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Abstract. In this paper we propose to use a combination of regular and singular perturbations to
analyze parabolic PDEs that arise in the context of pricing options when the volatility is a stochastic
process that varies on several characteristic time scales. The classical Black-Scholes formula gives the
price of call options when the underlying is a geometric Brownian motion with a constant volatility.
The underlying might be the price of a stock or an index say and a constant volatility corresponds
to a fixed standard deviation for the random fluctuations in the returns of the underlying. Modern
market phenomena makes it important to analyze the situation when this volatility is not fixed but
rather is heterogeneous and varies with time. In previous work, see for instance [5], we considered
the situation when the volatility is fast mean reverting. Using a singular perturbation expansion we
derived an approximation for option prices. We also provided a calibration method using observed
option prices as represented by the so-called term structure of implied volatility. Our analysis of
market data, however, shows the need for introducing also a slowly varying factor in the model for
the stochastic volatility. The combination of regular and singular perturbations approach that we
set forth in this paper deals with this case. The resulting approximation is still independent of the
particular details of the volatility model and gives more flexibility in the parametrization of the
implied volatility surface. In particular, the introduction of the slow factor gives a much better fit
for options with longer maturities. We use option data to illustrate our results and show how exotic
option prices also can be approximated using our multiscale perturbation approach.

1. Introduction. No-arbitrage prices of options written on a risky asset are
mathematical expectations of present values of the payoffs of these contracts. These
expectations are in fact computed with respect to one of the so-called risk-neutral
probability measures, under which the discounted price of the underlying asset is
a martingale. In a Markovian context these expectations, as functions of time, the
current value of the underlying asset and the volatility level, are solutions of parabolic
PDE’s with final conditions at maturity times. These conditions are given by the
contracts payoffs, and various boundary conditions are imposed depending on the
nature of the contracts.

In [5] we considered a class of models where volatility is a mean-reverting diffu-
sion with an intrinsic fast time-scale, i.e. a process which decorrelates rapidly and
fluctuates on a fine time-scale. Using a singular perturbation technique on the pric-
ing PDE, we were able to show that the option price is in fact a perturbation of the
Black-Scholes price with an effective constant volatility. Moreover we derived a simple
explicit expression for the first correction in the singular perturbation expansion. We
have shown that this correction is universal in this class of models and that it involves
two effective parameters which can easily be calibrated by using prices of liquid call
options represented by the implied volatility surface.

In this paper we introduce a class of multiscale stochastic volatility models. More
precisely we consider volatility processes which are driven by two diffusions, one fluc-
tuating on a fast time-scale as in [5], and the other fluctuating on a slow time-scale
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or in other words a slowly varying diffusion process. We show that it is possible to
combine a singular perturbation expansion with respect to the fast scale, with a regular
perturbation expansion with respect to the slow scale. This again leads to a leading
order term which is the Black-Scholes price with a constant effective volatility. The
first correction is now made up of two parts which derive respectively from the fast
and the slow factors, and involves four parameters which still can be easily calibrated
from the implied volatility surface. We show with options data that the addition of
the slow factor to the model greatly improves the fit to the longer maturities.

The paper is organized as follows: in Section 2 we introduce the class of stochastic
volatility models that we consider and we discuss the concepts of fast and slow time
scales. This is done under the physical measure which describes the actual evolution
of the asset price. In this section we also rewrite the model under the risk-neutral
pricing measure which now involves two market prices of volatility risk. In Section
2.4 we write down the pricing parabolic PDE which characterizes the option price
P (t, x, y, z) as a function of the present time t, the value x of the underlying asset,
and the levels (y, z) of the two volatility driving processes. For a European option
the final condition is of the form P (T, x, y, z) = h(x). In Section 3 we carry out the
asymptotic analysis in the regime of fast and slow time scales. We use a combination
of singular and regular perturbations to derive the leading order term and the first
corrections associated with the fast and slow factors. These corrections are nicely
interpreted in terms of the Greeks (or sensitivities) of the leading order Black-Scholes
price. The accuracy of this approximation is given in Theorem 3.6, the main result
of this section. The proof is a generalization of the one presented in [8] where only
the fast scale factor was considered. In Section 4 we recall the concept of implied
volatility and we deduce its expansion in the regime of fast and slow volatility factors.
This leads to a simple and accurate parametrization of the implied volatility surface.
It involves four parameters which can be easily calibrated from the observed implied
volatility surface. A main feature of our approach is that these calibrated parameters
are explicitly related to the parameters needed in the price approximation formula,
and that, in fact, only these four parameters and the effective constant volatility
are needed rather than a fully specified stochastic volatility model. In Section 5 we
illustrate the quality of the fit to the implied volatility surface by using options data.
In particular we show that the introduction of the slow volatility factor is crucial for
capturing the behavior of the surface for the longer maturities. In Section 6 we show
how to use our perturbation approach to price exotic options which are contracts
depending on the path of the underlying process.

2. Multiscale stochastic volatility models. In this section we introduce the
class of two-scale stochastic volatility models which we consider and discuss the con-
cept of a multiscale diffusion model. We also discuss the risk neutral or equivalent
martingale measure that is used for pricing of options.

2.1. Background. Volatility models built on diffusions were introduced in the
literature in the late 1980s by Hull & White [11], Wiggins [18] and Scott [16]. One
popular class of models builds on the Feller process model introduced in this context
by Heston [10] because call option prices can be solved for in closed form up to a
Fourier inversion.

Typically a lot of emphasis is placed on fitting the models very closely to observed
implied volatilities (see Section 4 for the definition), and not surprisingly, models
with more degrees of freedom perform better in this regard. For example, the models
studied in [2, 4] include jumps in stochastic volatility on top of a Heston-type model.
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However, little attention is paid to the stability of the estimated parameters over time,
and it is usual practice in the industry simply to re-calibrate each day.

The approach taken here, based on modelling volatility in terms of its charac-
teristic scales rather than specific distributions, sacrifices some of the goodness of
in-sample fit to current data for greater stability properties. It also allows for effi-
cient computation of approximations to prices of exotic contracts, which otherwise
have to be solved for by simulations or numerical solution of a high-dimensional PDE
associated with the full stochastic volatility model.

