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Abstract

We consider scattering of a pulse propagating through a three-dimensional random media and
study the shape of the pulse in the parabolic approximation. We show that, similarly to the
one-dimensional O’Doherty-Anstey theory, the pulse undergoes a deterministic broadening.
Its amplitude decays only algebraically and not exponentially in time, due to the signal
low/midrange frequency component. We also argue that the parabolic approximation captures
the front evolution (but not the signal away from the front) correctly even in the fully three-
dimensional situation.

Keywords: Parabolic approximation, random media, precursor, O’Doherty-Anstey
approximation

1. Introduction

The problem of imaging in heterogeneous environments arises in many important appli-
cations such as biomedical imaging, telecommunications, seismic exploration in geophysics or
non-destructive testing of materials. One standard technique consists in probing a medium
with e.g. an electromagnetic pulse and by collecting the echos on an array of detectors. How
well the method will perform strongly depends on the structure of the wavefield that propa-
gates in the complex medium. In particular, if the target to be imaged is buried deeply into
the medium, scattering effects are important and the measured wavefield might not be strong
enough to be used in the inversion.

The main objectives of this work are to determine the spreading and decay of the pulse
amplitude in the medium, and to characterize the optimal frequency content of the source
in order to probe at a given depth. In [20] the authors showed that a pulse traveling in a
layered or one-dimensional medium that fluctuates randomly on a fine scale is affected by
the microstructure in a particular way: the pulse shape undergoes a transformation that
can be described in terms of a convolution with a pulse shaping function that depends on
the statistics of the microstructure, while its travel time to a specific depth has a small
random component that depends on the particular realization of the microstructure. This
has become to be known as the O’Doherty-Anstey approximation. A string of papers has
subsequently considered this approximation and its generalizations and applications. In [11]
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the mathematical theory for this theory in the layered case is presented in detail, see also
[4, 5, 6, 24] for early references. The approximation was considered for so called locally layered
media in [28]. In recent works, see for instance [13, 18], the situation with propagation in so
called long range or fractional media is considered. These works discuss the link in between
the roughness and also slow decay of correlations for the layered microstructure and the
character of the associated O’Doherty-Anstey approximation. This link was used in [12] to
describe so called fractional precursors in wave propagation. The intuitive picture is that the
pulse shaping kernel acts as a low pass filter and as the pulse travels deep into the medium the
low frequencies that survive may appear as a pulse centered at lower frequencies and which
exhibit only algebraic decay if the low frequency contents is rich enough. Eventually though,
if the frequency support of the probing pulse is supported away from the origin, the pulse will
exhibit exponential decay as the wave energy is converted to incoherent fluctuations due to
the scattering.

This is to be compared with the classical Brillouin precursor that arises in dispersive,
dissipative media [3]: when a broadband pulse propagates in a lossy dispersive medium, the
combination of dispersive and absorption effects lead to the generation of a low-frequency
precursor field which decays algebraically and not exponentially, see [26, 21, 27, 22, 7]. In
our context, the medium of interest is non-dispersive and non-dissipative, and the scattering
effects by the heterogeneous medium are responsible for the existence of the precursor. There
is though some dispersion in our approach since we will describe the propagation in the
paraxial approximation where the wavefield is solution to a dispersive equation. Brillouin
precursors offer applications in remote sensing and communications for instance, as well as in
the study of materials and biological systems [1, 10, 19, 25].

Here we ask the question if such a picture in fact generalizes to a two or three dimensional
wave propagation scenario. Indeed we find that core elements of these results persist. Specif-
ically we consider acoustic waves in two or three spatial dimensions and model the complex
medium by a random medium with appropriate statistics. The propagation of the waves will
be described in the parabolic approximation [29] where the complex amplitude of the pressure
is solution to a stochastic Schrödinger equation. More precisely, we consider the scalar wave
equation in a random medium

1

c2( ~X)

∂2u

∂T 2
−△u = 0 , T > 0 , ~X = (X,Z) ∈ R

d+1 , (1)

with d = 1, 2 and the local wave speed c(X,Z) of the form

c−2(X,Z) = c−2
0

[

1 + σ0µ

(

X

l
,
Z

l

)]

.

Here, c0 is a constant reference speed, Z ∈ R
+ and X ∈ R

d are, respectively, the coordinates
along and transverse to the direction of propagation. The random function µ models fluctu-
ations with amplitude σ0 and correlation length l in the propagation speed. Solutions of the
wave equation (1) may be written in the form

u(T,X, Z) =
1

2π

∫

eiω(Z/c0−T )ψ

(

Z,X;
ω

c0

)

dω , (2)
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where the complex amplitude ψ(Z,X; k = K) satisfies the Helmholtz equation

2iK
∂ψ

∂Z
+ ∆Xψ +K2(n2 − 1)ψ = −∂

2ψ

∂Z
. (3)

HereK = ω/c0 is the wavenumber and n(X,Z) = c0/c(X,Z) is the random index of refraction
relative to c0. The fluctuations of the refraction index have the form

n2(X,Z) − 1 = σ0µ

(

X

l
,
Z

l

)

.

The normalized and dimensionless covariance is given by

R̃(X,Z) = E{µ(X +X ′, Z + Z ′)µ(X ′, Z ′)}.

We assume that the typical propagation distance in the Z-direction is Lz, the transverse
variation (say, of the initial pulse profile) is Lx, and k0 is a central wavenumber associated
with our source. We obtain the dimensionless form of (3) by introducing the dimensionless
variables X = Lxx, Z = Lzz, K = k0k and rewriting the equation as

2ik

(

1

k0Lz

)

∂ψ

∂z
+

(

1

k0Lx

)2

∆xψ + k2σ0µ

(

zLz
l
,
xLx
l

)

ψ = − 1

(k0Lz)2

∂2ψ

∂z2
. (4)

We assume now that the medium fluctuates on a relatively fine scale and accordingly introduce
the small parameters εx = l/Lx and εz = l/Lz. Then (4) takes the form

2ik

(

εz
k0l

)

∂ψ

∂z
+

(

εx
k0l

)2

∆xψ + k2σ0µ

(

z

εz
,
x

εx

)

