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Abstract. We analyze wave propagation in turbulent media using the Gaussian white-noise
approximation. We consider two rigorous Gaussian white-noise models: one for the wave field and
the other for the Wigner distribution associated with the wave field. Using the white-noise model for
the Wigner distribution we show that the interaction of a wave field with the turbulent medium can be
characterized in terms of the turbulence-induced entrance aperture. This aperture is proportional to
the turbulence-induced coherence length and inversely proportional to the turbulence-induced spread
of the wave energy in the transverse wavevectors. The effect of the turbulent medium is important
when the turbulence-induced entrance aperture is smaller than the actual entrance aperture. We
also study time reversal of the wave field in a turbulent medium and introduce the notion of a
turbulence-induced time-reversal aperture which we show is proportional to the turbulence-induced
spread in the transmitted wave energy. When the effect of the turbulent medium is important, the
turbulence-induced time-reversal aperture corresponds to a time-reversal resolution much better than
the resolution in the absence of the turbulent medium. The propagation and spreading of a wave
field can be related to time reversal and refocusing of the wave field by a general duality relation,
and we present this duality in terms of the uncertainty principle.
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1. Introduction. Waves propagating through atmospheric turbulence are im-
portant in a range of applications of increasing importance. Improvements of antenna
and laser design with smaller antennas and narrow beam optical-based waves call for a
better understanding of how randomness and turbulence affect the propagating wave
field. Increased demand for capacity of communication links and enhanced resolution
of imaging procedures reinforce this need. Examples of situations when understanding
wave turbulence interaction is important are the following:

• Laser communication channels. High-data-rate communication channels be-
tween satellites, ground, and aircrafts have become possible. The satellite-
to-ground links are particularly sensitive to turbulence in the atmospheric
boundary layer.

• Remote sensing, imaging, and target identification. Laser optics technology
can be used for weather or pollution prediction as well as various other imag-
ing tasks. Backscattered or transmitted wave fields from natural or active
sources and information about how they are affected by the atmosphere can
be used to predict, for instance, temperature or the presence of pollutants
and turbulence [9].
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• Aerial and astronomical imaging. For earthbound observatories, the largest
aperture not affected by atmospheric turbulence typically ranges between
5 and 20cm at visible wavelengths with an average value of 10cm. For larger
apertures, the speckle pattern of the star image varies quickly with time,
causing twinkling of the star due to the refractive index turbulence. At longer
exposure times the patterns add up to a bright extended spot and restrict the
angular resolution of large, ground-based telescopes to the “seeing limit” of
about 0.5 arc-sec, which is typically far larger than the theoretical diffraction
limit (see section 4.3 for a discussion of image resolution in turbulent media).
In order to reconstruct diffraction-limited object images, understanding the
point-spread function of the combined system of atmosphere and telescope is
crucial [24, 25, 42].

d∗

s∗

Fig. 1.1. Signals propagating through the atmosphere may be corrupted by atmospheric turbu-
lence. A good model of the propagation process is important in order to be able to design schemes to
compensate for this corruption. The wave beam is subject to beam spreading (which we will describe
by the spread parameter s∗); moreover, it is subject to displacement and wavefront distortion (which
we will describe by the coherence length d∗).

Both for communication and imaging purposes, optical propagation, especially
with a coherent source such as laser, is becoming increasingly important. Laser radars
with waves in the regime from the ultraviolet to the infrared part of the electromag-
netic spectrum have a potential for high capacity and resolution but are, however,
more susceptible to the atmospheric effects than the microwave-based radars.

Electromagnetic waves propagating through the atmosphere are subject to at-
tenuation and wavefront distortion (Figure 1.1) . Frequency-dependent interaction
caused by absorption or scattering can significantly corrupt the signal. The atmo-
sphere extends to approximately 700km, comprising the atmospheric boundary layer,
the troposphere, and stratosphere, with the boundary layer extending to about 2km,
the troposphere to about 20km, and the stratosphere to about 40km. Atmospheric
conditions that affect the wave can roughly be divided into clear air, clouds, or rain.
Here we will be concerned with the more benign clear air situation whose main ef-
fect is wavefront distortion or refraction with a negligible degree of attenuation. For
optical waves the physical mechanism of refraction is mainly through the small-scale
temperature variations which are caused by turbulent eddies and result in the tur-
bulent field of refractive index acting like optical lenses, sometimes referred to as the
refractive turbulence. A distinguishing feature of the refractive turbulence is the pres-
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ence of a wide band of scales causing the refractive turbulence field to be spatially
rough or irregular, and this has important consequences in optical propagation.

In this paper we present a framework for analyzing wave-turbulence interaction
and discuss applications to time reversal of waves and scintillation of the wave field.
In section 2 we discuss issues related to scales and turbulence modeling. In section 3
we introduce the paraxial wave approximation, its white-noise limit, and the associ-
ated moment equations. We give the details of the white-noise limit in various scaling
regimes in the appendices. In sections 4 and 5 we discuss the coherent wave, the mu-
tual coherence function, and time reversal of wave packets. In section 6 we derive the
duality relation between the forward propagation and its time-reversal counterpart.

2. Length scales. A distinguishing feature of the problems described above
is the presence of many length scales. In this section we discuss turbulence parame-
ters, the underlying parameters that characterize the particular physical environment,
based on the Kolmogorov theory of turbulence and its variants.

The turbulent atmosphere is very complicated and can be described only in a
statistical manner. The Kolmogorov scaling theory plays a crucial role in the statis-
tical modeling of the turbulent atmosphere and is a phenomenological description of
the velocity field in the atmosphere. Based on a scaling argument, the mean-square
velocity differences are described in a universal manner over a broad range of spatial
scales, the inertial range (�0, L0). If we assume homogeneity, isotropy, and incom-
pressibility, the result is that the ensemble average of the squared velocity differences,
the so-called structure function, has the form

E[(v�x(�x0 + �x) − v�x(�x0))
2] = C2

v |�x|2/3, �x ∈ R
3, |�x| ∈ (�0, L0),(2.1)

where v�x is the velocity in the direction of the displacement x and Cv is the structure
parameter of the velocity field. Here and below, E denotes the ensemble average.