2.2. Model under physical measure. We denote the price of the underlying
by Xt and model it as the solution of the stochastic differential equation:

dXt = µXtdt + σtXtdW
(0)
t ,(2.1)

where σt is the stochastic volatility which will be described below. Observe that
when σt is constant then Xt is a geometric Brownian motion and corresponds to the
classical model used in the Black-Scholes theory. We refer the reader to [15] for details
concerning diffusion processes and the related stochastic calculus, and a brief review
of this calculus and the Black-Scholes pricing theory can also be found in [5]. In the
class of models that we consider the volatility process σt is driven by two diffusion
processes Yt and Zt:

σt = f(Yt, Zt).(2.2)

We assume that f is a smooth positive function that is bounded and bounded away
from zero.

2.2.1. Fast scale volatility factor. The first factor driving the volatility σt is
a fast mean reverting diffusion process. Here, we choose this diffusion to be the simple
standard model diffusion corresponding to a Gaussian Ornstein-Uhlenbeck process.
We denote by 1/ε the rate of mean reversion of this process, with ε > 0 being a small
parameter which corresponds to the time scale of this process. It is an ergodic process
and we assume that its invariant distribution is independent of ε. This distribution
is Gaussian with mean denoted by m and variance denoted by ν2. The stochastic
differential equation that follows from these prescriptions is:

dYt =
1

ε
(m− Yt)dt +

ν
√

2√
ε

dW
(1)
t ,

where W
(1)
t is a standard Brownian motion, and its covariation with W

(0)
t is given by:

d〈W (0), W (1)〉t = ρ1dt.

We assume that the correlation coefficient ρ1 is constant and that |ρ1| < 1. This
correlation gives the well documented leverage effect and we will see below that it plays
a crucial role in our expansion for the option prices. Under its invariant distribution
N (m, ν2), the autocorrelation of Yt is given by

IE {(Ys −m)(Yt −m)} = ν2e−
|t−s|

ε .

Therefore the process decorrelates exponentially fast on the time scale ε and thus we
refer to Yt as the fast volatility factor.
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2.2.2. Slow scale volatility factor. The second factor Zt driving the volatility
σt is a slowily varying diffusion process. Here, we choose this diffusion to be the one
resulting from the simple time change t → δt of a given diffusion process

dZ̃t = c(Z̃t)dt + g(Z̃t)dW̃t

where δ > 0 is a small parameter. This means that Zt = Z̃δt, and that

dZt = δc(Zt)dt + g(Zt)dW̃δt.

We assume that the coefficients c(z) and g(z) are smooth and at most linearly growing
at infinity. In distribution, Zt satisfies

dZt = δc(Zt)dt +
√

δg(Zt)dW
(2)
t ,

where W
(2)
t is another standard Brownian motion. We allow a general correlation

structure between the three standard Brownian motions W (0), W (1) and W (2) so that




W
(0)
t

W
(1)
t

W
(2)
t


 =




1 0 0

ρ1

√
1− ρ2

1 0

ρ2 ρ̃12

√
1− ρ2

2 − ρ̃2
12


Wt,(2.3)

where Wt is a standard three-dimensional Brownian motion, and where the constant
coefficients ρ1, ρ2 and ρ̃12 satisfy |ρ1| < 1 and ρ2

2 + ρ̃2
12 < 1. Observe that with

this parametrization the covariation between W
(1)
t and W

(2)
t is given by tρ12 where

ρ12 := ρ1ρ2 + ρ̃12

√
1− ρ2

1. However, only the two parameters ρ1 and ρ2 will play an
explicit role in the correction derived from our asymptotic analysis. To summarize
our class of stochastic volatility models we have

dXt = µXtdt + f(Yt, Zt)XtdW
(0)
t(2.4)

dYt =
1

ε
(m− Yt)dt +

ν
√

2√
ε

dW
(1)
t

dZt = δ c(Zt)dt +
√

δ g(Zt)dW
(2)
t .

Note that the slow factor in the volatility model corresponds to a small pertur-
bation situation and the resulting regular perturbation scenario has been considered
in many different settings. The fast factor on the other hand leads to a singular per-
turbations situation and gives rise to a diffusion homogenization problem that is not
so widely applied.

2.2.3. Empirical Evidence. Empirical evidence of a fast volatility factor (with
a characteristic mean-reversion time of a few days) was found in the analysis of high-
frequency S&P 500 data in [7]. Many empirical studies have looked at low-frequency
(daily) data, with the data necessarily ranging over a period of years, and they have
found a slow volatility factor. This does not contradict the empirical finding described
above: analyzing data at lower frequencies over longer time periods primarily picks
up a slower time-scale of fluctuation and cannot identify scales of length comparable
to the sampling frequency.

Another recent empirical study [1], this time of exchange rate dynamics, finds
“the evidence points strongly toward two-factor [volatility] models with one highly
persistent factor and one quickly mean-reverting factor”.
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2.3. Model under risk-neutral measure. No arbitrage pricing theory (see
[3], for example) states that option prices are expectations of discounted payoffs with
respect to an equivalent martingale measure. A brief review of this in the present
stochastic volatility context is presented in Chapter 2 of [5]. This measure is a prob-
ability measure which is equivalent to the physical measure modeled in the previous
section, and under which the discounted value for the underlying is a martingale.
In the context of a constant volatility, the market is complete and there is a unique
equivalent martingale measure. We consider the case with a random, non-tradable
volatility which gives rise to an incomplete market and a family of pricing measures
that are parameterized by the market price of volatility risk. The market chooses one
of these for pricing and we write next the stochastic differential equations that model
this choice in terms of the following three-dimensional standard Brownian motion
under the risk-neutral measure:

W?
t = Wt +

∫ t

0




(µ− r)/f(Ys, Zs)
γ(Ys, Zs)
ξ(Ys, Zs)


 ds,

where we assume that γ(y, z) and ξ(y, z) are smooth bounded functions of y and z
only. We introduce the combined market prices of volatility risk Λ and Γ defined by