ψ = − ε2
z

(k0l)2

∂2ψ

∂z2
, (5)

In the parabolic approximation we assume that the right side of (5) is small and can be
dropped, leading to

2ik

(

εz
k0l

)

∂ψ

∂z
+

(

εx
k0l

)2

∆xψ + k2σ0µ

(

z

εz
,
x

εx

)

ψ = 0. (6)

Let us explain the physical meaning of the small parameters: εx measures the overall width
of the initial pulse relative to the correlation length l of the random fluctuations – this is
a parameter we may control by choosing the appropriate initial pulse. The parameter εz
measures the ratio of l to the overall penetration depth – this parameter may be controlled
by taking measurements in an appropriate physical location. The penetration depth can be
defined as the depth at which we want the pulse to be transmitted. The third non-dimensional
physical parameter δ0 = k0l can be chosen by taking the appropriate central frequency. We
will choose k0l = 1 which gives the full interaction of the medium with the pulse since
they oscillate at the same scale. When k0l ≪ 1 and k0l ≫ 1, scales are separated and an
asymptotic analysis lead to the random geometrical optics regime for the latter scaling, and
to the homogenization regime for the former, see [11]. The one physical parameter that we
can not control but which is given to us by the physics of the problem is the strength of the
fluctuations σ0. Then (6) becomes

2ikεz
∂ψ

∂z
+ ε2

x∆xψ + k2σ0µ

(

z

εz
,
x

εx

)

ψ = 0. (7)
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We are interested in the paraxial regime when εz ≪ εx (recall that the parameters εz and εx
can be chosen by the measurement and probing procedures, respectively). We will consider
two ways to approach this regime: first, assume that εz = ε2

x, and εx = σ0, and, further,
approximate the ”fast” fluctuations in z by a white noise process. This is the Itô-Schrödinger
regime [9, 14]. Another possibility is to consider the isotropic regime εx = εz, perform the
limit εx = εz → 0, and later pass to the narrow beam scaling.

From the asymptotic analysis of (7), we will obtain expressions for the average ampli-
tude E(ψ) and consequently for the average wavefield E(u). Such results will characterize
the broadening of the pulse and the decay of the amplitude, and can be seen as the three-
dimensional analog to the O’Doherty Anstey theory [20, 28]. We will see that the amplitude
decays only algebraically and not exponentially in time, due to the signal low/midrange fre-
quency component. Moreover, we will propose an optimal frequency tuning of the source for
a given depth. Numerical simulations will be offered to illustrate the results.

The paper is structured as follows: section 2 is devoted to the Itô-Schrödinger regime and
section 3 to the isotropic case. Section 4 is concerned with the generalized O’Doherty Anstey
theory. The question of deep probing in clutter is addressed in section 5, and the numerical
results are proposed in section 6.

2. The Itô-Schrödinger regime

This section is devoted to the Itô-Schrödinger regime where we first assume that εz =
ε2
x. We will compute the average wavefield E(u) using the mean zero property of stochastic

integrals. The choice εz = ε2
x gives from (7)

∂ψ

∂z
+

1

2ik
∆xψ +

k

2i
√
εz
µ

(

z

εz
,
x

εx

)

ψ = 0. (8)

Let us assume that the smallness of the ratio εz/εx dominates the behavior and the ”fast”
oscillations in z can be approximated by a white-noise in time, letting εz → 0 at a fixed
εx > 0. This leads to the Itô-Schrödinger regime when (8) is well approximated by

dψ(x, z, k) =
i

2k
∆xψdz − k2R0ψdz + ik

√

R0ψdBz(
x

εx
). (9)

Here, the stochastic integral is understood in the Itô sense,

R0 =
1

8

∫ ∞

−∞
R̃(s, 0)ds, and E(dBz(x)dBz(x

′)) =
1

R0

(
∫ ∞

−∞
R̃(t, x− x′)dt

)

dz.

The successive limits εz → 0 first, and then εx → 0, of course, contradict the assumption
εz = ε2

x. However, one can justify this passage rigorously without much difficulty, see [14] for
a derivation of Itô-Schrödinger equation from the wave equation, and accordingly we make
the Itô-Schrödinger approximation above as a matter of convenience.

As we have mentioned, another approach to the paraxial regime is starting with the
isotropic situation εz = εx and then decreasing the ratio εz/εx to the point where εz ∼ ε2

x.
We will also consider this case in section 3
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2.1. The average pressure

We compute now the average profile of the pressure u. Consider the ”initial” data for the
Itô-Schrödinger equation (9) at z = 0 given by

ψ(x, 0, k) = α(x)β̂(k).

First, we would like to compute the average m1(x, z, k) = 〈ψ(x, z, k)〉 = E(ψ(x, z, k)). Aver-
aging (9) eliminates the martingale part and gives the following equation for m1:

∂m1

∂z
=

i

2k
∆xm1 − k2R0m1.

Therefore, the Fourier transform of m1 in x is

m̂1(ξ, z, k) = e−k
2R0ze−iξ

2z/(2k)α̂(ξ)β̂(k).

Here we define the Fourier transform of a function f(x) as

f̂(ξ) =

∫

e−iξ·xf(x)dx, with inverse f(x) =

∫

eiξ·xf̂(ξ)
dξ

(2π)d
.

Let us assume that α̂(ξ) = α0e
−η|ξ|2/2 and β̂(k) = β0e

−νk2

for some real numbers η > 0, β > 0,
α0 and β0. We center the function β(k) around k = 0 because we are particularly interested
in the effect of the low frequencies. Then we have

m̂1(ξ, z, k) = α0β0e
−k2(R0z+ν)e−

1

2
(i z

k
+η)|ξ|2.

Taking the inverse Fourier transform in ξ gives (recall that d is the dimension of the transverse
variable x)

m1(x, z, k) = α0β0e
−k2(R0z+ν)

e−|x|2/[2(i z
k
+η)]

(2π(i z
k

+ η))
d
2

. (10)

Let us also assume for simplicity that η = 0, that, is the initial data is a δ-function in x, and
that the transverse dimension is d = 2. Then (10) becomes

m1(x, z, k) = α0β0e
−k2(R0z+ν)

ke−k|x|
2/(2iz)

2πiz
.