The influence of atmospheric turbulence on the refractive index fluctuation δn is
through the inertial-convective scale fluctuation δT of the temperature field via the
relation

δn ≈ −79P
δΘ

T 2
× 10−6,

where P is the pressure in millibars, T the temperature in degrees Kelvin, and
Θ = T−γah the so-called potential temperature with γa = 9.8◦ C/km and h being the
height above ground [38]. The inertial-convective range temperature fluctuation δT is
usually modeled as a passive scalar field diffusing in and advected by the turbulent ve-
locity field and has a spatial structure function with the same Kolmogorov 2/3 scaling
so that

Dn(|�x|) = E[δn(�x + ·) − δn(·)]2 = C2
n|�x|2/3, |�x| ∈ (�0, L0),

with (�0, L0) the inertial-convective range [34] (see also [12] for rigorous analysis of
the evolution of the passive scalar field). The Kolmogorov model for refractive index
fluctuations is widely used in order to understand wave propagation in atmospheric
turbulence [3, 38].

The inertial-convective range of the refractive index fluctuation is bounded by
two parameters: the inner scale �0 and the outer scale L0. The inner scale �0 is
typically in the range of 1mm to 1cm, while the outer scale L0 is in the range of 100m
to 1km. The ratio L0/�0 grows indefinitely as the Reynolds number of the velocity
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turbulence increases. Both the inner scale and the outer scale have an impact on wave
propagation [8, 17, 43]. Their relative importance depends on the length scales that
can be associated with the wave (see below).

Note that only the instantaneous spatial structure function of the refractive index
field is relevant to electromagnetic wave propagation since the period of the oscillation
of the wave is typically of the order 10−14s, many orders of magnitude smaller than
the time scale of the turbulence.

The refractive index structure function has a spectral representation [38]

Dn(|�x|) = 8π

∫ ∞

0

Φn(|�k|)
[
1 − sin(|�k||�x|)

|�k||�x|

]
|�k|2d|�k|(2.2)

with the power-spectrum density

Φn(|�k|) = 0.033C2
n|�k|−11/3.(2.3)

Here the structure parameter C2
n depends in general on the temperature gradient on

the large scales ≥ L0. The latter, in turn, depends on weather conditions, altitude,
time of day, season of the year, etc. The typical variation of the structure parameter
from ground to 20km is about two orders of magnitude in m−2/3 according to the
data given by [29]. For the case of propagation paths that extend above 1km or slant
paths that extend from the surface into space, a general model can be formulated
which includes a well-known “surge” phenomenon in C2

n associated with the turbulent
boundary layer near the ground:

C2
n(h) ≈ C2

0 (h2) exp [−h/h0]
[
ha

2/h
a + K exp

[
−b(1 − h/h1)

2
]]
,(2.4)

where h1 ∼ 1.5–2km, h0 ∼ 25km (i.e., the distance through the troposphere), C2
0 (h2)

is the value of the structure parameter near the ground at h2 � h1, and 1/3 < a < 4/3.
The constant K < 1 represents the relative strength of the surge layer, and the
constant b determines the width of the layer [33]. The scale of variation of C2

n is
essentially separated from that of the inertial-scale turbulence. Recent analysis of
newly acquired data shows that there are substantial variations in the exponent H [37].
In general, the exponents H and C2

n vary slowly in space and time and may be regarded
as random fields themselves. Important for our approach is that the scales of variation
of H and C2

n are typically larger than the outer scale of the atmospheric turbulence.
In this paper we consider a general family of power-law type spectra with the

spectral exponent H ∈ (0, 1):

Φ(�k) ≈ 0.033C2
n|�k|−1−2H |�k|−d, d = 2, for |�k| ∈ (L−1

0 , �−1
0 ),(2.5)

where d is the number of transversal spatial dimensions which we will take to be two.
We assume that the spectrum decays sufficiently fast for |�k| � �−1

0 while staying

bounded for |�k| � L−1
0 . In the limit of vanishing inner scale �0 = 0, H is the upper

limit of the Hölder regularity of the field and equals 1/3 in the case of the Kolmogorov
spectrum. The details of the statistics of the refractive index field are not important
for our analysis; only the exponent H is. In general, H may be assumed to vary slowly
in space compared to the outer scale of the turbulence. The analysis presented in this
paper is capable of treating the case of variable C2

n and H as long as their scale of
variation is larger than the outer scale. For simplicity of presentation, however, we
assume the case with constant C2

n and H.
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Although the self-similar, isotropic spectrum (3.11) is our principal example, the
main conclusions (such as superresolution and duality relations) are by no means
limited to such a medium; they are equally applicable to anisotropic media. However,
without loss of generality, we may assume the reflectional symmetry:

Φ(�k) = Φ(−�k) ∀�k ∈ R
d+1.

Next, we discuss some important scale parameters that are determined by the
specific wave propagation application considered:

• The carrier wavelength λ0 ≤ 1m: Lasers typically generate coherent radiation
in the range from the ultraviolet to the infrared band. In the case that the
wavelength is below 10−1µm (i.e., ultraviolet) the dispersion effect starts to
be felt. Our approach is suitable for the microwave range too as long as the
width of the wave beam or pulse lies within the inertial-convective range.

• The longitudinal scale Lz ∼ 1–20km: This is the reference scale in the direc-
tion of propagation and should be much larger than the outer scale L0 and not
too large compared to the scales of variation of C2

n and H. In astronomical
imaging, high-altitude aerial photography, and ground-to-satellite communi-
cation links, the wave field will typically propagate through the atmosphere
over distances up to 100L0.

