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Abstract. When waves penetrate a medium without coherent reflectors, but with some fine
scale medium heterogeneities, the backscattered wave is incoherent without any specific arrival time
or the like. In this paper we consider a distributed field of microscatterers, like aerosols in the
atmosphere, which coexists with microstructured clutter in the medium, like the fluctuations of the
index of refraction of the turbulent atmosphere. We analyze the Wigner transform or the angularly
resolved intensity profile of the backscattered wave when the incident wave is a beam in the paraxial
regime. An enhanced backscattering phenomenon is proved and the properties of the enhanced
backscattering cone (relative amplitude and profile) are shown to depend on the statistical parameters
of the microstructure, but not on the microscatterers. These results are based on a multiscale analysis
of the fourth-order moment of the fundamental solution of the white-noise paraxial wave equation.
They pave the way for an estimation method of the statistical parameters of the microstructure
from the observation of the enhanced backscattering cone. In our scaling argument we differentiate
the two important canonical scaling regimes which are the scintillation regime and the spot dancing
regime.
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1. Introduction. In this paper we consider the propagation of a beam in a
turbulent medium in which imbedded particles play the role of point scatterers. These
particles can be dust and aerosols in the turbulent atmosphere for instance. We
consider the case in which the particles occupy an extended region and their density
is invariant in the transverse direction (at least transversally invariant in the region
illuminated by the incoming beam). The particles scatter light in all directions but we
are only interested in the light that is backscattered and that can be collected in the
same plane as the original source. The backscattering phenomena which are studied
in this paper relate to single scattering from the particles imbedded in the turbulent
medium and to complex interaction with the turbulent medium itself.

Our main goal is to study the dependence of the backscattered light with respect
to the statistics of the random turbulent medium. The particle cloud plays the role of
an uncontrolled source of backscattered light. We show that the mean backscattered
intensity spatial profile does not depend on the statistical properties of the turbulent
medium, but the covariance function of the backscattered waves, or equivalently the
Wigner transform, depends on the statistical properties of the turbulent medium. In
particular, by looking at the angular distribution of the backscattered energy flux,
it is possible to exhibit an enhanced backscattering phenomenon and to relate the
width of the enhanced backscattering cone and the enhancement factor to statistical
parameters of the turbulent medium such as the Hurst exponent.

Enhanced backscattering or weak localization has been extensively discussed in
the physical literature [3, 33] and observed in several experimental contexts [35, 32,
29, 22]. It usually refers to the situation that the mean backscattered power for a
quasi-monochromatic quasi-plane has a local maximum in the backscattered direction,
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which is twice as large as the mean backscattered power in the other directions. The
classical enhanced backscattering phenomenon happens in a regime of multiple scat-
tering by point scatterers and it results from the constructive interference of reciprocal
light paths. In our paper we address a regime in which the waves experience single
scattering by the point scatterers and the interaction of the waves with the turbulent
medium is responsible for the enhanced backscattering phenomenon. Therefore, the
properties of the cone depend on the statistical properties of the turbulent medium
and not on the distribution of point scatterers.

In our paper the propagation through the turbulent medium is described by an
Itô-Schrödinger equation [6]. This model is natural in many situations where a beam
propagates mostly in the forward direction and the correlation length of the medium
is much smaller than the propagation distance [4, 8, 9, 15, 25, 26, 27]. It allows for
the use of Itô’s stochastic calculus, which in turn enables the closure of the hierar-
chy of moment equations and the statistical analysis of important wave propagation
problems, such as scintillation [2, 10, 12, 18, 30, 31, 34, 36] and in various appli-
cations to imaging and communication [1]. The analysis of the mean intensity and
the Wigner transform of the backscattered wave involves fourth-order moments of
the Green’s function of the Itô-Schrödinger equation. The main theoretical result of
this paper is a multiscale analysis of the fourth-order moments of the solution of the
Itô-Schrödinger equation. This multiscale analysis allows to capture and characterize
completely the narrow enhanced backscattering cone in the situation described above.

The paper is organized as follows. We briefly review the white-noise paraxial
model in Section 2. We derive an integral representation of the covariance function
of the backscattered field in Section 3, which shows that the fourth-order moments
of the fundamental solutions are needed. We review the general moment equations
in Section 4. We introduce two possible propagation regimes in Section 5 and we
study the asymptotics of the covariance function of the backscattered field in these
two regimes in Section 7. We give closed-form expressions for the Wigner distribution
of the backscattered field in Section 8 and discuss the dependence of the enhanced
backscattering cone with respect to the statistics of the random medium. Finally
we carry out a few numerical simulations to illustrate the theoretical predictions in
Section 9.

2. The White-Noise Paraxial Model. Let us consider the time-harmonic
wave equation with homogeneous wavenumber k0, random index of refraction n(z,x),
and source in the plane z = zi:

∆u+ k20n
2(z,x)u = −δ(z − zi)f(x). (2.1)

Denote by λ0 the carrier wavelength (equal to 2π/k0), by L the typical propagation
distance, and by r0 the radius of the initial transverse beam/source. The paraxial
regime holds when the wavelength λ0 is much smaller than the radius r0, and when the
propagation distance is at most of order r20/λ0 (the so-called Rayleigh length). The
white-noise paraxial regime that we address in this paper holds when, additionally,
the index of refraction of the medium has random fluctuations with a small typical
amplitude and with correlation length much larger than the wavelength but smaller
than the propagation distance. We refer to [16] for the explicit scaling assumptions. In
this regime the solution of the time-harmonic wave equation (2.1) can be approximated
by

u(z,x) =
i

2k0

∫
f(xi)G((zi,xi), (z,x))dxi exp

(
ik0|z − zi|

)
,
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where (G((zi,xi), (z,x)))z∈R,x∈R2 is the paraxial fundamental solution of the Itô-
Schrödinger equation

dG(z,x) =
i

2k0
∆xG(z,x)dz +

ik0
2
G(z,x) ◦ dB(z,x), (2.2)

with the initial condition in the plane z = zi:

G((zi,xi), (z = zi,x)) = δ(x− xi).

Here the symbol ◦ stands for the Stratonovich stochastic integral and B(z,x) is a
real-valued Brownian field over R× R2 with covariance

E[B(z,x)B(z′,x′)] = min{|z|, |z′|}C(x− x′), (2.3)

assuming zz′ > 0. The model (2.2) can be obtained from the scalar wave equation
(2.1) by a separation of scales technique in which the three-dimensional fluctuations of
the index of refraction n(z,x) are described by a zero-mean stationary random process
ν(z,x) with mixing properties: n2(z,x) = 1 + ν(z,x). The covariance function C(x)
in (2.3) is then given in terms of the two-point statistics of the random process ν by

C(x) =

∫ ∞
−∞

E[ν(z′ + z,x′ + x)ν(z′,x′)]dz. (2.4)

The covariance function C is assumed to decay fast enough at infinity so that it
belongs to L1(R2). Its Fourier transform is nonnegative (since it is the power spectral
density of the stationary process x → B(1,x)). The white-noise paraxial model is
widely used in the physical literature [1]. It simplifies the full wave equation (2.1)
by replacing it with an initial value-problem (2.2). It was studied mathematically in
[6]. The proof of its derivation from the three-dimensional wave equation in randomly
scattering medium uses tools presented in [11] and it is given in [16].

3. The Backscattered Field. We assume a Gaussian source in the plane z = 0
with radius r0 emitting toward z < 0:

f(x) = exp
(
− |x|

2

2r20

)
.

We assume that there is a Poisson cloud (or Poisson point process [21]) giving point
scatterers in the medium for z < 0:

n2ps(z,x) =
∑
j

wjδ(x− xj)δ(z − zj).

The time-harmonic field satisfies

∆u+ k20
[
n2(z,x) + n2ps(z,x)]u = −δ(z)f(x).

Using the Born (or single-scattering) approximation for the point scatterers, the
backscattered field recorded in the plane z = 0 at (0,xr) is

u(0,xr) = −1

4

∑
j

exp
(
2ik0|zj |

) ∫
dx0f(x0)G((0,x0), (zj ,xj))wjG((zj ,xj), (0,xr)).

(3.1)
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The use of the paraxial fundamental solution G is justified because the point scatterers
playing the roles of secondary sources are along the z-axis (in a tube that is illuminated
by the incident beam) and the field is collected in the plane z = 0 but close to the
z-axis as well.