We first look at the field on the beam axis.

2.1.1. The field on the beam axis

Going back to (2), we have for M1(x, z, T ) = E[u(x, z, T )] on the x-axis:

M1(0, z, T ) = c0k0α0β0

∫

eic0k0k(Lzz/c0−T )e−k
2(R0z+ν)

k

iz

dk

(2π)2
.

We re-center the solution close to the time the front is passing by a point z by taking

T =
Lzz

c0
+

t

c0k0
. (11)
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This gives

M1(0, z, t) = c0k0α0β0

∫

e−ikte−k
2(R0z+ν)

k

iz

dk

(2π)2

= −c0α0β0k0

(4π)3/2z

t

(R0z + ν)3/2
e−t

2/[4(R0z+ν)].

Compared to the case where the wave propagates in a homogeneous (i.e when R0 = 0), we
thus observe a convolution of the front with a Gaussian function that has variance z in time.
This is a defocusing property, and we have broadening of the pulse so that the time-spreading
of the pulse at the time it arrives to depth z is of the order O(

√
z). The pulse attains its

maximum around the offset time tm ∼
√

2R0z when it is of the order

M1(0, z, tm(z)) ∼ −c0α0β0k0

R0z2
, z ≫ 1. (12)

We consider now the lateral profile, and we will see that the maximum of the field has the
same order as on the x-axis.

2.1.2. The tranverse profile

Let us now look more carefully at the profile in the x variable. We have

M1(x, z, T ) = c0k0α0β0

∫

eic0k0k(Lzz/c0−T )e−k
2(R0z+ν)

e−|x|2k/(2iz)

iz

kdk

(2π)2
,

and, after switching to the centered t variable, we obtain

M1(x, z, t) = c0k0α0β0

∫

e−ikt−k
2(R0z+ν)

e−|x|2k/(2iz)

iz

kdk

(2π)2

=
c0k0α0β0

iz

∫

e−ik(t−|x|2/(2z))−k2(R0z+ν)
kdk

(2π)2

= −c0α0β0k0

(4π)3/2z

(t− |x|2/(2z))
(R0z + ν)3/2

e−(t−|x|2/(2z))2/[4(R0z+ν)].

For times t ≪ √
z which, as we have seen, is the lifetime of the pulse at depth z along the

propagation axis, and near the axis, for x ≪
√

2zt, the field is approximately uniform in x,
and

M1(x, z, t) ≈ −c0α0β0k0

(4π)3/2z

t

(R0z + ν)3/2
e−t

2/[4(R0z+ν)], x≪
√

2zt.

On the other hand, far away from the axis, with x≫
√

2zt we have

M1(x, z, t) ≈
c0α0β0k0

(4π)3/22z2

x2

(R0z + ν)3/2
e−x

4/[16z2(R0z+ν)], x ≫
√

2zt.

For z ≫ 1, this profile attains its maximum around xm(z) = R
1/4
0 (2z)3/4. At this point we

have

M1(xm(z), z, t) ∼ c0α0β0k0

z2

R
1/2
0 z3/2

(R0z)3/2
∼ c0α0β0k0

R0z2
, z ≫ 1,

which is of the same order as expression (12) for the maximum of the pulse along the propa-
gation axis.
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3. The isotropic regime

We consider in this section the isotropic regime where εx = εz. We need here a more refined
analysis for the computation of E(u) since the simplification due to the stochastic integral
does not hold. We will nevertheless obtain very similar expressions to the Itô-Schrödinger
case.

3.1. The wavefield

We consider again the parabolic wave equation (7)

2ikεz
∂ψ

∂z
+ ε2

x∆xψ + k2σ0µ

(

z

εz
,
x

εx

)

ψ = 0 (13)

but this time our starting point is the isotropic regime: εx = εz, and we drop the subscripts
x, z. We also choose ε = σ2

0 – recall, once again, that the parameters εx and εz are controlled
by the choice of the initial data and measurement distance, respectively. Then (13) becomes

2ikε
∂ψ

∂z
+ ε2∆xψ + k2

√
εµ

(z

ε
,
x

ε

)

ψ = 0 (14)

We also assume that the initial data is ε oscillatory, varies on the scale of the medium
fluctuations, and write

ψ(z = 0, x; k) = ψ0

(x

ε
; k

)

. (15)

Let us again re-center the solution close to the front time by taking

T =
Lz

c0
+

t

c0k0
,

with t the new, centered time variable, as in (11). Then we get

u(t, x, z) :=
1

2π

∫

e−iktψ (z, x; k) dk ,

for ψ solving (14)-(15). The medium fluctuations are now assumed to be centered, statistically
homogeneous and with strong mixing properties, rather than white noise in z, as in the
previous section. In particular, we assume the following form for the medium covariance

Ř(z, ξ) = e−g(ξ)|z|R̂(ξ) , Ř(z, ξ) =

∫

e−iξ·xR(z, x)dx ,

for some positive function g. It was shown in [2] that we have the asymptotic characterization

ε−dψ̂(z, ξ/ε; k = 1) =
(

e−zDξ/2ψ̂0(ξ, k = 1) + Ẑ(z, ξ)
)

e−i|ξ|
2z/(2ε) ,

for Z a centered complex Gaussian field and

Dξ =
1

2

∫

R̂(p)

g(p) − i(ξ · p− |p|2/2)

dp

(2π)d
.
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Using the reparameterization k2µ 7→ µ, z/|k| 7→ z, g(ξ)|k| 7→ g(ξ) we obtain

ε−dψ̂(z, ξ/ε; k) =
(

e−zDξ(k)/2ψ̂0(ξ, k) + Ẑ(z, ξ; k)
)

e−i|ξ|
2z/(2kε) , (16)

with

Dξ(k) =
k3

2

∫

R̂(p)

kg(p) − i(ξ · p− |p|2/2)

dp

(2π)d
.

The variance of the process Z(z, ξ; k) is described in [2] in terms of the solution of the radiative
transport equation. We will not need its precise form in the present paper, an interested reader
is referred to [2] for details.