• The transverse scale Lx ∈ (�0, L0): This is the reference scale in the lateral
direction of the wave beam or pulse. Usually we can set Lx to be the width of
the wave beam. This reference scale should lie within the inertial-convective
scale of the turbulence.

Figure 2.1 summarizes the role of some of the length scales introduced above.

Lz

l0
L0

Lx

Cn

Fig. 2.1. Some important scales present in atmospheric propagation. The inertial subrange is
the range in between the inner scale l0 and the outer scale L0. The strength of the turbulence is
measured by Cn, and Lx, Lz are typical transversal and longitudinal length scales, respectively.

Though our primary motivation is optical or microwave propagation in the tur-
bulent atmosphere our results are relevant to other situations such as sound wave
propagation in the atmosphere, the earth’s crust, or biological tissues. Many regions
of the earth’s crust are very heterogeneous and can be best modeled by incorporating
a continuum of scales. Similarly, the interface zone in between different tissue types
or the zone associated with damaged tissue might be very rich in scale contents.
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3. Electromagnetic waves in the atmosphere. For optical propagation in
the atmosphere, Maxwell’s equations simplify considerably. We describe below these
simplifications which are used to obtain equations describing the evolution of the mo-
ments or multiple correlations of the wave field. Such moment equations are important
in the various applications described above.

3.1. Reduced wave equation. We consider time-harmonic waves with E de-
noting the electric field. We assume zero conductivity which is appropriate as long
as the intensity of the electromagnetic fields is not strong enough to ionize the air
molecules. We write the refractive index field n(�x) as

n(�x) = n̄(1 + ñ(�x)),

where ñ(�x) � 1 is the relative fluctuation of the refractive index and n̄ ≈ 1 the mean
refractive index. The vector wave equation for the electric field is then

∇2E + k2(1 + ñ(�x))2E + 2∇(E · ∇ log n) = 0,(3.1)

where k = n̄ω/c0 is the wave number with c0 being the speed of light in vacuum.
In a small scattering angle regime with λ0 ≤ const.�0 we can ignore depolarization
effects [38] that are due to the third term in (3.1). This corresponds to scatterers
being large relative to the wavelength and the direction of the scattered wave very
close to the direction of the original scattered wave, which is the case for the regime
that we will consider. In this regime the (scalar) Helmholtz equation

∇2E + k2E ≈ −2k2ñE(3.2)

with appropriate boundary conditions describes the evolution of the harmonic ampli-
tude for the components of the electric field.

3.2. Parabolic wave equation. For the so-called weak fluctuation regime such
as short propagation distances, say less than 100m, perturbation methods can be used,
but such approximations are in general not suited for applications to communication
and imaging in the atmosphere. For optical beams in a small cone about the optical
axis, the parabolic wave approximation can be used. We assume that the direction of
propagation is primarily in the z-direction and make the ansatz for the wave equation

E(z,x⊥) = Ψ(z,x⊥) exp(ikz), (z,x⊥) ∈ R
d+1, d = 2,(3.3)

where x⊥ ∈ R
d are the transverse coordinates and z is the longitudinal coordinate.

Assuming |Ψzz| � 2k|Ψz| one obtains the parabolic or paraxial wave equation

i2k
∂Ψ(z,x⊥)

∂z
+ ∆⊥Ψ(z,x⊥) + 2k2ñ(z,x⊥)Ψ(z,x⊥) = 0, Ψ(0,x⊥) = Ψ0 (x⊥) ,

where ∆⊥ denotes the Laplacian operator in the transverse coordinates. The physical
basis of the parabolic approximation is discussed in [39, 40] and derived rigorously in a
regime with discretely layered weakly fluctuating media in [1], where the simultaneous
limit of parabolic and white-noise approximations is considered. Note that below we
drop the subscript indicating the transversal coordinate.
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3.3. White-noise approximation. One cannot solve exactly the parabolic
wave equation nor obtain closed-form equations for the moments of the wave field.
However, the latter can be achieved by using the white-noise approximation [26]
and [40]. In this approximation the wave field becomes a Markov random process
whose moments satisfy closed-form equations.

In this section we nondimensionalize coordinates in the parabolic equation (3.2)
and discuss a scaling regime where the white-noise approximation can be derived
explicitly. Moreover, we discuss the moment equations that follow from this limit.
Note that in several wave propagation scenarios it is convenient to work with the
Wigner distribution of the wave field rather than the wave field itself, and we shall
discuss below the white-noise limit also for the Wigner distribution of the wave field
and the associated moment equations.

3.4. Scaling. We introduce dimensionless wave numbers and coordinates by

k̃ = k/k0, x̃ = x/Lx, z̃ = z/Lz,(3.4)

where k0 = 2π/λ0 with λ0 being the characteristic wavelength and Lz and Lx being
the reference scales in the longitudinal and transverse direction, respectively. For
example, in view of the separation of scales of C2

n and H from those of the inertial-
convective range it is natural to use Lz ∼ h0 in (2.4) or the scale of variation in H in
the case of vertical propagation through the atmosphere. We are mostly concerned
with the situation with k̃ ≈ 1.

In the new nondimensionalized coordinates the parabolic wave equation becomes

i2k̃
∂Ψ

∂z
+ γ∆Ψ + 2k̃2k0Lzñ(zLz,xLx)Ψ = 0,(3.5)

after dropping the tilde in the new space coordinates. The Fresnel length Lf and
Fresnel number γ are defined by

Lf =
√

Lzλ0,(3.6)

γ =
Lz

L2
xk0

=
1

2π

(
Lf

Lx

)2

.(3.7)

The Fresnel length is the diffraction scale which is also the size of the eddies most
active in generating wave fluctuations at a distance Lz [38]. The relative upper and
lower cutoffs of the turbulence spectrum describing the inertial range in the rescaled
coordinates are

η−1 =
L0

Lx
, ρ−1 =

�0
Lx

.(3.8)

Essential for the white-noise limit is a small aspect ratio of the wave beam:

ε−2 =
Lz

Lx
� 1;(3.9)

that is, the wave beam is narrow.

