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Abstract. This paper analyses wave propagation in a one-dimensional random medium with
long-range correlations. The asymptotic regime where the fluctuations of the medium parameters
are small and the propagation distance is large is studied. In this regime pulse propagation is
characterized by a random time shift described in terms of a fractional Brownian motion and a
deterministic spreading described by a pseudo-differential operator. This operator is characterized
by a frequency-dependent attenuation that obeys a power law with an exponent ranging from 1 to
2 that is related to the power decay rate of the autocorrelation function of the fluctuations of the
medium parameters. This frequency-dependent attenuation is associated with a frequency-dependent
phase, which ensures causality of the filter that realizes the approximation. A discussion is provided
showing that the mean-field theory cannot capture the correct attenuation rate, this is because it
also averages the random time delay. Numerical results are given to illustrate the accuracy of the
asymptotic theory.
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1. Introduction. Wave propagation in multiscale and rough media, with long-
range fluctuations, has recently attracted a lot of attention, as more and more data
collected in real environments confirm that this situation can be encountered in many
different contexts, such as in geophysics [11] or in laser beam propagation through
the atmosphere [13, 16, 25]. Recently it has been shown that the main effect of such
fluctuations of the medium parameters is a random time shift for the wave front,
that obeys a Gaussian statistics described in terms of a fractional Brownian motion
[22]. Here we observe the wave front along its random characteristics and we show
that the wave front also experiences a deterministic shape modification, that can be
described in terms of a pseudo-differential operator that depends on the power decay
rate of the autocorrelation function of the fluctuations of the medium parameters.
These results extend to general long-range media the ones derived in the context of a
discrete Goupillaud medium in [26].

The effective pseudo-differential operator obtained in this paper gives rise to a
frequency-dependent attenuation that obeys a power law with an exponent ranging
from 1 to 2. This exponent will be shown to be related to the exponent of the
power decay rate of the autocorrelation function of the fluctuations of the medium
parameters. Frequency-dependent attenuation has been observed in a wide range
of applications in acoustics [4, 29], and also in other domains, such as seismic wave
propagation [7, 8]. Experimental observations show that the attenuation of plane
acoustic waves has a frequency dependence of the form E = E0 exp(−γ(ω)z), where
E denote the amplitude of an acoustic variable such as velocity or pressure and ω is
the frequency. The damping coefficient has been seen to obey the empirical power law
γ(ω) = γ0|ω|γ1 where γ0 ∈ (0,∞) and γ1 ∈ (0, 2) are parameters characteristic of the
medium obtained through a fitting of measured data. Different physical models exist
that can predict such a power law [9, 17, 18, 28, 29]. One of the problems discussed
in detail in these papers is to obtain a causal wave equation in the space-time domain
that reproduces such a power law. In our paper we propose a derivation from first
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principles of an effective equation that exhibits a frequency-dependent attenuation
with a power law, and we show that this attenuation is accompanied by a frequency-
dependent phase that ensures the causality of the associated approximation.

Our approach is based on limit theorems and is valid when the fluctuations of the
medium parameters are small and the propagation distance is large. We shall com-
pare the results obtained with this asymptotic theory with the mean-field approach.
We will show that, in the regime addressed in this paper, the mean-field approach
gives a wrong prediction, because it averages out a random time shift that obeys
Gaussian statistics, which gives rise to a non-physical diffusion. To describe the wave
propagation phenomenon it is necessary to carry out a complete statistical analysis
to identify the effective frequency-dependent attenuation.

The paper is organized as follows. We describe the acoustic wave model and the
random medium in Section 2. We then state and discuss the most important results in
Section 3, these results are then proved in Section 4. We present in Section 5 numerical
simulations that illustrate the theoretical predictions of this paper. Finally, in Section
6, we briefly discuss the case with so-called anti-persistent scaling.

2. The Model.

2.1. Acoustic Wave Equations. We develop an asymptotic probabilistic the-
ory for the acoustic wave equations in the presence of random fluctuations of the
medium with long-range correlation. The one-dimensional acoustic wave equations
are given by

ρ(z)
∂u

∂t
+

∂p

∂z
= 0 , (2.1)

1

K(z)

∂p

∂t
+

∂u

∂z
= 0 , (2.2)

where p is the pressure and u is the velocity. For simplicity we assume that the density
of the medium ρ is a constant equal to ρ. The bulk modulus of the medium K is
assumed to be randomly varying in the region z ∈ [0, L] and we consider the weakly
heterogeneous regime [15, 22], in which the fluctuations of the bulk modulus are small
and rapid (compared to the propagation distance):

1

K(z)
=

{ 1
K

(

1 + εν(z/ε2)
)

for z ∈ [0, L] ,
1
K

for z ∈ (−∞, 0) ∪ (L,∞) ,

ρ(z) = ρ̄ for all z .

The relevance of this long-range weakly heterogeneous regime is discussed in [22].

Here, the effective impedance and speed of sound are ζ̄ =
√

K̄ρ̄ and c̄ =
√

K̄/ρ̄,
respectively. The source located at z0 < 0 emits a pulse at time z0/c̄. This pulse is
impinging on the section [0, L] and hits the boundary at 0 at time 0.

The random process ν is assumed to be bounded, stationary and with zero-mean.
We assume in this paper that the medium has long-range correlation, in the sense
that the autocorrelation function

φ0(z) := E[ν(y)ν(y + z)] (2.3)

is not integrable and has a power decay at infinity. Specifically, we assume

2



Assumption 1. (i) ν is a bounded, stationary and zero-mean random process
whose autocorrelation function satisfies:

φ0(z)
z→∞∼ cα

zα
, (2.4)

where cα > 0 and α ∈ (0, 1). We call lc the critical length scale that corresponds to
an inner scale below which the power law form behavior (2.4) is not valid.

(ii) ν satisfies the fourth-order moment conditions

E[ν(y1)ν(y2)ν(z + y3)ν(z + y4)]
z→∞−→ E[ν(y1)ν(y2)]E[ν(y3)ν(y4)] (2.5)

for all y1, y2, y3, y4 ≥ 0,
(iii) ν is twice differentiable with bounded derivatives.
The boundedness of ν is necessary to make the model physically relevant: the

bulk modulus is a positive quantity so that 1 + εν must be positive. This holds for ε
small enough as soon as ν is bounded. We remark that it is likely that the main result
of the paper (Proposition 3.1) could be extended to more general cases. In particular,
the third hypothesis is required in our proof but we believe that it is only a technical
requirement that could be removed or at least weakened.

2.2. Random Medium with Long-range Correlation. In this section we
present three processes ν that satisfy the conditions that we have imposed on the
medium fluctuations.

Fractional Ornstein Uhlenbeck medium. The fractional Ornstein Uhlenbeck
(OU) process ν̃(z) is defined by

ν̃(z) := WH(z) − 1

lc

∫ z

−∞

e
y−z

lc WH(y)dy , (2.6)

where WH is a fractional Brownian motion with Hurst index H ∈ (1/2, 1). The frac-
tional OU process is a zero-mean, stationary, Gaussian process and its autocorrelation
function is given by

φ̃0(z) = −1

2
|z|2H +

1

4lc

∫ ∞

−∞

e−
|y|
lc |z + y|2Hdy .