3.2. Relation to the Wigner transform

In order to understand expression (16) let us restate it in terms of the Wigner transforms
[17, 15]. The Wigner transform of two functions f and g is defined as

W (x, ξ) =

∫

eiξ·yf(x− εy

2
)ḡ(x+

εy

2
)
dy

(2π)d
,

hence
∫

W [f, g](x, ξ)dx =

∫

eiξ·yf(x− εy

2
)ḡ(x+

εy

2
)
dydx

(2π)d
=

1

εd

∫

eiξ·(y−x)/εf(x)ḡ(y)
dydx

(2π)d

=
1

(2πε)d
f̂(
ξ

ε
)¯̂g(

ξ

ε
).

Note that

ei|ξ|
2z/(2kε) =

¯̂
Gε(z,

ξ

ε
; k),

where Gε(z, x; k) satisfies

ikε
∂Gε

∂z
+
ε2

2
∆Gε = 0, Gε(0, x) = δ(x),

and is given explicitly by

Gε(z, x) =
1

εd
G

( z

2kε
,
x

ε

)

=
(2k)d/2

(4πεiz)d/2
e−k|x|

2/(2εiz).

Define now

ζ̂ε(z, ξ, k) =
1

εd
ψ̂(z,

ξ

ε
, k)ei|ξ|

2z/(2kε),

then

ζ̂ε(t, ξ; k) =
1

εd
ψ̂(z,

ξ

ε
, k)

¯̂
Gε(t,

ξ

ε
; k) = (2π)d

∫

W [ψε, Gε](t, ξ, x)dx.

Hence, this renormalized wave field can be expressed in terms of the Wigner transform of the
full wave function and the Green’s function in the homogeneous medium – this essentially
corresponds to back-propagation in a homogeneous medium in time-reversal, that is known
to produce statistically stable results [23]. In particular, the statistical stability of the Wigner
transforms implies the independence of ζ̂ε(t, ξ; k) for different values of ξ or k. This means
that the values of the fluctuation process Ẑ(z, ξ, k) are independent for different frequencies
k.
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3.3. The field on the beam axis

In order to relate the above to the near axis field we look at the wave field at the microscopic
distances of the order Z ∼ O(ε−1) and X ∼ O(ε−1). Accordingly, we consider

u(t, εx, z) = ε−d
∫∫

ψ̂(z, ξ/ε; k)e−i(kt−ξ·x)
dkdξ

(2π)d+1
.

We shall here in particular assume the tensor product form of the medium correlations

g(ξ) ≡ g0 ,

with g0 ≫ 1. Then realizations of the random medium can be generated in the tensor product
form with the z dependent part being an Ornstein Uhlenbeck process. The situation with g0

large corresponds to the medium decorrelating rapidly in the depth direction. When g0 ≫ 1
we may approximate

Dξ ≈
k2R0

2g0

, g0 ≫ 1, (17)

which is essentially the Ito-Schrödinger approximation. We find from (16) the representation

u(t, εx, z) =

∫

(

e−zDξ(k)/2ψ̂0(ξ; k) + Ẑ(z, ξ; k)
)

e−i|ξ|
2z/(2kε)e−i(kt−ξ·x)

dkdξ

(2π)d+1
.

This can be further transformed as

u(t, εx, z) =

∫

(

e−zDξ(k)/2ψ0(y; k) + Z(z, y; k)
)

Ĝε(z,
ξ

ε
; k)e−i(kt−ξ·x)−iξ·y

dkdξdy

(2π)d+1

= εd
∫

(

e−zD0(k)/2ψ0(y; k) + Z(z, y; k)
)

Gε(z, εx− εy; k)e−ikt
dkdy

2π
.

We obtain

u(t, εx, z) =

∫

(

e−zD0(k)/2ψ0(y; k) + Z(z, y; k)
) (2kε)d/2

(4πiz)d/2
e−εk|x−y|

2/(2iz)e−ikt
dkdy

2π
.

For small ε≪ 1 this becomes

u(t, εx, z) =

∫

(

e−zD0(k)/2ψ0(y; k) + Z(z, y; k)
) (2kε)d/2

(4πiz)d/2
e−ikt

dkdy

2π
.

As E(Z) = 0, it follows that

E(u)(t, εx, z) =

∫

e−zD0(k)/2ψ0(y; k)
(2kε)d/2

(4πiz)d/2
e−ikt

dkdy

2π

=

∫

e−zD0(k)/2ψ̂0(0; k)
(2kε)d/2

(4πiz)d/2
e−ikt

dk

2π
.

Moreover, as Z(z, y; k) decorrelates rapidly in k, we believe that we actually have a stronger
result, namely u(t, εx, z) converges to a deterministic limit, that is, we have

u(t, εx, z) =

∫

e−zD0(k)/2ψ̂0(0; k)
(2kε)d/2

(4πiz)d/2
e−ikt

dk

2π
. (18)

This, however, remains an open problem at the moment. Note that the right side of (18)
is independent of x, that is, the field becomes uniform near the propagation axis on the
microscopic scale O(ε). We will later analyze its variations on a slightly bigger scale O(

√
ε)

where it becomes non-trivial.
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4. Generalized O’Doherty-Anstey Theory

We develop in this section a three-dimensional version of the O’Doherty-Anstey theory
[20, 28]. We characterize the spreading and decay of the average wavefield.

4.1. The field on the beam axis

In order to consider the transmitted field along the direction of propagation we use (18)
for the average transmitted field on the central axis:

v(t, z) = E(u)(t, 0, z) ≈
( ε

2πiz

)d/2
∫

e−zD0(k)/2ψ̂0(0; k)kd/2e−ikt
dk

2π
.

Let us assume that the fluctuations in the z-direction are fast, in the sense that approximation
(17) holds, that is, D0(k) = θk2, with

θ = 2R(0)/g0 ,

and the transverse dimension d = 2. Note that the regime θ ≪ 1 essentially corresponds
to the Itô-Schrödinger regime, when fluctuations of the random medium in the direction of
propagation is much faster than in the transverse direction. This gives

v(t, z) =
w(t, z)

z
,

with

w(t, z) =
ε

2πi

∫

e−zθk
2/2−iktkψ̂0(0; k)

dk

2π
.