3.5. White-noise scaling. We can now rewrite (3.5) as

i2k̃
∂Ψε

∂z
+ γ∆Ψε +

k̃2

γε
V
( z

ε2
,x
)

Ψε = 0.(3.10)
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The spectrum for the (normalized) process V is given by [15]

Φ(η,ρ)(�k) ≈ σH |�k|−1−2H |�k|−d for |�k| ∈ (η, ρ)(3.11)

with

σH = 2
√

0.033
LH
x Cn

ε3
.(3.12)

We fix the value σH and aim to analyze (3.10) in the limit ε → 0. For a numerical
example with H = 1/3, Lz = 10km, Lx = 1m, and Cn ∼ 10−8m−1/3, one has
σH ≈ 0.002 and γ = 0.0008 at the typical optical wavelength of λ0 = 0.5µm. In this
example the turbulent medium can have a significant effect on propagation.

3.6. Schrödinger–Itô equation. In this section we introduce the Itô equation
describing the Gaussian white-noise limit. We give the precise conditions that allow
us to rigorously characterize the solution to the Schrödinger equation in terms of a
Schrödinger–Itô equation in the limit when ε → 0 in Appendix A.1. Here we describe
some main aspects of this limit and the associated moment equations that play a
crucial role in applications.

We start by giving the covariance in the lateral spatial variables for the Gaussian
white-noise model:

Γ(η,ρ)(x − y) = π

∫
cos((x − y) · p)Φ(η,ρ)(0,p) dp,(3.13)

Γ
(η,ρ)
0 = Γ(η,ρ)(0), η > 0, ρ > 0,(3.14)

where we have written the wavevector �k ∈ R
3 as �k = (ξ,p) with p ∈ R

2. As we
describe in Appendix A.1, the L2-weak solution Ψε of (3.10) converges in law to the
L2-weak solution of the Gaussian white-noise model described by the Schrödinger–Itô
equation

dΨ =

(
iγ

2k̃
∆ − k̃2

4γ2
Γ

(η,ρ)
0

)
Ψ dz +

ik̃

γ
√

2
dBzΨ, Ψ0 ∈ L2(Rd),(3.15)

with Bz being a Brownian field with the spatial covariance Γ(η,ρ)(x − y) [15]. The
limit of vanishing inner scale is now obtained by letting ρ → ∞ in (3.13). If we also
let η → 0, then we need to first subtract a rapidly oscillating and random phase factor
in order to arrive at the white-noise limit.

Observe that we started out with medium fluctuations that were isotropic. How-
ever, the strongly anisotropic scaling corresponding to a long, narrow beam propaga-
tion enabled us to approximate the limiting wave process with a white-noise model
which is “δ”-correlated in the z-direction but exhibits strong correlation in the lateral
directions. The power spectrum of the white-noise model can be obtained from (3.11)
and is given by

Φ(η,ρ)(0,p) ≈ σH |p|−1−2(H+1/2)|p|−(d−1) for |p| ∈ (η, ρ), p ∈ R
d,

giving rise to the modified spectral exponent H + 1/2 in the lateral direction. Thus,
long-range dependence in the z-direction “spills” over to enhance the lateral persis-
tence in the white-noise model.
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In order to characterize the wave field it is often useful to compute its higher order
moments. The n-point correlation function for Ψ in the context of the Schrödinger–Itô
equation (3.15) is defined by

F (n)(z,x1, . . . ,xn) ≡ E [Ψ(z,x1) · · ·Ψz(z,xn)] ,(3.16)

and it follows from (3.15) that F (n) solves the closed-form equation

∂F (n)

∂z
=

iγ

2k̃

n∑
j=1

∆xjF
(n) − k̃2

4γ2

n∑
j,k=1

Γ(η,∞)(xj ,xk)F
(n).(3.17)

As it stands, the moment equations are the Schrödinger equation with inhomogeneous
potentials in nd dimensions and thus are not exactly solvable. A more tractable for-
mulation for the moments is through the Wigner distribution. Since the Wigner dis-
tribution also appears naturally in the phase-conjugation or time-reversal problems [5]
we recall next its white-noise limit.

3.7. Wigner distribution and Wigner–Itô equation. As we will see, the
study of phase-conjugated, back-propagated wave fields naturally leads to the Wigner
distribution

W ε(z,x,p) =
1

(2π)d

∫
e−ip·yΨε

(
z,x +

γy

2

)
Ψε
(
z,x − γy

2

)
dy(3.18)

with the bar representing complex conjugation. The Wigner distribution is real-
valued, and from it one can recover the marginal intensities by partial integration:

|Ψε(z,x)|2 =

∫
W ε(z,x,p)dp,(3.19)

|Ψ̂ε(z,p)|2 =
( γ

2π

)d ∫
W ε(z,x, γp)dx(3.20)

so that we may think of W ε(x,p) as a wave number-resolved density on the phase
space. A closed equation for W ε, called the Wigner–Moyal equation, follows from
(3.10) and reads as

∂W ε
z

∂z
+

p

k̃
· ∇xW

ε
z +

k̃

2ε
LW ε

z = 0,(3.21)

where the operator L defined as

LW ε
z = i

∫
eiq·xγ−1 [W ε

z (x,p + γq/2) −W ε
z (x,p − γq/2)] V̂

( z

ε2
, dq
)

(3.22)

is skew-symmetric and real (i.e., mapping real-valued functions to real-valued func-
tions). As a consequence of the skew symmetry of p · ∇x and L, (3.21) preserves the

L2-norm of the initial condition. Here V̂ (z, dq) is the (partial) spectral representation
for ν,

