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Abstract. In this paper we consider the Itô-Schrödinger model for wave propagation in random
media in the paraxial regime. We solve the equation for the fourth-order moment of the field in
the regime where the correlation length of the medium is smaller than the initial beam width. As
applications we derive the covariance function of the intensity of the transmitted beam and the
variance of the smoothed Wigner transform of the transmitted field. The first application is used to
explicitly quantify the scintillation of the transmitted beam and the second application to quantify
the statistical stability of the Wigner transform.

1. Introduction. In many wave propagation scenarios the medium is not con-
stant, but varies in a complicated fashion on a scale that may be small compared to
the total propagation distance. This is the case for wave propagation through the
turbulent atmosphere, the earth’s crust, the ocean, and complex biological tissue for
instance. If one aims to use transmitted or reflected waves for communication or
imaging purposes it is important to characterize how such microstructure affects and
corrupts the wave. Such a characterization is particularly important for modern imag-
ing techniques such as seismic interferometry or coherent interferometric imaging that
correlate wave field traces that have been strongly corrupted by the microstructure
and use their coherence or covariance for imaging. The wave field correlations can
indeed be characterized by second-order wave field moments and a characterization
of the signal-to-noise ratio then involves a fourth-order moment calculation.

Motivated by the situation described above we consider wave propagation through
time-independent media with a complex spatially varying index of refraction that can
be modeled as the realization of a random process. Typically we cannot expect to
know the index of refraction pointwise, but we may be able to characterize its statistics
and we are interested in how the statistics of the medium affect the statistics of the
wave field. In its most common form, the analysis of wave propagation in random
media consists in studying the field v solution of the scalar time-harmonic wave or
Helmholtz equation

∆v + k2
0n

2(z,x)v = 0, (z,x) ∈ R× R2, (1.1)

where k0 is the free space homogeneous wavenumber and n is a randomly heteroge-
neous index of refraction. Since the index of refraction n is a random process, the
field v is also a random process whose statistical behavior can be characterized by
the calculations of its moments. Even though the scalar wave equation is simple and
linear, the relation between the statistics of the index of refraction and the statistics
of the field is highly nontrivial and nonlinear. In this paper we consider a primary
scaling regime corresponding to long-range beam propagation and small-scale medium
fluctuations giving negligible backscattering. This is the so-called white-noise paraxial
regime, as described by the Itô-Schrödinger model, which is presented in Section 2.
This model is a simplification of the model (1.1) since it corresponds to an evolution
problem, but yet in the regime that we consider it describes the propagated field in
a weak sense in that it gives the correct statistical structure of the wave field. The
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Itô-Schrödinger model can be derived rigorously from (1.1) by a separation of scales
technique in the high-frequency regime (see (2) in the case of a randomly layered
medium and (22; 23; 24) in the case of a three-dimensional random medium). It
models many situations, for instance laser beam propagation (38), time reversal in
random media (5; 34), underwater acoustics (39), or migration problems in geophysics
(7). The Itô-Schrödinger model allows for the use of Itô’s stochastic calculus, which in
turn enables the closure of the hierarchy of moment equations (17; 28). Unfortunately,
even though the equation for the second-order moments can be solved, the equation
for the fourth-order moments is very difficult and only approximations or numerical
solutions are available (see (13; 27; 40; 43; 46) and (28, Sec. 20.18)).

Here, we consider a secondary scaling regime corresponding to the so-called scin-
tillation regime and in this regime we derive explicit expressions for the fourth-order
moments. The scintillation scenario is a well-known paradigm, related to the obser-
vation that the irradiance of a star fluctuates due to interaction of the light with
the turbulent atmosphere. This common observation is far from being fully under-
stood mathematically. However, experimental observations indicate that the statisti-
cal distribution of the irradiance is exponential, with the irradiance being the square
magnitude of the complex wave field. Indeed it is a well-accepted conjecture in the
physical literature that the statistics of the complex wave field becomes circularly
symmetric complex Gaussian when the wave propagates through the turbulent atmo-
sphere (44; 48), so that the irradiance is the sum of the squares of two independent
real Gaussian random variables, which has chi-square distribution with two degrees of
freedom, that is an exponential distribution. However, so far there is no mathemati-
cal proof of this conjecture, except in randomly layered media (16, Chapter 9). The
regime we consider here, which we refer to as the scintillation regime, gives results
for the fourth-order moments that are consistent with the scintillation or Gaussian
conjecture and we discuss the statistical character of the irradiance in detail in Section
8 exploiting our novel results on the fourth-order moments.

Certain functionals of the solution to the white-noise paraxial wave equation can
be characterized in some specific regimes (3; 4; 11; 35). An important aspect of such
characterizations is the so-called statistical stability property which corresponds to
functionals of the wave field becoming deterministic in the considered scaling regime.
This is in particular the case in the limit of rapid decorrelation of the medium fluctu-
ations (in both longitudinal and lateral coordinates). As shown in (3) the statistical
stability also depends on the initial data and can be lost for very rough initial data
even with a high lateral diversity as considered there. In (29; 30) the authors also con-
sider a situation with rapidly fluctuating random medium fluctuations and a regime
in which the so-called Wigner transform itself is statistically stable. The Wigner
transform is described in detail in Section 5.1 and is known to be a convenient tool
to analyze problems involving the Schrödinger equation (26; 37). Here, we are able
to push through a detailed and quantitative analysis of the stability of this quantity
using our results on the fourth-order moments. An important aspect of our analysis
is that we are able to derive an explicit expression of the coefficient of variation of the
smoothed Wigner transform as a function of the smoothing parameters, in the general
situation in which the standard deviation can be of the same order as the mean. This
is a realistic scenario, we are not deep into a statistical stabilization situation, but in
a situation where the parameters of the problem give partly coherent but fluctuat-
ing wave functionals. Here we are for the first time able to explicitly quantify such
fluctuations and how their magnitude can be controlled by smoothing of the Wigner
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transform. We believe that these results are important for the many applications
where the smoothed Wigner transform appears naturally.

The outline of the paper is as follows: In Section 4 we introduce the Itô-Schrödinger
model and the general equations for the moments of the field. In Section 5 we discuss
the second-order moments. In Section 6 we introduce and analyze the fourth-order
moments and the particular parameterization that will be useful to untangle these.
In Section 7 we introduce the so-called scintillation regime where we can get an ex-
plicit characterization of the fourth-order moments via the main result of the paper
presented in Proposition 7.1. Next we discuss two applications of the main result: In
Section 8 we compute the scintillation index and in Section 9 we analyze the statistical
stability of the smoothed Wigner transform.

2. The White-Noise Paraxial Model. Let us consider the time-harmonic
wave equation with homogeneous wavenumber k0, random index of refraction n(z,x),
and source in the plane z = 0:

∆v + k2
0n

2(z,x)v = −δ(z)f(x) , (2.1)

for x ∈ R2 and z ∈ [0,∞). Denote by λ0 the carrier wavelength (equal to 2π/k0),
by L the typical propagation distance, and by r0 the radius of the initial transverse
source. The paraxial regime holds when the wavelength λ0 is much smaller than the
radius r0, and when the propagation distance is smaller than or of the order of r2

0/λ0

(the so-called Rayleigh length). The white-noise paraxial regime that we address in
this paper holds when, additionally, the medium has random fluctuations, the typical
amplitude of the medium fluctuations is small, and the correlation length of the
medium fluctuations is larger than the wavelength and smaller than the propagation
distance. In this regime the solution of the time-harmonic wave equation (2.1) can be
approximated by (23)

v(z,x) =
i

2k0
u(z,x) exp

(
ik0z

)
,

where (u(z,x))z∈[0,∞),x∈R2 is the solution of the Itô-Schrödinger equation

du(z,x) =
i

2k0
∆xu(z,x)dz +

ik0

2
u(z,x) ◦ dB(z,x), (2.2)

with the initial condition in the plane z = 0:

u(z = 0,x) = f(x).

Here the symbol ◦ stands for the Stratonovich stochastic integral and B(z,x) is a
real-valued Brownian field over [0,∞)× R2 with covariance

E[B(z,x)B(z′,x′)] = min{z, z′}C(x− x′). (2.3)

The model (2.2) can be obtained from the scalar wave equation (2.1) by a separation of
scales technique in which the three-dimensional fluctuations of the index of refraction
n(z,x) are described by a zero-mean stationary random process ν(z,x) with mixing
properties: n2(z,x) = 1+ν(z,x). The covariance function C(x) in (2.3) is then given
in terms of the two-point statistics of the random process ν by

C(x) =

∫ ∞
−∞

E[ν(z′ + z,x′ + x)ν(z′,x′)]dz. (2.4)
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The covariance function C is assumed to belong to L1(R2) and with C(0) <∞. Note
that this means that the Fourier transform Ĉ, which is positive by Bochner’s theorem,
is integrable so that continuity follows by Lebesgue dominated convergence theorem.

Note that Its Fourier transform is nonnegative (it is the power spectral density of the
stationary process x → B(1,x)). The white-noise paraxial model is widely used in
the physical literature. It simplifies the full wave equation (2.1) by replacing it with
the initial value-problem (2.2). It was studied mathematically in (8), in which the
solution of (2.2) is shown to be the solution of a martingale problem whose L2-norm
is preserved in the case f ∈ L2(R2). The derivation of the Itô-Schrödinger equation
(2.2) from the three-dimensional wave equation in randomly scattering medium is
given in (23).

3. Main Result and Quasi Gaussianity. Modeling with the white noise
paraxial model is often motivated by propagation through “cluttered media”. The
objective for such modeling is in the typical situation to describe some communication
or imaging scheme, say with an object buried in the clutter. In many wave propaga-
tion and imaging scenarios the quantity of interest is given by a quadratic quantity
of the field u. For instance, in so called “time reversal problems” (15) a wave field
emitted by the source is recorded on an array, then time reversed and re-propagated
into the medium. Indeed the forward and time reversed propagation paths gives rise
to a quadratic quantity in the field itself for the “re-propagated field”. Moreover, in
important imaging approaches, in particular so called passive imaging techniques (20),
the image is formed based on computing cross correlations of field itself (measured
over an array) again giving a quadratic expression in the field itself for the quantity
of interest, the correlations. In a number of situations, in particular in optics, the
measured quantity is an intensity, again a quadratic quantity in the field itself. As we
explain in Section 5 the expected value of such quadratic quantities can in the parax-
ial regime be computed explicitly. This allows one to compute the mean image and
assess issues like resolution. However, it is important to go beyond this description
and describe the signal to noise ratio which requires one to compute a fourth order
moment of the wave field. Despite the importance of the signal to noise ratio hitherto
no rigorous results have been available that accomplishes this task. Indeed explicit
expressions for the fourth moment has been a long standing open problem. This is
what we push through in this paper. The main result in Section 7 enables one to
quantify the signal to noise ratio. I the context of design of imaging and communi-
cation techniques this insight is important to make proper balance in between noise
and resolution in the image. We remark that in certain regimes one may be able to
prove ‘statistical stability”, that is, that the signal to noise ratio goes to infinity in
the scaling limit (34; 35). The results we present here are more general in the sense
that we can actually describe a finite signal to noise ratio and how the parameters of
the problem determines this.

To summarize and explicitly articulate the main result regarding the fourth mo-
ment we consider first the first and second order moments of u in (2.2) in the context
when f(x) = exp(−|x|2/2r2

0). We use the notations for the first and second-order
moments

µ1(z,x) = E[u(z,x)], µ2(z,x,y) = E[u(z,x)u(z,y)],

Note that µ2 is given explicitly in (5.11). For the second centered moment we use the
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notation:

µ̃2(z,x,y) = µ2(z,x,y)− µ1(z,x)µ1(z,y). (3.1)

Then, to obtain an expression for the fourth order moment, one heuristic approach
often used in the literature (28) is to assume Gaussianity. Consider any complex
circularly symmetric Gaussian process (Z(t))t then we have (36) that the fourth-
order moment can be expressed in terms of the second-order moments by the Gaussian
summation rule as

E
[
Z(t1)Z(t2)Z(t3)Z(t4)

]
= E

[
Z(t1)Z(t3)

]
E
[
Z(t2)Z(t4)

]
(3.2)

+E
[
Z(t1)Z(t4)

]
E
[
Z(t2)Z(t3)

]
This leads to the following expression for the fourth order moment

E[u(z,x1)u(z,x2)u(z,y1)u(z,y2)] = µG4 (z,x1,x2,y1,y2)

= µ1(z,x1)µ1(z,x2)µ1(z,y1)µ1(z,y2)

+µ1(z,x1)µ1(z,y1)µ̃2(z,x2,y2) + µ1(z,x2)µ1(z,y1)µ̃2(z,x1,y2)

+µ1(z,x1)µ1(z,y2)µ̃2(z,x2,y1) + µ1(z,x2)µ1(z,y2)µ̃2(z,x1,y1)

+µ̃2(z,x1,y1)µ̃2(z,x2,y2) + µ̃2(z,x1,y2)µ̃2(z,x2,y1)

This result is not correct in general. We show however via a long calculation presented
below that in the so called scintillation regime it can be corrected in the manner we
now describe. First note that the scintillation regime that we discuss in more detail
in Section 7 is characterized by a wide initial beam, a long propagation distance and
weak medium fluctuations. For ε� 1 we assume the scaling

r0 = r′0/ε, C(x) = εC ′(x), z = z′/ε,

with the primed quantities of order one. Then we have the corrected result

E[u(z,x1)u(z,x2)u(z,y1)u(z,y2)] = µ4(z,x1,x2,y1,y2)

≈ µ1(z,x1)µ1(z,x2)µ1(z,y1)µ1(z,y2)

+µ1(z,x1)µ1(z,y1)µ̌2(z,x2,y2) + µ1(z,x2)µ1(z,y1)µ̌2(z,x1,y2)

+µ1(z,x1)µ1(z,y2)µ̌2(z,x2,y1) + µ1(z,x2)µ1(z,y2)µ̌2(z,x1,y1)

+µ̌2(z,x1,y1)µ̌2(z,x2,y2) + µ̌2(z,x1,y2)µ̌2(z,x2,y1)

for

µ̌2(z,x,y) = exp

(
|x− y|2

4r2
0

)

)
µ̃2(z,x,y)

=
r2
0

4π
exp

(
−k

2
0zC(0)

4

)∫ [
exp

(
− r2

0|ξ|2

4
+ iξ · (x+ y)/2

)
× exp

(k2
0

4

∫ z

0

C
(
(x− y)− ξ z

′

k0

)
dz′
)
− 1
]
dξ

and also in this regime

µ1(z,x) = exp

(
−|x|

2

2r2
0

)
exp

(
−k

2
0zC(0)

8

)
.
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We will make precise the meaning of the approximation in Section 7.