Λ(y, z) =
ρ1(µ− r)

f(y, z)
+ γ(y, z)

√
1− ρ2

1

Γ(y, z) =
ρ2(µ− r)

f(y, z)
+ γ(y, z)ρ̃12 + ξ(y, z)

√
1− ρ2

2 − ρ̃2
12,

and we write the evolution under the risk-neutral measure as

dXt = rXtdt + f(Yt, Zt)XtdW
(0)?
t(2.5)

dYt =

(
1

ε
(m− Yt)−

ν
√

2√
ε

Λ(Yt, Zt)

)
dt +

ν
√

2√
ε

dW
(1)?
t

dZt =
(
δ c(Zt)−

√
δ g(Zt)Γ(Yt, Zt)

)
dt +

√
δ g(Zt)dW

(2)?
t ,

where the correlated Brownian motions W (i)? are defined as in (2.3) with W? replac-
ing W. Observe that the process (X, Y, Z) is Markovian. Denoting by IE?{·} the
expectation with respect to the risk-neutral measure described above, the price of a
European option with payoff function h(x) is given by:

P ε,δ(t, Xt, Yt, Zt) = IE?
{

e−r(T−t)h(XT ) | Xt, Yt, Zt

}
,(2.6)

where we explicitly show the dependence on the two small parameters ε and δ.

2.4. Pricing equation. By an application of the Feynman-Kac formula, we
obtain a characterization of P ε,δ(t, x, y, z) in (2.6) as the solution of the parabolic
PDE with a final condition

Lε,δP ε,δ = 0(2.7)

P ε,δ(T, x, y, z) = h(x),(2.8)

where the partial differential operator Lε,δ is given by

Lε,δ =
1

ε
L0 +

1√
ε
L1 + L2 +

√
δM1 + δM2 +

√
δ

ε
M3,(2.9)
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using the notation

L0 = (m− y)
∂

∂y
+ ν2 ∂2

∂y2
(2.10)

L1 = ν
√

2

(
ρ1f(y, z)x

∂2

∂x∂y
− Λ(y, z)

∂

∂y

)
(2.11)

L2 =
∂

∂t
+

1

2
f2(y, z)x2 ∂2

∂x2
+ r

(
x

∂

∂x
− ·
)

(2.12)

M1 = −g(z)Γ(y, z)
∂

∂z
+ ρ2g(z)f(y, z)x

∂2

∂x∂z
(2.13)

M2 = c(z)
∂

∂z
+

g(z)2

2

∂2

∂z2
(2.14)

M3 = ν
√

2 ρ12g(z)
∂2

∂y∂z
.(2.15)

Note that L2 is the Black-Scholes operator, corresponding to a constant volatility level
f(y, z), which we denote LBS(f(y, z)). We shall also denote the Black-Scholes price
by CBS(t, x; σ), that is the price of a European claim with payoff h at the volatility
level σ. It is given as the solution of the following PDE problem

LBS(σ)CBS = 0, CBS(T, x; σ) = h(x).(2.16)

We have now written the pricing equation as a singular-regular perturbation problem
around a Black-Scholes operator. We carry out this double asymptotics in the next
section.

3. Asymptotics. In the following subsections we give a formal derivation of the
price approximation in the regime where ε and δ are small independent parameters.
The main theorem stating the accuracy of the approximation is given at the end of
this section along with its proof. In the formal derivation we choose to expand first
with respect to δ and subsequently with respect to ε. This choice is more convenient
for the proof than the reverse ordering which in fact gives the same result. In our
notation, the term Pj,k is associated with the term of order εj/2δk/2. The leading
order term is denoted simply P0.

3.1. Long scale limit. In this section we consider an expansion of P ε,δ in powers
of
√

δ:

P ε,δ = P ε
0 +

√
δP ε

1 + δP ε
2 + · · · .(3.1)

Recall that the volatility factor associated with δ small corresponds the slow factor
Zt. In the case of a single slow volatility factor such an expansion has been considered
in [9], [13] and [17], for instance. See also [14] and [12] for related regular perturbation
expansions, and [19] for approximations based on large strike-price limits.

Definition 3.1. The leading order term P ε
0 is defined as the unique solution to

the problem
(

1

ε
L0 +

1√
ε
L1 + L2

)
P ε

0 = 0(3.2)

P ε
0 (T, x, y) = h(x).(3.3)
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Definition 3.2. The next term P ε
1 is defined as the unique solution to the

problem

(
1

ε
L0 +

1√
ε
L1 + L2

)
P ε

1 = −
(
M1 +

1√
ε
M3

)
P ε

0(3.4)

P ε
1 (T, x, y) = 0.(3.5)

Here we will only consider the first correction P ε
1 . In the next section, we expand P ε

0

and P ε
1 in powers of

√
ε to obtain an approximation for the price P ε,δ.

3.2. Expansion in the Fast-Scale. Consider first P ε
0 which we decompose as

P ε
0 = P0 +

√
εP1,0 + εP2,0 + ε3/2P3,0 + · · · .(3.6)

In this subsection we derive explicit expressions for P0 and P1,0. We insert the expan-
sion (3.6) in the equation (3.2) and find that the equations associated with the first
two leading terms are:

L0P0 = 0(3.7)

L0P1,0 + L1P0 = 0.(3.8)

These are two ordinary differential equations in y and the only solutions that have
reasonable growth in y do not depend on y and we therefore take P0 = P0(t, x, z) and
P1,0 = P1,0(t, x, z). Note next that the order one terms give

L0P2,0 + L2P0 = 0,(3.9)

since L1P1,0 = 0. This is a Poisson equation in P2,0 with respect to the y-variable
and there will be no solution unless L2P0 is in the orthogonal complement of the null
space of L∗0 (Fredholm Alternative). This is equivalent to saying that L2P0 has mean
zero with respect to the invariant measure of the OU process: 〈L2P0〉 = 0. Here the
bracket notation means integration with respect to the invariant distribution of the
OU -process with infinitesimal generator L0, that is, integration with respect to the
Gaussian N (m, ν2) density. The leading order term P0 does not depend on y and we
define it as the solution of the problem described below.