V (z,x) =

∫
exp(ip · x)V̂ (z, dp),

where the process V̂ (z, dp) is the (partial) spectral measure of orthogonal increments
over p. As in the previous section we will consider the weak formulation of the Wigner
equation.
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The precise conditions under which the convergence, as ε → 0, ρ → ∞, η → 0,
to the white-noise model for the Wigner–Moyal equation (3.21) occurs are given in
Appendix A.2. Under the conditions specified in Appendix A the L2-weak solution W ε

of the Wigner–Moyal equation with the initial data W0 ∈ L2(R2d) converges in law to
the L2-weak solution of the Gaussian white-noise model described by the Wigner–Itô
equation

dW =

(
−1

k̃
p · ∇x +

k̃2

4
Q(η,ρ)

0

)
W dz +

k̃√
2
dB̃zW, W0(x,p) ∈ L2(R2d),(3.23)

where B̃z is the operator-valued Brownian motion with the spatial covariance operator
Q(η,ρ)(x,y) defined by

(3.24)

Q(η,ρ)(θ ⊗ θ)(x,p,y,q) =

∫
eiq

′·(x−y)Φ(η,ρ)(0,q
′)γ−2

× [θ(x,p − γq′/2) − θ(x,p + γq′/2)]

× [θ(y,q − γq′/2) − θ(y,q + γq′/2)] dq′,

Q(η,ρ)
0 θ(x,p) =

∫
Φ(η,ρ)(0,q)γ−2[θ(x,p + γq) + θ(x,p − γq) − 2θ(x,p)]dq

for 0 ≤ η ≤ ρ ≤ ∞ [13].
The n-point correlation functions of the Wigner distribution play an important

role in applications. It is given by

W (n)(z,x1,p1, . . . ,xn,pn) ≡ E [W (z,x1,p1) · · ·W (z,xn,pn)]

and solves in this case the equation

∂W (n)

∂z
+

1

k̃

n∑
j=1

pj · ∇xj
W (n)(3.25)

=
k̃2

4

n∑
j

Q0(xj ,pj)W
(n) +

k̃2

4

n∑
j,k=1
j �=k

Q(xj ,pj ,xk,pk)W
(n),

where Q(xj ,pj ,xk,pk) is the same operator Q defined in (3.24) acting on the two
sets of phase-space variables (xj ,pj) and (xk,pk):

Q(xj ,pj ,xk,pk)W
(n)(z,x1,p1, . . . ,xn,pn)

= E

{ ∏
i �=j,k

W (xi,pi)

∫
eiq

′·(xj−xk)Φ(η,∞)(0,q
′)γ−2

× [W (xj ,pj − γq/2) −W (xj ,pj + γq/2)]

× [W (xk,pk − γq/2) −W (xk,pk + γq/2)] dq

}
.

An advantage of the Wigner–Itô formulation is that the moment equation (3.25)
of order n seems to be more tractable than (3.17) of order 2n. This will be seen clearly
in the case of n = 1 below.
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Another advantage of working with the Wigner–Itô equation is that we can use
it to evolve any L2(R2d) initial data, be it the cross Wigner distribution

W (Ψ1,Ψ2)(x,p) =
1

(2π)d

∫
e−ip·yΨ1(x + γy/2)Ψ2(x − γy/2)dy

or the Wigner distribution of the mixed state

Wmix(x,p) =

∫
W (Ψα,Ψα)(x,p)dµ(α),(3.26)

where µ(α) is a probability density function describing the mixture.
Note that the Wigner distribution may be missing an overall phase factor. Both

Ψε and exp(iφ(z))Ψε for φ a z-dependent phase give rise to the same Wigner distribu-
tion. Thus, the Wigner distribution erases the overall phase factor that is a function
of z alone and may affect the travel time statistics. In applications to time reversal,
however, such a phase factor is not present.

In the case of geometrical optics approximation γ → 0, the Wigner equation
becomes the Liouville equation with a random potential ν(z,x) [27, 13]. We have the
analogous convergence of the weak solution to the Gaussian white-noise model for the
Liouville equation [13]. The Gaussian white-noise model for the Liouville equation
with a smooth potential has been analyzed in [36].

The results in the rest of the paper will be mainly concerned with the solutions
of the moment equation (3.25), in particular n = 1, for ρ = ∞, i.e., a negligible inner
scale.

4. Forward propagation in random media. In this section we analyze the
transmitted wave field. First, in section 4.1 we compute the mean of the transmitted
field when it is modeled in terms of the parabolic wave equation. The wave propagat-
ing through the turbulent medium will in general be strongly fluctuating due to the
refractive turbulence. In section 4.2 we characterize the second moment of the wave
field, the mutual coherence function that we can use to analyze these fluctuations.
In section 4.3 we use the mutual coherence function to analyze the spreading of the
wave, and in section 4.4 we examine the coherence length. The coherence length cor-
responds to a correlation length for the the wave field and relates to the spatial scale
of the scintillations.

4.1. Transmitted pulse. We write the transmitted signal at z in the form

u(τ,x, z) =

∫
ĝ0(k̃)Ψ

(
z,x, k̃

)
eik̃(νz−τ) dk̃ + c.c.,(4.1)

where

τ = c0k0t, ν = k0Lz,

and Ψ solves (3.15) in the white-noise limit with initial data

Ψ(0,x, k̃) = Ψ0(x).(4.2)

Here τ is the mean propagation distance and ν the reference length in the propagation
direction, both in the unit of the wave length. Note that we use the convention

ψ̂(w) =
1

(2π)d

∫
e−iw·xψ(x) dx,

ψ(x) =

∫
eiw·xψ̂(w) dw
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for the Fourier transform in space and

f̂(ω) =
1

2π

∫
eiωtf(t) dt,

f(t) =

∫
e−iωtf̂(ω) dω

for the Fourier transform in time.
Consider first the case with a homogeneous medium with V ≡ 0. The wave field

is then deterministic and solves

2ik̃
∂Ψ0

∂z
+ γ∆Ψ0 = 0.