Finally in the regime when the field becomes incoherent so that µ1 is relatively
small, that is C ′(0) is large, we have in fact:

µ4(z,x1,x2,y1,y2) ≈ µG4 (z,x1,x2,y1,y2)

≈ µ2(z,x1,y1)µ2(z,x2,y2) + µ2(z,x1,y2)µ2(z,x2,y1).

These results can now be used to discuss a wide range of applications in imaging
and wave propagation. The fourth moment is a fundamental quantity in the context
of waves in complex media and the above result is the first rigorous derivation of it
that makes explicit the particular scaling regime in which it is valid, moreover, when
in fact the Gaussian assumption is can be used.

In this paper we also discuss application to characterization of the scintillation
in Section 8. The Scintillation index is a fundamental quantity that describes the
relative intensity fluctuations for the wave field. Despite being a fundamental physi-
cal quantity associated for instance with light propagation through the atmosphere, a
rigorous derivation was not obtained before. We moreover give an explicit characteri-
zation of the signal to noise ratio for the Wigner transform in Section 9. The Wigner
transform is a fundamental quadratic form of the field that is useful in the context
of analysis of problems involving paraxial or Schrödinger equations, for instance time
reversal problems.

We remark finally that the results derived here also has proven to be useful in
analysis of so called “ghost imaging” (47), “enhanced focusing” problems (21) and
“scintillation correlation” (45). Results on this will be reported elsewhere.

Ghost imaging is a fascinating recent imaging methodology that involves correlat-
ing two wave field observations. In the typical situation one correlate coarsely sampled
wave field observation of waves in the “line of sight” of the object to be imaged, that
is, the wave field has interacted with the object with high resolution observations
that are outside of the line of sight. Indeed this problem can be understood at the
mathematical level by using the results presented in this paper.

Enhanced focusing refers to schemes for communication and imaging in a case
where one assumes that a reference signal for propagation through the channel is
available. Then one uses this information to design an optimal probe that focuses
tightly at the desired focusing point. How to optimally design and analyze such
schemes, given the limitations of the transducers and so on, can be analyzed using
the moment theory presented here.

Intensity correlations is a recently proposed scheme for communication in the
optical regime that is based on using cross corrections of intensities, as measured
in this regime, for communication. This is a promising scheme for communication
through relatively strong clutter. By using the correlation of the intensity or speckle
for different incoming angles of the source one can get spatial information about the
source. The idea of using the information about the statistical structure of speckle to
enhance signaling is very interesting and corroborates the idea that modern schemes
for communication and imaging require a mathematical theory for analysis of higher
order moments.

The results derived in this paper already have opened for the mathematical anal-
ysis of important imaging problems and we believe that many more problems than
those mentioned here will benefit from the results regarding the fourth moment. In
fact, enhanced transducer technology and sampling schemes allows for using finer
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aspects of the wave field involving second and fourth order moments and in such com-
plex cases a rigorous mathematical analysis is important to support, complement, or
actually disprove, statements based on physical intuition alone.

4. The General Moment Equations. The main tool for describing wave
statistics are the finite-order moments. We show in this section that in the con-
text of the Itô-Schrödinger equation (2.2) the moments of the field satisfy a closed
system at each order (17; 28). For p ∈ N, we define

Mp

(
z, (xj)

p
j=1, (yl)

p
l=1

)
= E

[ p∏
j=1

u(z,xj)

p∏
l=1

u(z,yl)
]
, (4.1)

for (xj)
p
j=1, (yl)

p
l=1 ∈ R2p. Note that here the number of conjugated terms equals

the number of non-conjugated terms, otherwise the moments decay relatively rapidly
to zero due to unmatched random phase terms associated with random travel time
perturbations. Using the stochastic equation (2.2) and Itô’s formula for Hilbert space-
valued processes (33), we find that the function Mp satisfies the Schrödinger-type
system:

∂Mp

∂z
=

i

2k0

( p∑
j=1

∆xj −
p∑
l=1

∆yl

)
Mp +

k2
0

4
Up
(
(xj)

p
j=1, (yl)

p
l=1

)
Mp, (4.2)

Mp(z = 0) =

p∏
j=1

f(xj)

p∏
l=1

f(yl), (4.3)

with the generalized potential

Up
(
(xj)

p
j=1, (yl)

p
l=1

)
=

p∑
j,l=1

C(xj − yl)−
1

2

p∑
j,j′=1

C(xj − xj′)−
1

2

p∑
l,l′=1

C(yl − yl′)

=

p∑
j,l=1

C(xj − yl)−
∑

1≤j<j′≤p

C(xj − xj′)−
∑

1≤l<l′≤p

C(yl − yl′)− pC(0) . (4.4)

We introduce the Fourier transform

M̂p

(
z, (ξj)

p
j=1, (ζl)

p
l=1

)
=

∫∫
Mp

(
z, (xj)

p
j=1, (yl)

p
l=1

)
× exp

(
− i

p∑
j=1

xj · ξj + i

p∑
l=1

yl · ζl
)
dx1 · · · dxpdy1 · · · dyp. (4.5)

It satisfies

∂M̂p

∂z
= − i

2k0

( p∑
j=1

|ξj |2 −
p∑
l=1

|ζl|2
)
M̂p +

k2
0

4
ÛpM̂p, (4.6)

M̂p(z = 0) =

p∏
j=1

f̂(ξj)

p∏
l=1

f̂(ζl), (4.7)
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where f̂ is the Fourier transform of the initial field:

f̂(ξ) =

∫
f(x) exp(−iξ · x)dx,

and the operator Ûp is defined by

ÛpM̂p =
1

(2π)2

∫
Ĉ(k)

[ p∑
j,l=1

M̂p(ξj − k, ζl − k)

−
∑

1≤j<j′≤p

M̂p(ξj − k, ξj′ + k)−
∑

1≤l<l′≤p

M̂p(ζl − k, ζl′ + k)− pM̂p

]
dk, (4.8)

where we only write the arguments that are shifted. In this paper, unless mentioned
explicitly, all integrals are over R2. It turns out that the equation for the Fourier
transform M̂p is easier to solve than the one for Mp as we will see below.

5. The Second-Order Moments. The second-order moments play an impor-
tant role, as they give the mean intensity profile and the correlation radius of the
transmitted beam (14; 24), they can be used to analyze time reversal experiments
(5; 34) and wave imaging problems (9; 10), and we will need them to compute the
scintillation index of the transmitted beam and the variance of the Wigner transform.
We describe them in detail in this section.

5.1. The Mean Wigner Transform. The second-order moments

M1(z,x,y) = E
[
u(z,x)u(z,y)

]
(5.1)

satisfy the system:

∂M1

∂z
=

i

2k0

(
∆x −∆y

)
M1 +

k2
0

4

(
C(x− y)− C(0)

)
M1, (5.2)

starting from M1(z = 0,x,y) = f(x)f(y). The second-order moment is related to
the mean Wigner transform defined by

Wm(z,x, q) =

∫
exp

(
− iq · y

)
E
[
u
(
z,x+

y

2

)
u
(
z,x− y

2

)]
dy, (5.3)

that is the angularly-resolved mean wave energy density. Using (5.2) we find that it
satisfies the closed system

∂Wm

∂z
+

1

k0
q · ∇xWm =

k2
0

4(2π)2

∫
Ĉ(k)

[
Wm(q − k)−Wm(q)

]
dk, (5.4)

starting from Wm(z = 0,x, q) = W0(x, q), which is the Wigner transform of the
initial field f :

W0(x, q) =

∫
exp

(
− iq · y

)
f
(
x+

y

2

)
f
(
x− y

2

)
dy.

Eq. (5.4) has the form of a radiative transport equation for the wave energy density
Wm. In this context k2

0C(0)/4 is the total scattering cross-section and k2
0Ĉ(·)/[4(2π)2]

is the differential scattering cross-section that gives the mode conversion rate.
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By taking a Fourier transform in q and x of Eq. (5.4):

Ŵm(z, ξ,y) =
1

(2π)2

∫∫
exp

(
− iξ · x+ iq · y

)
Wm(z,x, q)dqdx,

we obtain a transport equation:

∂Ŵm

∂z
+

1

k0
ξ · ∇yŴm =

k2
0

4

[
C(y)− C(0)

]
Ŵm,

that can be integrated and we find the following integral representation for Wm:

Wm(z,x, q) =
1

(2π)2

∫∫
exp

(
iξ ·

(
x− q z

k0

)
− iy′ · q

)
Ŵ0

(
ξ,y′

)
× exp

(k2
0

4

∫ z

0

C
(
y′ + ξ

z′

k0

)
− C(0)dz′

)
dξdy′, (5.5)

where Ŵ0 is defined in terms of the initial field f as:

Ŵ0(ξ,y) =

∫
exp

(
− iξ · x

)
f
(
x+

y

2

)
f
(
x− y

2

)
dx. (5.6)

5.2. The Mutual Coherence Function. The second-order moment of the field
(or mutual coherence function) is defined by:

Γ(2)(z,x,y) = E
[
u
(
z,x+

y

2

)
u
(
z,x− y

2

)]
, (5.7)

where x is the mid-point and y is the offset. It can be characterized by taking the
inverse Fourier transform of the expression (5.5):

Γ(2)(z,x,y) =
1

(2π)2

∫
exp

(
iq · y

)
Wm(z,x, q)dq

=
1

(2π)2

∫
exp

(
iξ · x

)
Ŵ0

(
ξ,y − ξ z

k0

)
× exp

(k2
0

4

∫ z

0

C
(
y − ξ z

′

k0

)
− C(0)dz′

)
dξ. (5.8)

Let us examine the particular initial condition which corresponds to a Gaussian-beam
wave. If the input spatial profile is Gaussian with radius r0:

f(x) = exp
(
− |x|

2

2r2
0

)
, (5.9)

then we have

Ŵ0(ξ,y) = πr2
0 exp

(
− r2

0|ξ|2

4
− |y|

2

4r2
0

)
, (5.10)

and we find from (5.8) that the second-order moment of the field has the form

Γ(2)(z,x,y) =
r2
0

4π

∫
exp

(
− 1

4r2
0

∣∣y − ξ z
k0

∣∣2 − r2
0|ξ|2

4
+ iξ · x

)
× exp

(k2
0

4

∫ z

0

C
(
y − ξ z

′

k0

)
− C(0)dz′

)
dξ. (5.11)
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6. The Fourth-Order Moments. We consider the fourth-order moment M2

of the field, which is the main quantity of interest in this paper, and parameterize the
four points x1,x2,y1,y2 in (4.1) in the special way:

x1 =
r1 + r2 + q1 + q2

2
, y1 =

r1 + r2 − q1 − q2

2
,

x2 =
r1 − r2 + q1 − q2

2
, y2 =

r1 − r2 − q1 + q2

2
.

In particular r1/2 is the barycenter of the four points x1,x2,y1,y2:

r1 =
x1 + x2 + y1 + y2

2
, q1 =

x1 + x2 − y1 − y2

2
,

r2 =
x1 − x2 + y1 − y2

2
, q2 =

x1 − x2 − y1 + y2

2
.

The fourth-order moment M2 is of interest for instance for the characterization of
the second-order moment of the intensity, also called intensity correlation function by
Ishimaru (28, Eq. (20.125)):

Γ(4)(z,x,y) = E
[∣∣u(z,x+

y

2

)∣∣2∣∣u(z,x− y
2

)∣∣2]. (6.1)

The intensity correlation function with mid-point x and offset y is given by (in terms
of the function M2 with the new variables):

Γ(4)(z,x,y) = M2

(
z, q1 = 0, q2 = 0, r1 = 2x, r2 = y

)
.

Thus, the key to the understanding of the intensity correlation function and related
physical quantities is to understand M2 and we consider this in detail in this paper.

In the variables (q1, q2, r1, r2) the function M2 satisfies the system:

∂M2

∂z
=

i

k0

(
∇r1 · ∇q1 +∇r2 · ∇q2

)
M2 +

k2
0

4
U2(q1, q2, r1, r2)M2, (6.2)

with the generalized potential

U2(q1, q2, r1, r2) = C(q2 + q1) + C(q2 − q1) + C(r2 + q1) + C(r2 − q1)

−C(q2 + r2)− C(q2 − r2)− 2C(0). (6.3)

Note in particular that the generalized potential does not depend on the barycenter
r1, and this comes from the fact that the medium is statistically homogeneous. If we
assume that the input spatial profile is the Gaussian (5.9) with radius r0, then the
initial condition for Eq. (6.2) is

M2(z = 0, q1, q2, r1, r2) = exp
(
− |q1|2 + |q2|2 + |r1|2 + |r2|2

2r2
0

)
.