The large-z behavior of the autocorrelation function is (2.4) with

α = 2 − 2H and c̃α = H(2H − 1)l2c .

It is possible to simulate paths of this process using the methods described in [2].
However, the fractional OU process ν̃ is not bounded, nor differentiable. Let us

consider the regularized process ν defined by

ν(z) =
[

K ∗ (T (ν̃))
]

(z) =

∫

K(z − y)T (ν̃(y))dy , (2.7)

where T is a smooth, bounded, and odd real-valued function, such as arctan, and K
is a smooth convolution kernel, such as a Gaussian kernel. Applying Lemma A.1 we
obtain that the process ν satisfies Assumption 1.

Fractional white noise medium. As a second example we can consider the
model

ν̃(z) := WH(z) − WH(z + lc) , (2.8)
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where WH is a fractional Brownian motion. The large-z behavior of the autocorrela-
tion function is (2.4) with

α = 2 − 2H and c̃α = H(2H − 1)l2c .

Next, we regularize this process using Lemma A.1 as in (2.7) .
Binary medium. Here we construct a process corresponding to a binary medi-

um, the process ν̃ is then stepwise constant and takes values ±σ over intervals with
random lengths. We denote by (lj)j≥0 the lengths of these intervals and by (nj)j≥0

the values taken by the process over each elementary interval. The process ν̃(z) is
defined by

ν̃(z) := nNz
where Nz = sup {n ≥ 0, Ln ≤ z} , (2.9)

where L0 = 0 and Ln+1 = Ln + ln. The random variables nj are independent and
identically distributed with the distribution

P(nj = ±σ) =
1

2
.

The random variables lj are independent and identically distributed and their distri-
bution has the probability density function (pdf)

pl1(z) = (1 + α)
l1+α
c

z2+α
1[lc,∞)(z) . (2.10)

Note that it is very easy to simulate the random variable l1, since lcU
−1/(1+α) has the

pdf (2.10) if U is uniformly distributed over [0, 1]. The average length of the random
interval is

E[l1] =
1 + α

α
lc ,

while the variance of l1 is infinite. The process ν̃ is bounded and has mean zero, but
it is not stationary. However, using renewal theory [14, Chap. 11], one can show that
the distribution of the process (ν̃(y + z))z≥0 converges to a stationary distribution
when y → ∞ and that the autocorrelation function of ν̃ satisfies

E[ν̃(y)ν̃(y + z)]
y→∞−→ φ̃0(z) (2.11)

φ̃0(z) = σ2

[

1

1 + α

lαc
zα

1[lc,∞)(z) +
(

1 − α

α + 1

z

lc

)

1[0,lc)(z)

]

, (2.12)

which is of the form (2.4) with c̃α = σ2lαc /(1 + α).
It is also possible to make the process stationary by simply modifying the sta-

tistical distribution of the length of the first interval: If the random lengths (lj)j≥1

are independent and identically distributed according to the distribution with the pdf
(2.10), and if l0 is independent of the (lj)j≥1 and has the distribution with the pdf:

pl0(z) =
P(l1 > z)

E[l1]
=

α

α + 1

1

lc
1[0,lc)(z) +

α

α + 1

lαc
z1+α

1[lc,∞)(z) ,

then the process ν̃ is bounded, zero-mean and stationary, and its autocorrelation
function E[ν̃(y)ν̃(y + z)] is (2.12) for any y.

Note that the process ν̃ is bounded but not differentiable. If we consider a regu-
larized version ν(z) = K ∗ ν̃(z), where K is for instance a Gaussien kernel, then ν is
differentiable with ‖ν(j)‖∞ ≤ ‖K(j)‖1σ and ν satisfies Assumption 1.
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2.3. The Propagating Modes. We consider the right- and left-going waves
defined in terms of the local impedance and moving with the local sound speed:

[

Aε(t, z)
Bε(t, z)

]

:=

[

ζε−1/2(z)p(t, z) + ζε1/2(z)u(t, z)

−ζε−1/2(z)p(t, z) + ζε1/2(z)u(t, z)

]

. (2.13)

The local impedance is

ζε(z) :=
√

K(z)ρ(z) =
ζ̄

√

1 + εν(z/ε2)
.

The mode amplitudes satisfy

∂

∂z

[

Aε

Bε

]

= − 1

cε(z)

[

1 0
0 −1

]

∂

∂t

[

Aε

Bε

]

+
ζε′(z)

2ζε(z)

[

0 1
1 0

] [

Aε

Bε

]

. (2.14)

Here ζε′ is the z-derivative of ζε and

ζε′(z)

ζε(z)
= − 1

2ε

ν′(z/ε2)

1 + εν(z/ε2)
.

The local sound speed is

cε(z) :=
√

K(z)/ρ(z) =
c̄

√

1 + εν(z/ε2)
. (2.15)

This system is completed with an initial condition corresponding to a right-going
wave that is incoming from the homogeneous half-space z < 0 and is impinging on
the random medium in [0, L],

Aε(t, z) = f
( t − z

ε2

)

, Bε(t, z) = 0 , t < 0 . (2.16)

The source pulse function f is compactly supported in the interval (−T0, T0). Equa-
tion (2.14) clearly exhibits the two important aspects of the propagation mechanisms.
The first term on the right describes transport along the random characteristics with
the local sound speed cε(z). The second term on the right describes coupling between
the right- and left-going modes, which is proportional to the derivative ζε′ of the
impedance.

Before considering the random medium with long-range correlation, we briefly
recall the standard O’Doherty-Anstey (ODA) theory that describes the propagating
pulse when the medium has rapidly decaying correlations. The effective equation for
the wave front has in this case been obtained by several authors [5, 6, 10, 15, 23, 27].
The pulse propagation is characterized by a random time shift and a deterministic
spreading, that are of the same order. The random time shift is described in terms
of a standard Brownian motion, while the deterministic spreading is described by a
pseudo-differential operator. If, additionally, the correlation length of the medium
is smaller than the typical wavelength, then the pseudo-differential operator can be
reduced to a second-order diffusion.

3. Asymptotic Analysis of the Wave Front.
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3.1. Statement of the Main Result. We now state the main result that
characterizes the wave front transmitted through a random medium with long-range
correlation.

Proposition 3.1. Let us introduce the random travel time

τε
0 (z) :=

z

c̄
+

ε

2c̄

∫ z

0

ν
( y

ε2

)

dy . (3.1)

1. Under Assumption 1, the wave front observed in the random frame moving with
the random travel time

Aε
(

τε
0 (z) + ε2τ, z

)

, z > 0 , (3.2)

converges in distribution as ε → 0 to the deterministic profile

a(τ, z) :=
1

2π

∫

exp
(

− iωτ − γ(ω)ω2

8c̄2
z − i

γ(s)(ω)ω2

8c̄2
z
)

f̂(ω)dω , (3.3)

where f̂(ω) is the Fourier transform of the initial pulse and

γ(ω) := 2

∫ ∞

0

φ0(z) cos
(2ωz

c̄

)

dz , (3.4)

γ(s)(ω) := 2

∫ ∞

0

φ0(z) sin
(2ωz

c̄

)

dz . (3.5)

2. Under Assumption 1, the expectation of the random travel time τε
0 (z) is z/c̄

and its variance is

Var
(

τε
0 (z)

)

=
ε2(1+α)

c̄2

cα

2(1 − α)(2 − α)
z2−α + o(ε2(1+α)) ,

as ε → 0.
3. With some additional technical hypotheses that ensure that the integral of ν

satisfies a non-central limit theorem, the random travel time τε
0 (z) has the distribution

of

z

c̄
+

ε1+α

c̄

√

cα

2(1 − α)(2 − α)
WH(z) + o(ε1+α) ,

as ε → 0, where WH(z) is a fractional Brownian motion with Hurst index H =
1 − α/2.