Definition 3.3. The problem that determines P0 is

〈L2〉P0 = 0(3.10)

P0(T, x, z) = h(x),

where

〈L2〉 =
∂

∂t
+

1

2
〈f2(·, z)〉x2 ∂2

∂x2
+ r

(
x

∂

∂x
− ·
)

,(3.11)

the Black-Scholes operator with volatility

〈f2(·, z)〉 := σ̄2(z)(3.12)

which depends on the slow factor z. Therefore, P0 is the Black-Scholes price of the
claim at the volatility level σ̄(z), that is

P0(t, x, z) = CBS(t, x; σ̄(z)),
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with CBS being defined in (2.16). Next we derive an expression for P1,0. From the
Poisson equation (3.9) and the centering condition (3.10), we deduce that

P2,0 = −L−1
0 (L2 − 〈L2〉) P0(3.13)

up to an additive function which does not depend on y and which will not play a role
in the problem that defines P1,0 . The next order term in the ε expansion in (3.6)
gives the following Poisson equation in P3,0

L0P3,0 + L1P2,0 + L2P1,0 = 0.(3.14)

The centering condition for this equation

〈L2P1,0 + L1P2,0〉 = 0

gives the following problem that determines P1,0:

Definition 3.4. The function P1,0(t, x, z) satisfies the inhomogeneous problem

〈L2〉P1,0 = AP0(3.15)

P1,0(T, x, z) = 0.

where

A :=
〈
L1L−1

0 (L2 − 〈L2〉)
〉
.(3.16)

The function P1,0 is in fact given by the expression

P1,0 = −(T − t)AP0.(3.17)

We next compute the operator A explicitly. First, we introduce φ(y, z) that is a
solution of the following Poisson equation with respect to the variable y:

L0φ(y, z) = f2(y, z)− σ̄2(z).(3.18)

Note that φ is defined up to an additive function that depends only on the variable z
and which will not affect A. With this notation, we have

L−1
0 (L2 − 〈L2〉) =

1

2
φ(y, z)x2 ∂2

∂x2
(3.19)

and therefore

A =
νρ1√

2

〈
f

∂φ

∂y

〉
x

∂

∂x

(
x2 ∂2

∂x2

)
− ν√

2

〈
Λ

∂φ

∂y

〉
x2 ∂2

∂x2
.(3.20)

Using the facts that the operator 〈L2〉 commutes with xk∂k/∂xk and that 〈L2〉P0 = 0,
it can be checked that the solution P1,0 is indeed given by the expression (3.17).

We next carry out the expansion of P ε
1 , the second term in the δ expansion in

(3.1), in the small parameter ε .
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3.3. Expansion of P ε
1 . We write

P ε
1 = P0,1 +

√
εP1,1 + εP2,1 + ε3/2P3,1 + · · · ,(3.21)

and we derive below an explicit expression for P0,1. Substituting the expansion (3.21)
into equation (3.4) gives

L0P0,1 = 0,(3.22)

from the highest order terms. As before, this implies P0,1 does not depend on y. The
next order gives

L0P1,1 = 0,(3.23)

where we have used M3P0 = 0 because M3 takes derivatives in y and P0 does not
depend on y and that L1P0,1 = 0 for the same reason. Therefore P1,1 also does not
depend on y.

Evaluating the terms of order one and using that M3P1,0 = L1P1,1 = 0, we find

L0P2,1 + L2P0,1 = −M1P0.(3.24)

This is therefore a Poisson equation in y for P2,1 and the associated solvability con-
dition leads to:

Definition 3.5. The term P0,1(t, x, z) is the unique solution to the problem

〈L2〉P0,1 = −〈M1〉P0(3.25)

P0,1(T, x, z) = 0.

This term P0,1 is in fact given explicitly in terms of derivatives with respect to x
and z of P0:

P0,1 =
T − t

2
〈M1〉P0.(3.26)

The formula (3.26) for P0,1 is obtained as follows. Observe first that the derivative
of the Black-Scholes price PBS(t, x; σ) with respect to volatility σ, known as the Vega,
can be expressed as

∂PBS

∂σ
= (T − t)σx2 ∂2PBS

∂x2
,(3.27)

which implies

∂P0

∂z
= (T − t)σ̄(z)σ̄′(z)x2 ∂2P0

∂x2
.

Introducing the operator M1 defined by

〈M1〉 =

(
−g〈Γ〉+ ρ2g〈f〉x

∂

∂x

)
∂

∂z
:= M1

∂

∂z
,(3.28)
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we then check that P0,1 given in (3.26) solves the equation (3.25):

〈L2〉P0,1 = 〈L2〉
[
T − t

2

(
M1

∂

∂z

)
P0

]

= 〈L2〉
[
(T − t)2

2
M1

(
σ̄(z)σ̄′(z)x2 ∂2P0

∂x2

)]

= −(T − t)M1

(
σ̄(z)σ̄′(z)x2 ∂2P0

∂x2

)

+
(T − t)2

2
M1σ̄(z)σ̄′(z)x2 ∂2

∂x2
〈L2〉P0

= −(T − t)M1

(
σ̄(z)σ̄′(z)x2 ∂2P0

∂x2

)

= −〈M1〉P0,

where we have again used that the operator 〈L2〉 commutes with xk∂k/∂xk and that
〈L2〉P0 = 0.

We next derive P1,1 and P2,1, which although not part of our approximation, will
be needed in the proof of Theorem 3.6. We define

P2,1 = −L−1
0 ((L2 − 〈L2〉)P0,1 + (M1 − 〈M1〉)P0) ,(3.29)

as a solution of the Poisson equation (3.24), up to an arbitrary function independent
of y which will not play a role in the proof.