In this paper we assume that the intensity ρps(z) of the Poisson cloud depends
only on z. In practice our results can be extended to the case when the intensity
of the Poisson cloud varies laterally on a scale that is slow relative to the beam
width. It is assumed to be supported in the region z < 0 away from 0. The scale of
variation of the function ρps(z) is assumed to be much larger than the wavelength.
The reflectivities wj of the scatterers can be deterministic or random, we denote by
σ2 their second moment and by w̄ their first moment. In this configuration the mean
of the backscattered field is:〈

u(0,xr)
〉

= − w̄
4

∫ 0

−∞
dziρps(zi) exp

(
− 2ik0zi

) ∫
dxi

∫
dx0f(x0)

×G((0,x0), (zi,xi))G((zi,xi), (0,xr)), (3.2)

where 〈·〉 stands for the expectation with respect to the distribution of the point
scatterers. This equation follows from the general result that, for a Poisson point
process with intensity ρ(z,x), we have for any test function g(z,x) [21, Eq. (3.9)]:〈∑

j

g(zj ,xj)
〉

=

∫
g(z,x)ρ(z,x)dzdx.

The presence of the rapid phase exp(−2ik0zi) in (3.2) averages out the integral to
zero, which shows that the backscattered field has mean zero:〈

u(0,xr)
〉

= 0. (3.3)

This result means that the backscattered wave is incoherent. The covariance function
of the backscattered field is our main quantity of interest:

〈
u(0,xr)u(0,x′r)

〉
=
σ2

16

∫ 0

−∞
dziρps(zi)

∫
dxi

∫∫
dx0dx

′
0f(x0)f(x′0)

×G((0,x0), (zi,xi))G((zi,xi), (0,xr))G((0,x′0), (zi,xi))G((zi,xi), (0,x′r)).

This equation follows from the general result that, for a Poisson point process with
intensity ρ(z,x), we have for any test function g(z,x) [21, Eq. (3.10)]:〈∣∣∑

j

g(zj ,xj)
∣∣2〉 =

∫
|g(z,x)|2ρ(z,x)dzdx+

∣∣∣ ∫ g(z,x)ρ(z,x)dzdx
∣∣∣2.

Using reciprocity we have

G((0,x0), (zi,xi)) = G((zi,xi), (0,x0)) and G((0,x′0), (zi,xi)) = G((zi,xi), (0,x
′
0)).

Therefore,

〈
u(0,xr)u(0,x′r)

〉
=
σ2

16

∫ 0

−∞
dziρps(zi)

∫
dxi

∫∫
dx0dx

′
0f(x0)f(x′0)

×G((zi,xi), (0,x0))G((zi,xi), (0,xr))G((zi,xi), (0,x′0))G((zi,xi), (0,x′r)).
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Using the statistical homogeneity of the random medium we have in distribution (with
respect to the distribution of the random medium) for any zi < 0:

(G((zi,xi), (0,x)))x∈R2
dist.
= (G((0,xi), (|zi|,x)))x∈R2 .

Therefore, by taking the expectation with respect to the distribution of the point
scatterers and the distribution of the random medium, we have

E[u(0,xr)u(0,x′r)] =
σ2

16

∫ ∞
0

dzρ(z)

∫
dxi

∫∫
dx0dx

′
0f(x0)f(x′0)

×E
[
G((0,xi), (z,x0))G((0,xi), (z,xr))G((0,xi), (z,x′0))G((0,xi), (z,x′r))

]
, (3.4)

where ρ(z) = ρps(−z). This equation shows that we need to compute the fourth-order
moment of the paraxial fundamental solution. In fact we only need to compute the
integral over xi of this quantity, which is in fact simpler.

If the source is not time-harmonic, but a pulse with carrier frequency ω0 that is
emitted at time 0, and if the recorded wave is time-windowed within the time-interval
[T1, T2], then the time integrated covariance function of the backscattered wave

1

(2π)2

∫ T2

T1

E[u(t, 0,xr)u(t, 0,x′r)]dt

is given by an integral of type (3.4) where k0 = ω0/c0 is the carrier wavenumber
(with c0 the background wave speed) and the integral in z is essentially limited to
[z1, z2] with zj = c0Tj/2. Note that, if the pulse is broadband in the sense that the
bandwidth is of the same order as the carrier frequency, then we need to integrate
(3.4) over the bandwidth. We will only consider narrowband pulses in our paper.
This time-windowing technique is a practical way to select the propagation distance
that is probed by the reflection method.

4. The General Moment Equations. The main tool for describing wave
statistics are the finite-order moments. We show in this section that in the con-
text of the Itô-Schrödinger equation (2.2) the moments of the field satisfy a closed
system at each order [20, 12]. For xi ∈ R2, p ∈ N, we define

M (p)
xi

(
z, (xj)

p
j=1, (yl)

p
l=1

)
= E

[ p∏
j=1

G((0,xi), (z,xj))

p∏
l=1

G((0,xi), (z,yl))
]
, (4.1)

for (xj)
p
j=1, (yl)

p
l=1 ∈ R2p. Using the stochastic equation (2.2) and Itô’s formula

for Hilbert space valued processes [24], we find that the function M
(p)
xi satisfies the

Schrödinger-type system:

∂M
(p)
xi

∂z
=

i

2k0

( p∑
j=1

∆xj
−

p∑
l=1

∆yl

)
M (p)
xi

+
k20
4
Up
(
(xj)

p
j=1, (yl)

p
l=1

)
M (p)
xi
, (4.2)

M (p)
xi

(z = 0) =

p∏
j=1

δ(xj − xi)

p∏
l=1

δ(yl − xi), (4.3)
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with the generalized potential

Up
(
(xj)

p
j=1, (yl)

p
l=1

)
=

p∑
j,l=1

C(xj − yl)−
1

2

p∑
j,j′=1

C(xj − xj′)−
1

2

p∑
l,l′=1

C(yl − yl′)

=

p∑
j,l=1

C(xj − yl)−
∑

1≤j<j′≤p

C(xj − xj′)−
∑

1≤l<l′≤p

C(yl − yl′)− pC(0). (4.4)

We introduce the Fourier transform

M̂ (p)
xi

(
z, (ξj)

p
j=1, (ζl)

p
l=1

)
=

∫∫
M (p)
xi

(
z, (xj)

p
j=1, (yl)

p
l=1

)
× exp

(
− i

p∑
j=1

xj · ξj + i

p∑
l=1

yl · ζl
)
dx1 · · · dxpdy1 · · · dyp. (4.5)

It satisfies

∂M̂
(p)
xi

∂z
= − i

2k0

( p∑
j=1

|ξj |2 −
p∑
l=1

|ζl|2
)
M̂ (p)
xi

+
k20
4
ÛpM̂ (p)

xi
, (4.6)

M̂ (p)
xi

(z = 0) = exp
(
− i

p∑
j=1

xi · ξj + i

p∑
l=1

xi · ζl
)
. (4.7)

In Eq. (4.6) the operator Ûp is defined by

ÛpM̂ (p)
xi

=
1

(2π)2

∫
Ĉ(k)

[ p∑
j,l=1

M̂ (p)
xi

(ξj − k, ζl − k)−
∑

1≤j<j′≤p

M̂ (p)
xi

(ξj − k, ξj′ + k)

−
∑

1≤l<l′≤p

M̂ (p)
xi

(ζl − k, ζl′ + k)− pM̂ (p)
xi

]
dk, (4.8)

where we only write the arguments that are shifted. It turns out that the equation

(4.6) for the Fourier transform M̂
(p)
xi is easier to solve than (4.2). In particular it can

be integrated readily if the medium is homogeneous.

5. Regimes of Propagation. In order to get closed-form expressions for some
relevant quantities, we will address the two following particular regimes, which can
be considered as particular cases of the paraxial white-noise regime. Let us denote
by ϑ the standard deviation of the fluctuations of the index of refraction and by lz
(resp. lx) the longitudinal (resp. transverse) correlation length of the fluctuations
of the index of refraction. Then the correlation length in the propagation direction,
C(0), is of order ϑ2lz and the transverse scale of variation of C(x) is of order lx. As
before, λ0 is the carrier wavelength (equal to 2π/k0), L is the typical propagation
distance, and r0 is the radius of the initial transverse beam/source. In this notation
the Rayleigh length, which corresponds to the distance when the transverse radius
of the beam roughly has doubled by diffraction in the homogeneous medium case, is
r20/λ0. Moreover, as seen in (4.2) k20C(0)L or ϑ2lzL/λ

2
0 is a measure of the relative

strength of the medium fluctuations over the propagation distance. In what follows,
ε is a small dimensionless parameter.
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• The spot-dancing regime. The random medium fluctuations are relatively
strong, so that ϑ2lzL/λ

2
0 is of order 1/ε2, the initial beam support is small, so

that r0/lx is of order ε, and the propagation distance is such that Lλ0/r
2
0 is of

order one (ie the typical propagation distance is of the order of the Rayleigh
length of the initial beam). This leads to a picture where the transmitted
wave field center “dances” according to a random frame [6, 18].