The third point of this proposition was established in [22] for a certain class of
subordinated Gaussian processes. We extend this result in Appendix B so that the first
two models introduced in Subsection 2.2 satisfy the non-central limit theorem. The
third model should also satisfy the non-central limit theorem but the proof requires
some more work.

We see from the first point of this proposition that the frequency-dependent decay
rate

γ(ω)ω2

8c̄2
, (3.6)

of the wave front in (3.3) is always nonnegative because γ(ω) is the power spectral
density of the stationary fluctuations ν(z) of the random medium.

6



The term exp[−iγ(s)(ω)ω2z/(8c̄2)] in (3.3) is a frequency-dependent phase mod-
ulation and γ(s)(ω) is conjugate to γ(ω). This shows that the transmitted wave front
when centered with respect to the random travel time correction propagates in a
dispersive effective medium with frequency-dependent wave number, given by

k(ω) =
ω

c̄
− ε2 γ(s)(ω)ω2

8c̄2
,

up to higher-order terms.

Proposition 3.1 shows that the transmitted wave front in the random medium is
modified in two ways compared to propagation in a homogeneous one. First, its arrival
time at the end of the slab z = L has a small random component of order ε1+α. Its
statistical distribution in terms of a fractional Brownian motion was already obtained
in [22]. Remember, however, that the pulse width is of order ε2, which means that
the random time delay is large compared to the pulse width, moreover, it becomes
relatively larger as α decreases. Second, if we observe the wave front near its random
arrival time, then we see a pulse profile that, to leading order, is deterministic and
is the original pulse shape convolved with a deterministic kernel that depends on the
second-order statistics of the medium through the autocorrelation function of ν:

a(τ, z) = [H(·, z) ∗ f ](τ) .

The convolution kernel is given by

H(τ, z) =
1

2π

∫

exp
(

− iωτ − γ(ω)ω2

8c̄2
z − i

γ(s)(ω)ω2

8c̄2
z
)

dω .

From the integral equation formulation of the wave front problem that we derive next
in Section 4, we can see that only second-order scattering events contribute in the
asymptotic analysis. This explains why only second-order statistics of the fluctuations
are involved.

3.2. The Random Time Shift. In this subsection we analyze the asymptotic
behavior of the random travel time τε

0 (z) defined by (3.1). We note that τε
0 (z) is not

the travel time along the random characteristics of (2.14), which by (2.15) is given by

τε(z) :=

∫ z

0

1

cε(y)
dy =

z

c̄
+

ε

2c̄

∫ z

0

ν
( y

ε2

)

dy − ε2

8c̄

∫ z

0

ν2
( y

ε2

)

dy + O(ε3) , (3.7)

corresponding to the first arrival time to depth z for a point source at the surface.
The ε2 term in (3.7) is not present in (3.1). It is one of the results of Proposition 3.1
that the travel time of the wave front has the form (3.1). It implies that the stable
wave front arrives with the delay

∆τε(z) := τε
0 (z) − τε(z)

after the arrival of the leading edge which arrives at the random time τε(z). The
mean delay is

E
[

∆τε(z)
]

=
ε2

8c̄
E

[

∫ z

0

ν2
( y

ε2

)

dy
]

+ O(ε3) = ε2 E[ν(0)2]z

8c̄
+ O(ε3) ,
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The variance of the delay satisfies

Var
(∆τε(z)

ε2

)

=
1

64c̄2

∫ z

0

∫ z

0

E

[

ν2
(y1

ε2

)

ν2
(y2

ε2

) ]

−E

[

ν2
(y1

ε2

) ]

E

[

ν2
(y2

ε2

) ]

dy1dy2 + O(ε)

ε→0−→ 0 ,

by (2.5) and the dominated convergence theorem. This shows that the delay is to
leading order deterministic and given by ε2

E[ν(0)2]z/(8c̄), hence it is on the scale of
the source pulse support. The delay is caused by a gradual delay of the pulse due to
the scattering events that transform the pulse shape as it moves into the medium.

The random travel time τε
0 (z) has mean z/c̄ and variance

Var(τε
0 (z)) =

ε2

4c̄2
E

[

(
∫ z

0

ν
( y

ε2

)

dy

)2
]

=
ε2

4c̄2

∫ z

0

∫ z

0

φ0

(y − x

ε2

)

dydx .

Using (2.4) the variance has the following asymptotic behavior as ε → 0:

1

ε2(1+α)
Var(τε

0 (z))
ε→0−→ cα

4c̄2

∫ z

0

∫ z

0

|y − x|−αdydx =
cα

2(1 − α)(2 − α)c̄2
z2−α .

This proves the second point of Proposition 3.1. By using a non-central limit theorem
applied to the antiderivative of the fluctuation process ν(z) we have that

1

ε1+α

(

τε
0 (z) − z

c̄

)

=
1

2εαc̄

∫ z

0

ν
( y

ε2

)

dy

converges in distribution as ε → 0 to

√

cα

2(1 − α)(2 − α)c̄2
WH(z) , (3.8)

where WH(z) is a fractional Brownian motion with Hurst index H = 1 − α/2. This
characterizes the fluctuations in the arrival time of the stable wave front around the
deterministic arrival time z/c̄ associated with the homogenized medium. There exist
different versions of this non-central limit theorem with different hypotheses for ν,
but only subordinated Gaussian models and linear filters have been treated in detail
[12, 30]. In particular, the non-central limit theorem has been established in [22] in
the case in which ν is of the form T (ν̃(z)) where ν̃ is a Gaussian process with long-
range correlation and T is a bounded function. In Appendix B we extend this result
to show that the examples of Subsection 2.2 satisfy the non-central limit theorem.

3.3. The Deterministic Pulse Deformation. In this section we analyze the
main properties of the effective equation for the wave front: The important function
affecting the dynamics is the Fourier transform (3.4-3.5) of the positive lag part of the
autocorrelation function of the random fluctuations of the medium. We have stated
that Aε(τε

0 (z) + ε2τ, z) converges to a given by (3.3). By taking an inverse Fourier
transform, it is possible to identify the partial differential equation (PDE) satisfied
by a:

∂a

∂z
= La , (3.9)
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where L is a pseudo-differential operator that describes the deterministic pulse defor-
mation:

L = Lr + Li , (3.10)
∫ ∞

−∞

Lra(τ)eiωτdτ = −γ(ω)ω2

8c̄2

∫ ∞

−∞

a(τ)eiωτ dτ , (3.11)

∫ ∞

−∞

Lia(τ)eiωτdτ = − iγ(s)(ω)ω2

8c̄2

∫ ∞

−∞

a(τ)eiωτ dτ . (3.12)

The PDE (3.9) is completed with the initial condition a(τ, z = 0) = f(τ).