Comparing terms of order
√

ε in (3.4), we have a Poisson equation for P3,1:

L0P3,1 + L1P2,1 + L2P1,1 = −M1P1,0 −M3P2,0.(3.30)

Its solvability condition is

〈L2〉P1,1 = AP0,1 + BP0 − 〈M1〉P1,0 − 〈M3P2,0〉,(3.31)

where A is defined in (3.16), and B is defined similarly by

B =
〈
L1L−1

0 (M1 − 〈M1〉)
〉
.

In the next section we summarize our expansion of the price and discuss its
accuracy.

3.4. Price approximation and its accuracy. From the expansions of P ε,δ,
P ε

0 and P ε
1 in respectively (3.1), (3.6) and (3.21), we deduce that

P ε,δ ≈ P̃ ε,δ := P0 +
√

εP1,0 +
√

δP0,1(3.32)

= P0 + (T − t)

(
−√ε A+

√
δ

2
〈M1〉

)
P0,

where M1 and A were defined in (2.13) and (3.16) respectively. We introduce the
group market parameters (V δ

0 , V δ
1 , V ε

2 , V ε
3 ), which depend on z:

V δ
0 =

√
δ

2
g〈Γ〉σ̄σ̄′(3.33)
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V δ
1 = −

√
δ

2
ρ2g〈f〉σ̄σ̄′(3.34)

V ε
2 = −

√
ε√
2
ν

〈
Λ

∂φ

∂y

〉
(3.35)

V ε
3 =

√
ε√
2
νρ1

〈
f

∂φ

∂y

〉
.(3.36)

The parametrization (V ε
2 , V ε

3 ) is convenient to separate the influences of the correla-
tion ρ1 (contained in V ε

3 ) and the market price of risk Λ (contained in V ε
2 ). In [5] the

parametrization (V2, V3) was chosen to separate the second and third order derivatives
with respect to x. These parametrizations are related simply by

V ε
3 = V3, V ε

2 = V2 − 2V3.

Recall from Definition 3.3 that P0(t, x, z) = PBS(t, x; σ̄(z)). Therefore we can write

−
√

δ

2
〈M1〉P0 =

1

σ̄

[
V δ

0

∂

∂σ
+ V δ

1 x
∂2

∂x∂σ

]
PBS(3.37)

√
εAP0 =

[
V ε

2 x2 ∂2

∂x2
+ V ε

3 x
∂

∂x

(
x2 ∂2

∂x2

)]
PBS .(3.38)

With this notation, the price approximation in (3.32) reads

P̃ ε,δ = PBS

−(T − t)

{
1

σ̄

[
V δ

0

∂

∂σ
+ V δ

1 x
∂2

∂x∂σ

]
+

[
V ε

2 x2 ∂2

∂x2
+ V ε

3 x
∂

∂x

(
x2 ∂2

∂x2

)]}
PBS .(3.39)

An alternative expression is given in (4.3). We now make precise the accuracy of the
approximation.

Theorem 3.6. When the payoff h is smooth, for fixed (t, x, y, z) and for any
ε ≤ 1, δ ≤ 1, there exists a constant C > 0 such that

|P ε,δ − P̃ ε,δ| ≤ C(ε + δ +
√

εδ).

In the case of call and put options, where the payoff is continuous but only piecewise
smooth, the accuracy is given by

|P ε,δ − P̃ ε,δ| ≤ C(ε| log ε|+ δ +
√

εδ).

Proof We prove the first part of the theorem corresponding to a smooth payoff.
The case of a call option can be proven by generalizing the regularization argument
introduced in [8]. We discuss this generalization at the end of the proof. In order to
establish the accuracy of the approximation we introduce the following higher order
approximation for P ε,δ

P̂ ε,δ = P̃ ε,δ + ε(P2,0 +
√

εP3,0) +
√

δ(
√

εP1,1 + εP2,1)(3.40)

= P0 +
√

εP1,0 + εP2,0 + ε3/2P3,0 +
√

δ(P0,1 +
√

εP1,1 + εP2,1),

where P0 and P1,0 are defined in (3.10 and (3.15), P2,0 and P3,0 are defined in respec-
tively (3.13) and (3.14). Moreover, P0,1 is defined in (3.25), P1,1 and P2,1 are defined
respectively by (3.31) and (3.29).
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We next introduce the residual

Rε,δ = P̂ ε,δ − P ε,δ(3.41)

which satisfies

Lε,δRε,δ =
1

ε
(L0P0) +

1√
ε

(L0P1,0 + L1P0) + (L0P2,0 + L1P1,0 + L2P0)

+
√

ε (L0P3,0 + L1P2,0 + L2P1,0)

+
√

δ

(
1

ε
(L0P0,1) +

1√
ε

(L0P1,1 + L1P0,1 +M3P0)

)

+
√

δ (L0P2,1 + L1P1,1 + L2P0,1 +M1P0 +M3P1,0)

+εRε
1 +

√
εδRε

2 + δRε
3

where Rε
1, Rε

2 and Rε
3 are given by

Rε
1 = L2P2,0 + L1P3,0 +

√
εL2P3,0,(3.42)

Rε
2 = L2P1,1 + L1P2,1 +M1P1,0 +M3P2,0(3.43)

+
√

ε(L2P2,1 +M1P2,0 +M3P3,0) + εM1P3,0,

Rε
3 = M1P0,1 +M2P0 +M3P1,1(3.44)

+
√

ε(M1P1,1 +M2P1,0 +M3P2,1) + ε(M1P2,1 +M2P2,0).