The Fourier transform (in q1, q2, r1, and r2) of the fourth-order moment is
defined by:

M̂2(z, ξ1, ξ2, ζ1, ζ2) =

∫∫
M2(z, q1, q2, r1, r2)

× exp
(
− iq1 · ξ1 − ir1 · ζ1 − iq2 · ξ2 − ir2 · ζ2

)
dr1dr2dq1dq2. (6.4)
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It satisfies

∂M̂2

∂z
+

i

k0

(
ξ1 · ζ1 + ξ2 · ζ2

)
M̂2 =

k2
0

4(2π)2

∫
Ĉ(k)

[
M̂2(ξ1 − k, ξ2 − k, ζ1, ζ2)

+M̂2(ξ1 − k, ξ2, ζ1, ζ2 − k) + M̂2(ξ1 + k, ξ2 − k, ζ1, ζ2)

+M̂2(ξ1 + k, ξ2, ζ1, ζ2 − k)− 2M̂2(ξ1, ξ2, ζ1, ζ2)

−M̂2(ξ1, ξ2 − k, ζ1, ζ2 − k)− M̂2(ξ1, ξ2 + k, ζ1, ζ2 − k)

]
dk, (6.5)

starting from M̂2(z = 0, ξ1, ξ2, ζ1, ζ2) = (2πr2
0)4 exp(−r2

0(|ξ1|2 + |ξ2|2 + |ζ1|2 +
|ζ2|2)/2), which is well posed by Lemma B.1. The resolution of this transport
equation would give the expression of the fourth-order moment. However, in contrast
to the second-order moment, we cannot solve this equation and find a closed-form
expression of the fourth-order moment in the general case. Therefore we address in
the next sections a particular regime in which explicit expressions can be obtained.

7. The Scintillation Regime and Main Result. In this paper we address a
regime which can be considered as a particular case of the paraxial white-noise regime:
the scintillation regime. In (25) we addressed this regime in the limit case of an infinite
beam radius, that is, a plane wave. Here we address the propagation of a beam with
finite radius r0 to analyze its role. Note that this general situation gives transport
equations as in (7.7) below that are in R4d, d = 2, rather than the simpler situation
with transport equations in R2d that was considered in (25). In Appendix A we
explain the conditions for validity of this regime in the context of the wave equation
(2.1). More directly, if we start from the Itô-Schrödinger equation (2.2), then the
scintillation regime is valid if the (transverse) correlation length of the Brownian field
is smaller than the beam radius, the standard deviation of the Brownian field is small,
and the propagation distance is large. If the correlation length is our reference length,
this means that in this regime the covariance function Cε is of the form:

Cε(x) = εC(x), (7.1)

the beam radius is of order 1/ε, i.e. the initial source is of the form

fε(x) = exp
(
− ε2|x|2

2r2
0

)
, (7.2)

and the propagation distance is of order of 1/ε. Here ε is a small dimensionless
parameter and we will study the limit ε→ 0. Note that for simplicity we assume that
the initial beam profile is Gaussian, which allows us to get closed-form expressions,
but the results could be extended to more general beam profiles.

Let us denote the rescaled function

M̂ε
2 (z, ξ1, ξ2, ζ1, ζ2) = M̂2

(z
ε
, ξ1, ξ2, ζ1, ζ2

)
. (7.3)

The evolution equations (6.5) of the Fourier transforms of the moments become

∂M̂ε
2

∂z
+

i

εk0

(
ξ1 · ζ1 + ξ2 · ζ2

)
M̂ε

2 =
k2

0

4(2π)2

∫
Ĉ(k)

[
M̂ε

2 (ξ1 − k, ξ2 − k, ζ1, ζ2)

+M̂ε
2 (ξ1 − k, ξ2, ζ1, ζ2 − k) + M̂ε

2 (ξ1 + k, ξ2 − k, ζ1, ζ2)

+M̂ε
2 (ξ1 + k, ξ2, ζ1, ζ2 − k)− 2M̂ε

2 (ξ1, ξ2, ζ1, ζ2)

−M̂ε
2 (ξ1, ξ2 − k, ζ1, ζ2 − k)− M̂ε

2 (ξ1, ξ2 + k, ζ1, ζ2 − k)

]
dk, (7.4)
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which shows the appearance of a rapid phase, and the initial condition (corresponding
to (7.2)) is

M̂ε
2 (z = 0, ξ1, ξ2, ζ1, ζ2) =

(2π)4r8
0

ε8
exp

(
− r2

0

2ε2

(
|ξ1|2 + |ξ2|2 + |ζ1|2 + |ζ2|2

))
. (7.5)

The asymptotic behavior as ε → 0 of the moments is therefore determined by the
solutions of partial differential equations with rapid phase terms. A key limit theorem
will allow us to get a representation of the fourth-order moments in the asymptotic
regime ε→ 0. We will see that, although the initial condition (7.5) is concentrated in
the four variables around an ε-neighborhood of 0, the evolution equation will spread
it, except in the ζ1-variable which is a frozen parameter in the evolution equation
(7.4). This is related to the fact that the generalized potential does not depend on
r1 as the medium is statistically homogeneous. It corresponds to the fourth-order
moment not varying rapidly with respect to the spatial center coordinate r1 while in
the other barycentric coordinates we have in general rapid variations induced by the
medium fluctuations on this scale.

In the scintillation regime the rescaled function M̃ε defined by

M̃ε(z, ξ1, ξ2, ζ1, ζ2

)
= M̂ε

2

(
z, ξ1, ξ2, ζ1, ζ2

)
exp

( iz
k0ε

(ξ2 · ζ2 + ξ1 · ζ1)
)

(7.6)

satisfies the equation with fast phases

∂M̃ε

∂z
=

k2
0

4(2π)2

∫
Ĉ(k)

[
− 2M̃ε(ξ1, ξ2, ζ1, ζ2)

+M̃ε(ξ1 − k, ξ2 − k, ζ1, ζ2)ei
z
εk0

k·(ζ2+ζ1)

+M̃ε(ξ1 − k, ξ2, ζ1, ζ2 − k)ei
z
εk0

k·(ξ2+ζ1)

+M̃ε(ξ1 + k, ξ2 − k, ζ1, ζ2)ei
z
εk0

k·(ζ2−ζ1)

+M̃ε(ξ1 + k, ξ2, ζ1, ζ2 − k)ei
z
εk0

k·(ξ2−ζ1)

−M̃ε(ξ1, ξ2 − k, ζ1, ζ2 − k)ei
z
εk0

(k·(ζ2+ξ2)−|k|2)

−M̃ε(ξ1, ξ2 − k, ζ1, ζ2 + k)ei
z
εk0

(k·(ζ2−ξ2)+|k|2)

]
dk, (7.7)

starting from

M̃ε(z = 0, ξ1, ξ2, ζ1, ζ2) = (2π)8φε(ξ1)φε(ξ2)φε(ζ1)φε(ζ2), (7.8)

where we have denoted

φε(ξ) =
r2
0

2πε2
exp

(
− r2

0

2ε2
|ξ|2
)
. (7.9)

Note that φε belongs to L1 and has a L1-norm equal to one. Our goal is now to study
the asymptotic behavior of M̃ε as ε→ 0. We have the following result, which shows
that M̃ε exhibits a multi-scale behavior as ε→ 0, with some components evolving at
the scale ε and some components evolving at the order one scale.

Proposition 7.1. Under the assumptions in Section 2, the function M̃ε(z, ξ1, ξ2, ζ1, ζ2)
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can be expanded as

M̃ε(z, ξ1, ξ2, ζ1, ζ2) = K(z)φε(ξ1)φε(ξ2)φε(ζ1)φε(ζ2)

+K(z)φε
(ξ1 − ξ2√

2

)
φε(ζ1)φε(ζ2)A

(
z,
ξ2 + ξ1

2
,
ζ2 + ζ1

ε

)
+K(z)φε

(ξ1 + ξ2√
2

)
φε(ζ1)φε(ζ2)A

(
z,
ξ2 − ξ1

2
,
ζ2 − ζ1

ε

)
+K(z)φε

(ξ1 − ζ2√
2

)
φε(ζ1)φε(ξ2)A

(
z,
ζ2 + ξ1

2
,
ξ2 + ζ1

ε

)
+K(z)φε

(ξ1 + ζ2√
2

)
φε(ζ1)φε(ξ2)A

(
z,
ζ2 − ξ1

2
,
ξ2 − ζ1

ε

)
+K(z)φε(ζ1)φε(ζ2)A

(
z,
ξ2 + ξ1

2
,
ζ2 + ζ1

ε

)
A
(
z,
ξ2 − ξ1

2
,
ζ2 − ζ1

ε

)
+K(z)φε(ζ1)φε(ξ2)A

(
z,
ζ2 + ξ1

2
,
ξ2 + ζ1

ε

)
A
(
z,
ζ2 − ξ1

2
,
ξ2 − ζ1

ε

)
+Rε(z, ξ1, ξ2, ζ1, ζ2), (7.10)

where the functions K and A are defined by

K(z) = (2π)8 exp
(
− k2

0

2
C(0)z

)
, (7.11)

A(z, ξ, ζ) =
1

2(2π)2

∫ [
exp

(k2
0

4

∫ z

0

C
(
x+

ζ

k0
z′
)
dz′
)
− 1
]

× exp
(
− iξ · x

)
dx, (7.12)

and the function Rε satisfies

sup
z∈[0,Z]

‖Rε(z, ·, ·, ·, ·)‖L1(R2×R2×R2×R2)
ε→0−→ 0,

for any Z > 0. It follows from the proof given in Appendix B that the function
ξ → A(z, ξ, ζ) belongs to L1(R2) and that its L1-norm ‖A(z, ·, ζ)‖L1(R2) is bounded
uniformly in ζ ∈ R2 and z ∈ [0, Z]. Therefore, all terms in the right-hand side of
(7.10) are in L1(R2 × R2 × R2 × R2) with L1-norms bounded uniformly in ε and
z ∈ [0, Z]. This proposition is important as many quantities of interest, such as the
intensity correlation function, the scintillation index, or the variance of the Wigner
transform of the wave field that we will address in the next two sections, can be
expressed as integrals of M̃ε against bounded functions. As a consequence we will be
able to substitute M̃ε with the right-hand side of (7.10) without the remainder Rε in
these integrals, and this substitution will allow us to give quantitative results.

8. The Intensity Correlation Function. The intensity correlation function
(6.1) in the scintillation regime is defined by

Γ(4,ε)(z,x,y) = E
[∣∣u(z

ε
,
x

ε
+
y

2

)∣∣2∣∣u(z
ε
,
x

ε
− y

2

)∣∣2], (8.1)

that is, the mid-point x/ε is of the order of the initial beam width, and the off-set
y is of the order of the correlation length of the medium. The intensity correlation
function can be expressed in terms of M̂ε

2 as

Γ(4,ε)(z,x,y) =
1

(2π)8

∫∫
exp

(
2i
ζ1 · x
ε

+ iζ2 · y
)

×M̂ε
2

(
z, ξ1, ξ2, ζ1, ζ2

)
dζ1dζ2dξ1dξ2.

13



It can also be written in terms of M̃ε as

Γ(4,ε)(z,x,y) =
1

(2π)8

∫∫
exp

(
2i
ζ1 · x
ε

+ iζ2 · y − i
z

k0ε
(ξ2 · ζ2 + ξ1 · ζ1)

)
×M̃ε

(
z, ξ1, ξ2, ζ1, ζ2

)
dζ1dζ2dξ1dξ2.

Using Proposition 7.1, the intensity correlation function (8.1) has the following form
in the regime ε→ 0:

Γ(4,ε)(z,x,y)
ε→0−→ 4K(z)

(2π)8

∫∫
e−

r20
2 (|ζ2|

2+|ζ1|
2)+2ix·ζ1

[ r8
0

(2π)4
e−r

2
0(|α|2+|β|2)

+
r6
0

(2π)3
A(z,α, ζ2 + ζ1)e−r

2
0 |β|

2

e−iα
ζ2+ζ1
k0

z

+
r6
0

(2π)3
A(z,β, ζ2 − ζ1)e−r

2
0 |α|

2

e−iβ·
ζ2−ζ1
k0

z

+
r4
0

(2π)2
A(z,α, ζ2 + ζ1)A(z,β, ζ2 − ζ1)e−iα·

ζ2+ζ1
k0

z−iβ· ζ2−ζ1k0
z
]
dαdβdζ2dζ1

+
4K(z)

(2π)8

∫∫
e−

r20
2 (|ξ2|

2+|ζ1|
2)+2ix·ζ1

×
[ r6

0

(2π)3
A(z,α, ξ2 + ζ1)e−r

2
0 |β|

2

eiα·(y−
ξ2+ζ1
k0

z)

+
r6
0

(2π)3
A(z,β, ξ2 − ζ1)e−r

2
0 |α|

2

eiβ·(y−
ξ2−ζ1
k0

z)

+
r4
0

(2π)2
A(z,α, ξ2 + ζ1)A(z,β, ξ2 − ζ1)eiα·(y−

ξ2+ζ1
k0

z)+iβ·(y− ξ2−ζ1k0
z)
]
dαdβdξ2dζ1.