The first qualitative property satisfied by the pseudo-differential operator L is
that it preserves the causality. Indeed, in the time domain, we can write

La(τ) =

[

1

8c̄
φ0

( c̄τ

2

)

1[0,∞)(τ)

]

∗
[

∂2a

∂τ2
(τ)

]

=
1

8c̄

∫ ∞

0

φ0

( c̄s

2

) ∂2a

∂τ2
(τ − s)ds .

The indicator function 1[0,∞) is essential to interpret correctly the convolution. If a
is vanishing for τ < 0, then La is also vanishing for τ < 0.

The pseudo-spectral operator L can be divided into two parts as (3.10). The first
component Lr, as pointed out in Subsection 3.1 after (3.6), is a frequency-dependent
attenuation which can be interpreted as an effective diffusion operator. However, Lr

does not behave like a second-order diffusion ∂2
τ as we discuss below. The second

component Li is an effective dispersion operator, since it preserves energy. There is
an interesting regime that leads to explicit formula. This is the regime in which the
typical wavenumber ω/c̄ of the input pulse is such that ωlc/c̄ ≪ 1. Using (2.4) we
then find

γ(ω)ω2

c̄2
= cα

√
πΓ(1

2 − α
2 )

Γ(α
2 )

|ω|1+α

c̄1+α
,

γ(s)(ω)ω2

c̄2
= cα

√
πΓ(1 − α

2 )

Γ(1
2 + α

2 )

|ω|1+α

c̄1+α
sgn(ω) .

(3.13)
This shows that the wave propagation in random media with a long-range correla-
tion exhibits frequency-dependent attenuation that is characterized by a power law
with an exponent ranging from 1 to 2 that is related to the power decay rate of the
autocorrelation function of the medium fluctuations. The frequency-dependent atten-
uation is associated with a frequency-dependent phase. This ensures that causality is
respected.

Although we do not use the limit theorems presented in [21], the results obtained
in this paper are strongly connected to them. In [21] the solutions of ordinary dif-
ferential equations driven by random and rapidly varying coefficients with long-range
correlation are studied. It is shown that, when the solutions are observed at a par-
ticular scale that depends on the power decay rate of the autocorrelation function,
then they usually converge to the solutions of stochastic differential equations driven
by fractional Brownian motions. This result is in agreement with the behavior of
the travel time that we have exhibited here. It is also shown in [21] that the pres-
ence of periodic components in the random ordinary differential equations can have a
dramatic effect. In particular, it modifies the scale at which the solutions should be
observed to obtain a convergence, and it also affects the type of limit equations, which
are now driven by standard Brownian motions. This result is in agreement with the
type of pulse deformation that we have obtained.
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3.4. The Mean-field Approach. The derivation of the effective equation for
the wave front is based on an integral representation of the wave front and the ap-
plication of a stochastic limit theorem. Our approach gives more precise results than
a mean-field theory, as we discuss now. Let us observe the coherent wave front (or
mean field) in the frame moving with the sound speed c̄ of the effective medium:

aε
coh(τ, z) := E

[

Aε
(z

c̄
+ ε2τ, z

)]

. (3.14)

The analysis of the coherent field exhibits an additional frequency-dependent decay
that originates from the averaging with respect to the random time delay. This term

is strong as it becomes of order one for a small propagation distance, of order ε
2−2α
2−α .

More precisely, we have the following result:
Lemma 3.2.

aε
coh

(

τ, ε
2−2α
2−α z

)

ε→0−→ acoh(τ, z) ,

where the asymptotic mean field is

acoh(τ, z) =
1

2π

∫

exp
(

− iωτ − cαω2

4(1 − α)(2 − α)c̄2
z2−α

)

f̂(ω)dω . (3.15)

Proof. Using Proposition 3.1 we obtain the expression of the asymptotic mean
field

acoh(τ, z) = E

[

f
(

τ +
1

c̄

√

cα

2(1 − α)(2 − α)
WH(z)

)]

.

Since WH(z) has a zero-mean Gaussian distribution with variance z2(1−α/2), the
expectation reads

acoh(τ, z) =
1√

2πz2(1−α/2)

∫

f
(

τ +
1

c̄

√

cα

2(1 − α)(2 − α)
w

)

exp
(

− w2

2z2(1−α/2)

)

dw .

This integral is the convolution of f with a Gaussian kernel, which can be written as
(3.15).

The partial differential equation satisfied by the asymptotic mean field is:

∂acoh

∂z
=

cα

4(1 − α)c̄2
z1−α ∂2acoh

∂τ2

Thus, the coherent wave is described by an anomalous diffusion equation. If, for
instance, the initial pulse has the Gaussian shape:

f(τ) = q0 exp
(

− τ2

2T 2
0

)

,

then the output coherent pulse is given by

acoh(τ, z) = q(z) exp
(

− τ2

2T (z)2

)

,

where the width of the coherent pulse increases as

T (z)2 = T 2
0 +

cα

2(1 − α)(2 − α)c̄2
z2−α ,
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and its amplitude q(z) decays as

q(z) = q0
T0

T (z)
.

This anomalous diffusion is strong, much stronger than the diffusion for the randomly
centered wave front, but it is not physical as it is determined by the averaging with
respect to the random time shift.

4. Derivation of the Effective Equation for the Wave Front. In this sec-
tion we give the proof of the first point of Proposition 3.1, which goes along the same
lines as the one given in [15] in the case where the autocorrelation function φ0 is
integrable. We will first perform a series of transformations to rewrite the evolution
equations of the modes by centering along the characteristic of the right-going mode.
We will then obtain an upper-triangular system that can be integrated more easily.
In a second step we will apply a limit theorem to this system to establish an effective
equation for the wave front.

We introduce the characteristic random travel time (3.7) and consider the new
reference frame

(z, t) 7→ (τ, s) , with τ = τε(z) and s =
t − τε(z)

ε2
, (4.1)

which moves with the right-going mode Aε and is adjusted to be on the time scale
of the incident pulse. In this new reference frame the equations for (Aε, Bε) have the
form

∂

∂τ

[

Aε

Bε

]

=
1

ε2

[

0 0
0 2

]

∂

∂s

[

Aε

Bε

]

− 1

4ε
M ε

(zε(τ)

ε2

)

[

0 1
1 0

] [

Aε

Bε

]

, (4.2)

where

M ε(z) := c̄
ν′(z)

(1 + εν(z))3/2
,

and zε(τ) is the inverse function of the travel time τε(z). This is a lower-triangular
system that we can integrate. More precisely, the equation for Aε can be integrated
for τ > 0:

Aε(s, τ) = − 1

4ε

∫ τ

0

M ε
(zε(y)

ε2

)

Bε(s, y)dy + f(s) . (4.3)

For τ ≤ 0, we simply have Aε(s, τ) = f(s). The integrated form of the equation for
Bε is