• The scintillation regime. The random medium fluctuations are relatively
weak, so that ϑ2lzL/λ

2
0 is of order one, the initial beam support is broad, so

that r0/lx is of order 1/ε, while the propagation distance is such that Lλ0/r
2
0

is of order 1/ε (ie the typical propagation distance is relatively large compared
to the Rayleigh length of the initial beam). This leads to a picture consistent
with random and Gaussian fluctuations for the transmitted field [18].

5.1. The Spot-Dancing Regime. In this subsection we review the results that
can be found in [1, 6, 13, 14] and put them in a convenient form for the forthcoming
analysis. In this regime the covariance function Cε is of the form:

Cε(x) = ε−2C(εx), (5.1)

for a small dimensionless parameter ε. We want to study the asymptotic behavior of
the moments of the field in this regime, that we call spot-dancing regime for reasons
that will become clear in the analysis.

In the spot-dancing regime we assume that the power spectral density Ĉ(k) decays
fast enough so that

∫
|k|4Ĉ(k)dk is finite. This implies that the covariance function

C(x) is at least four times differentiable at x = 0, which corresponds to a smooth
random medium. For simplicity, we also assume that the random fluctuations are
isotropic in the transverse directions, in the sense that the covariance function C(x)
depends only on |x|. We denote

γ =
1

2(2π)2

∫
|k|2Ĉ(k)dk = −1

2
∆C(0). (5.2)

The operator Ûεp has then the form

ÛεpM̂ (p)
xi

=
ε−2

(2π)2

∫
Ĉ(k)

[ p∑
j,l=1

M̂ (p)
xi

(ξj − εk, ζl − εk)

−
∑

1≤j<j′≤p

M̂ (p)
xi

(ξj − εk, ξj′ + εk)

−
∑

1≤l<l′≤p

M̂ (p)
xi

(ζl − εk, ζl′ + εk)− pM̂ (p)
xi

]
dk, (5.3)

and it can be expanded as ε→ 0 as

ÛεpM̂ (p)
xi

=
γ

2

( p∑
j=1

∇ξj +

p∑
l=1

∇ζl
)
·
( p∑
j=1

∇ξj +

p∑
l=1

∇ζl
)
M̂ (p)
xi
.

As shown in [6, 18], this implies that, in the regime ε→ 0, the function M̂
(p)
xi satisfies
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the partial differential equation

∂M̂
(p)
xi

∂z
= − i

2k0

( p∑
j=1

|ξj |2 −
p∑
l=1

|ζl|2
)
M̂ (p)
xi

+
k20γ

8

( p∑
j=1

∇ξj +

p∑
l=1

∇ζl
)
·
( p∑
j=1

∇ξj +

p∑
l=1

∇ζl
)
M̂ (p)
xi
. (5.4)

Using the Feynman-Kac formula, we find that

M̂ (p)
xi

(
z, (ξj)

p
j=1, (ζl)

p
l=1

)
= E

[ p∏
j=1

Gsd,xi(z, ξj)

p∏
l=1

Gsd,xi(z, ζl)
]
, (5.5)

where

Gsd,xi(z, ξ) = exp
(
− ixi ·

(
ξ +

k0
√
γ

2
Wz

)
− i

2k0

∫ z

0

∣∣ξ +
k0
√
γ

2
Wz′

∣∣2dz′), (5.6)

and Wz is a standard 2-dimensional Brownian motion. Of course, when γ = 0, we
recover the expression of the field in the homogeneous case. A detailed statistical
analysis of the field can then be carried out [18], which shows that the shape of the
spatial profile of the transmitted wave field evolves as in a homogeneous medium,
but its center is randomly shifted and follows Gaussian statistics that can be fully
characterized. The random shift of the center is the origin of the term “spot dancing”.

5.2. The Scintillation Regime. In this subsection we consider the scintillation
regime described at the end of Section 2. In this regime the covariance function Cε

is of the form:

Cε(x) = εC(x). (5.7)

and the radius of the initial source is of order 1/ε, we will denote it by r0/ε. In order
to observe a random effect of order one, we need to consider propagation distances
of the order of ε−1. Therefore we assume that the density ρ(z) has the form ερ(εz)
and we make the rescaling z = z′/ε and suppress the “prime” below. This regime
is called the scintillation regime by the results obtained in [18] that show that the
fluctuations of the transmitted field have some statistical characteristics similar to
those of complex Gaussian processes. The evolution equations (4.6) of the Fourier
transforms of the moments now become

∂M̂
(p)
xi

∂z
= − i

2k0ε

( p∑
j=1

|ξj |2 −
p∑
l=1

|ζl|2
)
M̂ (p)
xi

+
k20
4
ÛpM̂ (p)

xi
, (5.8)

which shows the appearance of a rapid phase. The asymptotic behavior as ε → 0 of
the moments is therefore determined by the solutions of partial differential equations
with rapid phase terms. Although we will not determine the asymptotic behaviors
for all moments, a key limit theorem will allow us to get a representation of the
fourth-order moments in the limit ε→ 0.

6. The Fourth-Order Moments. We consider the fourth-order moment M
(2)
xi

of the field, which is the main quantity of interest in this paper. In this section we
consider the fourth-order moments in the general case and in subsequent sections we
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will then specialize two the regimes corresponding to spot dancing and scintillation.
First we parameterize the four points x1,x2,y1,y2 in (4.1) as:

x1 =
r1 + r2 + q1 + q2

2
, y1 =

r1 + r2 − q1 − q2
2

,

x2 =
r1 − r2 + q1 − q2

2
, y2 =

r1 − r2 − q1 + q2
2

.

In particular r1/2 is the barycenter of the four points x1,x2,y1,y2:

r1 =
x1 + x2 + y1 + y2

2
, q1 =

x1 + x2 − y1 − y2
2

,

r2 =
x1 − x2 + y1 − y2

2
, q2 =

x1 − x2 − y1 + y2
2

.

In these new variables the function M
(2)
xi satisfies the system:

∂M
(2)
xi

∂z
=

i

k0

(
∇r1 · ∇q1 +∇r2 · ∇q2

)
M (2)
xi

+
k20
4
U2(q1, q2, r1, r2)M (2)

xi
, (6.1)

starting from M
(2)
xi (z = 0, q1, q2, r1, r2) = δ(q1)δ(q2)δ(r1 − 2xi)δ(r2), with the gen-

eralized potential

U2(q1, q2, r1, r2) = C(q2 + q1) + C(q2 − q1) + C(r2 + q1) + C(r2 − q1)

−C(q2 + r2)− C(q2 − r2)− 2C(0). (6.2)

Note in particular that the generalized potential does not depend on r1 as the medium
is statistically homogeneous.

The Fourier transform (in q1, q2, r1, and r2) of the fourth-order moment is
defined by:

M̂ (2)
xi

(z, ξ1, ξ2, ζ1, ζ2) =

∫∫
M (2)
xi

(z, q1, q2, r1, r2)

× exp
(
− iq1 · ξ1 − ir1 · ζ1 − iq2 · ξ2 − ir2 · ζ2

)
dr1dr2dq1dq2. (6.3)

Proposition 6.1. The Fourier transform M̂
(2)
xi of the fourth-order moment sat-

isfies ∫
dxiM̂

(2)
xi

(z, ξ1, ξ2, ζ1, ζ2) = π2M̂(z, ξ2, ζ2)δ(ζ1), (6.4)

where M̂(z, ξ, ζ) is solution of

∂M̂

∂z
+

i

k0
ξ · ζM̂ =

k20
4(2π)2

∫
Ĉ(k)

[
2M̂(ξ − k, ζ) + 2M̂(ξ, ζ − k)

−2M̂(ξ, ζ)− M̂(ξ − k, ζ − k)− M̂(ξ + k, ζ − k)

]
dk, (6.5)

starting from M̂(z = 0, ξ, ζ) = 1.
The solution M̂ is the quantity that is needed to characterize the two-point statis-

tics of the backscattered field.
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Note that the integration in xi simplifies the dependence on ζ1 and ξ1 due to the
homogeneity of the medium fluctuations in the transverse directions. This simplifica-
tion allows us next to get explicit expressions for the quantities of interest.