Using the explicit form (7.12) of A, this expression can be simplified to

Γ(4,ε)(z,x,y)
ε→0−→ − exp

(
− k2

0C(0)z

2

)
exp

(
− 2|x|2

r2
0

)
+
∣∣∣ r2

0

4π

∫
exp

(k2
0

4

∫ z

0

C
(
ζ
z′

k0

)
− C(0)dz′ − r2

0|ζ|2

4
+ iζ · x

)
dζ
∣∣∣2

+
∣∣∣ r2

0

4π

∫
exp

(k2
0

4

∫ z

0

C
(
ζ
z′

k0
− y

)
− C(0)dz′ − r2

0|ζ|2

4
+ iζ · x

)
dζ
∣∣∣2. (8.2)

For comparison, the mutual coherence function defined by

Γ(2,ε)(z,x,y) = E
[
u
(z
ε
,
x

ε
+
y

2

)
u
(z
ε
,
x

ε
− y

2

)]
(8.3)

is given by (see (5.11) with r0 → r0/ε, x→ x/ε, z → z/ε, and C → εC):

Γ(2,ε)(z,x,y) =
r2
0

4πε2

∫
exp

(
− ε2

4r2
0

∣∣y − ξ z

k0ε

∣∣2 − r2
0|ξ|2

4ε2
+ i
ξ · x
ε

)
× exp

(k2
0ε

4

∫ z/ε

0

C
(
y − ξ z

′

k0

)
− C(0)dz′

)
dξ

=
r2
0

4π

∫
exp

(
− ε2

4r2
0

∣∣y − ζ z
k0

∣∣2 − r2
0|ζ|2

4
+ iζ · x

)
× exp

(k2
0

4

∫ z

0

C
(
y − ζ z

′

k0

)
− C(0)dz′

)
dζ, (8.4)
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so that in the limit ε→ 0 :

Γ(2,ε)(z,x,y)
ε→0−→ r2

0

4π

∫
exp

(k2
0

4

∫ z

0

C
(
ζ
z′

k0
−y
)
−C(0)dz′− r

2
0|ζ|2

4
+iζ ·x

)
dζ. (8.5)

Before giving the result about the scintillation index, we briefly revisit the case
of a plane wave, which corresponds to the limit case r0 →∞ and which was already
addressed in (25). We here find that, in the double limit ε→ 0 and r0 →∞:

lim
r0→∞

lim
ε→0

Γ(2,ε)(z,x,y) = exp
(k2

0(C(y)− C(0))z

4

)
,

moreover, by (8.2)

lim
r0→∞

lim
ε→0

Γ(4,ε)(z,x,y) = 1− exp
(
− k2

0C(0)z

2

)
+ exp

(k2
0(C(y)− C(0))z

2

)
,

which is the result obtained in (25). Note that in (25) we first took the limit r0 →∞,
and then ε→ 0, while we here do the opposite. The two limits are exchangeable. As
discussed in (25), this result shows in particular that the scintillation index, that is,
the variance of the intensity divided by the square of the mean intensity as defined
below in (8.6), is close to one when k2

0C(0)z � 1.
We next consider the scintillation index in the general case of an initial Gaussian

beam as considered here. The expressions (8.2) and (8.5) allow us to describe the
scintillation index of the transmitted beam for the general case of an initial Gaussian
beam with radius r0.

Proposition 8.1. The scintillation index defined as the square coefficient of
variation of the intensity (28, Eq. (20.151)):

Sε(z,x) =
E
[∣∣u( zε , xε )∣∣4]− E

[∣∣u( zε , xε )∣∣2]2
E
[∣∣u( zε , xε )∣∣2]2 (8.6)

has the following expression in the limit ε→ 0:

Sε(z,x)
ε→0−→ 1−

exp
(
− 2|x|2

r20

)
∣∣∣ 1

4π

∫
exp

(
k20
4

∫ z
0
C
(
u z′

k0r0

)
dz′ − |u|

2

4 + iu · xr0
)
du
∣∣∣2 . (8.7)

Let us consider the following form of the covariance function of the medium
fluctuations:

C(x) = C(0)C̃
( |x|
lc

)
,

with C̃(0) = 1 and the width of the function x→ C̃(x) is of order one. For instance,
we may consider C̃(x) = exp(−x2). Then the scintillation index at the beam center
x = 0 is

Sε(z,0)
ε→0−→ 1− 4∣∣∣ ∫∞0 exp

(
2z
Zsca

∫ 1

0
C̃
(
u z
Zc
s
)
ds− u2

4

)
udu

∣∣∣2 , (8.8)
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Fig. 8.1. Scintillation index at the beam center (8.8) as a function of the propagation distance
for different values of Zsca and Zc. Here C̃(x) = exp(−x2).

which is a function of z/Zsca and z/Zc only (or, equivalently, a function of z/Zsca and
Zc/Zsca only), where Zsca = 8

k20C(0)
and Zc = k0r0lc. Here Zsca is the scattering mean

free path, since the mean field decays exponentially at this rate:

E
[
u
(z
ε
,
x

ε

)] ε→0−→ exp
(
− |x|

2

2r2
0

)
exp

(
− z

Zsca

)
,

as can be seen from the Itô form of (2.2). Moreover, Zc is the typical propagation
distance for which diffractive effects are of order one, as shown in (23, Eq. 4.4). The
function (8.8) is plotted in Figure 8.1 in the case of Gaussian correlations for the
medium fluctuations: C̃(x) = exp(−x2). It is interesting to note that, even if the
propagation distance is larger than the scattering mean free path, the scintillation
index can be smaller than one if Zc is small enough.

In order to get more explicit expressions that facilitate interpretation of the results
let us assume that C(x) can be expanded as

C(x) = C(0)− γ

2
|x|2 + o(|x|2), x→ 0.

When scattering is strong in the sense that the propagation distance is larger than
the scattering mean free path k2

0C(0)z � 1, we have

K(z)1/2A(z, ξ, ζ) ' (2π)4

πk2
0γz

exp
(
− γz3

96
|ζ|2 − 2

k2
0γz
|ξ|2 +

iz

2k0
ζ · ξ

)
,

and Eqs. (8.2) and (8.5) can be simplified:

Γ(2,ε)(z,x,y)
ε→0−→ r2

0

r2
0 + γz3

6

× exp
(
− |x|2

r2
0 + γz3

6

− k2
0γz|y|2

8

r2
0 + γz3

24

r2
0 + γz3

6

+ i
k0γz

2x · y
4(r2

0 + γz3

6 )

)
, (8.9)

Γ(4,ε)(z,x,y)
ε→0−→ r4

0(
r2
0 + γz3

6

)2
× exp

(
− 2|x|2

r2
0 + γz3

6

)[
1 + exp

(
− k2

0γz|y|2

4

r2
0 + γz3

24

r2
0 + γz3

6

)]
. (8.10)
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This shows that, in the regime ε→ 0 and k2
0C(0)z � 1:

- The beam radius is Rz with

R2
z = r2

0 +
γz3

6
. (8.11)

- The correlation radius of the intensity distribution is ρz with

ρ2
z =

4

k2
0γz

r2
0 + γz3

6

r2
0 + γz3

24

, (8.12)

which is of the same order as the correlation radius of the field (compare the y-
dependence of (8.9) and (8.10)).
- The scintillation index is close to one:

Sε(z,x) =
Γ(4,ε)(z,x,0)− Γ(2,ε)(z,x,0)2

Γ(2,ε)(z,x,0)2
' 1. (8.13)

- The fourth-order moment and the second-order moment of the field satisfy:

Γ(4,ε)(z,x,y) '
∣∣Γ(2,ε)(z,x,0)

∣∣2 +
∣∣Γ(2,ε)(z,x,y)

∣∣2,
or equivalently

E
[∣∣u(z

ε
,
x

ε
+
y

2

)∣∣2∣∣u(z
ε
,
x

ε
− y

2

)∣∣2] ' E
[∣∣u(z

ε
,
x

ε
+
y

2

)∣∣2]E[∣∣u(z
ε
,
x

ε
− y

2

)∣∣2]
+
∣∣∣E[u(z

ε
,
x

ε
+
y

2

)
u
(z
ε
,
x

ε
− y

2

)]∣∣∣2. (8.14)

These observations are consistent with the physical intuition that, in the strongly
scattering regime z/Zsca � 1, the wave field is expected to have zero-mean complex
circularly symmetric Gaussian statistics, and therefore the intensity is expected to
have exponential (or Rayleigh) distribution (13; 28), in agreement with (8.13), and
the fourth-order moment can be expressed in terms of the second-order moments by
the Gaussian summation rule in agreement with (8.14).

9. Stability of the Wigner Transform of the Field. The Wigner transform
of the transmitted field is defined by

W ε(z,x, q) =

∫
exp

(
− iq · y

)
u
(z
ε
,
x

ε
+
y

2

)
u
(z
ε
,
x

ε
− y

2

)
dy. (9.1)

It is an important quantity that can be interpreted as the angularly-resolved wave
energy density (note, however, that it is real-valued but not always non-negative
valued). Remember that the initial source is (7.2). This means that the Wigner
transform is observed at a mid point x/ε that is at the scale of the initial beam
radius, while the offset y is observed at the scale of the correlation length of the
medium. In the homogeneous case, we find

W ε(z,x, q) |homo=
4πr2

0

ε2
exp

(
− |q|

2r2
0

ε2
− |x− qz/k0|2

r2
0

)
, (9.2)

which is concentrated in a narrow cone in q. Indeed the q-dependence of the Wigner
transform reflects the angular diversity of the beam. In the limit ε→ 0, we have

W ε(z,x, q) |homo
ε→0−→ (2π)2δ(q) exp

(
− |x|

2

r2
0

)
, (9.3)
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in the sense that, for any continuous and bounded function ψ,∫∫
W ε(z,x, q) |homo ψ(x, q)dxdq

ε→0−→ (2π)2

∫
exp

(
− |x|

2

r2
0

)
ψ(x,0)dx.

In the random case, the q-dependence of the Wigner transform depends on the
angular diversity of the initial beam but also on the scattering by the random medium,
which dramatically broadens it because the correlation length of the medium is smaller
than the initial beam width. As a result (see (5.5) with r0 → r0/ε, x→ x/ε, z → z/ε,
and C → εC), the expectation of the Wigner transform is:

E[W ε(z,x, q)] =
r2
0

4πε2

∫∫
exp

(
− r2

0|ζ|2

4ε2
− ε2|y|2

4r2
0

+ i
ζ

ε
·
(
x− qz

k0

)
− iq · y

)
× exp

(k2
0ε

4

∫ z/ε

0

C
(
y + ζ

z′

k0

)
− C(0)dz′

)
dζdy

=
r2
0

4π

∫∫
exp

(
− r2

0|ζ|2

4
− ε2|y|2

4r2
0

+ iζ ·
(
x− qz

k0

)
− iq · y

)
× exp

(k2
0

4

∫ z

0

C
(
y + ζ

z′

k0

)
− C(0)dz′

)
dζdy, (9.4)

so that in the limit ε→ 0 it is given by

E[W ε(z,x, q)]
ε→0−→ r2

0

4π

∫∫
exp

(
− r2

0|ζ|2

4
+ iζ · x− iq ·

(
y + ζ

z

k0

))
× exp

(k2
0

4

∫ z

0

C
(
y + ζ

z′

k0

)
− C(0)dz′

)
dζdy. (9.5)

More precisely, the mean Wigner transform can be split into two pieces: a narrow
cone and a broad cone in q:

E[W ε(z,x, q)]
ε→0−→ K(z)1/2

(2π)2
δ(q) exp

(
− |x|

2

r2
0

)
+
r2
0K(z)1/2

(2π)3

∫
exp

(
− r2

0|ζ|2

4
+ iζ ·

(
x− q z

k0

))
A(z, q, ζ)dζ. (9.6)

The narrow cone is the contribution of the coherent transmitted wave components and
it decays exponentially with the propagation distance (see the expression (7.11) for
K(z)). The broad cone is the contributions of the incoherent scattered waves and it
becomes dominant when the propagation distance becomes so large that k2

0C(0)z � 1.
It is known that the Wigner transform is not statistically stable, and that it is

necessary to smooth it (that is to say, to convolve it with a kernel) to get a quantity
that can be measured in a statistically stable way (that is to say, the Wigner transform
for one typical realization is approximately equal to its expected value) (3; 35). Our
goal in this section is to quantify this statistical stability.

Let us consider two positive parameters rs and qs and define the smoothed Wigner
transform:

W ε
s (z,x, q) =

1

(2π)2ε2r2
s q

2
s

∫∫
W ε(z,x− x′, q − q′) exp

(
− |x

′|2

2ε2r2
s

− |q
′|2

2q2
s

)
dx′dq′.

(9.7)
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The expectation of the smoothed Wigner transform is in the limit ε→ 0:

E
[
W ε

s (z,x, q)
] ε→0−→ r2

0

4π

∫∫
exp

(
− r2

0|ζ|2

4
−
q2
s |y + ζ z

k0
|2

2
− iq ·

(
y + ζ

z

k0

))
× exp

(
iζ · x+

k2
0

4

∫ z

0

C
(
y + ζ

z′

k0

)
− C(0)dz′

)
dζdy. (9.8)

It can also be written as

E
[
W ε

s (z,x, q)
] ε→0−→ K(z)1/2

(2π)3q2
s

exp
(
− |q|

2

2q2
s

)
exp

(
− |x|

2

r2
0

)
+
K(z)1/2r2

0

(2π)4q2
s

∫∫
A(z, ξ, ζ) exp

(
− r2

0|ζ|2

4
− |ξ − q|

2

2q2
s

+ iζ ·
(
x− ξ z

k0

))
dζdξ. (9.9)

The first term is a narrow cone in q around q = 0 corresponding to coherent wave
components and the second term is a broad cone in q corresponding to incoherent
wave components. Note that the expectation of the smoothed Wigner transform is
independent on rs as the smoothing in x vanishes in the limit ε → 0. However the
smoothing in x plays an important role in the control of the fluctuations of the Wigner
transform. We will analyze the variance of the smoothed Wigner transform and its
dependence on the smoothing parameters rs and qs.