Note that the function w(t, z) satisfies the diffusion equation,

wz =
θ

2
wtt,

with the propagation distance z playing the role of the time variable, and the local off-set
time t playing the role of the spatial variable. The initial condition is

w(t, 0) =
ε

2πi

∫

e−iktkψ̂0(0; k)
dk

2π
=

ε

2π

∂ψ̃0(0; t)

∂t
.

Here ψ̃0(0; t) is the Fourier transform of the incoming pulse ψ(x, z = 0, t) in the transverse
variable x. This is the three-dimensional analog of the O’Doherty-Anstey (ODA) theory –
the pulse spreads as it propagates in the z direction.

In order to discuss some implications of the ODA theory we write this as, with ξ = k
√
zθ

v(t, z) =
ε

z
√
zθ

∫

e−
ξ2

2
−iξt/

√
zθψ̃

(

ξ√
zθ

)

dξ

(2π)2
,

with ψ̃(k) = −ikψ̂0(0; k). We define the renormalized local time and propagation distance

s =
t√
zθ
, z′ = zθ,
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and introduce the central axis pulse by

v̄(s, z′) =
v(t, z)

θε
=

1

(z′)3/2

∫

e−
ξ2

2
−iξsψ̃

(

ξ√
z′

)

dξ

(2π)2
. (19)

Let the effective central source trace be

ψ̌(r) =
1

2π

∫

e−irξψ̃(ξ)dξ.

We then have

v̄(s, z′) =
1

(z′)3/2

∫

e−(s−r)2/2√z′ψ̌(
√
z′r)

dr

(2π)3/2
, (20)

a generalized version of the ODA description of the transmitted pulse. Assume now relatively
deep probing, z′ ≫ 1, but with s = O(1), so that t = O(

√
z′) ≫ 1, then we have

v̄(s; z′) =
cψ

(z′)2

se−s
2/2

√
2π

, z′ ≫ 1, cψ =

∫

ψ0(x, 0)dx.

Thus, in this frame, we observe derivative of a Gaussian pulse, of unit width, and whose
amplitude decays as z−2. Note that in original coordinates the width of the Gaussian scales
as

√
z in the temporal coordinate t.

4.2. The field near the beam axis

We now look at the wave field on a broader beam, on a lateral scale so that the wave field
has a non-trivial lateral structure. We thus look at the wave field at the microscopic distances
of the order Z ∼ O(ε−1) and X ∼ O(ε−1/2). Accordingly, using (18) and (19) we consider

E(u)(t,
√
εx, z) =

∫

(

e−zD0(k)/2ψ0(y; k)
) (2kε)d/2

(4πiz)d/2
e−k|x−

√
εy|2/(2iz)e−ikt

dkdy

2π
. (21)

Letting ε → 0 this becomes, with d = 2,

E(u)(t,
√
εx, z) ≈

∫

(

e−zD0(k)/2ψ0(y; k)
) (2kε)

(4πiz)
e−k|x|

2/(2iz)e−ikt
dkdy

2π

=

∫

(

e−zD0(k)/2ψ̂0(0; k)
) (2kε)

(4πiz)
e−ik(t−|x|2/(2z)) dk

2π

= v(t− |x|2
2z

, z),

with v(t, z) given by the right side of (19). Therefore, the transverse spatial profile around
the beam axis is a simple transformation of the field on the axis, as we have observed in the
Itô-Schrödinger regime.

11



4.3. Broader beams

Let us now assume the initial data is of the form ψ0(y) = εd/2ψ0(
√
εy), that is, the pulse

is broad in the transverse direction. The latter assumption, formally, takes us outside the
regime of validity of (16), but let us disregard this fact that, we believe, is technical in nature.
Then we obtain, instead of (21), with d = 2:

E(u)(t,
√
εx, z) = ε

∫

(

e−zD0(k)/2ψ0(
√
εy; k)

) (2kε)

(4πiz)
e−k|x−

√
εy|2/(2iz)e−ikt

dkdy

2π

= ε

∫

e−zD0(k)/2ψ0(y; k)
(2k)

(4πiz)
e−k|x−y|

2/(2iz)e−ikt
dkdy

2π
.

Now, the field around the axis is modified in a non-trivial way that agrees with the ODA
picture. Let us define

p(z, x, k) =

∫

e−zD0(k)/2ψ0(y; k)
(2k)

(4πiz)
e−k|x−y|

2/(2iz) dy

2π
.

This function satisfies the homogenized Schrödinger equation

ipz +
k

2
∆p+

iD0(k)

2
p = 0, p(0, x, k) = ψ0(x; k),

and

E(u)(t,
√
εx, z) = ε

∫

p(z, x, k)e−ikt
dk

2π
.

This is essentially the homogenization regime.

5. Deep probing through clutter

We investigate here the frequency content of the wavefield and the influence of low fre-
quencies on its amplitude.

5.1. Probing a given depth

Assume that we want to probe a target at a particular depth z, or transmit a pulse through
a slab of width z. It is then clear from (20) that the optimal source pulse that has optimal
transmission and concentration properties should satisfy the scaling:

ψ̌(s) ∝ f

(

s√
zθ

)

.

We assume here that there is a limit on the source amplitude. Thus, as we probe deeper
through the clutter the frequency content of the source is scaled down. The result (20) tells
exactly how to implement this scaling. It is also clear that what is important from the point
of view of probing is this frequency tuning rather than the exact shape f of the source.

Finally, we remark that if we choose

ψ(z = 0, 0; k) =
√
zθψ0

(

0;
√
zθk

)

, (22)

corresponding to a fixed amplitude constraint of the time source trace, then indeed the optimal
depth tuned signal decays as O(z−3/2) with respect to depth in amplitude, while the support
scales as O(

√
z).
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5.2. Probing with a strict low frequency cutoff

We have indeed that ψ̃(0) = 0 so that to realize the optimal z−3/2 amplitude decay with
respect to depth we have to tune the source frequency contents as discussed above. One may
indeed have constraint on the low frequency contents of the probing pulse and this will affect
the probing range. To analyze this aspect we now shift a focus in that we assume a given
initial pulse with a low frequency cutoff and analyze the pulse as it propagates deep into the
medium. Specifically, we assume here a source trace of the form (for k > 0):

ψ0(0; k) = Ik>δ(k)α|k − δ|ph(k) ,
for h(δ) = 1 and h a smooth function of rapid decay at infinity, p a positive integer and α a
fixed positive parameter. We shall first assume that δ is strictly positive.