Proof. The Fourier transform M̂
(2)
xi satisfies

∂M̂
(2)
xi

∂z
+

i

k0

(
ξ1 · ζ1 + ξ2 · ζ2

)
M̂ (2)
xi

=
k20

4(2π)2

∫
Ĉ(k)

[
M̂ (2)
xi

(ξ1 − k, ξ2 − k, ζ2)

+M̂ (2)
xi

(ξ1 − k, ξ2, ζ2 − k) + M̂ (2)
xi

(ξ1 + k, ξ2 − k, ζ2) + M̂ (2)
xi

(ξ1 + k, ξ2, ζ2 − k)

−2M̂ (2)
xi

(ξ1, ξ2, ζ2)− M̂ (2)
xi

(ξ1, ξ2 − k, ζ2 − k)− M̂ (2)
xi

(ξ1, ξ2 + k, ζ2 − k)

]
dk, (6.6)

starting from M̂
(2)
xi (z = 0, ξ1, ξ2, ζ1, ζ2) = exp(−2iζ1 · xi). Note that ζ1 is frozen in

this equation. If we denote by M̂
(2)
0 (z, ξ1, ξ2, ζ1, ζ2) the solution with xi = 0, then

we have

M̂ (2)
xi

(z, ξ1, ξ2, ζ1, ζ2) = exp(−2iζ1 · xi)M̂
(2)
0 (z, ξ1, ξ2, ζ1, ζ2).

Therefore ∫
dxiM̂

(2)
xi

(z, ξ1, ξ2, ζ1, ζ2) = π2M̂
(2)
0 (z, ξ1, ξ2,0, ζ2)δ(ζ1), (6.7)

where M̂
(2)
0 (z, ξ1, ξ2,0, ζ2) is solution of

∂M̂
(2)
0

∂z
+

i

k0
ξ2 · ζ2M̂

(2)
0 =

k20
4(2π)2

∫
Ĉ(k)

[
M̂

(2)
0 (ξ1 − k, ξ2 − k, ζ2)

+M̂
(2)
0 (ξ1 − k, ξ2, ζ2 − k) + M̂

(2)
0 (ξ1 + k, ξ2 − k, ζ2) + M̂

(2)
0 (ξ1 + k, ξ2, ζ2 − k)

−2M̂
(2)
0 (ξ1, ξ2, ζ2)− M̂ (2)

0 (ξ1, ξ2 − k, ζ2 − k)− M̂ (2)
0 (ξ1, ξ2 + k, ζ2 − k)

]
dk,

starting from M̂
(2)
0 (z = 0, ξ1, ξ2,0, ζ2) = 1. The solution is independent of ξ1. There-

fore

M̂
(2)
0 (z, ξ1, ξ2,0, ζ2) = M̂(z, ξ2, ζ2), (6.8)

where M̂(z, ξ, ζ) is solution of (6.5).

7. The Covariance Function of the Backscattered Field. After substitu-
tion of (6.4) into the expression (3.4) of the covariance function of the backscattered
field, and after integration in x′0 and x0, we get

E[u(0,xr)u(0,x′r)] =
σ2r20

256π3

∫
dzρ(z)

∫
dξ

∫
dζM̂(z, ξ, ζ)

× exp
(
i(x′r − xr) · ξ − i

xr + x′r
2

· ζ − |ζ|
2r20
4
− |x

′
r − xr|2

4r20

)
. (7.1)

We then get the expression for the covariance function

E[u(0,xr)u(0,x′r)] =
σ2r20
64π

∫
dzρ(z)

∫
dζM(z,x′r − xr, ζ)

× exp
(
− ixr + x′r

2
· ζ − |ζ|

2r20
4
− |x

′
r − xr|2

4r20

)
, (7.2)
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where M(z,x, ζ) is the inverse Fourier transform (in ξ) of M̂(z, ξ, ζ),

M(z,x, ζ) =
1

(2π)2

∫
M̂(z, ξ, ζ) exp

(
iξ · x

)
dξ,

and it is solution of the transport equation

∂M

∂z
+

1

k0
ζ · ∇xM =

k20
(2π)2

∫
Ĉ(k) sin2

(k · x
2

)[
M(x, ζ − k)−M(x, ζ)

]
dk, (7.3)

starting from M(z = 0,x, ζ) = δ(x). Eq. (7.2) gives the general expression of the
covariance function of the backscattered field in the random paraxial regime. It is
naturally a function of the offset xr − x′r and the mid-point (xr + x′r)/2, and it
depends on the solution M of the transport equation (7.3). The solution of the
transport equation (7.3) would give the expression of the needed fourth-order moment
and the covariance function of the backscattered field. However, in contrast to the
second-order moment as discussed in [18], we cannot solve this equation and find a
closed-form expression of the fourth-order moment in the general case. Therefore we
address in the next two subsections the two particular regimes described in Section 5
in which explicit expressions can be obtained. These two regimes are very different in
that the spot-dancing regime that we address in Subsection 7.1 is characterized by a
large variance of the transmitted intensity distribution, while the scintillation regime
that we address in Subsection 7.2 is characterized by a normalized variance of the
transmitted field that stabilizes to the value one, which is characteristic of complex
Gaussian fields [18]. In this derivation it will be convenient to work with the Wigner
transform of the field which can be articulated directly in terms of M̂ .

7.1. Spot-Dancing Regime. The spot dancing regime was originally studied
in [6]. If the covariance function is of the form (5.1), provided that Ĉ decays fast
enough (so that

∫
|k|4Ĉ(k)dk < ∞), the equation (6.5) for the Fourier transform of

the fourth-order moment can be simplified as ε→ 0:

∂M̂

∂z
+

i

k0
ξ · ζM̂ = 0, (7.4)

which means that we recover the same equation as if the medium was homogeneous.
This equation can be solved:

M̂(z, ξ, ζ) = exp
(
− i z

k0
ξ · ζ

)
, (7.5)

and after substitution into (7.1) and integration in ξ we find

E[u(0,xr)u(0,x′r)] =
σ2k20r

2
0

64

∫
dz
ρ(z)

z2
exp

( ik0
2z

(
|xr|2−|x′r|2

)
−

1 +
k20r

4
0

z2

4r20
|x′r−xr|2

)
.

(7.6)
This shows that the backscattered field has a mean intensity that is independent of
xr:

E[|u(0,xr)|2] =
σ2k20r

2
0

64

∫
dz
ρ(z)

z2
. (7.7)

If we consider the Wigner transform of the backscattered field defined by

Wb(x, q) =

∫
E
[
u(0,x+

y

2
)u(0,x− y

2
)
]

exp
(
− iq · y

)
dy, (7.8)



12 J. Garnier and K. Sølna

then we find

Wb(x, q) =
πσ2

16

∫
dz

ρ(z)k20r
4
0

z2 + k20r
4
0

exp
(
− |zq − k0x|

2r20
z2 + k20r

4
0

)
. (7.9)

The Wigner transform gives the energy flux density (in space and direction) that
goes through x with the direction corresponding to the transverse wavevector q (that
is, with the angle |q|/k0 compared to the normal incidence). By integrating in q we
recover the mean intensity:

1

(2π)2

∫
Wb(x, q)dq = E[|u(0,x)|2].

By looking at the Wigner transform (7.9) at x = 0 as a function of q, we find that
the energy flux at the center has a well-defined angular profile. If the Poisson cloud
of point scatterers is concentrated around the distance zb, or if we use the time-
windowing technique to select the waves backscattered from the distance zb, then the
energy flux density has the form of a Gaussian profile with width Qb given by

Q2
b =

k20r
2
0

z2b
+

1

r20
.

This angular cone can be interpreted as follows:
- if zb � k0r

2
0, then there is no diffraction and the beam width at the level of the

point scatterers is r0. This in turn, in view of the fact that the microscatterers are
modeled as point scatterers, illuminates the center of the initial plane with an angular
cone with opening angle of the order of r0/zb, which corresponds to Qb/k0.
- if zb � k0r

2
0, then there is diffraction and the beam width at the level of the point

scatterers is zb/(k0r0) [18]. This in turn illuminates the center of the initial plane
with an angular cone of opening angle of the order of 1/(k0r0), which corresponds to
Qb/k0.