The second moment of the smoothed Wigner transform is

E[W ε
s (z,x, q)2] =

1

(2π)2ε4r4
s

∫∫
exp

(
− |xs|2 + |x′s|2

2ε2r2
s

− q2
s (|y|2 + |y′|2)

2

)
×M2

(z
ε
, q1 =

y + y′

2
, q2 =

y − y′

2
, r1 =

2x+ xs + x′s
ε

, r2 =
xs − x′s

ε

)
× exp

(
− iq · (y + y′)

)
dydy′dxsdx

′
s,

which gives using (6.4), (7.3) and (7.6):

E
[
W ε

s (z,x, q)2
]

=
1

(2π)6q4
s

∫∫
exp

(
− r2

s |ζ1|2 − r2
s |ζ2|2 −

|ξ1 − 2q|2

4q2
s

− |ξ2|2

4q2
s

)
× exp

(
2i
ζ1 · x
ε
− i z

k0ε

(
ζ1 · ξ1 + ζ2 · ξ2

))
M̃ε(z, ξ1, ξ2, ζ1, ζ2)dζ1dζ2dξ1dξ2.
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Using Proposition 7.1, we find that, in the limit ε→ 0:

E
[
W ε

s (z,x, q)2
] ε→0−→ K(z)

(2π)6q4
s

exp
(
− |q|

2

q2
s

)
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(
− 2|x|2

r2
0

)
+
r4
0K(z)

(2π)8q4
s

∫∫
dξ1dζ1e

iζ1·(2x− z
k0
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2
0|ζ1|

2

2 − |ξ1−2q|2

4q2s

×
{

4e
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2

4q2s
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e−i

z
k0
ξ1·ζ2−

r20|ζ2|
2

2 A(z, ξ1, ζ2 + ζ1)dζ2

+

∫∫
e
− |ξ2|

2

4q2s
−i zk0 ξ2·ζ2−

r20|ζ2|
2

2 A
(
z,
ξ2 + ξ1

2
, ζ2 + ζ1

)
×A
(
z,
ξ2 − ξ1

2
, ζ2 − ζ1

)
dξ2dζ2

+4e−r
2
s |ξ1|

2

∫
e−i

z
k0
ξ1·ξ2−

r20|ξ2|
2

2 A(z, ξ1, ξ2 + ζ1)dξ2

+

∫∫
e−r

2
s |ζ2|

2−i zk0 ξ2·ζ2−
r20|ξ2|

2

2 A
(
z,
ζ2 + ξ1

2
, ξ2 + ζ1

)
×A
(
z,
ζ2 − ξ1

2
, ξ2 − ζ1

)
dξ2dζ2

}
, (9.10)

where we have used the fact thatA(z,−ξ,−ζ) = A(z, ξ, ζ). This is an exact expression
but, as it involves four-dimensional integrals, it is complicated to interpret it. This
expression becomes simple in the strongly scattering regime k2

0C(0)z � 1, because
then A(z, ξ, ζ) takes a Gaussian form and all integrals can be evaluated. To get more
explicit expressions in the discussion of the results we here again assume that C(x)
can be expanded as:

C(x) = C(0)− γ

2
|x|2 + o(|x|2), x→ 0.

When k2
0C(0)z � 1, we have

E
[
W ε

s (z,x, q)
] ε→0−→ 8π

k2
0γz

r2
0

(r2
0 + γz3

24 )(1 +
4q2s
k20γz

) +
z2q2s
2k20

× exp

(
−

∣∣∣x− zq

2k0(1+
4q2s
k20γz

)

∣∣∣2
r2
0 + γz3

24 +

z2q2s
2k20

1+
4q2s
k20γz

− 2|q|2

k2
0γz + 4q2

s

)
(9.11)

and

E
[
W ε

s (z,x, q)2
] ε→0−→ lim

ε→0
E
[
W ε

s (z,x, q)
]21 +

(r2
0 + γz3

24 )(1 +
4q2s
k20γz

) +
z2q2s
2k20

(r2
0 + γz3

24 )(4r2
s q

2
s +

4q2s
k20γz

) +
z2q2s
2k20

 .

The coefficient of variation Cεs of the smoothed Wigner transform is defined by:

Cεs (z,x, q) =

√
E[W ε

s (z,x, q)2]− E[W ε
s (z,x, q)]2

E[W ε
s (z,x, q)]

. (9.12)
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Fig. 9.1. Contour levels of the coefficient of variation (9.13) of the smoothed Wigner transform.
Here rs = rs/ρz and qs = qsρz. The contour level 1 is 2qsrs = 1.

We get then the following expression for the coefficient of variation in the strongly
scattering regime k2

0C(0)z � 1:

Cεs (z,x, q)
ε→0−→

 (r2
0 + γz3

24 )(1 +
4q2s
k20γz

) +
z2q2s
2k20

(r2
0 + γz3

24 )(4r2
s q

2
s +

4q2s
k20γz

) +
z2q2s
2k20

1/2

=

 1
q2s ρ

2
z

+ 1

4r2s
ρ2z

+ 1

1/2

, (9.13)

where ρz is the correlation radius (8.12). Note that the coefficient of variation is
independent of x and q. Eq. (9.13) is a simple enough formula to help determining
the smoothing parameters qs and rs that are needed to reach a given value for the
coefficient of variation. The coefficient of variation is plotted in Figure 9.1, which
exhibits the line 2qsrs = 1 separating the two regions where the coefficient is larger
and smaller than one.

For 2qsrs = 1, we have limε→0 C
ε
s (z,x, q) = 1. For 2qsrs < 1 (resp. > 1) we

have limε→0 C
ε
s (z,x, q) > 1 (resp. < 1). The curve 2qsrs = 1 determines the region

where the coefficient of variation of W ε
s (z,x, q) is smaller or larger than one (in the

limit ε → 0). The critical value rs = 1/(2qs) is indeed special. In this case, the
smoothed Wigner transform (9.7) can be written as the double convolution of the
Wigner transform W ε of the random field u( zε , ·) with the Wigner transform

W ε
g (x, q) =

∫
exp

(
− iq · y

)
ug

(x
ε

+
y

2

)
ug

(x
ε
− y

2

)
dy

of the Gaussian state

ug(x) = exp
(
− q2

s |x|2
)
,

since we have

W ε
g (x, q) =

2π

q2
s

exp
(
− 2

q2
s |x|2

ε2
− |q|

2

2q2
s

)
,

and therefore

W ε
s (z,x, q) =

4q2
s

(2π)3ε2

∫∫
W ε(z,x− x′, q − q′)W ε

g (x′, q′)dx′dq′,
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for rs = 1/(2qs). It is known that the convolution of a Wigner transform with a kernel
that is itself the Wigner transform of a function (such as a Gaussian) is nonnegative
real valued (the smoothed Wigner transform obtained with the Gaussian W ε

g is some-
times called Husimi function) (6; 31). This can be shown easily in our case as the
smoothed Wigner transform can be written as

W ε
s (z,x, q) =

2q2
s

π

∣∣∣ ∫ exp
(
iq · x′

)
ug

(
x′
)
u
(z
ε
,
x

ε
− x′

)
dx′
∣∣∣2, (9.14)

for rs = 1/(2qs). From this representation formula of W ε
s valid for rs = 1/(2qs), we can

see that it is the square modulus of a linear functional of u( zε , ·). The physical intuition
that u( zε , ·) has circularly symmetric complex Gaussian statistics in strongly scatter-
ing media then predicts that W ε

s (z,x, q) should have an exponential (or Rayleigh)
distribution, because the sum of the squares of two independant real-valued Gaussian
random variables has an exponential distribution. This is indeed consistent with our
theoretical finding that limε→0 C

ε
s = 1 for rs = 1/(2qs). In fact the situation with

complex scattering giving a field that has centered circularly symmetric Gaussian
statistics is exactly what motivates the name “scintillation regime” with unit relative
intensity fluctuations.

If rs > 1/(2qs), by observing that

exp
(
− |x|

2

2ε2r2
s

)
= Ψε(x) ∗x exp

(
− 2q2

s |x|2

ε2

)
,

where ∗x stands for the convolution product in x:

Ψε(x) ∗x f(x) =

∫
Ψε(x− x′)f(x′)dx′,

and the function Ψε is defined by

Ψε(x) =
8q4

s r
2
s

πε2(4q2
s r

2
s − 1)

exp
(
− 2q2

s |x|2

(4q2
s r

2
s − 1)ε2

)
,

we observe that the smoothed Wigner transform (9.7) can be expressed as:

W ε
s (z,x, q) = Ψε(x) ∗x

(
2q2

s

π

∣∣∣ ∫ exp
(
iq · x′

)
ug

(
x′
)
u
(z
ε
,
x

ε
− x′

)
dx′
∣∣∣2) , (9.15)

for rs > 1/(2qs). From this representation formula for W ε
s valid for rs > 1/(2qs), we

can see that it is nonnegative valued and that it is a local average of (9.14), which
has a unit coefficient of variation in the strongly scattering scintillation regime. That
is why the coefficient of variation of the smoothed Wigner transform is smaller than
one when rs > 1/(2qs).

Finally, it is possible to take rs = 0 in (9.7), which corresponds to the absence of
smoothing in x:

W ε
s (z,x, q) =

1

2πq2
s

∫
W ε(z,x, q − q′) exp

(
− |q

′|2

2q2
s

)
dq′,
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for rs = 0. We then get

Var
(
W ε

s (z,x, q)
) ε→0−→

(
8πr20
k20γz

)2

(
(r2

0 + γz3

24 )(1 +
4q2s
k20γz

) +
z2q2s
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)(
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24 )(
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k20γz

) +
z2q2s
2k20

)

× exp

(
−

2
∣∣∣x− zq

2k0(1+
4q2s
k20γz
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0 + γz3

24 +

z2q2s
2k20

1+
4q2s
k20γz

− 4|q|2

k2
0γz + 4q2

s

)

and

Cεs (z,x, q)
ε→0−→

√
1 + (qsρz)−2,

for rs = 0. If, additionally, we let qs →∞, then we find

lim
qs→∞

lim
ε→0

q2
s

2π
E
[
W ε

s (z,x, q)
]

=
r2
0

r2
0 + γz3

6

exp
(
− |x|2

r2
0 + γz3

6

)
,

lim
qs→∞

lim
ε→0

( q2
s

2π

)2

Var
(
W ε

s (z,x, q)
)

=
( r2

0

r2
0 + γz3

6

)2

exp
(
− 2|x|2

r2
0 + γz3

6

)
,

and also

lim
qs→∞

lim
ε→0

Cεs (z,x, q) = 1,

for rs = 0. These results are consistent with formulas (8.9-8.10) (with y = 0) and the
fact that∣∣u(z

ε
,
x

ε

)∣∣2 =
1

(2π)2

∫
W ε(z,x, q′)dq′ = lim

qs→∞

q2
s

2π
W ε

s (z,x, q) |rs=0 .

This shows that the limits qs →∞ and ε→ 0 are exchangeable.

10. Conclusions. In this paper we have considered the white-noise paraxial
wave model and computed the second and fourth-order moments of the field. In the
regime in which the correlation length of the medium is smaller than the initial beam
width, the moments exhibit a multi-scale behavior with components varying at these
two scales. Our novel characterization of the solution of the fourth-order moment
equation allows us to solve important questions: in this paper we have analyzed the
correlation function of the intensity distribution and the variance of the smoothed
Wigner transform of the transmitted field. In particular we have characterized quan-
titatively the amount of smoothing necessary to get a statistically stable smoothed
Wigner transform. We believe that our main result can find many other applications,
for instance for the stability of time-reversal experiments (5; 34) or the stability of
correlation-based imaging techniques in the paraxial regime (9; 10).

Appendix A. Scintillation Regime for the Wave Equation. In Section 7 we
address a scaling regime which can be considered as a particular case of the paraxial
white-noise regime: the scintillation regime. This corresponds to a situation in which
the relative intensity fluctuations are of order one and it is an important regime to
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capture from the physical viewpoint. We explain in this appendix the conditions for
the validity of this regime in the context of the wave equation (2.1).

Let σ be the standard deviation of the fluctuations of the index of refraction n
in (2.1). Moreover, let lc be the correlation length of the fluctuations of the index of
refraction, λ0 be the carrier wavelength (equal to 2π/k0), L be the typical propagation
distance, and r0 be the radius of the initial transverse beam/source. In this framework
the variance C(0) of the Brownian field in the Itô-Schrödinger equation (2.2) is of order
σ2lc and the transverse scale of variation of the covariance function C(x) in (2.3) is
of order lc.

We next discuss the scintillation scaling regime in more detail. First, we consider
the primary scaling that leads to the canonical white-noise Schrödinger equation (2.2),
which corresponds to zooming in on a high-frequency beam that propagates over a
distance that is large relative to the medium correlation length, which is itself large
relative to the wavelength. Moreover, the medium fluctuations are relatively small.
Explicitly, we assume the primary scaling when

lc
r0
∼ 1 ,

lc
L
∼ θ , lc

λ0
∼ θ−1 , σ2 ∼ θ3 ,

where θ is a small dimensionless parameter. We introduce dimensionless coordinates
by:

x = lcx
′, z = lcz

′, k0 =
k′0
lcθ

, ν(lcz
′, lcx

′) = θ3/2ν′ (z′,x′) .

Then dropping “primes” we find that in dimensionless coordinates the Helmholtz
equation reads

(∂2
z + ∆x)vθ +

k2
0

θ2

(
1 + θ3/2ν(z,x)

)
vθ = 0.

We look for the behavior of the slowly-varying envelope uθ for long propagation dis-
tances of the order of θ−1:

vθ
(z
θ
,x
)

= exp
(
i
k0z

θ2

)
uθ(z,x)

that satisfies (by the chain rule)

θ2∂2
zu

θ +

(
2ik0∂zu

θ + ∆xu
θ +

k2
0

θ1/2
ν
(z
θ
,x
)
uθ
)

= 0.

Heuristically, when θ � 1 the backscattering term θ2∂2
zu

θ can be neglected and we
obtain a Schrödinger-type equation in which the potential fluctuates in z on the scale
θ and is of amplitude θ−1/2. This diffusion approximation scaling gives the Brownian
field and the model (2.2):

2ik0du+ ∆xu dz + k2
0u ◦ dB(z,x).