Bε(s, τ) = −ε2

2

∫ s

−∞

Sε
B

(

u, τ +
ε2

2
(s − u)

)

du , (4.4)

where

Sε
B(s, τ) := − 1

4ε
M ε

(zε(τ)

ε2

)

Aε(s, τ) . (4.5)

The integral in (4.4) is over the infinite range (−∞, s). However, the initial
conditions restrict Aε and Bε to be zero for s < −T0 and τ = 0. From equations (4.2)

11



we then see that Aε and Bε are zero for s < −T0 for any τ ≥ 0. Thus the integral with
respect to u in (4.4) is effectively limited to the range (−T0, s). If we now substitute
the integral representation (4.4) for Bε into the one (4.3) for Aε we obtain

Aε(s, τ) = f(s) − 1

32

∫ τ

0

M ε
(zε(y)

ε2

)

×
∫ s

−T0

M ε
(zε(y + ε2(s − u)/2)

ε2

)

Aε
(

u, y + ε2 s − u

2

)

du dy . (4.6)

This is the closed integral equation for the advancing front of the transmitted wave.
We will apply the averaging theorem to a somewhat simplified version of this equation.

We first transform the integral equation (4.6) into a form that is asymptotically
equivalent to it as ε → 0 and that allows direct application of the averaging theorem.

From (4.6) we get the inequality

sup
τ∈[0,τε(L)]

|Aε(s, τ)| ≤ |f(s)| + M2τε(L)

32

∫ s

−T0

sup
τ∈[0,τε(L)]

|Aε
(

u, τ
)

|du ,

where M = c̄‖ν′‖∞/(1 − ε0‖ν‖∞)3/2 is an upper bound for M ε valid for any ε < ε0.
We also have τε(L) ≤ L/[c̄(1− ε0‖ν‖∞)]. Using Gronwall’s lemma we then obtain for
any ε < ε0 and T > 0 the estimate

sup
τ∈[0,τε(L)],s≤T

|Aε(s, τ)| ≤ eM2L(T+T0)‖f‖∞ .

Here M2 = M2/[32c̄(1− ε0‖ν‖∞)]. Substituting this estimate into (4.4) and (4.3), we
get the further estimates

sup
τ∈[0,τε(L)],s≤T

|Bε(s, τ)| ≤ εKT,L , sup
τ∈[0,τε(L)],s≤T

∣

∣

∣

∣

∂Aε

∂τ
(s, τ)

∣

∣

∣

∣

≤ KT,L ,

where KT,L is a constant that depends only on T and L. From the estimate for ∂τAε,
we see that we can replace the last term of the integral in (4.6) by Aε(u, y), with
an error of order ε2. After the change of variable x = zε(y) we obtain the integral
equation

Aε(s, τ) = f(s) − 1

32

∫ zε(τ)

0

M ε
( x

ε2

) 1

cε(x)

×
∫ s

−T0

M ε
(zε(τε(x) + ε2(s − u)/2)

ε2

)

Aε
(

u, τε(x)
)

du dx . (4.7)

Since the second derivative of ν is bounded, we have

M ε
(zε(τε(x) + ε2(s − u)/2)

ε2

)

= M ε
( x

ε2
+ c̄

s − u

2

)

+ O(ε2)

= c̄ν′
( x

ε2
+ c̄

s − u

2

)

+ O(ε) .

We also have that

cε(x) = c̄ + O(ε) , zε(τ) = c̄τ + O(ε) , τε(x) = x/c̄ + O(ε) ,
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uniformly in x ∈ [0, L] and τ ∈ [0, L/[c̄(1 − ε0‖ν‖∞)]]. Using once again the uniform
bound on ∂τAε, we see that

Aε(u, τε(x)) = Aε(u, x/c̄) + O(ε) ,

which allows us to simplify the integral equation (4.7) for Aε,

Aε(s, τ) = f(s) − c̄

32

∫ c̄τ

0

ν′
( x

ε2

)

∫ s

−T0

ν′
( x

ε2
+ c̄

s − u

2

)

Aε
(

u,
x

c̄

)

du dx ,

where we have neglected terms of order ε. We make the change of variable x = c̄y,
then this integral equation can be written as

Aε(s, τ) = f(s) − c̄2

32

∫ τ

0

ν′
(

c̄
y

ε2

)

∫ s

−T0

ν′
(

c̄
y

ε2
+ c̄

s − u

2

)

Aε
(

u, y
)

du dy .

In a functional form this equation becomes

Aε(·, τ) = f(·) +

∫ τ

0

F
( y

ε2

)

Aε(·, y)dy , (4.8)

where F (y) is the random linear operator acting on functions A(·) with support in
(−T0,∞), defined by

[F (y)A](s) := − c̄2

32
ν′(c̄y)

∫ s

−T0

ν′
(

c̄y + c̄
s − u

2

)

A(u)du . (4.9)

Using Assumption 1, the following averaging theorem holds.
Proposition 4.1. The solution Aε(·, τ) of the integral equation (4.8) converges

as ε → 0 in probability, as a process in the space of continuous functions, to the
solution of the averaged integral equation

Ã(·, τ) = f(·) +

∫ τ

0

F̃ Ã(·, y)dy , (4.10)

where F̃ = E[F (y)], that is,

[F̃A](s) = − c̄2

32

∫ s

−T0

E

[

ν′(c̄y)ν′
(

c̄y + c̄
s − u

2

)

]

A(u)du . (4.11)

The proof of this averaging theorem is given in Appendix C. If we denote by φ1 the
autocorrelation function of the stationary random process ν′,

φ1(x) := E[ν′(z)ν′(z + x)] ,

then the operator F̃ acting on functions A(·) with support in (−T0,∞) has the form

F̃A(s) = − c̄2

32

∫ s

−T0

φ1

( c̄

2
(s − u)

)

A(u)du = − c̄2

32

∫ T0+s

0

φ1

( c̄

2
u
)

A(s − u)du .

This operator can also be written as a convolution independently of the point −T0

defining the left end of support of A:

F̃A(s) = − c̄2

32

∫ ∞

0

φ1

( c̄

2
u
)

A(s − u)du .
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In the Fourier domain the convolution operator F̃ is the multiplication operator
∫ ∞

−∞

F̃A(s)eiωsds = − c̄

16
b1

(2ω

c̄

)

∫ ∞

−∞

A(s)eiωsds , (4.12)

where

b1(k) :=

∫ ∞

0

φ1(x)eikxdx . (4.13)

We will now rewrite b1 in terms of the autocorrelation function of the stationary
random process ν. Let us define

b0(k) :=

∫ ∞

0

φ0(x)eikxdx , (4.14)

where φ0 is the autocorrelation function (2.3) of ν. First, we note that ∂2
xφ0(x) =

E[ν(z)ν′′(z + x)]. We also note that φ0 is independent of z, by stationarity, so that
0 = ∂z∂xφ0(x) = E[ν(z)ν′′(z +x)]+E[ν′(z)ν′(z +x)]. As a result we have the identity

φ1(x) = −φ′′
0(x) . (4.15)

By integration by parts we get

b1(k) = −
∫ ∞

0

φ′′
0 (x)eikxdx = −

[

φ′
0(x)eikx

]∞

0
+ ik

∫ ∞

0

φ′
0(x)eikxdx .