7.2. Scintillation Regime. We now assume the scintillation regime, that is to
say, the fluctuations of the medium are small, of the order of ε, as in (5.7), the radius
of the source is large, given by r0/ε, and the propagation distance is large, of the
order of ε−1, with the density of the Poisson cloud of the form ερ(εz). Then (7.1)
reads (for any ε > 0)

E[u(0,xr)u(0,x′r)] =
σ2r20

256π2ε2

∫
dzρ(z)

∫
dξ

∫
dζM̂

(z
ε
, ξ, ζ)

× exp
(
i(x′r − xr) · ξ − i

xr + x′r
2

· ζ − |ζ|
2r20

4ε2
− ε2|x′r − xr|2

4r20

)
. (7.10)

The covariance function depends on a scaled version of the fourth-order moment M̂ .
Let us introduce the new function M̃ε defined by

M̃ε(z, ξ, ζ) = M̂(
z

ε
, ξ, ζ) exp

(
i
z

εk0
ξ · ζ

)
(7.11)

that satisfies

∂M̃ε

∂z
=

k20
4(2π)2

∫
Ĉ(k)

[
2M̃ε(ξ − k, ζ)ei

z
εk0

k·ζ + 2M̃ε(ξ, ζ − k)ei
z

εk0
k·ξ − 2M̃ε(ξ, ζ)

−M̃ε(ξ − k, ζ − k)ei
z

εk0
(k·(ξ+ζ)−|k|2) − M̃ε(ξ + k, ζ − k)ei

z
εk0

(k·(ξ−ζ)+|k|2)
]
dk,(7.12)
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starting from M̃ε(z = 0, ξ, ζ) = 1. The function M̃ε has a multi-scale behavior as
ε→ 0 as explained in the following proposition, which originates from the averaging
of the rapid phases in (7.12).

Proposition 7.1. For any Z > 0, we have

sup
z∈[0,Z],ξ,ζ∈R2

∣∣∣M̃ε(z, ξ, ζ)− M̃0
(
z,
ζ

ε

)
− M̃0

(
z,
ξ

ε

)
+ exp

(
− k20C(0)z

2

)∣∣∣ ε→0−→ 0, (7.13)

where

M̃0(z, ζ) = exp
(k20

2

∫ z

0

C
( z′
k0
ζ
)
− C(0)dz′

)
. (7.14)

This means that:
1. As ε→ 0, we have M̃ε(z, ξ, ζ)→ exp(−k

2
0C(0)z

2 ) for any ξ, ζ 6= 0.

2. As ε→ 0, we have M̃ε(z, ξ, εζ)→ M̃0(z, ζ) for any ξ 6= 0.
3. As ε→ 0, we have M̃ε(z, εξ, ζ)→ M̃0(z, ξ) for any ζ 6= 0.

4. As ε→ 0, we have M̃ε(z, εξ, εζ)→ M̃0(z, ζ) + M̃0(z, ξ)− exp(−k
2
0C(0)z

2 ) for
any ξ, ζ.

Proof. Here we give a rapid and formal proof. We give in the appendix a complete
and detailed proof. In case (1), the rapid phases cancel the contributions of all but
the term −2M̃ε(ξ, ζ) in (7.12), and we get in the limit ε → 0 that M̃(z, ξ, ζ) =
limε→0 M̃

ε(z, ξ, ζ) satisfies:

∂M̃

∂z
= − k20

2(2π)2

∫
Ĉ(k)M̃dk = −k

2
0

2
C(0)M̃,

which gives the first result. In case (2), we obtain in the limit ε → 0 the simplified
system for M̃(z, ξ, ζ) = limε→0 M̃

ε(z, ξ, εζ):

∂M̃

∂z
=

k20
2(2π)2

∫
Ĉ(k)

[
M̃(ξ − k, ζ)ei

z
k0
k·ζ − M̃(ξ, ζ)

]
dk.

We obtain that the solution does not depend on ξ and that it is given by (7.14). Case
(3) is similar.

In case (4) we obtain the simplified system for M̃(z, ξ, ζ) = limε→0 M̃
ε(z, εξ, εζ):

∂M̃

∂z
=

k20
2(2π)2

∫
Ĉ(k)

[
M̃0(ζ)ei

z
k0
k·ζ + M̃0(ξ)ei

z
k0
k·ξ − M̃(ξ, ζ)

]
dk.

Using the equation satisfied by M̃0, we get

∂M̃(ξ, ζ)

∂z
=
∂M̃0(ζ)

∂z
+
∂M̃0(ξ)

∂z
+
k20
2
C(0)

[
M̃0(ζ) + M̃0(ξ)− M̃(ξ, ζ)

]
,

which yields the desired result. �
The scaled Wigner transform of the backscattered field is defined by

Wb(x, q) =
1

ε2

∫
E
[
u(0,

x

ε
+
y

2ε
)u(0,

x

ε
− y

2ε
)
]

exp
(
− iq · y

ε

)
dy. (7.15)

Note that we observe the backscattered field at the scale 1/ε corresponding to the
original beam width. The following proposition describes the multiscale behavior of
the Wigner transform of the backscattered field.
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Proposition 7.2. In the scintillation regime ε→ 0 the Wigner transform of the
backscattered field satisfies the two following identities:
1) For q 6= 0:

Wb(x, q)
ε→0
=

σ2r20
64

∫
dzρ(z)

∫
dζM̃0(z, ζ) exp

(
− iζ ·

(
x− q z

k0

)
− |ζ|

2r20
4

)
, (7.16)

where M̃0 is defined by (7.14).
2) For any q:

Wb(x, εq)
ε→0
=

σ2r40
64π

∫
dzρ(z)

∫∫
dξdζ

[
M̃0(z, ξ − q) + M̃0(z, ζ)− exp

(
− k20C(0)z

2

)]
× exp

(
− ix · ζ − |ζ|

2r20
4
− r20|ξ|2

)
. (7.17)

Proof. We find from (7.10) after integration in y:

Wb(x, q) =
σ2r40
64π

∫
dzρ(z)

∫∫
dξdζM̂

(z
ε
, εξ − q, εζ

)
× exp

(
− ix · ζ − |ζ|

2r20
4
− r20|ξ|2

)
. (7.18)

We can then get (7.16) from (7.18) and Proposition 7.1 (item 2). We can also get
(7.17) from (7.18) and Proposition 7.1 (item 4).

The two closed-form expressions (7.16-7.17) will be discussed in more detail in
the following. They show that the Wigner transform has a multiscale behavior in q:
Eq. (7.16) gives the behavior for angles of order one (that are not zero), and Eq. (7.17)
gives the behavior for small angles of order ε. We can check that, in the asymptotics
ε → 0, the limit of Wb(x, εq) for large q is equivalent to the limit of Wb(x, q) for
small q. This means that, as a function of q, (7.17) can be seen as a peak of width of
order ε on the top of a profile of width of order one described by (7.16).

We can remark by integrating in q that

E
[
|u(0,

x

ε
)|2
] ε→0

=
σ2k20r

2
0

64

∫
dz
ρ(z)

z2
, (7.19)

which is independent on the fluctuations of the random medium and is equal to
the mean intensity of the backscattered field in the homogeneous case (see (7.7)).
This shows that the effects of the random medium can only be felt at the level of
the correlations of the backscattered field, or equivalently at the level of the Wigner
transform, and not at the level of the mean backscattered intensity.

Finally, if we denote

û(0, q) =

∫
u(0,x) exp

(
− iq · x

)
dx,

and introduce the total energy flux density E[|û(0, q)|2] that can also be computed
from the Wigner transform by integrating in x:

ε2E[|û(0, q)|2] =

∫
Wb(x, q)dx,
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then we have for any q 6= 0:

ε2E[|û(0, q)|2]
ε→0
=

π2σ2r20
16

∫
dzρ(z), (7.20)

and for any q:

ε2E[|û(0, εq)|2]
ε→0
=

π2σ2r20
16

∫
dzρ(z)

[
1− exp

(
− k20C(0)z

2

)
+ Ẽ(z, q)

]
, (7.21)

with

Ẽ(z, q) =
r20
π

∫
M̃0(z, ξ − q) exp

(
− r20|ξ|2

)
dξ.

The last term Ẽ(z, q) indicates that the total energy flux density has a flat background
but with an additional narrow peak around the normal (or backscattered) direction
q = 0. If the Poisson cloud of point scatterers is concentrated around the distance
zb, or if we use the time-windowing technique to select the waves backscattered from
the distance zb, then the relative amplitude of the cone is

Ab = 1− exp
(
− k20C(0)zb

2

)
+
r20
π

∫
M̃0(zb, ξ) exp

(
− r20|ξ|2

)
dξ.