We write the transmitted pulse in (19) in the form:

v̄(N ;
√
zθ) =

4π

(zθ)3/2
ℜ

[
∫ ∞

0

e−
ξ2

2
−iξN ψ̃

(

ξ√
zθ

)

dξ

]

,

with now

ψ̃ (ξ) = (2π)ψ0(0; ξ)|ξ| .
We first note that at the arrival time of the pulse, corresponding to N = 0 we have:

v̄(0;
√
zθ) = O

(

z−2e−
δ2zθ

2

)

.

Therefore, we see that at the depth scaling z = O((θδ2)−1) there is a transition from power
law to exponential decay.

We are now interested in the pulse tail asymptotics corresponding to depths N ≫ 1. Using
integration by parts we find:

v̄(N ;
√
zθ)

N→∞
=

4παδp!e
−δ2zθ

2

(zθ)(3+p)/2Np+1

{

cos(Nδ
√
zθ)(−1)

p+1

2 p odd

sin(Nδ
√
zθ)(−1)

p−1

2 p else
.

Again, we see that there is a transition zone in between power law decay and exponential
damping with respect to depth for z = O((θδ2)−1). Moreover, there is a relation in between
smoothness of low frequency cutoff and pulse tail decay. The smoother the cutoff, the less low
frequencies contains the pulse, and the faster is the power law decay (in n) for the tails. Note
also the oscillation in the tails, at a frequency corresponding to the low frequency cutoff.

5.3. Probing with a zero frequency cutoff

We consider here the case with δ = 0, corresponding to the initial data with vanishing
(smoothly) only at zero frequency. We then have

v̄(N ;
√
zθ)

N→∞
=

4πα(p+ 1)!

(zθ)(4+p)/2Np+2

{

cos(N
√
zθ)(−1)

p+2

2 p even

sin(N
√
zθ)(−1)

p−1

2 p else
.

Observe that in this case there is no transition zone to exponential decay, however, the power
law decay with respect to depth is more rapid. A smooth low frequency cutoff, corresponding
to large p, gives a relatively rapid power law decay with respect to depth. Note also that, the
power law decay of the pulse tails is somewhat more rapid than in the case with strict low
frequency cutoff.
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6. Numerical results

We present in this section numerical simulations illustrating the theory. We set d = 1,
so that waves propagate in two dimensions and we solve the Schrödinger equation in one
dimension. We focus first on the wavefunction ψ and in a second time on the pressure u
obtained after integration over the frequency variable. We describe below the numerical
method and the parameters setting.

6.1. Numerical scheme

We solve the one-dimensional Itô-Schrödinger equation (9), recast in Stratonovich form as

dψ(z, x; k) =
i

2k
∆ψ dz +

ikσ0

2
ψ ◦ dWz (x) , z > 0, x ∈ R, (23)

where we recall that k is the (rescaled) wavenumber and σ0 measures the amplitude of the
random fluctuations. The Wiener process Wz is obtained by the classical formula [8]

Wz(x) =
∑

n≥1

βn(z)(Φen)(x),

where (βn(z))n≥1 is a sequence of independent standard Brownian motions, (en)n≥1 is a basis
of L2(R), and Φ is an integral operator defined by

(Φen)(x) =

∫

R

c(x− y)en(y)dy, c(x) =
1

(2πσ2
c )

1

4

e
− x2

4σ2
c .

The function c was chosen so that ‖c‖L2 = 1. The correlation function of dWz then reads

E(dWz(x) dWz′(y)) = min(z, z′)R(x− y), R(x) =

∫

R

c(x− y)c(y)dy.

The correlation length εx and the absorption term R0 of (9) are given by

εx =

∫

R

R(x)dx = ‖c‖2
L1 = 2

√
2πσc, R0 =

σ2
0

8
‖c‖2

L2 =
σ2

0

8
.

The initial condition α(x) is a Gaussian with standard deviation σI :

α(x) =
1

(2πσ2
I )

1

2

e
− x2

2σ2
I . (24)

Equation (23) is discretized on the interval [−L,L] using a grid ofN+1 points and appropriate
absorbing boundary conditions in order to simulate the propagation over the whole space. It
is solved using a classical Strang splitting scheme as follows: for a time (for the variable z
actually) stepsize h > 0, let

A =
i

2k
∆

B(z) =
ikσ0

2
(Wz+ h

2

(x) −Wz (x)).
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The semi-discrete scheme then reads

ψm = eB(zm−1+ h
2
)ehAeB(zm−1)ψm−1, m = 1, 2, · · · , ψ0(x) = α(x),

where ψm(x) is an approximation of ψ(zm, x) at zm = mh. Terms involving ehA are calculated
using fast Fourier transforms on [−L,L] and the method of [16] to incorporate absorbing
boundary conditions. The basis of L2(−L,L) for the construction of the random potential is
chosen as en(x) = 1√

∆x
1[−L+n∆x,−L+(n+1)∆x](x), n = 0, · · · , N − 1, with ∆x = 2L/N . In the

simulations, we set N = 400, h = 0.01, σI = 1 and L = 10σI .

6.2. Average wavefunction

We start by comparing the average wavefunction with the theoretical prediction for dif-
ferent fluctuations strengths. The wavenumber k is set to k = 1. We choose σ0 so that
R0 = 1 and R0 = 0.25. The parameter σc is chosen such that the correlation length εx is
equal to σI , i.e. εx = σI = 1. Results are depicted in figure 1. We represent the (empirical)
average of the wavefunction E(ψ) on the axis x = 0 as a function of the depth z, computed
for Nr = 1000, 100 and 10 realizations of the random medium. Both the real part and the
absolute value are shown since they may exhibit different behaviors in some situations as we
will see below.

It is clear from the simulations that the theory is matched almost perfectly when Nr =
1000. When Nr decreases to 100 and 10, randoms oscillations appear since averaging is not
strong enough. As expected, the decay is faster when R0 = 1 than when R0 = 0.25.