They are smooth functions of t, x, y and z that are, for ε ≤ 1 and δ ≤ 1, bounded
by smooth functions of t, x, y, z independent of ε and δ, uniformly bounded in t, x, z
and at most linearly growing in y through the solution of the Poisson equation (3.18).
The term of order 1/ε cancels by (3.7), the term of order 1/

√
ε cancels by (3.8), the

term of order one cancels by (3.9), the term of order
√

ε cancels by (3.14). Moreover,
the term of order

√
δ/ε cancels by (3.22), the term of order

√
δ/
√

ε cancels by (3.23),
finally, the term of order

√
δ cancels by (3.24). Therefore we find

Lε,δRε,δ = εRε
1 +

√
εδRε

2 + δRε
3.(3.45)

Note next that, at the terminal time T , we can write

Rε,δ(T, x, y, z) = P̂ ε,δ(T, x, y, z)

= ε(P2,0 +
√

εP3,0)(T, x, y, z)) +
√

ε
√

δ(P1,1 +
√

εP2,1)(T, x, y, z)

:= εG1(x, y, z) +
√

εδG2(x, y, z)(3.46)

where G1 and G2 are independent of t, and have in the other variables the same
properties as the functions R’s discussed above. It follows from (3.45) and (3.46) that

Rε,δ = εIE?

{
e−r(T−t)G1(XT , YT , ZT )−

∫ T

t

e−r(s−t)Rε
1(s, Xs, Ys, Zs)ds | Xt, Yt, Zt

}

+
√

εδIE?

{
e−r(T−t)G2(XT , YT , ZT )−

∫ T

t

e−r(s−t)Rε
2(s, Xs, Ys, Zs)ds | Xt, Yt, Zt

}

12



+ δIE?

{
−
∫ T

t

e−r(s−t)Rε
3(s, Xs, Ys, Zs)ds | Xt, Yt, Zt

}
,(3.47)

where the process (X, Y, Z) is described in Section 2.3. Combined with (3.40) and

(3.41), this establishes the first part of the theorem: P ε,δ − P̃ ε,δ = O(ε, δ,
√

εδ).
Finally, we comment on the generalization of the proof to the case with a call

option. In this case the payoff h is not continuously differentiable. However, we can
extend the proof to this case by introducing a regularized payoff function h∆ as in [8].
This regularized payoff function corresponds to the Black-Scholes price at the terminal
time T assuming that the time of expiration is T + ∆ rather than T . The explicit
formula for the Black-Scholes price then allows us to bound the difference between
the regularized and unregularized prices in terms of ∆. The difference between the
regularized price and the corresponding price approximation can be bounded using a
generalization of the argument used in the first part of the proof. The main difficulty
is to show how we can let ∆ go to zero with ε and δ such that we still can bound the
right hand side in (3.47). A straightforward generalization of the proof given in [8],
but lengthy due to the additional δ-terms, shows that the choice of ∆ = ε leads to
the bound on the residual |Rε,δ| ≤ C(ε| log ε|+

√
εδ + δ). We omit the details here.

4. Implied volatility. Recall that the implied volatility I for a call option with
strike K and maturity T produced by our model (Section 2.3) is obtained by inverting
the following equation with respect to I :

CBS(t, x; T, K, I) = P ε,δ(t, x, z)(4.1)

where P ε,δ is our model price for a call option and CBS is the Black-Scholes call
option price with volatility I . We expand the implied volatility by writing

I = I0 + Iε
1 + Iδ

1 + · · · ,(4.2)

where Iε
1 (respectively Iδ

1 ) is proportional to
√

ε (respectively
√

δ). By a Taylor

expansion of CBS around I0 and rewriting the approximation P̃ ε,δ given in (3.39) as

P̃ ε,δ = PBS −
1

σ̄

{(
V ε

2 + V ε
3 x

∂

∂x

)
+ τ

(
V δ

0 + V δ
1 x

∂

∂x

)}
∂

∂σ
PBS ,(4.3)

where τ = T − t, we find that

CBS(I0) + (Iε
1 + Iδ

1 )
∂

∂σ
CBS(I0) + · · ·(4.4)

= PBS −
1

σ̄

{(
V ε

2 + V ε
3 x

∂

∂x

)
+ τ

(
V δ

0 + V δ
1 x

∂

∂x

)}
∂

∂σ
PBS + · · · .

By matching the O(1) terms we find that CBS(I0) = PBS(σ̄(z)) and hence that

I0 = σ̄(z).(4.5)

Matching the
√

ε terms and the
√

δ terms gives respectively

Iε
1

∂

∂σ
CBS = − 1

σ̄

(
V ε

2 + V ε
3 x

∂

∂x

)
∂

∂σ
PBS(4.6)

Iδ
1

∂

∂σ
CBS = − τ

σ̄

(
V δ

0 + V δ
1 x

∂

∂x

)
∂

∂σ
PBS .(4.7)
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A direct computation based on the Black-Scholes formula shows that for a call option
with volatility σ we have

(
x

∂

∂x

)
∂

∂σ
CBS =

(
1− d1

σ
√

τ

)
∂

∂σ
CBS ,(4.8)

where as usual

d1 =
log(x/K) + (r + σ2/2)τ

σ
√

τ
.(4.9)

From equations (4.6), (4.7) and (4.8) we find

Iε
1 = − 1

σ̄

{
V ε

2 + V ε
3

(
1− d1

σ̄
√

τ

)}
(4.10)

Iδ
1 = − τ

σ̄

{
V δ

0 + V δ
1

(
1− d1

σ̄
√

τ

)}
.(4.11)

Our z-dependent approximation for the term structure of implied volatility, σ̄+I ε
1 +Iδ

1 ,
can now be written as an affine function of

• “Log-Moneyness to Maturity Ratio” (LMMR): log(K/x)/(T − t),
• “Log-Moneyness” (LM): log(K/x),
• and time-to-maturity: T − t.

The implied volatility surface, in terms of these composite variables, is given by

I0 + Iε
1 + Iδ

1 = σ̄ + bε + aε log(K/x)

T − t
+ aδ log(K/x) + bδ(T − t),(4.12)

where the parameters σ̄, aε, aδ, bε, and bδ depend on z and are related to the group
parameters (V δ

0 , V δ
1 , V ε

2 , V ε
3 ) by

aε = −V ε
3

σ̄3

bε = −V ε
2

σ̄
+

V ε
3

σ̄3
(r − σ̄2

2
)

aδ = −V δ
1

σ̄3

bδ = −V δ
0

σ̄
+

V δ
1

σ̄3
(r − σ̄2

2
).