We discuss the shape of the cone in detail in the next section.

8. The Wigner Distribution of the Backscattered Field in the Scintil-
lation Regime.

8.1. Weakly Scattering Media. If k20C(0)z � 1, then M̃0(z, ξ) = 1 for any ξ.
From (7.16) we get then the same results as in the homogeneous case with scintillation
scaling. The Wigner distribution of the backscattered field (7.15) is of the form

Wb(x, q)
ε→0
=

πσ2

16

∫
dzρ(z) exp

(
−
|x− q z

k0
|2

r20

)
. (8.1)

This expression is valid for large angles, when |q| is of order one. For small angles,
corresponding to a small transverse wavevector εq, we find from (7.17)

Wb(x, εq)
ε→0
=

πσ2

16

∫
dzρ(z) exp

(
− |x|

2

r20

)
, (8.2)

which is here the limit of (8.1) as q → 0. This shows that there is no multiscale behav-
ior in this regime. If the Poisson cloud of point scatterers is concentrated around the
distance zb, or if we use the time-windowing technique to select the waves backscat-
tered from the distance zb, then the energy flux density received at the center x = 0
has the form of a Gaussian profile with width Qb given by

Qb =
k0r0
zb

.

This angular cone can be interpreted as at the end of Section 7.1 (here the width of
the initial beam is large and the propagation distance is smaller than the Rayleigh
distance).
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8.2. Strongly Scattering Smooth Media. If k20C(0)z � 1, and if, addition-
ally, C is smooth and we can use (5.2), then C(x) can be expanded as C(x) =
C(0)− γ|x|2/2 + o(|x|2) and (7.14) can be expanded as

M̃0(z, ξ) = exp
(
− γz3

12
|ξ|2
)
. (8.3)

For q 6= 0 this gives after substitution in (7.16) and after integration in ζ:

Wb(x, q)
ε→0
=

πσ2r20
16

∫
dzρ(z)

1

r20 + γz3

3

exp
(
−
|x− q z

k0
|2

r20 + γz3

3

)
. (8.4)

For the following discussion, we will assume that the Poisson cloud is concentrated
at some distance zb, or that we use the time-windowing technique to select the waves
backscattered from the distance zb. The Wigner transform Wb(x = 0, q) measures
the backscattered energy flux at the center in the direction corresponding to the
transverse wavevector q, that is, with the angle |q|/k0. By looking at the expression
(8.4) at x = 0:

Wb(0, q)
ε→0
=

πσ2r20

16(r20 +
γz3b
3 )

[ ∫
dzρ(z)

]
exp

(
− |q|2

k20r
2
0

z2b
+

γk20zb
3

)
, (8.5)

we find that the energy flux density has the form of a broad Gaussian profile with
width Qb given by

Q2
b =

k20r
2
0

z2b
+
γk20zb

3
.

Using the fact that the beam width at the level of the point scatterers is
√
r20 + γz3b/6

[17, Eq. (63)], this angular cone can be interpreted as follows:
- if γz3b � r20, then the beam width at the level of the point scatterers is r0. This in
turn illuminates the initial plane with an angular cone of width of the order of r0/zb,
which corresponds to Qb/k0.

- if γz3b � r20, then the beam width at the level of the point scatterers is γ1/2z
3/2
b .

This in turn illuminates the initial plane with an angular cone of width of the order

of γ1/2z
1/2
b , which corresponds to Qb/k0.

The expression (8.4) is valid when |q| is of order one. For small transverse
wavevector εq we get from (7.17) and after integration in ζ, ξ that

Wb(x, εq)
ε→0
=

πσ2r20
16

∫
dzρ(z)

[ 1

r20 + γz3

3

exp
(
− |x|2

r20 + γz3

3

)
+

1

r20 + γz3

12

exp
(
− |x|

2

r20
−
|q|2r20

γz3

12

r20 + γz3

12

)]
. (8.6)

If the Poisson cloud is concentrated at some distance zb, or if we use the time-
windowing technique to select the waves backscattered from the distance zb, then
the directional energy flux density at the center is:

Wb(0, εq)
ε→0
=

πσ2r20

16(r20 +
γz3b
3 )

[ ∫
dzρ(z)

][
1 +

r20 +
γz3b
3

r20 +
γz3b
12

exp
(
−
|q|2r20

γz3b
12

r20 +
γz3b
12

)]
. (8.7)
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This shows that on the top of the broad Gaussian profile described by (8.5) there is
in the vicinity of the normal direction, i.e. around q = 0, an additional peak with the
width εqb and with the enhancement factor Ab where

q2b =
1

r20
+

12

γz3b
, (8.8)

Ab = 1 +
r20 +

γz3b
3

r20 +
γz3b
12

. (8.9)

This is a manifestation of the enhanced backscattering phenomenon that has been
reported in many situations in the literature [33]. However the situation is special
here because we address a regime in which the waves experience single scattering by
the point scatterers. The classical enhanced backscattering phenomenon happens in
a regime of multiple scattering by point scatterers and it results from the constructive
interference of reciprocal light paths. Here the enhanced backscattering phenomenon
happens because of relatively strong scattering by the medium in the scintillation
regime.
The width of the enhanced backscattering cone qb decreases and the enhancement
factor Ab increases with scattering. The enhancement factor goes from the value
2 for γz3br

−2
0 � 1 (which corresponds to a quasi-plane wave illumination) to the

value 5 for γz3br
−2
0 � 1 and the width of the enhanced backscattering cone goes

from γ−1/2z
−3/2
b for γz3br

−2
0 � 1 to the value 1/r0 for γz3br

−2
0 � 1. The enhanced

backscattering cone is noticeable not only at the center x = 0 but everywhere in the
quasi-planar illumination case γz3br

−2
0 � 1. The situation is more complicated in the

case γz3br
−2
0 � 1 because the beam spreads out as it propagates due to scattering, and

enhanced backscattering for the energy flux density happens only within the original
beam support (hence the term exp(−|x|2/r20) in (8.6)). If we integrate over the full
backscattered beam, then the enhancement factor is smaller. More exactly, the total
energy flux density E[|û(0, εq)|2] is of the form

ε2E[|û(0, εq)|2]
ε→0
=

π2σ2r20
16

[ ∫
dzρ(z)

][
1 +

r20

r20 +
γz3b
12

exp
(
−
|q|2r20

γz3b
12

r20 +
γz3b
12

)]
. (8.10)

We find that the enhancement factor for the total energy flux density E[|û(0, εq)|2] is

Ab = 1 +
r20

r20 +
γz3b
12

, (8.11)

while the width of the cone is still (8.8).
It should be noted that the fact that the density of point scatterers is invariant

in the transverse direction plays an important role. The enhanced backscattering
phenomenon in the case of a single point scatterer turns out to be quite different
[5]. It can also be remarked that the enhanced backscattering phenomenon by a
quasi-plane wave from a diffusive planar reflector in the scintillation regime gives the
same result as the one obtained here (taking the limit r0 → ∞ in (8.10)), that is
to say, the amplitude factor of the enhanced backscattering cone is 2 and the width

of the enhanced backscattering cone is proportional to γ−1/2z
−3/2
b [7]. In fact, it is

shown in [7] that the relative magnitude and width of the cone are not affected by
the replacement of the specular interface with a diffusive interface. We confirm here
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this observation and we can also observe that when we use a beam rather than a
plane wave, then the non-homogeneity of the illumination gives rise to an anomalous
enhancement factor and an anomalous cone width (8.8-8.11).
An important feature of the formulas (8.8-8.11) is that they do not depend on the
carrier frequency. Therefore, by using several frequencies to get statistical stability,
the measurement of the width and amplitude of the spectral cone can give access to
the parameter γ of the medium.