Thus, we find (d = 2)

Ψ0(z,x; k̃) = − ik̃

2πzγ

∫
Ψ0(y) exp

[
ik̃(x − y)2/(2γz)

]
dy.(4.3)

Observe that if Ψ0 is narrowly supported, then the magnitude of Ψ0 decays slowly in
the lateral coordinates x. The transmitted wave pulse is given by (4.1) with Ψ replaced
by Ψ0:

u0(τ,x, z) =

∫
ĝ0(k̃)Ψ0

(
z,x; k̃

)
eik̃(τ−νz) dk̃ + c.c. .(4.4)

Consider next the random case. The coherent wave field M1 = E[Ψ] solves

∂M1

∂z
=

iγ

2k̃
∆xM1 −

k̃2

4γ2
Γ

(η,∞)
0 M1,(4.5)

whose solution is given by

M1(z,x; k̃) = − ik̃

2πzγ
exp
[
−Γ

(η,∞)
0 k̃2z/(4γ2)

] ∫
Ψ0(y) exp

[
ik̃(x − y)2/(2γz)

]
dy.

It follows then the expression for the mean transmitted pulse,

E[u](τ,x, z) = [u0(·,x, z) ∗ Nσ(·)] (τ),(4.6)

where

Nσ(τ) ≡ e−τ2/(2σ2)

√
2πσ2

,

σ2 =
zΓ

(η,∞)
0

2γ2
.

The formula (4.6) is, of course, due to the fact that σ is independent of the offset x.
It follows that the multiscale random fluctuations in the medium has the effect of
smearing the signal in time through convolution with a Gaussian pulse of square
width σ. It results in the loss of coherence of the wave field even though the total
wave energy is conserved. This loss of coherence is inversely related to the Fresnel
number γ, and when γ is small the transmitted pulse is typically supported on the
time scale

√
z/γ.
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4.2. Mutual coherence functions. Define the two-point correlation function
or the space-time mutual coherence function of the transmitted field in (4.1) as

Γ(z,x1,x2; τ1, τ2) = E

[
u(τ1, z,x1)u(τ2, z,x2)

]
(4.7)

=

∫
ĝ0(k̃1)ĝ0(k̃2)E

[
Ψ
(
z,x1, k̃1

)
Ψ
(
z,x2, k̃2

)]
ei(k̃1τ1−k̃2τ2) dk̃1 dk̃2.

The quantity

E

[
Ψ
(
z,x1, k̃1

)
Ψ
(
z,x2, k̃2

)]
(4.8)

is the two frequency mutual coherence function where a random phase factor cor-
responding to a travel time correction will play an important role (see (A.10) in
Appendix A.1). This issue is beyond the scope of the present paper.

Instead we assume that g0 is narrowly supported around the wave number k̃ so
that

Γ(z,x1,x2; τ1, τ2) ∼ cE

[
Ψ
(
z,x1, k̃

)
Ψ
(
z,x2, k̃

)]
eik̃(τ1−τ2),(4.9)

where c is a scaling constant. Therefore, the mutual coherence function

M2(z,x1,x2; k̃) = E

[
Ψ
(
z,x1, k̃

)
Ψ
(
z,x2, k̃

)]
(4.10)

is needed to describe wave field fluctuations. Note the difference between M2 and F (2)

as given in (3.17) due to the complex conjugation.
In this section we consider the same-point mutual coherence function in the white-

noise limit

M2(z,x,x; k̃) =

∫
E[W (z,x,p; k̃)]dp

=

∫
W (1)(z,x,p; k̃)dp,

which is the ensemble-averaged wave energy density in x.
Similarly, we consider the mean wave energy density in p,

M̂2(z,p,p; k̃) ≡ E[|Ψ̂(z,p, k̃)|2]

=
( γ

2π

)d ∫
E[W (z,x, γp; k̃)]dx

=
( γ

2π

)d ∫
W (1)(z,x, γp; k̃)dx,

where Ψ̂ is the Fourier transform of Ψ in the lateral spatial variables. M̂2 is the
ensemble-averaged wave energy density in the transverse wavevector p. The following
scaled version M̃2 of M̂2 will also be useful in our analysis:

M̃2(z,p,p; k̃) = M̂2

(
z,

k̃p

γz
,
k̃p

γz
; k̃

)
(4.11)

=
( γ

2π

)d ∫
E

[
W

(
z,x,

k̃p

z
; k̃

)]
dx,
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which can be interpreted as the ensemble-averaged image field on the spectral plane
of a lens with p as the spatial frequency [7].

Using (3.25) we find that W (1) = W (1)(z,x,p) solves

∂W (1)

∂z
+

1

k̃
p · ∇xW

(1) = Q0W
(1)(4.12)

with

Q0W
(1) =

k̃2

4γ2

∫
Φ(η,∞)(0,q)

(
−2W (1)(p) + W (1)(p + γq) + W (1)(p − γq)

)
dq

for η = 0, H ∈ (0, 1/2) or η > 0, H ∈ (0, 1), which, unlike the second moment

equation (3.17) for Ψ, is readily solvable. The Green’s function G
(1)
W solving (4.12) is

given by

(4.13)

G
(1)
W (z,x,p; x̄, p̄) =

1

(2π)2d

∫
ei(q·(x−x̄)−y·(p−p̄)−zq·p̄/k̃)

× exp

[
−k̃2/(2γ2)

∫ z

0

D∗(γ(y + q(s− z)/k̃))ds

]
dydq,

where the structure function D∗ of the white-noise medium is defined by

D∗(x) =

∫
Φ(η,∞)(0,q)

[
1 − eix·q

]
dq(4.14)

for η = 0, H ∈ (0, 1/2) or η > 0, H ∈ (0, 1). The structure function D∗ is not well
defined for η = 0, H = [1/2, 1). It is different from the original structure function
of the refractive index field Dn given in (2.2) in that only the zeroth mode in the
longitudinal direction contributes to the integral over the transverse directions. For
simplicity of notation we continue to assume an isotropic medium.