Note that the behavior of E(ψ) is independent of the the correlation length εx since the
absorption term R0 only depends on σ0 and not on σc. Such a property holds for averages, but
not for single realizations as shown in figure 2 for R0 = 0.25. In the top figures, εx = σI = 1,
while in the bottom figures, we have εx = 10σI = 10, so that the correlation length is much
larger than the typical support of the initial condition. The influence of the ratio σI

εx
is mostly

seen on the absolute value of ψ: while the real part (or of course the imaginary part not shown
here) exhibits random fluctuations, roughly around the average, the absolute value is stable
and is very close the solution obtained in a homogeneous medium with R0 = 0. This can be
explained by the following observation: when σI

εx
≪ 1 and z is small enough, then the potential

term in the Schrödinger equation ψ(x) ◦ dWz (x) is roughly equal to ψ(x) ◦ dWz (0) since the
wavefunction is localized around 0 compared to the random potential. As a consequence,
randomness is mostly seen in a time dependent phasis, independent of x, that can be factored
out. The absolute value of the wavefunction is then close to the one in a homogeneous
medium. The absolute values of ψ for εx = 1 and εx = 10 are depicted in figure 3 as functions
of (x, z). Note the very different behaviors.

6.3. Dependence of the wavefunction on the frequency

We investigate here the dependence on the frequency. We plot E(ψ) for k = 1/2, 1 and
k = 3 in figure 4. As expected, the lower the frequency is, the closer the wavefunction to
a solution in a homogeneous medium is: when k = 3, homogeneous and inhomogeneous
solutions are very different (solid and dotted lines), but as k becomes smaller, solutions get
closer to each other.
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Figure 1: Average wave function on the axis x = 0 as a function of z, for Nr = 1000, 100, 10, top to bottom,
and R0 = 0, 0.25, 1. Left: absolute value, right: real part. Statistical instabilities are observed when Nr = 10,
while we have an almost perfect match when averaging is strong enough with Nr = 1000.

Besides, as explained in section 3, the wavefunctions for different k are expected to decor-
relate in a suitable regime. We explore this fact in figure 5 for R0 = 0.25 where we plot the
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Figure 2: One realization wave function on the axis x = 0 as a function of z, for εx = σI = 1 (top) and
εx = 10σI = 10 (bottom), with R0 = 0.25. Left: absolute value, right: real part. When εx = 10σI = 10, the
absolute value is close to the homogeneous solution, while the real part is random. This is due to the fact that
when εx = 10σI = 10 and z is not too large, the randomness is concentrated in a random phase independent
of x factored out when taking absolute value.

correlation coefficient

r(k, p, z) =
|C(z, k, p)|

(C(z, k, k))
1

2 (C(z, p, p))
1

2

,

C(z, k, p) = E (ψ(z, 0; k)ψ∗(z, 0; p)) − E(ψ(z, 0; k))E(ψ∗(z, 0; p)).

On the axis of propagation x = 0, we observe at a depth z = 1 (left figure), that the
correlation is still very strong between the frequencies. The corresponding modulus of the
average wavefunction for z = 1 at x = 0 is roughly half of the initial value. At z = 5,
decorrelation can be observed compared to the case z = 1, but now the wavefunction is
about one tenth of the inital value. At z = 10, frequencies are very decorrelated, and the
wavefunction has a magnitude divided by a factor 50 compared to the initial value. Thus, as
expected, the decorrelation of the wavefunction for different frequencies indeed takes place.
But it seems it is a property that is hard to exploit in practice when probing a clutter since
the depth at which such decorrelation occurs is too large for the signal to have a sufficient
amplitude compared to the statistical instabilities.
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the same reasons as in figure 2, |ψ(z, x)| on the left is close to the homogeneous solution, while it is random
on the right.
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Figure 4: Dependence of |E(ψ(z, x))| on the wavenumber k. Dotted lines correspond to R0 = 0.25 and
k = 1/2, 1, 3 (green, blue, red), while solid lines to R0 = 0 (homogeneous solution) and k = 1/2, 1, 3. The
lower the frequency is, the closer the wavefunction to a solution in a homogeneous medium is.

6.4. Deep probing through clutter

We verify two facts in this section: (i) that initial conditions of section 5 satisfying the
scaling (22) ψ(z = 0, 0; k) =

√
zθψ0(0;

√
zθk) (here in the Itô-Schrödinger regime we have

θ = R0) indeed offer (nearly) optimal pulse transmission; and (ii) that a strict low frequency
cutoff yields a wavefront with lower amplitude but with slower tail decay as shown in section
5. For this we look at the values of the average wavefield on the x = 0 axis around the front
time, given by

uF (t, z) =
1

2π

∫

e−iktE(ψ)(z, x = 0; k)dk

with initial conditions at z = 0:

ψ(z = 0, x; k) = α(x)βj(k), β1(k) =
1

σk
e
− k2

σ2
k , β2(k) =

1

ηωc + i(k − ωc)
+

1

ηωc + i(k + ωc)
.
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Figure 5: Decorrelation of the wavefunction (on the axis x = 0) for different frequencies, for z = 1 (left),
z = 5 (middle), z = 10 (right). The modulus of the average wavefunction for z = 1 at x = 0 is roughly half of
the initial value, at z = 5 it is one tenth of the inital value, at z = 10, it is divided by a factor 50 compared
to the initial value. Decorrelation is thus observed but at a distance where the amplitude of wavefunction has
strongly decreased.

Above, α is defined in (24), σk, η and ωc are positive parameters. The second frequency
profile β2 is obtained by Fourier transform of the pulse

β2(t) = It>0(t)2e
−ηωct cosωct,

where ωc is the central frequency and η an absorption parameter. The functions βj are
chosen such that the initial wavefield on the beam axis u0 := u(t = 0, x = 0, z = 0) =
1
2π

∫

α(0)βj(k)dk is independent of σk and ωc, which allows for a fair comparison of the
transmission profile. The correlation length εx and σI are set to one.