This heuristic derivation can be made rigorous as shown in (22; 23; 24).
In Section 7 we address the subsequent scaling regime in which the correlation

length of the medium lc is smaller than the initial beam radius r0. Moreover, the
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medium fluctuations are relatively weak, and the beam propagates deep into the
medium. We then get the modified scaling picture

lc
r0
∼ ε , lc

L
∼ θε , lc

λ0
∼ θ−1 , σ2 ∼ θ3ε , (A.1)

and we assume θ � ε � 1. This means that the paraxial white-noise limit θ → 0 is
taken first, and we find

2ik0du
ε + ∆xu

ε dz + k2
0u
ε ◦ dBε(z,x) = 0,

where the radius r0 of the initial condition is of order ε−1, the variance Cε(0) of
the Brownian field Bε is of order ε, and the propagation distance L is of order ε−1.
Then the limit ε → 0 is applied, corresponding to the scintillation regime. In the
regime (A.1) the effective strength k2

0C
ε(0)L of the Brownian field is of order one

since σ2lcL/λ
2
0 ∼ 1. Moreover, Lλ0/r

2
0 is of order ε. That is, the typical propa-

gation distance is smaller than the Rayleigh length of the initial beam. Here the
Rayleigh length corresponds to the distance when the transverse radius of the beam
has roughly doubled by diffraction in the homogeneous medium case and it is given by
r2
0/λ0. Indeed, it is seen in Section 7 that the propagation distance at which relevant

phenomena arise in the random case is of the order of r0lc/λ0, which is smaller than
the Rayleigh distance r2

0/λ0.

Appendix B. Proof of Proposition 7.1. Let Z > 0. For any z ∈ [0, Z], we
introduce the linear operator Lεz:

[
LεzM

]
(ξ1, ξ2, ζ1, ζ2) =

k2
0

4(2π)2

∫
Ĉ(k)

[
− 2M(ξ1, ξ2, ζ1, ζ2)

+M(ξ1 − k, ξ2 − k, ζ1, ζ2)ei
z
εk0

k·(ζ2+ζ1) +M(ξ1 − k, ξ2, ζ1, ζ2 − k)ei
z
εk0

k·(ξ2+ζ1)

+M(ξ1 + k, ξ2 − k, ζ1, ζ2)ei
z
εk0

k·(ζ2−ζ1) +M(ξ1 + k, ξ2, ζ1, ζ2 − k)ei
z
εk0

k·(ξ2−ζ1)

−M(ξ1, ξ2 − k, ζ1, ζ2 − k)ei
z
εk0

(k·(ζ2+ξ2)−|k|2)

−M(ξ1, ξ2 − k, ζ1, ζ2 + k)ei
z
εk0

(k·(ζ2−ξ2)+|k|2)

]
dk.

Then we have

Lemma B.1. The operator Lε : (R2 × R2 × R2 × R2) 7→ (R2 × R2 × R2 × R2)
satisfies

sup
z≤Z
‖Lε‖1 ≤ 2k2

0C(0)

Proof. Since Ĉ is non-negative by Bochner’s theorem we have

‖LεzM‖1 ≤
k2

0

4(2π)2

∫
Ĉ(k)

∫ ∫
8|M(ξ′1, ξ

′
2, ζ
′
1, ζ
′
2)|dξ′1dξ

′
2dζ
′
1dζ
′
2 = 2k2

0C(0)‖M‖1.
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We denote

Rε(z, ξ1, ξ2, ζ1, ζ2) = M̃ε(z, ξ1, ξ2, ζ1, ζ2)−Nε(z, ξ1, ξ2, ζ1, ζ2) (B.1)

Nε(z, ξ1, ξ2, ζ1, ζ2) = K(z)φε(ξ1)φε(ξ2)φε(ζ1)φε(ζ2)

+φε
(ξ1 − ξ2√

2

)
φε(ζ1)φε(ζ2)Ã

(
z,
ξ2 + ξ1

2
,
ζ2 + ζ1

ε

)
+φε

(ξ1 + ξ2√
2

)
φε(ζ1)φε(ζ2)Ã

(
z,
ξ2 − ξ1

2
,
ζ2 − ζ1

ε

)
+φε

(ξ1 − ζ2√
2

)
φε(ζ1)φε(ξ2)Ã

(
z,
ζ2 + ξ1

2
,
ξ2 + ζ1

ε

)
+φε

(ξ1 + ζ2√
2

)
φε(ζ1)φε(ξ2)Ã

(
z,
ζ2 − ξ1

2
,
ξ2 − ζ1

ε

)
+φε(ζ1)φε(ζ2)B̃

(
z,
ξ2 + ξ1

2
,
ξ2 − ξ1

2
,
ζ1

ε
,
ζ2

ε

)
+φε(ζ1)φε(ξ2)B̃

(
z,
ζ2 + ξ1

2
,
ζ2 − ξ1

2
,
ζ1

ε
,
ξ2

ε

)
. (B.2)

Here (using the definitions (7.11) and (7.12)):

- The function K(z) = (2π)8 exp(−k
2
0

2 C(0)z) is the solution of the equation

∂K

∂z
=

k2
0

4(2π)2

∫
Ĉ(k)

[
− 2K

]
dk,

starting from K(z = 0) = (2π)8.
- The function

Ã(z, ξ, ζ) = K(z)A(z, ξ, ζ)

is the solution of the equation (in which ζ is frozen)

∂Ã

∂z
=

k2
0

4(2π)2

∫
Ĉ(k)

[
Ã(z, ξ−k, ζ)e

iz
k0
k·ζ−2Ã(z, ξ, ζ)

]
dk+

k2
0

8(2π)2
Ĉ(ξ)K(z)ei

z
k0
ξ·ζ ,

starting from Ã(z = 0, ξ, ζ) = 0. By Gronwall’s inequality ‖Ã(z, ·, ζ)‖L1 is bounded
by

‖Ã(z, ·, ζ)‖L1(R2) ≤ (2π)8 k
2
0C(0)z

8
exp

(
− k2

0C(0)z

4

)
, (B.3)

so that it is bounded uniformly in ζ ∈ R2, z ∈ [0, Z] by

sup
z∈[0,Z],ζ∈R2

‖Ã(z, ·, ζ)‖L1(R2) ≤
(2π)8

2
sup

z∈[0,Z]

k2
0C(0)z

4
exp

(
− k2

0C(0)z

4

)
≤ (2π)8

2e
.

(B.4)
- The function

B̃(z,α,β, ζ1, ζ2) = K(z)A
(
z,α, ζ2 + ζ1

)
A
(
z,β, ζ2 − ζ1

)
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is the solution of the equation (in which ζ1 and ζ2 are frozen):

∂B̃

∂z
=

k2
0

4(2π)2

∫
Ĉ(k)

[
B̃(z,α− k,β, ζ1, ζ2)ei

z
k0
k·(ζ2+ζ1)

+B̃(z,α,β − k, ζ1, ζ2)ei
z
k0
k·(ζ2−ζ1) − 2B̃(z,α,β, ζ1, ζ2)

]
dk

+
k2

0

8(2π)2

[
Ĉ(α)Ã(z,β, ζ2 − ζ1)ei

z
k0
α·(ζ2+ζ1) + Ĉ(β)Ã(z,α, ζ2 + ζ1)ei

z
k0
β·(ζ2−ζ1)

]
,

starting from B̃(z = 0,α,β, ζ1, ζ2) = 0. From (B.3) ‖B̃(z, ·, ·, ζ1, ζ2)‖L1 is bounded
uniformly in ζ1, ζ2 ∈ R2, z ∈ [0, Z] by

sup
z∈[0,Z],ζ1,ζ2∈R2

‖B̃(z, ·, ·, ζ1, ζ2)‖L1(R2×R2) ≤ (2π)8
(k2

0C(0)Z

8

)2

.

The strategy is to show that the remainder Rε in (B.1) belongs to L1 and that
its L1-norm goes to zero as ε → 0 uniformly in z ∈ [0, Z]. To this effect we will first
show that Rε satisfies an equation with zero initial condition and with a source term
(Lemma B.2), then that the source term is small in L1-norm (Lemma B.3), and we
finally get the desired result by a Gronwall-type argument (Lemma B.4).

Lemma B.2. Rε satisfies

∂Rε

∂z
(z, ξ1, ξ2, ζ1, ζ2) =

[
LεzRε

]
(z, ξ1, ξ2, ζ1, ζ2) + Sε(z, ξ1, ξ2, ζ1, ζ2), (B.5)

starting from Rε(z = 0, ξ1, ξ2, ζ1, ζ2) = 0, with the source term Sε given by

Sε(z, ξ1, ξ2, ζ1, ζ2) = Sε1(z, ξ1, ξ2, ζ1, ζ2) + Sε2(z, ξ1, ξ2, ζ1, ζ2), (B.6)

with

Sε1(z, ξ1, ξ2, ζ1, ζ2) = −∂N
ε

∂z
(z, ξ1, ξ2, ζ1, ζ2), (B.7)

Sε2(z, ξ1, ξ2, ζ1, ζ2) =
[
LεzNε

]
(z, ξ1, ξ2, ζ1, ζ2). (B.8)

Proof. By taking the z-derivative of Rε, and using Rε = M̃ε −Nε, we find that

∂Rε

∂z
=
∂M̃ε

∂z
− ∂Nε

∂z

=
[
LεzM̃ε

]
− ∂Nε

∂z

=
[
LεzRε

]
+
[
LεzNε

]
− ∂Nε

∂z
,

which gives the desired result.
Lemma B.3. For any Z > 0 we have

sup
z∈[0,Z]

∥∥∥∫ z

0

Sε(z′, ·, ·, ·, ·)dz′
∥∥∥
L1(R2×R2×R2×R2)

ε→0−→ 0. (B.9)
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Proof. There are three types of contributions to Sε1 , the one that involves K, the
ones that involve Ã, and the ones that involve B̃. We decompose Sε1 into three terms
corresponding to these three contributions.

Sε1 = SεK + SεA + SεB .

From (B.2) and the differential equations satisfied by K, Ã, and B̃, the components
of Sε1 are given explicitly by

SεK(z, ξ1, ξ2, ζ1, ζ2) =
k2

0

4(2π)2

∫
Ĉ(k)

{
2Kφε(ξ1)φε(ξ2)φε(ζ1)φε(ζ2)

}
dk,(B.10)

SεA(z, ξ1, ξ2, ζ1, ζ2) = − k2
0

4(2π)2
φε(ζ1)

∫
Ĉ(k)

{
φε
(ξ1 − ξ2√

2

)
φε(ζ2)

[
Ã
(ξ2 + ξ1

2
− k, ζ2 + ζ1

ε

)
ei

z
εk0

k·(ζ2+ζ1) − 2Ã
(ξ2 + ξ1

2
,
ζ2 + ζ1

ε

)]
+φε

(ξ1 + ξ2√
2

)
φε(ζ2)

[
Ã
(ξ2 − ξ1

2
− k, ζ2 − ζ1

ε

)
ei

z
εk0

k·(ζ2−ζ1) − 2Ã
(ξ2 − ξ1

2
,
ζ2 − ζ1

ε

)]
+φε

(ξ1 − ζ2√
2

)
φε(ξ2)

[
Ã
(ζ2 + ξ1

2
− k, ξ2 + ζ1

ε

)
ei

z
εk0

k·(ξ2+ζ1) − 2Ã
(ζ2 + ξ1

2
,
ξ2 + ζ1

ε

)]
+φε

(ξ1 + ζ2√
2

)
φε(ξ2)

[
Ã
(ζ2 − ξ1

2
− k, ξ2 − ζ1

ε

)
ei

z
εk0

k·(ξ2−ζ1) − 2Ã
(ζ2 − ξ1

2
,
ξ2 − ζ1

ε

)]}
dk

− k2
0

8(2π)2
φε(ζ1)

{
φε
(ξ1 − ξ2√

2

)
φε(ζ2)KĈ

(ξ2 + ξ1

2

)
ei

z
εk0

ξ2+ξ1
2 ·(ζ2+ζ1)

+φε
(ξ1 + ξ2√

2

)
φε(ζ2)KĈ

(ξ2 − ξ1

2

)
ei

z
εk0

ξ2−ξ1
2 ·(ζ2−ζ1)

+φε
(ζ2 − ξ1√

2

)
φε(ξ2)KĈ

(ζ2 + ξ1

2

)
ei

z
εk0

ζ2+ξ1
2 ·(ξ2+ζ1)

+φε
(ζ2 + ξ1√

2

)
φε(ξ2)KĈ

(ζ2 − ξ1

2

)
ei

z
εk0

ζ2−ξ1
2 ·(ξ2−ζ1)

]}
, (B.11)
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SεB(z, ξ1, ξ2, ζ1, ζ2) = − k2
0

4(2π)2
φε(ζ1)

∫
Ĉ(k)

{
φε(ζ2)

[
B̃
(ξ2 + ξ1

2
− k, ξ2 − ξ1

2
,
ζ1

ε
,
ζ2

ε

)
ei

z
εk0

k·(ζ2+ζ1)

+B̃
(ξ2 + ξ1

2
,
ξ2 − ξ1

2
− k, ζ1

ε
,
ζ2

ε

)
ei

z
εk0

k·(ζ2−ζ1) − 2B̃
(ξ2 + ξ1

2
,
ξ2 − ξ1

2
,
ζ1

ε
,
ζ2

ε

)]
+φε(ξ2)

[
B̃
(ζ2 + ξ1

2
− k, ζ2 − ξ1

2
,
ζ1

ε
,
ξ2

ε

)
ei

z
εk0

k·(ξ2+ζ1)