8.3. Strongly Scattering Rough Media. If k20C(0)z � 1, and if, addition-
ally, C is not smooth but can be expanded as

C(x) = C(0)− γH
2
|x|2H + o(|x|2H), (8.12)

where H ∈ (0, 1] and γH > 0, then for large z so that k20C(0)z � 1,

M̃0(z, ξ) = exp
(
− αH(z)|ξ|2H

)
, αH(z) =

γHk
2(1−H)
0 z1+2H

4(1 + 2H)
. (8.13)

For q 6= 0 this gives after substitution in (7.16) and after integration in ζ:

Wb(x, q)
ε→0
=

σ2r20
64

∫
dzρ(z)ΦH

(
x− q z

k0
, z
)
, (8.14)

where

ΦH(x, z) =

∫
dζ exp

(
− r20|ζ|2

4
− iζ · x− αH(z)|ζ|2H

)
. (8.15)

If αH(z)r−2H0 � 1, then

Wb(x, q)
ε→0
=

σ2π

16

∫
dzρ(z) exp

(
−
|x− q z

k0
|2

r20

)
. (8.16)

If αH(z)r−2H0 � 1, then

Wb(x, q)
ε→0
=

σ2r20
64

∫
dz

ρ(z)

αH(z)1/H
Φ∞H

( x− q z
k0

αH(z)1/(2H)

)
, (8.17)

with

Φ∞H (v) =

∫
exp(−|u|2H − iu · v)du

= 2π

∫ ∞
0

exp(−r2H)J0(r|v|)rdr. (8.18)

For instance, for H = 1 and H = 1/2, we have [19, formula 6.623]

Φ∞1 (v) = π exp
(
− |v|

2

4

)
, Φ∞1/2(v) =

2π

(1 + |v|2)3/2
,

and Φ∞H (0) = π/H
∫∞
0
r−1+1/H exp(−r)dr = πΓ(1/H)/H (with Γ the Euler Gamma

function).
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The expression (8.14) is valid when |q| is of order one. For small transverse
wavevector εq we get from (7.17) and after integration in ζ, ξ that:

Wb(x, εq)
ε→0
=

σ2r20
64

∫
dzρ(z)

[
exp

(
− |x|

2

r20

)
ΨH(q, z) + ΦH(x, z)

]
, (8.19)

with

ΨH(q, z) = 4

∫
dξ exp

(
− r20|ξ|2 − αH(z)|q − ξ|2H

)
. (8.20)

If we consider the backscattered energy flux at the center in the direction cor-
responding to the transverse wavevector q 6= 0, then we find using (8.14) a broad
profile

Wb(0, q)
ε→0
=

σ2r20
64

∫
dzρ(z)ΦH

(qz
k0
, z
)
, (8.21)

and on the top of the broad profile exhibited by (8.21) there is an additional narrow
peak centered at the normal direction q = 0:

Wb(0, εq)
ε→0
=

σ2r20
64

∫
dzρ(z)ΦH(0, z)

[
1 +

ΨH(q, z)

ΦH(0, z)

]
. (8.22)

If the Poisson cloud is concentrated at some distance zb, or if we use the time-
windowing technique to select the waves backscattered from the distance zb, then
the width of the broad profile is

Qb =


k0r0
zb

, if αH(z)r−2H0 � 1,

k0αH(zb)1/(2H)

zb
, if αH(z)r−2H0 � 1.

The width εqb of the enhanced backscattering cone is given by the width of the
function q → ΨH(q, zb) and the enhanced backscattering amplitude factor is Ab =
1 + ΨH(0, zb)/ΦH(0, zb), which is a function of αH(zb)r−2H0 only:

Ab = 1 +
4
∫
du exp

(
− |u|2 − αH(zb)r−2H0 |u|2H

)∫
du exp

(
− |u|2/4− αH(zb)r−2H0 |u|2H

) .
If αH(zb)r−2H0 � 1, then

Wb(x, εq)
ε→0
=

σ2π

16

[ ∫
dzρ(z)

][
1 + exp

(
− αH(zb)|q|2H

)]
exp

(
− |x|

2

r20

)
. (8.23)

This shows that the width of the enhanced backscattering cone is εqb with

qb =
1

αH(zb)1/(2H)
,

and the enhancement factor is Ab = 2. Note that this corresponds to an angular

cone of qbλ0/(2π) that is proportional to λ
1/H
0 , which is an anomalous frequency-

behavior of the angular width of the enhanced backscattering cone that characterizes
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the roughness of the fluctuations of the medium.
If αH(zb)r−2H0 � 1, then

Wb(x, εq)
ε→0
=

σ2r20
64αH(zb)1/H

[ ∫
dzρ(z)

][4πΓ(1/H)

H
exp

(
− r20|q|2

)
exp

(
− |x|

2

r20

)
+Φ∞H

( x

αH(zb)1/(2H)

)]
, (8.24)

and in particular

Wb(0, εq)
ε→0
=

σ2πΓ(1/H)r20
64HαH(zb)1/H

[ ∫
dzρ(z)

][
1 + 4 exp

(
− r20|q|2

)]
.

This shows that the width of the enhanced backscattering cone is εqb with

qb =
1

r0
,

and the enhancement factor is Ab = 5.
If we consider the total energy flux density E[|û(0, εq)|2], then from (8.19) we

have

ε2E[|û(0, εq)|2]
ε→0
=

σ2π2r20
16

[ ∫
dzρ(z)

][
1 +

r20
4π

ΨH(q, zb)
]
. (8.25)

The width of the cone is again the width of the function q → ΨH(q, zb) and the
enhancement factor is a decreasing function of αH(zb)r−2H0 ,

Ab = 1 +
1

π

∫
exp

(
− |u|2 − αH(zb)r−2H0 |u|2H

)
du.

This means that Ab goes from the value 2 when αH(zb)r−2H0 � 1 to the value
1 + αH(zb)−1/(2H)r20Γ(1/H)/H, that goes to 1, when αH(zb)r−2H0 � 1.

9. Numerical Simulations. In this section we give results of numerical simu-
lations to illustrate the theoretical results. The numerical simulations are performed
in the paraxial regime with a smooth strongly scattering random medium in a one-
dimensional transverse space, instead of two-dimensional transverse space as assumed
in the theoretical sections of the paper. As a consequence the theoretical formulas are
modified. In particular, the total energy flux density E[|û(0, εq)|2] has the form

ε2E[|û(0, εq)|2]
ε→0
=

πσ2r0
16

[ ∫
dzρ(z)

][
1 +

r0√
r20 +

γz3b
12

exp
(
−
|q|2r20

γz3b
12

r20 +
γz3b
12

)]
, (9.1)

instead of (8.10), where we assume that the covariance function can be expanded as
C(x) = C(0)− γx2/2 + o(x2).

We assume a Gaussian input beam with carrier wavenumber k0 = 1 and radius
r0 = 64. The Poisson cloud is at the distance zb = 400 with a thickness equal to 5.
The random medium is modeled by a Gaussian process with Gaussian autocorrelation
function C(x) = σ2

c exp(−x2/l2c) with transverse correlation radius lc = 4, 8, or 16,
and standard deviation σc = 0.2. Here k20C(0)zb/2 = 8, so we are indeed in the
strongly scattering regime. For lc = 4, we have γ = 5 10−3, for lc = 8 we have
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γ = 1.25 10−3 and for lc = 16 we have γ = 3.125 10−4. We use a split-step Fourier
method for discretizing the paraxial wave propagation. Finally, we perform a series of
20000 independent simulations (with independent realizations of the random medium
and of the Poisson cloud of scatterers) to compute the empirical average of the total
energy flux density I(q) = |û(0, q)|2. Then we compare in Figure 9.1 the empirical
average with with the theoretical formula (9.1) for the statistical average, which gives
very good agreement. Note, however, that it is necessary to average over a lot of
realizations to get the average values.
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Fig. 9.1. Mean energy flux density profiles I(q) = |û(0, q)|2 of the backscattered wave. The
blue solid lines are the results of the numerical simulations. The red dashed lines are the theoretical
formulas (9.1). lc = 4 (left), lc = 8 (center), and lc = 16 (right).

