σD
exp

(

− (ys − yr)
2

σ2c2
0
L2

3ℓ2ω2
c

)

,

Var(IA(ys)) = E[IA(ys)]
2,

and its covariance function is

Cov(IA(ys), IA(ys′)) = |E[EA(ys)EA(ys′)]|2.
Under these conditions SAR imaging gives a speckled image.

6. Conclusions

In the situation with SAR imaging through the earth’s ionosphere the image is affected

by atmospheric and ionospheric effects. We model these in terms of random fluctuations

in the index of refraction and a random Langmuir frequency. We carry out a multiscale

analysis motivated by typical scales for atmospheric propagation and identify the

scaling regime and distinguished limit in which the effects of the fluctuations can be

characterized in terms of a random phase. We use an up/down wave field decomposition

to identify the precise form of the correction. In a regime with relatively weak

medium fluctuations the effects of the medium fluctuations give a reduction in azimuthal

resolution and a reduction in the signal level. These effects can be precisely characterized
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in our framework. In the regime of relatively strong medium fluctuations the SAR image

becomes a speckle pattern, so that azimuthal resolution is lost, however, the speckle

is localized to a band in range with width corresponding to the homogeneous range

resolution.
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