+B̃
(ζ2 + ξ1

2
,
ζ2 − ξ1

2
− k, ζ1

ε
,
ξ2

ε

)
ei

z
εk0

k·(ξ2−ζ1) − 2B̃
(ζ2 + ξ1

2
,
ζ2 − ξ1

2
,
ζ1

ε
,
ξ2

ε

)]}
dk

− k2
0

8(2π)2
φε(ζ1)

{
φε(ζ2)

[
Ĉ
(ξ2 + ξ1

2

)
Ã
(ξ2 − ξ1

2
,
ζ2 − ζ1

ε

)
ei

z
εk0

ξ2+ξ1
2 ·(ζ2+ζ1)

+Ĉ
(ξ2 − ξ1

2

)
Ã
(ξ2 + ξ1

2
,
ζ2 + ζ1

ε

)
ei

z
εk0

ξ2−ξ1
2 ·(ζ2−ζ1)

]
+φε(ξ2)

[
Ĉ
(ζ2 + ξ1

2

)
Ã
(ζ2 − ξ1

2
,
ξ2 − ζ1

ε

)
ei

z
εk0

ζ2+ξ1
2 ·(ξ2+ζ1)

+Ĉ
(ζ2 − ξ1

2

)
Ã
(ζ2 + ξ1

2
,
ξ2 + ζ1

ε

)
ei

z
εk0

ζ2−ξ1
2 ·(ξ2−ζ1)

]}
. (B.12)

Sε2 is given by LεzNε, with Nε given by (B.2). Therefore we can express Sε2 as

Sε2(z, ξ1, ξ2, ζ1, ζ2) = Lεz
[
K(z)φε(ξ1)φε(ξ2)φε(ζ1)φε(ζ2)

]
+Lεz

[
φε
(ξ1 − ξ2√

2

)
φε(ζ1)φε(ζ2)Ã

(
z,
ξ2 + ξ1

2
,
ζ2 + ζ1

ε

)]
+Lεz

[
φε
(ξ1 + ξ2√

2

)
φε(ζ1)φε(ζ2)Ã

(
z,
ξ2 − ξ1

2
,
ζ2 − ζ1

ε

)]
+Lεz

[
φε
(ξ1 − ζ2√

2

)
φε(ξ2)φε(ζ1)Ã

(
z,
ζ2 + ξ1

2
,
ξ2 + ζ1

ε

)]
+Lεz

[
φε
(ξ1 + ζ2√

2

)
φε(ξ2)φε(ζ1)Ã

(
z,
ζ2 − ξ1

2
,
ξ2 − ζ1

ε

)]
+Lεz

[
φε(ζ2)φε(ζ1)B̃

(
z,
ξ2 + ξ1

2
,
ξ2 − ξ1

2
,
ζ1

ε
,
ζ2

ε

)]
+Lεz

[
φε(ξ2)φε(ζ1)B̃

(
z,
ζ2 + ξ1

2
,
ζ2 − ξ1

2
,
ζ1

ε
,
ξ2

ε

)]
. (B.13)

It turns out that all the terms in Sε1 are canceled by terms in Sε2 , and the last terms
of Sε2 are small, as will be shown below.

Again there are three types of contributions in the expression (B.13) for Sε2 , the
one that involves K, the ones that involve Ã, and the ones that involve B̃. We will
study one contribution for each of these three types and show the desired result for
them.
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Let us examine the contributions of K(z)φε(ξ1)φε(ξ2)φε(ζ1)φε(ζ2) to Sε2 :

Lεz
[
K(z)φε(ξ1)φε(ξ2)φε(ζ1)φε(ζ2)

]
=

k2
0

4(2π)2
K(z)φε(ζ1)

∫
Ĉ(k)

[
− 2φε(ξ1)φε(ξ2)φε(ζ2)

+φε(ξ1 − k)φε(ξ2 − k)φε(ζ2)ei
z
εk0

k·(ζ2+ζ1) + φε(ξ1 − k)φε(ζ2 − k)φε(ξ2)ei
z
εk0

k·(ξ2+ζ1)

+φε(ξ1 + k)φε(ξ2 − k)φε(ζ2)ei
z
εk0

k·(ζ2−ζ1) + φε(ξ1 + k)φε(ζ2 − k)φε(ξ2)ei
z
εk0

k·(ξ2−ζ1)

−φε(ξ1)φε(ξ2 − k)φε(ζ2 − k)ei
z
εk0

(
k·(ζ2+ξ2)−|k|2

)
−φε(ξ1)φε(ξ2 − k)φε(ζ2 + k)ei

z
εk0

(
k·(ζ2−ξ2)+|k|2

)]
dk. (B.14)

The first term cancels with the term SεK . The second term can be rewritten since

φε(ξ1 − k)φε(ξ2 − k) = φε
(√

2
(
k − ξ1 + ξ2

2

))
φε
(ξ1 − ξ2√

2

)
,

and therefore, up to a negligible term in L1(R2 × R2 × R2 × R2),∫
Ĉ(k)φε(ξ1 − k)φε(ξ2 − k)φε(ζ1)φε(ζ2)ei

z
εk0

k·(ζ2+ζ1)dk

=
1

2
Ĉ
(ξ1 + ξ2

2

)
φε
(ξ1 − ξ2√

2

)
φε(ζ1)φε(ζ2)ei

z
εk0

ξ1+ξ2
2 ·(ζ2+ζ1) + o(1), (B.15)

that cancels with the first “source” term in SεA. The o(1) characterization follows
from the following arguments:∫∫ ∣∣∣ ∫ Ĉ(k)φε(ξ1 − k)φε(ξ2 − k)φε(ζ1)φε(ζ2)ei

z
εk0

k·(ζ2+ζ1)dk

−1

2
Ĉ
(ξ1 + ξ2

2

)
φε
(ξ1 − ξ2√

2

)
φε(ζ1)φε(ζ2)ei

z
εk0

ξ1+ξ2
2 ·(ζ2+ζ1)

∣∣∣dξ1dξ2dζ1dζ2

=

∫∫ ∣∣∣ ∫ Ĉ(k)φε
(√

2
(
k − ξ1 + ξ2

2

))
ei

z
εk0

k·(ζ2+ζ1)dk

−1

2
Ĉ
(ξ1 + ξ2

2

)
ei

z
εk0

ξ1+ξ2
2 ·(ζ2+ζ1)

∣∣∣φε(ξ1 − ξ2√
2

)
φε(ζ1)φε(ζ2)dξ1dξ2dζ1dζ2

=

∫∫ ∣∣∣ ∫ Ĉ(k)φε
(√

2(k − ξ)
)
ei

z
k0
k·(ζ2+ζ1)dk

−1

2
Ĉ(ξ)ei

z
k0
ξ·(ζ2+ζ1)

∣∣∣φ1
( ζ√

2

)
φ1(ζ1)φ1(ζ2)dξdζdζ1dζ2

= 2

∫∫ ∣∣∣ ∫ Ĉ(k)φε
(√

2(k − ξ)
)
ei

z
k0

(k−ξ)·(ζ′2+ζ′1)dk

−1

2
Ĉ(ξ)

∣∣∣φ1
(ζ′1 + ζ′2√

2

)
φ1
(ζ′1 − ζ′2√

2

)
dξdζ′1dζ

′
2

= 2

∫∫ ∣∣∣ ∫ (Ĉ(ξ + εk)eiε
√

2 z
k0
k·ζ′ − Ĉ(ξ)

)
φ1
(√

2k
)
dk
∣∣∣φ1(ζ′)dξdζ′

≤ 2

∫∫ ∣∣Ĉ(ξ + εk)− Ĉ(ξ)
∣∣φ1
(√

2k
)
φ1(ζ′)dkdξdζ′

+2

∫∫ ∣∣eiε√2 z
k0
k·ζ′ − 1

∣∣Ĉ(ξ)φ1
(√

2k
)
φ1(ζ′)dkdξdζ′,

30



where

φ1(ξ) =
r2
0

2π
exp

(
− r2

0|ξ|2

2

)
,

whose L1-norm is one. The first term in the right-hand side goes to zero as ε→ 0 by
Lebesgue’s dominated convergence theorem (since C is in L1, Ĉ is continuous, and
since C(0) < ∞, the nonnegative-valued function Ĉ is in L1). The second term can
be bounded by

2

∫∫ ∣∣eiε√2 z
k0
k·ζ′−1

∣∣Ĉ(ξ)φ1
(√

2k
)
φ1(ζ′)dkdξdζ′ ≤ ε Z

k0

(∫
|k|φ1(k)dk

)2(∫
Ĉ(ξ)dξ

)
,

which shows that it also goes to zero as ε→ 0 and which justifies the o(1) in (B.15).
The third, fourth, and fifth terms of the right-hand side of (B.14) can be dealt with
in the same way and cancel the next three “source” terms in SεA. The last two terms
give negligible contributions in the sense of (B.9). Indeed, for instance, the sixth term
satisfies (using the change of variables (ζ2, ξ2)→ (ζ = (ζ2 − k)/ε, ξ = (ξ2 − k)/ε)):∫∫ ∣∣∣∣ ∫ z

0

dz′
∫
dkĈ(k)K(z′)φε(ζ1)φε(ξ1)φε(ξ2 − k)φε(ζ2 − k)ei

z′
k0ε

(
k·(ζ2+ξ2)−|k|2

)∣∣∣∣
× dζ1dζ2dξ1dξ2 ≤

∫∫ ∣∣∣∣ ∫ z

0

dz′Ĉ(k)K(z′)φ1(ξ)φ1(ζ)ei
z′
k0
k·(ξ+ζ)ei

z′
k0ε
|k|2
∣∣∣∣dkdζdξ.

From Lemma B.5 this term goes to zero as ε→ 0.

Let us examine the contributions of φε(ξ1−ξ2√
2

)φε(ζ1)φε(ζ2)Ã
(
z, ξ2+ξ1

2 , ζ2+ζ1
ε

)
to

Sε2 :

Lεz
[
φε(

ξ1 − ξ2√
2

)φε(ζ1)φε(ζ2)Ã
(
z,
ξ2 + ξ1

2
,
ζ2 + ζ1

ε

)]
=

k2
0

4(2π)2
φε(ζ1)

∫
Ĉ(k)

×
[
− 2φε(

ξ1 − ξ2√
2

)φε(ζ2)Ã
(
z,
ξ2 + ξ1

2
,
ζ2 + ζ1

ε

)
+φε(

ξ1 − ξ2√
2

)φε(ζ2)Ã
(
z,
ξ2 + ξ1

2
− k, ζ2 + ζ1

ε

)
ei

z
εk0

k·(ζ2+ζ1)

+φε(
ξ1 − ξ2 − k√

2
)φε(ζ2 − k)Ã

(
z,
ξ2 + ξ1 − k

2
,
ζ2 + ζ1 − k

ε

)
ei

z
εk0

k·(ξ2+ζ1)

+φε(
ξ1 − ξ2 + 2k√

2
)φε(ζ2)Ã

(
z,
ξ2 + ξ1

2
,
ζ2 + ζ1

ε

)
ei

z
εk0

k·(ζ2−ζ1)

+φε(
ξ1 − ξ2 + k√

2
)φε(ζ2 − k)Ã

(
z,
ξ2 + ξ1 + k

2
,
ζ2 + ζ1 − k

ε

)
ei

z
εk0

k·(ξ2−ζ1)

−φε(ξ1 − ξ2 + k√
2

)φε(ζ2 − k)Ã
(
z,
ξ2 + ξ1 − k

2
,
ζ2 + ζ1 − k

ε

)
ei

z
εk0

(
k·(ζ2+ξ2)−|k|2

)
−φε(ξ1 − ξ2 + k√

2
)φε(ζ2 + k)Ã

(
z,
ξ2 + ξ1 − k

2
,
ζ2 + ζ1 + k

ε

)
ei

z
εk0

(
k·(ζ2−ξ2)+|k|2

)]
dk.

The first and second terms will be canceled by the corresponding terms in SεA. The
fourth term can be rewritten up to a negligible term (in L1(R2 × R2 × R2 × R2)) as∫

Ĉ(k)φε(
ξ1 − ξ2 + 2k√

2
)φε(ζ1)φε(ζ2)Ã

(
z,
ξ2 + ξ1

2
,
ζ2 + ζ1

ε

)
ei

z
εk0

k·(ζ2−ζ1)dk

=
1

2
Ĉ
(ξ2 − ξ1

2

)
φε(ζ1)φε(ζ2)Ã

(
z,
ξ2 + ξ1

2
,
ζ2 + ζ1

ε

)
ei

z
εk0

ξ2−ξ1
2 ·(ζ2−ζ1) + o(1).
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Therefore the fourth term will be canceled by the corresponding “source” term in
SεB . The other terms are negligible in the sense of (B.9). Indeed, for instance, the
third term satisfies (using the change of variables (ζ1, ζ2, ξ1, ξ2) → (ξ = ζ1/ε, ζ =
(ζ2 − k)/ε,α = (ξ2 + ξ1 − k)/2,β = (ξ1 − ξ2 − k)/(ε

√
2))):∫∫ ∣∣∣∣ ∫ z

0

dz′
∫
dkĈ(k)φε(

ξ1 − ξ2 − k√
2

)φε(ζ1)φε(ζ2 − k)

×Ã
(
z′,
ξ2 + ξ1 − k

2
,
ζ2 + ζ1 − k

ε

)
ei

z′
εk0

k·(ξ2+ζ1)

∣∣∣∣dξ1dξ2dζ1dζ2

≤ 2

∫∫ ∣∣∣∣ ∫ z

0

dz′Ĉ(k)φ1(β)φ1(ξ)φ1(ζ)Ã
(
z′,α, ζ + ξ

)
e
i z
′
k0
k·(ξ− β√

2
)
ei

z′
εk0

k·α
∣∣∣∣dkdαdβdζdξ.