The main property of D∗ we need in what follows is the short distance asymptotic

D∗(r) ≈ C2
∗r

2H∗ for r � 1/η,(4.15)

where the effective Hölder exponent H∗ is given by

H∗ =

{
H + 1/2 for H ∈ (0, 1/2),
1 for H ∈ (1/2, 1],

(4.16)

and the structure parameter C2
∗ is proportional to 4 × 0.033C2

n. The effective Hölder
exponent H∗ is always bigger than 1/2, and hence the white-noise medium has a
“persistent” transverse correlation.

Using this Green’s function we find the following explicit expression for M2, M̂2,
and M̃2:

(4.17)

M2(z,x,x; k̃)

=
1

(2π)3d

∫
e−ip·yΨ0

(
x̄ +

γy

2

)
Ψ0

(
x̄ − γy

2

)
ei(w·(x−x̄)+r·(p−p̄)−zw·p̄/k̃)

× exp

[
−k̃2/(2γ2)

∫ z

0

D∗(γ(r + w(z − s))/k̃)ds

]
dydrdwdx̄dp̄dp
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(4.18)

=
1

(2π)d

∫
Ψ0

(
x̄ − γzw

2k̃

)
Ψ0

(
x̄ +

γzw

2k̃

)
eiw·(x−x̄)

× exp

[
−k̃2/(2γ2)

∫ z

0

D∗(γw(z − s)/k̃)ds

]
dwdx̄,

(4.19)

M̂2(z,p,p; k̃)

=
γd

(2π)4d

∫
e−ip̄·yΨ0(x̄ + γy/2)Ψ0(x̄ − γy/2)eiw·(x−x̄)eir·(γp−p̄)e−zw·p/k̃

× exp

[
−k̃2/(2γ2)

∫ z

0

D∗(γ(r + w · (z − s))/k̃)ds

]
dydrdwdx̄dp̄dx

=

(
γ

(2π)2

)d ∫
Ψ0(x̄ + γy/2)Ψ0(x̄ − γy/2)e−iγp·y exp

[
−k̃2/(2γ2)zD∗(−γy)

]
dydx̄

=

(
1

2π

)2d ∫
Ψ0(x̄ + y/2)Ψ0(x̄ − y/2)e−ip·y exp

[
−k̃2/(2γ2)zD∗(−y)

]
dydx̄,

(4.20)

M̃2(z,p,p; k̃)

=

(
1

2π

)2d ∫
Ψ0(x̄ + y/2)Ψ0(x̄ − y/2)e−ik̃p·y/(γz) exp

[
−k̃2/(2γ2)zD∗(−y)

]
dydx̄.

To see the effect of the turbulent medium on the transmitted field more clearly it is
convenient to use the Gaussian source or pupil function

Ψ0(x) = exp

[
−|x|2

2α2

]
,(4.21)

with α > 0 corresponding to the aperture of the incident beam. With (4.21) the
mutual coherence functions have the following forms:

(4.22)

M2(z,x,x; k̃)

=
1

(2π)d

∫
e−|x̄+γzw/(2k̃)|2/(2α2)e−|x̄−γzw/(2k̃)|2/(2α2)

× eiw·(x−x̄) exp

[
−k̃2/(2γ2)

∫ z

0

D∗(γw(z − s)/k̃)ds

]
dwdx̄

=

(
α

2
√
π

)d ∫
e−|w|2[α2/4+γ2z2/(4k̃2α2)] exp

[
−k̃2/(2γ2)

∫ z

0

D∗(γws/k̃)ds

]
eiw·x dw,

(4.23)

M̂2(z,p,p; k̃) =

(
α

2
√
π

)d ∫
e−|y|2/(4α2) exp

[
−k̃2/(2γ2)zD∗(−y)

]
e−ip·ydy,

(4.24)

M̃2(z,p,p; k̃) =

(
αγz

2k̃
√
π

)d ∫
e−|y|2γ2z2/(4k̃2α2)

× exp
[
−k̃2/(2γ2)zD∗(−γzy/k̃)

]
e−ip·ydy.
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In view of (4.22), (4.23), and (4.24) we see that the transmission of radiative energy
in either position or wavevector space is a convolution process, and we can associate
the transfer functions

T (z,y) = exp

[
−k̃2/(2γ2)

∫ z

0

D∗(−γys/k̃)ds

]
,

T̂ (z,y) = exp
[
−k̃2/(2γ2)zD∗(−y)

]
,

T̃ (z,y) = exp
[
−k̃2/(2γ2)zD∗(−γzy/k̃)

]
to the turbulent medium depending on which of the three coherence functions is used.
Note that the parameterization in M̃2 has been chosen so that its scaling is analogous
to that of M2. By analyzing these transfer functions one can determine when the
effects of the turbulence become important.

4.3. High-frequency beam-spreading asymptotics. The support of the mu-
tual coherence function determines the lateral support of the wave energy. We consider
a high-frequency asymptotics scaling with zγ/k̃ � η−1 for various media models. For
low frequency waves zγ � k̃/η the pulse is not much affected by the random medium,
and the spreading is roughly the same as in the deterministic case.