The formula (4.12) can also be viewed as a time-varying LMMR parametrization by
re-writing it as

I ≈ σ̄ +
[
aε + aδ(T − t)

] log(K/x)

T − t
+
[
bε + bδ(T − t)

]
.(4.13)

In practice, as we illustrate with real data in the next section, the parameter σ̄ is
first estimated from historical data over a period of time of order one, that is from the
observation of the price of the underlying in the near past. Then, the parameters aε,
bε, aδ and bδ are calibrated to the observed term structure of implied volatility by
using (4.12). Note that once these parameters have been estimated, then for pricing
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or hedging purposes, we need the parameters (V δ
0 /σ̄, V δ

1 /σ̄, V ε
2 , V ε

3 ) as can be seen
from the formula (3.39). These quantities are given by:

V δ
0 /σ̄ = −

(
bδ + aδ(r − σ̄2

2
)

)
(4.14)

V δ
1 /σ̄ = −aδσ̄2

V ε
2 = −σ̄

(
bε + aε(r − σ̄2

2
)

)

V ε
3 = −aεσ̄3.

One of the strengths of our method is that these are the same parameters which are
needed to price path dependent contracts as we will show in Section 6.

5. Calibration to data. In this section, we illustrate the improvement in fit of
the model’s predicted implied volatility, given by formula (4.13), to market data on a
specific day. A more extensive analysis of the stability of estimated parameters over
time will be detailed in work in preparation. Of course, it is not too surprising that the
two-scale volatility model with its additional parameters performs better than either
of the one-scale models. However, the pictures of the in-sample fits show visually
how the implied volatilities of options of different maturities are better aligned by the
multi-scale theory.

Figure 5.1 shows the fit using only the fast-factor approximation

I ≈ aε(LMMR) + bε + σ̄.

Here, we estimate bε + σ̄ together, and in practice, as described above, σ̄ would be
estimated separately each day using data over a long enough period that the fast
factor averages out, but the slow factor is approximately constant. Then bε can be
obtained by subtraction.

Each strand in Figure 5.1 comes from options of different maturities (with the
shortest maturities on the left-most strand, and the maturity increasing going clock-
wise). Clearly the single-factor theory struggles to capture the range of maturities.
In Figure 5.2, we show the result of the calibration using only the slow-factor approx-
imation

I ≈ aδ(LM) + bδτ + σ̄.

(Here the fit as a function of the regressor LM is shown, and the maturities increase
going counterclockwise from the top-leftmost strand). Again, the single-factor theory
struggles to capture the range of maturities.

Finally, in fitting the two-factor volatility approximation (4.13), we first divide
the data into implied volatilities of equal maturities and fit an LMMR approximation
across different strikes. This gives us, for each maturity τ , estimates of

α(τ) := aε + aδτ,

and

β(τ) := σ̄ + bε + bδτ.

These are then fitted to linear functions of τ to give estimates of aε, aδ , σ̄ + bε and
bδ. A plot of this second term-structure fit is shown in Figure 5.3. The reason for
employing such a two-stage fitting procedure is that there are clearly far fewer points
in the τ direction than in the moneyness direction.
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Fig. 5.1. S&P 500 implied volatilities as a function of LMMR on 25 January, 2000,
for options with maturities greater than a month and less than 18 months, and moneyness
between 0.7 and 1.05. The circles are from S&P 500 data, and the line aε(LMMR) + bε + σ̄
shows the result using the estimated parameters from only an LMMR (fast factor) fit.
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Fig. 5.2. τ -adjusted implied volatility I − bδτ as a function of LM. The circles are from
S&P 500 data, and the line aδ(LM) + σ̄ shows the fit using the estimated parameters from
only a slow factor fit.
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Fig. 5.3. Term-structures fits.
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The result of the fit is shown in Figure 5.4. We see the ability to capture the
range of maturities is much-improved. The greatest misfitting is at the level of the
shortest maturities (the left-most strand). One way to handle these using a periodic
scale corresponding to the monthly expiration cycles of traded options is presented in
[6].

−2.5 −2 −1.5 −1 −0.5 0 0.5
0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

LMMR

δ−
ad

ju
st

ed
 Im

pl
ie

d 
V

ol
at

ili
ty

LMMR Fit to Residual

Fig. 5.4. δ-adjusted implied volatility I − bδτ − aδ(LM) as a function of LMMR. The
circles are from S&P 500 data, and the line is aε(LMMR) + bε + σ̄ where (aε, bε + σ̄, aδ, bδ)
are the estimated parameters from the full fast & slow factor fit.

6. Pricing with calibrated parameters.

6.1. Vanilla options and the Greeks. We first summarize how the expansion
obtained in the previous section is used to approximate the price of a European
derivative which pays h(XT ) at maturity time T in the case with the multiscale
stochastic volatility model described in (2.4). Note that if the volatility f in this model
is constant then the price is PBS , the classical Black-Scholes price at the constant
volatility f . In the stochastic case the leading order price is PBS evaluated at the
effective volatility σ̄(z) given in (3.12) where z is the current level of the slow volatility
factor. The parameter σ̄(z) can be estimated from historical data. We do not discuss
the details of this estimator here. The main point regarding the estimator is that
σ̄(z) is obtained as an average volatility over a period that is long relative to the
fast volatility factor, but which is still short relative to the slow volatility factor,
thus, a period on the scale of the time to expiration for the contract. The role of the
parameter σ̄(z) in the pricing equation will be discussed in more detail in forthcoming
work. The first step now consists in solving the Black-Scholes equation

∂PBS

∂t
+

1

2
σ̄2(z)x2 ∂2PBS

∂x2
+ r

(
x

∂PBS

∂x
− PBS

)
= 0(6.1)

PBS(T, x) = h(x).
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The next step consists in computing the Greeks of this Black-Scholes price, namely
the Delta, ∂PBS/∂x, the Vega, ∂PBS/∂σ and the DeltaVega ∂2PBS/∂x∂σ. Recall
that the Vega is related to the Gamma (∂2PBS/∂x2) through formula (3.27) with
σ = σ̄(z). Finally, we can then compute the corrected price which incorporates the
main effects of the fast and slow volatility factors. This corrected price is given as in
(4.3) and we write it here in the form