Since φ0 is even and differentiable we have φ′
0(0) = 0, therefore, the first term on the

right side vanishes. Integrating by parts once again we obtain

b1(k) = ik
[

φ0(x)eikx
]∞

0
+ k2

∫ ∞

0

φ0(x)eikxdx = −ikφ0(0) + k2b0(k) . (4.16)

Using (4.16) in (4.12) the linear operator F̃ is therefore given by
∫ ∞

−∞

F̃A(s)eiωsds =

[

iω

8
φ0(0) − ω2

4c̄
b0

(2ω

c̄

)

]
∫ ∞

−∞

A(s)eiωsds . (4.17)

We have shown that the wave front converges to a deterministic pulse profile when
it is observed in the frame moving to the right with the random local sound speed
cε(z). If we observe the wave front in the frame moving along τε

0 (z), then we have to
account for the difference between the random characteristic travel times τε(z) given
by (3.7) and τε

0 (z) given by (3.1). The rescaled travel time correction is

1

ε2
(τε (z) − τε

0 (z)) = − 1

8c̄

∫ z

0

ν
( x

ε2

)2

dx + O(ε) .

As shown in Subsection 3.2 we have the following convergence in mean square sense
and in probability as ε → 0:

1

ε2
(τε (z) − τε

0 (z))
ε→0−→ − 1

8c̄
φ0(0)z . (4.18)

The deterministic correction −φ0(0)z/(8c̄) cancels with the first term on the right in
(4.17), when written in the time domain and used in (4.10). That is why the travel
time fluctuation of the wave front is simply the fractional Brownian motion part of
(4.18) in the limit ε → 0. This completes the proof of the first point of Proposition
3.1.
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5. Numerical Simulations. In this section we present the results of full nu-
merical simulations of the wave equations with a random medium. We use a spectral
code where the bandwidth is discretized into 2048 frequencies. We consider a binary
medium as described in Section 2.2, with the parameters σ = 0.1 and lc = 0.02. The
effective density ρ̄ and bulk modulus K̄ are both equal to 1, so that the effective speed
of sound is c̄ = 1. The output pulse profiles are observed at the propagation distance

L = 1000. The initial pulse f(t) = (1 − 5
2 t2) exp(− 5t2

4 ) is the second derivative of a
Gaussian with amplitude 1.

Here the variance of the random time shift predicted by the asymptotic theory is:

Var(τ0(L)) =
cαL2−α

2(1 − α)(2 − α)
=

σ2lαc L2−α

2(1 − α2)(2 − α)
,

which is equal to 2.73 for α = 0.75, 19.88 for α = 0.5, and 218.36 for α = 0.25. The
fact that the variance of the random time shift increases as α is reduced can be clearly
seen in Figures 5.1-5.3, left plots. Intuitively this follows since a smaller α corresponds
to a longer range of interactions in the medium fluctuations. In the right plots we
have shown the transmitted pulses when we center them with respect to the random
travel time τε

0 together with the theoretical prediction a(τ, z). Note the excellent fit
with the theory.

The autocorrelation function of the fluctuations of the process ν is given by (2.12).
As lc is relatively small, the expressions of the frequency-dependent attenuation and
phase can be approximated by

γ(ω)ω2 =
σ2lαc
1 + α

√
πΓ(1

2 − α
2 )

Γ(α
2 )

|ω|1+α ,

γ(s)(ω)ω2 =
σ2lαc
1 + α

√
πΓ(1 − α

2 )

Γ(1
2 + α

2 )
|ω|1+αsgn(ω) .

The frequency-dependent attenuation, respectively phase, corresponds in the time
domain to attenuation, respectively dispersion, which can be seen in the numerical
results. In particular, the dispersion is responsible for the asymmetry of the trans-
mitted pulse profile.

We finally mention that the results obtained with the binary medium without
smoothing are almost undistinguishable from the results obtained with a smoothed
version of the binary medium obtaiend with splines. This is an indication that the
results obtained in the paper under the set of hypotheses listed in Assumption 1 could
be extended to cases in which the third hypothesis (smoothness) is not included.

6. Stable Propagation in Random Media with Short-Range Correla-

tion. In the previous sections we considered the case when the random medium has
long-range correlation in the sense that the autocorrelation function decays as z−α

with α ∈ (0, 1), so that it is not integrable. Here we briefly consider the case when
the medium has short-range correlation in the sense that the autocorrelation function
is integrable but the integral

∫

φ0(z)dz = 0. As a first model for the process ν(z), we
can use the derivative ν(z) = µ′(z) of a smooth stationary process µ(z) with rapidly-
decaying correlation function φ1(z). We then have φ0(z) = −φ′′

1(z) and
∫

φ0(z)dz = 0.
We can also consider models for which the autocorrelation function has a power law
decay of the form z−α with α ∈ (1, 2). Particular examples of such processes are the
fractional OU process (2.6) and the fractional white noise model (2.8) described in
Section 2.2, with a fractional Brownian motion with Hurst index H ∈ (0, 1/2), which
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Fig. 5.1. Left picture: wave front profiles for three different realizations of the random medium
(solid lines) compared to the wave front profile obtained in homogeneous medium ν = 0 (thick dashed
line). Right picture: wave front profiles for three different realizations of the random medium (solid
lines), centered in time, and compared to the theoretical asymptotic pulse profile (3.3) (thick dashed).
Here α = 0.75.
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Fig. 5.2. The same as in Figure 5.1, but α = 0.5 here.

gives α = 2 − 2H ∈ (1, 2) and
∫

φ0(z)dz = 0. Such processes are often referred to
as anti-persistent since consecutive increments are negatively correlated, while they
are positively correlated for H > 1/2 corresponding to a persistent process. Note
also that the fractional Brownian motion has a modification whose sample paths are
Hölder-continuous of any order in (0, H) so that a small H corresponds to a relatively
rough process. We remark that modeling in terms of processes with H < 1/2 may
be relevant in the context of the turbulent atmosphere while modeling in terms of
processes corresponding to H > 1/2 may the more relevant model in the context of
the multiscale crust of the earth.

The analysis of pulse propagation in random media with short-range correlation
follows the one used for media with rapidly decaying correlation. One obtains that the
pulse deformation is deterministic and described by the pseudo-differential operator
(3.10). The original result is that the random travel time is negligible compared to the
initial pulse width, since its variance at the scale of the pulse width is proportional
to the integral of the autocorrelation function [15], which is here zero. Therefore,
pulse propagation in random media with short-range correlation is fully stable and
one obtains a frequency-dependent decay rate (3.6) of the wave front which can be
expanded for small ω as |ω|γ with γ > 2.