10. Conclusion. In this paper we have characterized the multiscale behavior of
the Wigner distribution of the waves backscattered from a cloud of point scatterers
and propagating through a turbulent medium (Proposition 7.2). This has allowed us
to describe quantitatively the enhanced backscattering phenomenon. We have shown
that it is possible to estimate the statistical properties of the turbulent medium from
the wave backscattering in the scintillation regime. This requires to look at the angular
distribution of the received backscattered wave energy flux, and not at the spatial
distribution of the wave intensity. In practice, it is possible to use the time-windowing
technique in order to select the contributions of the waves backscattered from a given
distance zb from an extended Poisson cloud of point scatterers. By doing so, and by
fitting the measured Wigner transform, that is to say, the angular distribution of the
received wave energy flux, it is possible to estimate both the Hurst parameter H and
the medium parameter γH from the shape of the enhanced backscattering cone. This
could be useful for instance to implement efficient deblurring strategies in imaging
through the atmosphere [23, 28].
Note that the Wigner transform or the angular distribution of the backscattered
energy flux are not statistically stable quantities. This means that it is necessary to
average over many shots to ensure the statistical stability of the measured quantities
and allow for their processing for medium parameter estimation.
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Appendix A. Proof of Proposition 7.1. Here we give a detailed proof of
Proposition 7.1. We denote by ‖ · ‖∞ the L∞(R2 × R2)-norm:

‖M‖∞ = sup
ξ,ζ∈R2

|M(ξ, ζ)|.
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For any z ≥ 0 we introduce the linear operator Fεz that is bounded from L∞(R2×R2)
to L∞(R2 × R2) with a norm smaller than 2k20C(0):

FεzM(ξ, ζ) =
k20

4(2π)2

∫
Ĉ(k)

[
2M(ξ − k, ζ)ei

z
εk0

k·ζ + 2M(ξ, ζ − k)ei
z

εk0
k·ξ

−2M(ξ, ζ)−M(ξ − k, ζ − k)ei
z

εk0
(k·(ξ+ζ)−|k|2)

−M(ξ + k, ζ − k)ei
z

εk0
(k·(ξ−ζ)+|k|2)

]
dk. (A.1)

We denote

R̃εz(ξ, ζ) = M̃ε(z, ξ, ζ)−
(
M̃0
(
z,
ξ

ε

)
+ M̃0

(
z,
ζ

ε

)
− exp

(
− k20C(0)z

2

))
. (A.2)

We need to show that supz∈[0,Z] ‖R̃εz‖∞ converges to 0 as ε→ 0. By denoting

Ñz(ξ) = M̃0(z, ξ)− exp
(
− k20C(0)z

2

)
, (A.3)

we find that R̃εz is solution of

∂R̃εz
∂z

= Fεz R̃εz + Sεz + T εz ,

starting from R̃εz=0(ξ, ζ) = 0. Here we have introduced

Sεz(ξ, ζ) =
k20

2(2π)2

∫
Ĉ(k)ei

z
εk0

k·ζÑz
(ξ − k

ε

)
dk

+
k20

2(2π)2

∫
Ĉ(k)ei

z
εk0

k·ξÑz
(ζ − k

ε

)
dk

− k20
4(2π)2

∫
Ĉ(k)ei

z
εk0

(k·(ξ+ζ)−|k|2)
(
Ñz
(ξ − k

ε

)
+ Ñz

(ζ − k
ε

))
dk

− k20
4(2π)2

∫
Ĉ(k)ei

z
εk0

(k·(ξ−ζ)+|k|2)
(
Ñz
(ξ + k

ε

)
+ Ñz

(ζ − k
ε

))
dk,

T εz (ξ, ζ) = − exp
(
− k20C(0)z

2

) k20
4(2π)2

∫
Ĉ(k)

(
ei

z
εk0

(k·(ξ+ζ)−|k|2)

+ei
z

εk0
(k·(ξ−ζ)+|k|2)

)
dk.

Step 1. For any η > 0,

sup
z∈[0,η]

‖R̃εz‖∞ ≤ 4k20C(0)ηe2k
2
0C(0)η,

uniformly in ε > 0.
Since Ñz is bounded by 1 in L∞(R2) uniformly in z, Sεz and T εz are bounded by
2k20C(0) in L∞(R2 × R2) uniformly in z. Therefore for any z ∈ [0, η] we have

‖R̃εz‖∞ ≤ 2k20C(0)

∫ z

0

‖R̃εz′‖∞dz′ + 4k20C(0)η
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By Gronwall lemma we get the desired result.

Step 2. For any Z > η > 0,

sup
z∈[0,Z]

‖R̃εz‖∞ ≤
[
4k20C(0)ηe2k

2
0C(0)η+(Z−η) sup

z∈[η,Z]

(
‖Sεz‖∞+‖T εz ‖∞

)]
e2k

2
0C(0)(Z−η),

uniformly in ε > 0.
For any z ∈ [η, Z] we have

‖R̃εz‖∞ ≤ 2k20C(0)

∫ z

η

‖R̃εz′‖∞dz′ + ‖R̃εη‖∞ + (Z − η) sup
z′∈[η,Z]

(
‖Sεz′‖∞ + ‖T εz′‖∞

)
.

By Gronwall lemma we find

sup
z∈[η,Z]

‖R̃εz‖∞ ≤
[
‖R̃εη‖∞ + (Z − η) sup

z∈[η,Z]

(
‖Sεz‖∞ + ‖T εz ‖∞

)]
e2k

2
0C(0)(Z−η),

which completes the proof of Step 2 by using Step 1.

Step 3. For any Z > 0, supz∈[0,Z] ‖Sεz‖∞ goes to zero as ε→ 0.
It is sufficient to show that, for any Z > 0,

sup
z∈[0,Z],ξ∈R2

∣∣∣ ∫ Ĉ(k)
∣∣Ñz(ξ − k

ε

)∣∣dk∣∣∣ ε→0−→ 0.

First we remark that∣∣Ñz(k
ε

)∣∣ = exp
(
− k20C(0)z

2

)∣∣∣ exp
(k20

2

∫ z

0

C(
z′k

εk0
)dz′

)
− 1
∣∣∣ ≤ k20

2

∫ z

0

|C(
z′k

εk0
)|dz′,

because ex− 1 ≤ exx for any x ≥ 0 and supx∈R2 |C(x)| ≤ C(0). On the one hand, we
have for any k ∣∣Ñz(k

ε

)∣∣ ≤ k20
2
C(0)z,

and on the other hand, for any k 6= 0,∣∣Ñz(k
ε

)∣∣ ≤ εk30
2|k|

∫ (z|k|)/(εk0)

0

|C(
sk

|k|
)|ds ≤ εk30

2|k|

∫ ∞
0

|C(
sk

|k|
)|ds,

which shows that, for k ∈ R2 and any z ∈ [0, Z]:∣∣Ñz(k
ε

)∣∣ ≤ K( ε

|k|
∧ 1
)
,

where the constant K depends only on Z, k0, C(0), and supê∈S1
∫∞
0
|C(ês)|ds. This

gives for any ξ ∈ R2, ε < 1, and any z ∈ [0, Z]:∣∣∣ ∫ Ĉ(ξ − k)
∣∣Ñz(k

ε

)∣∣dk∣∣∣ ≤ K ∫ Ĉ(ξ − k)
( ε

|k|
∧ 1
)
dk

≤ K
[ ∫
|k|≤ε1/3

Ĉ(ξ − k)dk +

∫
|k|>ε1/3

ε

|k|
Ĉ(ξ − k)dk

]
≤ K

[
πε2/3 sup

k∈R2

|Ĉ(k)|+ ε2/3
∫
R2

Ĉ(ξ − k)dk
]

≤ Kε2/3
[
π sup
k∈R2

|Ĉ(k)|+ (2π)2C(0)
]
,
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which completes the proof of Step 3.

Step 4. For any Z > η > 0, supz∈[η,Z] ‖T εz ‖∞ goes to zero as ε→ 0.
It is sufficient to show that

sup
ξ∈R2

∣∣∣ ∫ Ĉ(k)eiN(k·ξ+|k|2)dk
∣∣∣ N→∞−→ 0.

We rewrite ∫
Ĉ(k)eiN(k·ξ+|k|2)dk =

∫
Ĉ
(
k − ξ

2

)
eiN |k|

2−iN |ξ|
2

4 dk,

By Parseval’s formula, for any q > 0, we have∫
Ĉ(k)eiN(k·ξ+|k|2)−q2|k|2dk =

π

q2 − iN

∫
C(x)e

− |Nξ−x|
2

4(q2−iN) dx.

Letting q → 0 (and assuming C, Ĉ ∈ L1) gives the generalized Parseval’s formula∫
Ĉ(k)eiN(k·ξ+|k|2)dk =

iπ

N

∫
C(x)ei

ξ
2 ·x−i

|x|2
4N −iN

|ξ|2
4 dx.

This shows that

sup
ξ∈R2

∣∣∣ ∫ Ĉ(k)eiN(k·ξ+|k|2)dk
∣∣∣ ≤ π

N

∫
|C(x)|dx,

which completes the proof of Step 4.

Step 5. For any Z > 0 we have

lim
ε→0

sup
z∈[0,Z]

‖R̃εz‖∞ = 0.

Combining Steps 2, 3 and 4, we find that, for any Z > η > 0,

lim sup
ε→0

sup
z∈[0,Z]

‖R̃εz‖∞ ≤ 4k20C(0)ηe2k
2
0C(0)η.

Since this holds true for any η > 0, we can let η → 0 to get the desired result.
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