P̃ ε,δ = PBS −
1

σ̄(z)

[(
V ε

2 + τV δ
0

)
Vega +

(
V ε

3 + τV δ
1

)
xDeltaVega

]
,(6.2)

where V δ
0 , V δ

1 , V ε
2 and V ε

3 are given in (4.14) in terms of the quantities aδ , bδ, aε and
bε which are calibrated from the term structure of implied volatility as explained in
the previous section. Recall that V δ

0 and V δ
1 are small O(

√
δ) and that V ε

0 and V ε
1

are small O(
√

ε). Note that for vanilla options of the type discussed in this section no
arbitrage pricing can then in principle be carried out using directly the “continuum”
of call options prices, if these are available. A main advantage of our asymptotic
approach comes when we want to price exotic options based on the underlying for
which we did the calibration. We discuss this in the next section in the context of
path dependent contracts.

6.2. Path dependent contracts. In order to illustrate the strength of our
approach we present a particular example, but hasten to add that a large family
of exotics can be handled via analogous modifications. The discussion below is a
generalization of the one presented in [5] to the case with a multiscale volatility. The
main point of our discussion below is to show that the parameters that we calibrated
above can be used to price also exotic derivatives on the underlying.

We consider an average-strike option where the strike price depends on the average
of the stock price over the lifetime of the option. That is, the payoff function is

h =

(
XT −

1

T

∫ T

0

Xsds

)+

.(6.3)

This derivative involves the new stochastic process

It =

∫ t

0

Xsds.(6.4)

The model under the risk-neutral measure is still (2.5) with the addition of:

dIt = Xtdt

I0 = 0

since the equation for I is not affected by the change of measure. The price of the
Asian option, which we denote Qε,δ, is now given by

Qε,δ(t, Xt, Yt, Zt, It) = IE?
{
e−r(T−t)h | Xt, Yt, Zt, It

}
,(6.5)

where we again explicitly show the dependence on the two small parameters ε and
δ. As above, an application of the Feynman-Kac formula gives a characterization of
Qε,δ(t, x, y, z, I) in (6.5) as the solution of the parabolic PDE with a final condition:

L̂ε,δQε,δ = 0(6.6)

Qε,δ(T, x, y, z, I) =

(
x− I

T

)+

,(6.7)
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where the partial differential operator L̂ε,δ is given by

L̂ε,δ =
1

ε
L0 +

1√
ε
L1 + L̂2 +

√
δM1 + δM2 +

√
δ

ε
M3,(6.8)

with L0, L1, M1, M2 and M3 being defined as in (2.10) and below. The operator
L̂2 is a modification of L2:

L̂2 = L2 + x
∂

∂I
.(6.9)

We can therefore proceed with the asymptotic analysis exactly as in Section 3, the
only change being that L2 is replaced by L̂2. Note that

L̂2 −
〈
L̂2

〉
= L2 − 〈L2〉 .(6.10)

The leading order price approximation Q0 solves a modified version of the problem
(3.10)

〈L̂2〉Q0 = 0(6.11)

Q0(T, x, z, I) =

(
x− I

T

)+

,

where now

〈L̂2〉 = LBS(σ̄2(z)) + x
∂

∂I
,

with LBS being the Black-Scholes operator with volatility σ̄(z).
We then have that the first correction in the fast scale, Q1,0, is given by an

expression analogous to the one in (3.15):

〈L̂2〉Q1,0 = AQ0(6.12)

Q1,0(T, x, z, I) = 0

where again A is the operator specified in (3.16). The first correction in the slow scale
is similarly determined by

〈L̂2〉Q0,1 = −〈M1〉Q0(6.13)

Q0,1(T, x, z) = 0.

Recall that the operators A and M2 can be expressed in terms of the market
group parameters V δ

0 , V δ
1 , V ε

2 and V ε
3 . Thus, we can find the price approximation

for the average strike option by solving (6.11) for the leading order price and (6.12)
and (6.13) for the corrections after having calibrated the market parameters in the
manner described above. Observe that the problem (6.11) admits no explicit solution
and must be solved numerically. The problems for the corrections must also be solved
numerically.

To summarize, putting together the solutions of these linear equations, the price
Qε,δ can be approximated by the solution qε,δ of the PDE problem

〈L̂2〉qε,δ = LsQ0(6.14)

qε,δ(T, x, z, I) =

(
x− I

T

)+

,

20



where

Ls :=
{
−
√

δ〈M1〉+
√

εA
}

=

{
2

σ̄

[
V δ

0

∂

∂σ
+ V δ

1 x
∂2

∂x∂σ

]
+

[
V ε

2 x2 ∂2

∂x2
+ V ε

3 x
∂

∂x

(
x2 ∂2

∂x2

)]}
.

6.3. Hedging. The problem of hedging exotic option positions by trading the
underlying asset and possibly other vanilla options is an important one, and is less
clear-cut in incomplete markets such as described by stochastic volatility models,
than in complete markets where it is a by-product of the pricing problem. Often,
one might want to introduce a measure of hedging performance and solve an optimal
control problem to derive a hedging strategy.

One natural strategy is to extend the analogous hedging rule from the Black-
Scholes model to our corrected price. Typically, for example in the case of the Asian
option, the strategy is to hold the quantity given by the Delta of the price in stocks,

∆ =
∂Q0

∂x
,

and the remainder Q0−∆X in the bank account. In the Black-Scholes model, this is
a self-financing strategy that hedges the option perfectly. In the stochastic volatility
market, the hedge defined by holding

∆ =
∂

∂x
qε,δ

and the amount qε,δ −∆X in the bank account. As discussed in [book, Ch 7], this is
not a self-financing portfolio, but its value is close to the price of the option. Another
type of strategy described there, that also depends only on the calibrated asymptotic
parameters, reduces the bias of the hedging error, as measured by the difference in
the terminal payoff of the option and the stock/bank portfolio.
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