7. Conclusion. In this paper we have studied the propagation of an acoustic
pulse in a one-dimensional random medium with long-range correlation. The fluctu-
ations of the medium parameters are modeled by a random process with correlation
decaying as z−α, α ∈ (0, 1). In the asymptotic regime where the amplitudes of the
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Fig. 5.3. The same as in Figure 5.1, but α = 0.25 here.

fluctuations of the medium parameters are small and the propagation distance is
large, we have obtained that the front wave is modified in two ways. It experiences
a random time shift described in terms of a fractional Brownian motion and a deter-
ministic spreading described by a pseudo-differential operator. In fact, the random
travel time correction is large relative to the width of the propagating pulse. The
pseudo-differential operator is characterized by a frequency-dependent attenuation
that obeys a power law with the exponent 1 + α. This frequency-dependent attenua-
tion is associated with a frequency-dependent phase, which ensures that causality is
respected.

It would be interesting now to address the strong-fluctuations regime, in which
the amplitude of the random fluctuations of the medium parameters is of order one
compared to the average values. In this regime the approach used in this paper cannot
be applied, and a Fourier approach could be of interest. The extension of the results
to three-dimensional media is of course also of interest. The case of locally layered
media could be dealt with the strategy adopted in [27] for random media with rapidly
decaying correlation.
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Appendix A. Regularization of Gaussian Processes. Here we present a
lemma that is used to prove that the examples proposed in Subsection 2.2 satisfy
Assumption 1.

Lemma A.1. Let ν̃(z) be a zero-mean, stationary, Gaussian process such that
φ̃0(z) := E[ν̃(0)ν̃(z)] ∼ c̃αz−α as z → ∞. Let T be a smooth, bounded, odd, real-
valued function. Let K be a smooth convolution kernel. Then the process ν(z) :=
[K ∗ (T (ν̃))](z) satisfies Assumption 1. In particular, the large-z behavior of the
autocorrelation function φ0 of ν satisfies (2.4) with

cα =

(
∫

K∗2(s)ds

) (

1√
2π

∫

gT (g)e−
g2

2 dg

)2

c̃α . (A.1)

Proof. The transformed process ν is bounded as well as its derivatives:

‖ν(j)‖∞ ≤ ‖K(j)‖1‖T ‖∞ , j ≥ 0 .

It is a zero-mean, stationary, random process. Its autocorrelation function is given by

φ0(z) =

∫

K∗2(s)E
[

T (ν̃(0))T (ν̃(z − s))
]

ds . (A.2)
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For any z > 0 we have

E[T (ν̃(0))T (ν̃(z))] =

∫∫

T (g1)T (g2)pφ̃0(z)(g1, g2)dg1dg2 ,

where pφ is the pdf of a zero-mean Gaussian vector with correlation matrix

[

1 φ
φ 1

]

:

pφ(g1, g2) =
1

2π
√

1 − φ2
exp

(

−g2
1 + g2

2 − 2φg1g2

2(1 − φ2)

)

.

When z → ∞, we have φ̃0(z) → 0 and we can expand the value of the integral as

E
[

T (ν̃(0))T (ν̃(z))
]

=

∫∫

T (g1)T (g2)
1

2π
e−

g2
1
+g2

2
2

(

1 + φ̃0(z)g1g2

)

dg1dg2 + o
(

φ̃0(z)
)

=
1

2π

(
∫

T (g)e−
g2

2 dg

)2

+
φ̃0(z)

2π

(
∫

gT (g)e−
g2

2 dg

)2

+ o
(

φ̃0(z)
)

=

(

1√
2π

∫

gT (g)e−
g2

2 dg

)2

c̃αz−α + o(z−α) .

Substituting into (A.2) and using the dominated convergence theorem gives

φ0(z) =

(
∫

K∗2(s)ds

) (
∫

gT (g)e−
g2

2 dg

)2

c̃αz−α + o(z−α) .

It remains to show the fourth-order moment property (2.5) for

M(z) = E
[

ν(y1)ν(y2)ν(y3 + z)ν(y4 + z)
]

. (A.3)

We have

M(z) :=

∫∫ 4
∏

j=1

K(yj − zj)E
[

T (ν̃(z1))T (ν̃(z2))T (ν̃(z + z3))T (ν̃(z + z4))
]

dz1 · · ·dz4 .

(A.4)
Let us consider zj, j = 1, . . . , 4, such that z1 6= z2 and z3 6= z4. For z large enough,
the four points z1, z2, z3 + z, z4 + z are distinct and

E
[

T (ν̃(z1))T (ν̃(z2))T (ν̃(z + z3))T (ν̃(z + z4))
]

=
1

4π2
√

detC(z1, z2, z3 + z, z4 + z)

×
∫∫ 4

∏

j=1

T (ν̃j) exp

(

− ν̃tC−1(z1, z2, z3 + z, z4 + z)ν̃

2

)

dν̃1 · · ·dν̃4 ,

where we have used vector notation in the exponent and the t superscript means
transpose. The entries of the 4 × 4 matrix C(z1, z2, z3, z4) are Cij(z1, z2, z3, z4) =

φ̃0(zi − zj). Therefore we have

C(z1, z2, z3 + z, z4 + z)
z→∞−→









φ̃0(0) φ̃0(z1 − z2) 0 0

φ̃0(z1 − z2) φ̃0(0) 0 0

0 0 φ̃0(0) φ̃0(z3 − z4)

0 0 φ̃0(z3 − z4) φ̃0(0)









,
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which shows that

E
[

T (ν̃(z1))T (ν̃(z2))T (ν̃(z + z3))T (ν̃(z + z4))
]

z→∞−→ E
[

T (ν̃(z1))T (ν̃(z2))
]

E
[

T (ν̃(z3))T (ν̃(z4))
]

.

Substituting into (A.4) and using the dominated convergence theorem gives the fourth-
order moment property (2.5) for the process ν(z).

Appendix B. The Non-central Limit Theorem. We recall the version of
the non-central limit theorem presented in [22]: If ν(z) = T (ν̃(z)), where T is an odd,
bounded C∞-function and ν̃(z) is a zero-mean, stationary, Gaussian process whose
autocorrelation function decays as cαz−α as z → ∞, then

N ε(z) :=
1

εα

∫ z

0

ν
( y

ε2

)

dy (B.1)

converges in distribution as a continuous process as ε → 0 to

N (z) :=

√

cα

2(1 − α)(2 − α)
WH(z) (B.2)

where WH is a fractional Brownian motion with Hurst index H = 1 − α/2. The fol-
lowing lemma combined with this result shows that the first two models of Subsection
2.2 satisfy the non-central limit theorem.

Lemma B.1. If a bounded process ν is such that N ε(z) converges in distribution
as a continuous process to N (z), and if K is a smooth non-negative valued function
such that

∫

K(y)dy = 1 and
∫

|y|K(y)dy < ∞, then the process νK(z) := K ∗ ν(z) is
such that N ε

K(z) (defined as (B.1) in terms of the process νK) converges in distribution
as a continuous process to N (z).

Proof. We have

N ε
K(z) =

1

εα

∫ z

0

νK

( x

ε2

)

dx =

∫

K(x)
1

εα

∫ z−ε2x

−ε2x

ν
( y

ε2

)

dydx ,

and therefore

∣

∣N ε
K(z) −N ε(z)

∣

∣ ≤
∫

K(x)
1

εα

∣

∣

∣

∫ 0

−ε2x

ν
( y

ε2

)

dy −
∫ z

z−ε2x

ν
( y

ε2

)

dy
∣

∣

∣
dx

≤ 2ε2−α‖ν‖∞
∫

|x|K(x)dx ,

which goes to zero as ε → 0.