From Lemma B.5 this term goes to zero as ε→ 0.

Let us examine finally the contributions of φε(ζ1)φε(ζ2)B̃
(
z, ξ2+ξ1

2 , ξ2−ξ12 , ζ1ε ,
ζ2
ε

)
to Sε2 :

Lεz
[
φε(ζ1)φε(ζ2)B̃

(
z,
ξ2 + ξ1

2
,
ξ2 − ξ1

2
,
ζ1

ε
,
ζ2

ε

)]
=

k2
0

4(2π)2
φε(ζ1)

∫
Ĉ(k)

×
[
− 2φε(ζ2)B̃

(
z,
ξ2 + ξ1

2
,
ξ2 − ξ1

2
,
ζ1

ε
,
ζ2

ε

)
+φε(ζ2)B̃

(
z,
ξ2 + ξ1

2
− k, ξ2 − ξ1

2
,
ζ1

ε
,
ζ2

ε

)
ei

z
εk0

k·(ζ2+ζ1)

+φε(ζ2 − k)B̃
(
z,
ξ2 + ξ1 − k

2
,
ξ2 − ξ1 + k

2
,
ζ1

ε
,
ζ2 − k
ε

)
ei

z
εk0

k·(ξ2+ζ1)

+φε(ζ2)B̃
(
z,
ξ2 + ξ1

2
,
ξ2 − ξ1

2
− k, ζ1

ε
,
ζ2

ε

)
ei

z
εk0

k·(ζ2−ζ1)

+φε(ζ2 − k)B̃
(
z,
ξ2 + ξ1 + k

2
,
ξ2 − ξ1 − k

2
,
ζ1

ε
,
ζ2 − k
ε

)
ei

z
εk0

k·(ξ2−ζ1)

−φε(ζ2 − k)B̃
(
z,
ξ2 + ξ1 − k

2
,
ξ2 − ξ1 − k

2
,
ζ1

ε
,
ζ2 − k
ε

)
ei

z
εk0

(
k·(ζ2+ξ2)−|k|2

)
−φε(ζ2 + k)B̃

(
z,
ξ2 + ξ1 − k

2
,
ξ2 − ξ1 − k

2
,
ζ1

ε
,
ζ2 + k

ε

)
ei

z
εk0

(
k·(ζ2−ξ2)+|k|2

)]
dk.

The first, second and fourth terms will be canceled by the corresponding terms in SεB .
The other terms are negligible in the sense of (B.9). Indeed, for instance, the third
term satisfies (using the change of variables (ζ1, ξ1, ζ2)→ (α = ζ1/ε, ξ = ξ1−k, ζ =
(ζ2 − k)/ε)):∫∫ ∣∣∣∣ ∫ z

0

dz′
∫
dkĈ(k)φε(ζ2 − k)φε(ζ1)

×B̃
(
z′,
ξ2 + ξ1 − k

2
,
ξ2 − ξ1 + k

2
,
ζ1

ε
,
ζ2 − k
ε

)
ei

z′
εk0

k·(ξ2+ζ1)

∣∣∣∣dξ1dξ2dζ1dζ2

≤
∫∫ ∣∣∣∣ ∫ z

0

dz′Ĉ(k)φ1(α)φ1(ζ)B̃
(
z′,
ξ2 + ξ

2
,
ξ2 − ξ

2
,α, ζ

)
ei

z′
k0
k·αei

z′
k0

k·ξ2
ε

∣∣∣∣dkdξdξ2dαdζ.

From Lemma B.5 this term goes to zero as ε→ 0.

We can now state and prove the lemma that gives the statement of Proposition
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7.1.
Lemma B.4. For any Z > 0

sup
z∈[0,Z]

‖Rε(z, ·, ·, ·, ·)‖L1(R2×R2×R2×R2)
ε→0−→ 0. (B.16)

Proof. We have for any z∥∥[LεzRε](z, ·, ·, ·, ·)‖L1 ≤ 2k2
0C(0)

∥∥Rε(z, ·, ·, ·, ·)‖L1 .

Therefore using the integral version of (B.5) we obtain∥∥Rε(z, ·, ·, ·, ·)‖L1 ≤ 2k2
0C(0)

∫ z

0

∥∥Rε(z′, ·, ·, ·, ·)‖L1dz′ +
∥∥∥∫ z

0

Sε(z′, ·, ·, ·, ·)dz′
∥∥∥
L1
.

Using Lemma B.3 and Gronwall’s lemma gives the desired result.
Finally we state and prove the technical Lemma B.5 that was needed in the proof

of Lemma B.3.
Lemma B.5. Let m be a positive integer and F ∈ C([0, Z], L1(Rm × R2 × R2)).

For any Z > 0 we have

sup
z∈[0,Z]

∫∫ ∣∣∣ ∫ z

0

F (z′,u,v,w) exp
(
i
z′

ε
v ·w)dz′

∣∣∣dudvdw ε→0−→ 0. (B.17)

Let m be a positive integer and F ∈ C([0, Z], L1(Rm × R2)). For any Z > 0 we have

sup
z∈[0,Z]

∫∫ ∣∣∣ ∫ z

0

F (z′,u,v) exp
(
i
z′

ε
|v|2)dz′

∣∣∣dudv ε→0−→ 0. (B.18)

Proof. Let us denote

F̃ ε(z,u,v,w) = F (z,u,v,w) exp
(
iv ·w z

ε

)
.

For any δ > 0 we introduce the domain in Rm × R2 × R2:

Ωδ =
{

(u,v,w) ∈ Rm × R2 × R2 , |v ·w| ≤ δ
}
.

Since ∣∣∣ ∫ z

0

F̃ ε(z′,u,v,w)dz′
∣∣∣ ≤ ∫ z

0

|F (z′,u,v,w)|dz′,

we obtain

sup
z∈[0,Z]

∫∫
Ωδ

∣∣∣ ∫ z

0

F̃ ε(z,u,v,w)dz′
∣∣∣dudvdw ≤ ∫ Z

0

∫
Ωδ

|F (z′,u,v,w)|dudvdwdz′.

(B.19)
For any positive integer n we have∣∣∣ ∫ z

0

F̃ ε(z′,u,v,w)dz′ −
n−1∑
k=0

∫ k+1
n z

k
n z

F
(kz
n
,u,v,w

)
exp

(
iv ·w z

′

ε

)
dz′
∣∣∣

≤
n−1∑
k=0

∫ k+1
n z

k
n z

∣∣F (z′,u,v,w)− F (kz
n
,u,v,w

)∣∣dz′.
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Since

∣∣∣ ∫ k+1
n z

k
n z

exp
(
iv ·w z

′

ε

)
dz′
∣∣∣ =

∣∣∣exp
(
iv ·w z

nε

)
− 1

iv ·w 1
ε

∣∣∣ ≤ 2ε

δ
if (u,v,w) 6∈ Ωδ,

we obtain

sup
z∈[0,Z]

∫∫
Ωcδ

∣∣∣ ∫ z

0

F̃ ε(z′,u,v,w)dz′
∣∣∣dudvdw ≤ sup

z∈[0,Z]

‖F (z, ·, ·, ·)‖L1

2nε

δ

+Z sup
z1,z2∈[0,Z], |z1−z2|≤Z/n

∥∥F (z1, ·, ·, ·)− F (z2, ·, ·, ·)
∥∥
L1 . (B.20)

If we sum (B.19) and (B.20) and take the lim sup in ε then we find:

lim sup
ε→0

sup
z∈[0,Z]

∥∥∥∫ z

0

F̃ ε(z′, ·, ·, ·)dz′
∥∥∥
L1
≤
∫ Z

0

∫∫
Ωδ

|F (z′,u,v,w)|dudvdwdz′

+Z sup
z1,z2∈[0,Z], |z1−z2|≤Z/n

∥∥F (z1, ·, ·, ·)− F (z2, ·, ·, ·)
∥∥
L1 .

We then take the limit δ → 0 and n → ∞ in the right-hand side to obtain the first
result of the Lemma (using Lebesgue’s dominated convergence theorem).

The proof of the second statement of the Lemma is similar with the domain

Ωδ =
{

(u,v) ∈ Rm × R2 , |v|2 ≤ δ
}
.

Appendix C.
[1] L. C. Andrews and R. L. Philipps, Laser Beam Propagation Through Random

Media, SPIE Press, Bellingham, 2005.
[2] F. Bailly, J.-F. Clouet, and J.-P. Fouque, Parabolic and white noise approxima-

tion for waves in random media, SIAM J. Appl. Math. 56 (1996), 1445-1470.
[3] G. Bal, On the self-averaging of wave energy in random media, SIAM Multiscale

Model. Simul. 2 (2004), 398-420.
[4] G. Bal and O. Pinaud, Dynamics of wave scintillation in random media, Comm.

Partial Differential Equations 35 (2010), 1176-1235.
[5] P. Blomgren, G. Papanicolaou, and H. Zhao, Super-resolution in time-reversal

acoustics, J. Acoust. Soc. Am. 111 (2002), 230-248.
[6] N. D. Cartwright, A non-negative Wigner-type distribution, Physica 83A (1976),

210-212.
[7] J. F. Claerbout, Imaging the Earth’s Interior, Blackwell Scientific Publications,

Palo Alto, 1985.
[8] D. Dawson and G. Papanicolaou, A random wave process, Appl. Math. Optim.

12 (1984), 97-114.
[9] M. de Hoop and K. Sølna, Estimating a Green’s function from “field-field” cor-

relations in a random medium, SIAM J. Appl. Math. 69 (2009) 909-932.
[10] M. de Hoop, J. Garnier, S. F. Holman, and K. Sølna, Retrieval of a Green’s

function with reflections from partly coherent waves generated by a wave packet
using cross correlations, SIAM J. Appl. Math. 73 (2013), 493-522.

[11] A. C. Fannjiang, Self-averaging radiative transfer for parabolic waves, C. R. Acad.
Sci. Paris, Ser. I 342 (2006), 109-114.

34



[12] A. Fannjiang and K. Sølna, Superresolution and duality for time-reversal of waves
in random media, Phys. Lett. A 352 (2005), 22-29.

[13] R. L. Fante, Electromagnetic beam propagation in turbulent media, Proc. IEEE
63 (1975), 1669-1692.

[14] Z. I. Feizulin and Yu. A. Kravtsov, Broadening of a laser beam in a turbulent
medium, Radio Quantum Electron. 10 (1967), 33-35.

[15] M. Fink, Time-Reversed Acoustics, Scientific American, 91-97, Nov. (1999)
[16] J.-P. Fouque, J. Garnier, G. Papanicolaou, and K. Sølna, Wave Propagation and

Time Reversal in Randomly Layered Media, Springer, New York, 2007.
[17] J.-P. Fouque, G. Papanicolaou, and Y. Samuelides, Forward and Markov approx-

imation: the strong-intensity-fluctuations regime revisited, Waves in Random
Media 8 (1998), 303-314.

[18] K. Furutsu, Statistical theory of wave propagation in a random medium and the
irradiance distribution function, J. Opt. Soc. Am. 62 (1972), 240-254.

[19] K. Furutsu and Y. Furuhama, Spot dancing and relative saturation phenomena of
irradiance scintillation of optical beams in a random medium, Optica 20 (1973),
707-719.

[20] J. Garnier and G. Papanicolaou, passive imaging ref
[21] J. Garnier and K. Sølna, Focusing Waves Through a Randomly Scattering

Medium in the White-Noise Paraxial Regime, Preprint.
[22] J. Garnier and K. Sølna, Random backscattering in the parabolic scaling, J. Stat.

Phys. 131 (2008), 445-486.
[23] J. Garnier and K. Sølna, Coupled paraxial wave equations in random media in

the white-noise regime, Ann. Appl. Probab. 19 (2009), 318-346.
[24] J. Garnier and K. Sølna, Scaling limits for wave pulse transmission and reflection

operators, Wave Motion 46 (2009), 122-143.
[25] J. Garnier and K. Sølna, Scintillation in the white-noise paraxial regime, Comm.

Partial Differential Equations 39 (2014), 626-650.
[26] P. Gérard, P. A. Markowich, N. J. Mauser, and F. Poupaud, Homogenization

limits and Wigner transforms, Comm. Pure Appl. Math. 50 (1997), 323-379.
[27] J. Gozani, Numerical solution of the fourth-order coherence function of a plane

wave propagating in a two-dimensional Kolmogorovian medium, J. Opt. Soc.
Am. A 2 (1985), 2144-2151.

[28] A. Ishimaru, Wave Propagation and Scattering in Random Media, Academic
Press, San Diego, 1978.

[29] T. Komorowski, S. Peszat, and L. Ryzhik, Limit of fluctuations of solutions of
Wigner equation, Commun. Math. Phys. 292 (2009), 479-510.

[30] T. Komorowski and L. Ryzhik, Fluctuations of solutions to Wigner equation with
an Ornstein-Uhlenbeck potential, Discrete and Continuous Dynamical Systems-
Series B 17 (2012), 871-914.

[31] G. Manfredi and M. R. Feix, Entropy and Wigner functions, Phys. Rev. E 62
(2000), 4665-4674.

[32] Y. Mao and J. Gilles, Non rigid geometric distortions correction - Application
to atmospheric turbulence stabilization, Inverse Problems and Imaging 6 (2012),
531-546.

[33] Y. Miyahara, Stochastic evolution equations and white noise analysis, Carleton
Mathematical Lecture Notes 42, Ottawa, Canada, (1982), 1-80.

[34] G. Papanicolaou, L. Ryzhik, and K. Sølna, Statistical stability in time reversal,
SIAM J. Appl. Math. 64 (2004), 1133-1155.

35



[35] G. Papanicolaou, L. Ryzhik, and K. Sølna, Self-averaging from lateral diversity in
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