In figure 6, left, we consider the frequency profile β1 and represent the ratio uF/u0 at the
wavefront time t = 0 as a function of σk for R0 = 1, 1/4, 1/16 for z = 5. It is clearly observed
that (i) the smaller the R0, the better the transmission and (ii) there exist optimal σk. These
optimal values naturally depends on the exact form of the initial condition. Nevertheless, the
theory of section 5 tells us that the choice σk = 1/

√
zR0, independent of the form of initial

condition, should yield nearly optimal results. This is confirmed in the left figure, where the
dots and straight lines correspond to σk = 1/

√
zR0.

In the right figure, we plot uF/u0 at t = 0, z = 5 as a function of σk for R0 = 1/16 and
three realizations of the random medium. The average value is represented in a solid line. We
observe that uF/u0 depends on the realization, and that the optimal scaling σk = 1/

√
zR0 does

not hold any longer. Simulations performed in a two dimensional transverse plane (instead of
a one dimensional here) might yield more stable results as lateral diversity should introduce
some averaging. Stabilizing the transmission profile is the object of a future work.

We confirm in figure 7 the near optimal scaling in 1/
√
zR0 with the second frequency profile

β2 for a different penetration depth. We plot uF/u0 at t = 0 and z = 2.5 for R0 = 1, 1/4, 1/16
as a function of ωc. The absorption η is set to 0.5 for the simulations involving β2. In the
left figure, the dots and straight lines correspond to ωc = 1/

√
zR0. On the right figure,

we represent uF/u0 for the three different realizations and observe as before some statistical
instabilities.

In figure 8, we investigate the effects of a low frequency cutoff as in section 5. We consider
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Figure 6: Left: average wavefront amplitude at the front time t = 0 as a function of σk for R0 = 1, 1/4, 1/16,
z = 5, σI = εx = 1 and the profile β1. The vertical lines correspond to the optimal scaling σk = 1/

√
zR0.

Note the good match with the theory. Right: wavefront amplitude at t = 0 for three realizations (dash lines)
and average wavefront (solid line) for R0 = 1/16, z = 5 and σI = εx = 1. Statistical instabilities modify the
value of the optimal scaling.

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

0

0.05

0.1

0.15

0.2

0.25

Wavefront amplitude at depth z=2.5

ω
c

u
F
/u

0

 

 

R
0
=1

R
0
=1/4

R
0
=1/16

0.5 1 1.5 2 2.5

−0.08

.04

0.16

0.28

0.4

0.52

0.64

Wavefront amplitude at depth z=2.5 for R
0
=1/16 and 3 realizations

ω
c

u
F
/u

0

Figure 7: Left: average wavefront amplitude at the front time t = 0 as a function of ωc for R0 = 1, 1/4, 1/16,
z = 2.5, σI = εx = 1 and the profile β2. The vertical lines correspond to the optimal scaling σk = 1/

√
zR0.

Right: wavefront amplitude for three realizations (dash lines) and average wavefront (solid line) for R0 = 1/16,
z = 2.5 and σI = εx = 1.

an initial condition with weak low frequency content of the form

ψ(z = 0, x; k) = α(x)β2(k)Ik>δ(k)

for different values of δ. In the left panel of the figure, we set the optimal scaling ωc = 1/
√
zR0

and represent uF/u0 at the front time t = 0 and R0 = 1/16 as a function of z for several δ. It
it clearly seen that low frequencies have a major influence on the amplitude of the wavefront,
and that damping them leads to a serious decay of the amplitude.

On the right panel of figure 8, we represent uF/u0 at depth z = 2.5 as a function of t in
order to observe the tail behavior. We set ωc = 1/

√
zR0 and R0 = 1/16. As observed before,

the case without cut-off δ = 0 leads to a greater amplitude than when δ > 0. As shown in
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section 5, this absence of cutoff leads to a faster decay of the tail, which is confirmed in the
simulations.
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Figure 8: Left: average wavefront amplitude at the front time t = 0 as a function of z for R0 = 1/16,
σI = εx = 1. The dash line corresponds to the homogeneous case and shows the optimal decay. The solid
lines corresponds to, from up to down: δ = 0, 0.5ωc, 0.75ωc, ωc, 1.25ωc. The amplitude decreases at the cutoff
increases. Right: average wavefront amplitude at z = 2.5 as a function of t for R0 = 1/16, σI = εx = 1 and
different values of δ. Here again, the amplitude is larger for a small cutoff. Note nevertheless the faster tail
decay when δ is small.

In figure 9, we represent for δ = 0 the ratio uF/u0 at depth z = 2.5 as a function of t as well
as the initial profile β2(t) (shifted appropriately) and two realizations of the random medium.
The absorption η is lowered to 0.2 in order to have a better look at the oscillations. As
expected, we observe some statistical instabilities, but nevertheless the qualitative behavior
of the random wavefront is globally similar to the average wavefront.
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Figure 9: Average wavefront amplitude (solid line) at z = 2.5 as a function of t for R0 = 1/16, σI = εx = 1,
δ = 0 and 2 realizations (dash lines). The inital profile β2(t) (shifted appropriately) is represented by the
circles. The absorption η is equal to 0.2. The qualitative behavior of the random wavefront is similar to the
average wavefront.
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7. Conclusion

We have developed a three-dimensional generalization of the O’Doherty-Anstey theory.
We assumed that the parabolic approximation held and characterized the average wavefield
in various asymptotic regimes depending on the medium fluctuations and the measurement
setting. As in the one-dimensional case, we showed that the pulse undergoes some spreading
as it propagates. We moreover obtained that, thanks to its low frequency component, the
average front amplitude decays only algebraically and not exponentially in time. This fact
was confirmed by numerical simulations, where signals with low frequency content exhibit
a larger amplitude than signals with damped low frequencies. We also characterized and
numerically validated the optimal frequency tuning to maximize the transmission of the pulse
at a given depth.

The main limitation of this work pertains to statistical instabilities. The presented theory
holds only for the average wavefield. While some averaging is expected due to frequency
decorrelation as explained in section 3, numerical results show that such an effect seems to
be taking place at a somewhat large depth where the front has a small amplitude, at least
in a two-dimensional configuration. This averaging property might therefore be difficult to
exploit in practice. A deeper analysis of the front stabilization will be the object of future
research.
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