Appendix C. Proof of the Averaging Theorem. In this Appendix we give
a proof of Proposition 4.1. We fix T > 0 and prove the convergence in the space of
continuous functions over [−T0, T ] with the supremum norm ‖ ·‖∞. We first list some
properties of the operators F and F̃ defined by (4.9) and (4.11), respectively, in the
following two lemmas.

Lemma C.1. Let A(s) be a deterministic continuous function. Then

E

[

∥

∥

∥

∥

1

Z

∫ Z

0

[F (y)A]dy − F̃A]

∥

∥

∥

∥

∞

]

Z→∞−→ 0 .
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Proof. Let us define

∆Z(s) :=
1

Z

∫ Z

0

[F (y)A](s)dy − F̃A(s)

= − c̄2

32

∫ s

−T0

{

1

Z

∫ Z

0

ν′(c̄y)ν′
(

c̄y + c̄
s − u

2

)

−E

[

ν′(c̄y)ν′
(

c̄y + c̄
s − u

2

)

]

dy

}

A(u)du .

By (2.5) and the boundedness of the derivatives of ν, we have for any s, u ∈ [−T0, T ]

E

[

∣

∣

∣

∣

1

Z

∫ Z

0

ν′(c̄y)ν′
(

c̄y + c̄
s − u

2

)

− E

[

ν′(c̄y)ν′
(

c̄y + c̄
s − u

2

)

]

dy

∣

∣

∣

∣

2
]

Z→∞−→ 0 .

Therefore, by the dominated convergence theorem, for any s ∈ [−T0, T ],

E [|∆Z(s)|] Z→∞−→ 0 .

It remains to control the modulus of continuity to get a uniform in s estimate. From
the uniform boundedness of the process ν′, we have

sup
|s1−s2|≤δ

|∆Z(s1) − ∆Z(s2)| ≤
c̄2‖ν′‖2

∞

16
sup

|s1−s2|≤δ

|A(s1) − A(s2)| .

Therefore, setting sk = −T0 + k(T + T0)/N , k = 0, . . . , N , we have

E [‖∆Z‖∞] ≤
N

∑

k=0

E [|∆Z(sk)|] + c̄2‖ν′‖2
∞

16
sup

|s1−s2|≤(T+T0)/N

|A(s1) − A(s2)| .

Taking first the limit Z → ∞ and then N → ∞ gives the result from the uniform
continuity of A over the compact interval [−T0, T ].

Lemma C.2. (1) For any y, the operators F (y) and F̃ are uniformly Lipschitz
with a nonrandom Lipschitz constant c:

‖F (y)A − F (y)B‖∞ ≤ c‖A − B‖∞ , ‖F̃A − F̃B‖∞ ≤ c‖A − B‖∞ .

(2) There exists C > 0 such that

sup
y∈R

‖F (y)A‖∞ + ‖F̃A‖∞ ≤ C‖A‖∞ .

Proof. The first part of the lemma follows from the uniform in s estimate

|[F (y)A](s) − [F (y)B](s)| ≤ c̄2‖ν′‖2
∞

16
‖A − B‖∞ ,

which also holds true for F̃ . The second part follows directly from the boundedness
of the process ν′.
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We can now give the proof of Proposition 4.1. It is enough to prove convergence
in the mean of the supremum norm of the difference between Aε and Ã, because this
implies convergence in probability. From the integral equation formulations

Aε(s, τ) = f(s) +

∫ τ

0

F
( y

ε2

)

Aε(s, y)dy , Ã(s, τ) = f(s) +

∫ τ

0

F̃ Ã(s, y)dy ,

the difference between Aε and Ã satisfies

Aε(s, τ) − Ã(s, τ) =

∫ τ

0

(

F
( y

ε2

)

Aε(s, y) − F
( y

ε2

)

Ã(s, y)
)

dy + gε(s, τ) ,

where gε(s, τ) :=
∫ τ

0
F ( y

ε2 )Ã(s, y) − F̃ Ã(s, y)dy. Taking the supremum norm (in s),
the expectation and applying Gronwall’s lemma, we obtain for any arbitrary τ0 > 0,

sup
τ∈[0,τ0]

E

[

‖Aε(·, τ) − Ã(·, τ)‖∞
]

≤ ecτ0 sup
τ∈[0,τ0]

E[‖gε(·, τ)‖∞] .

It remains to show that the last term on the right goes to 0 as ε → 0. Let δ > 0:

gε(s, τ) =

[τ/δ]−1
∑

k=0

∫ (k+1)δ

kδ

(

F
( y

ε2

)

Ã(s, y) − F̃ Ã(s, y)
)

dy

+

∫ τ

δ[τ/δ]

(

F
( y

ε2

)

Ã(s, y) − F̃ Ã(s, y)
)

dy .

Set Mτ0
= supτ∈[0,τ0] ‖Ã(·, τ)‖∞. From Lemma C.2, the last term of the right-hand

side is bounded by CMτ0
δ. Furthermore, F is Lipschitz, so that

∥

∥

∥
F

( y

ε2

)

Ã(·, y) − F
( y

ε2

)

Ã(·, kδ)
∥

∥

∥

∞
≤ c

∥

∥

∥
Ã(·, y) − Ã(·, kδ)

∥

∥

∥

∞
≤ cCMτ0

|y − kδ| .

Similarly we have
∥

∥

∥
F̃ Ã(·, y) − F̃ Ã(·, kδ)

∥

∥

∥

∞
≤ cCMτ0

|y − kδ| .

Therefore

‖gε(·, τ)‖∞ ≤
∥

∥

∥

∥

[τ/δ]−1
∑

k=0

∫ (k+1)δ

kδ

(

F
( y

ε2

)

Ã(·, kδ) − F̃ Ã(·, kδ)
)

dy

∥

∥

∥

∥

∞

+2cCMτ0

[τ/δ]−1
∑

k=0

∫ (k+1)δ

kδ

(y − kδ)dy + 2cCMτ0
δ

≤ ε2

[τ/δ]−1
∑

k=0

∥

∥

∥

∥

∫ (k+1)δ/ε2

kδ/ε2

(

F (y)Ã(·, kδ) − F̃ Ã(·, kδ)
)

dy

∥

∥

∥

∥

∞

+cCMτ0
(τ + 2)δ .

Taking the expectation and the supremum over τ ∈ [0, τ0], we get

sup
τ∈[0,τ0]

E[‖gε(·, τ)‖∞]

≤ δ

[τ0/δ]−1
∑

k=0

E

[

∥

∥

∥

∥

ε2

δ

∫ (k+1)δ/ε2

kδ/ε2

(

F (y)Ã(·, kδ) − F̃ Ã(·, kδ)
)

dy

∥

∥

∥

∥

∞

]

+ cCMτ0
(τ0 + 2)δ .
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Taking the limit ε → 0, we obtain from Lemma C.1

lim sup
ε→0

sup
τ∈[0,τ0]

E[‖gε(·, τ)‖∞] ≤ cCMτ0
(τ0 + 2)δ .

Finally, letting δ → 0 completes the proof of Proposition 4.1.
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