4.3.1. Homogeneous medium. In this case with D∗ ≡ 0 the transmitted en-
ergy envelope has the Gaussian form

M2(z,x,x, k̃) =

(
α√
2s0

)d

exp

(
−|x|2

2s2
0

)
(4.25)

and is supported on the scale of the position spread

s0(z, k̃) =
1

2

√
α2 +

(
γz

k̃α

)2

.(4.26)

In contrast,

M̂2(z,p,p; k̃) =

(
α√
2ŝ0

)d

exp

[
−|p|2

2ŝ2
0

]
,(4.27)

M̃2(z,p,p; k̃) =

(
γzα√
2k̃s̃0

)d

exp

[
−|p|2

2s̃2
0

]
(4.28)

are supported on the transverse wavevector spreading scales

ŝ0 =
1√
2α

,(4.29)

s̃0 =
γz√
2k̃α

.(4.30)

One sees from (4.26) that the optimal source size α =
√

γz/k̃ minimizes the spread
in position giving the smallest spreading factor,√

2γz/k̃ =
√

2
γz

αk̃
,

and from (4.29) that there is no limitation on how focused the wave energy can be in
the wavevector or spatial frequency.
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4.3.2. Smooth white-noise medium. The medium is assumed to have a fi-
nite, lateral correlation length 1/η < ∞ such that D∗ ∈ C2(R) with D∗

′(0) = 0,
|D∗

′′(0)| < ∞. When zγ � k̃/η the transmitted energy envelope has approximately
the same form as above,

M2(z,x,x; k̃) ≈
(

α√
2s∗

)d

exp

[
−|x|2

2s2
∗

]
, α � γ,(4.31)

with, however, a different spread:

s∗ =

√
s2
0 +

D∗
′′(0)z3

6
.(4.32)

In contrast,

M̂2(z,p,p; k̃) ≈
(

α√
2ŝ∗

)d

exp

[
−|p|2

2ŝ2
∗

]
,(4.33)

M̃2(z,p,p; k̃) ≈
(

γzα√
2k̃s̃∗

)d

exp

[
−|p|2

2s̃2
∗

]
(4.34)

with

ŝ∗ =

√
ŝ2
0 +

k̃2zD∗
′′(0)

2γ2
,

s̃∗ = γzŝ∗/k̃.(4.35)

Note that in all cases the influence of the smooth medium fluctuations on the spreading
depends on the value of D∗

′′ which reflects the roughness of the random medium.

4.3.3. Rough white-noise medium. The medium is assumed to have a fi-
nite, lateral correlation length 1/η such that zγ � k̃/η, and we also assume that
D∗ ∈ C1(0,∞) with D∗

′(0+) �= 0. Physically speaking, a rough medium typically has
independent spatial increments. Then the transmitted energy envelope has approx-
imately the form of the bivariate Cauchy distribution in the position as well as the
wavevector variables:

M2(z,x,x; k̃) ≈
(

α

2s∗

)d(
1

1 + |x|2/s2
∗

)(d+1)/2

, d = 2,(4.36)

with the medium-induced spread

s∗ ≈ D∗
′(0+)z2k̃

4γ
;(4.37)

moreover,

M̂2(z,p,p; k̃) ≈
(
α

ŝ∗

)d(
1

1 + |p|2/ŝ2
∗

)(d+1)/2

,(4.38)

M̃2(z,p,p; k̃) ≈
(
γzα

k̃s̃∗

)d(
1

1 + |p|2/s̃2
∗

)(d+1)/2

(4.39)



WAVES IN TURBULENCE 539

with the medium-induced spreads

ŝ∗ ≈ D∗
′(0+)zk̃2

2γ2
,(4.40)

s̃∗ ≈ D∗
′(0+)z2k̃

2γ
.(4.41)

The expressions (4.36), (4.38), and (4.39) yield heavy-tailed density functions
whose variances are not well defined. This is a first manifestation of the effect of non-
smooth random fluctuations of the medium. Moreover, their first absolute moments∫

|x|M2(z,x,x, k̃)dx,

∫
|p|M̂2(z,p,p, k̃)dp,

∫
|p|M̃2(z,p,p, k̃)dp

are divergent logarithmically at |x| = ∞ and |p| = ∞, respectively. The first absolute
moments, however, become convergent for the turbulent medium which is a natural
interpolation between the smooth (H∗ = 1) and the rough (H∗ = 1/2) cases (see
below). Hence we will ascribe to s∗ and ŝ∗ roughly the roles as the scales of the
pulse in the position and transverse wavevector, respectively, to interpret another
manifestation of the nonsmooth medium fluctuations, namely the wide spread of the
pulse, in both the position and transverse wavevector for small zγ � k̃/η.

4.3.4. Turbulent medium. The power-law spectrum of the refractive index
field has the Hölder exponent H ∈ (0, 1) as ρ → ∞ and results in a white-noise
medium with the effective Hölder exponent H∗ ∈ (1/2, 1]. The limiting case H∗ = 1
corresponds to the smooth case and H∗ = 1/2 to the rough case which then can be
seen as having independent medium variations in the lateral directions.

When the effect of the turbulent medium dominates (see remarks after (4.54) and
(4.60) for more elaboration on this), the wave energy envelope has the form in the
position variables

M2(z,x,x; k̃) ≈
(
C2z

−1−1/(2H∗)γ1/H∗−1α√
2π

)d

(4.42)

× exp
[
iC2w · xz−1−1/(2H∗)γ1/H∗−1

] ∫
e−|w|2H∗/2dw

with

C2 =

(
2H∗ + 1

C2
∗ k̃

2−2H∗

)1/(2H∗)

and the form in the transverse wavevector

(4.43)

M̂2(z,p,p; k̃) ≈
(

α

2
√
π

)d ∫
e−ip·y exp

[
−k̃2zC2

∗ |y|2H∗/(2γ2)
]
dy

≈
(
Ĉ2z

−1/(2H∗)α

2
√
π

)d ∫
exp
[
−iĈ2p · yz−1/(2H∗)γ1/H∗

]
e−|y|2H∗/2dy,
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(4.44)

M̃2(z,p,p; k̃) ≈
(

αγz

2
√
πk̃

)d ∫
e−ip·y exp

[
−k̃2−2H∗γ2H∗−2z2H∗+1C2

∗ |y|2H∗/2
]
dy

≈
(
Ĉ2z

−1/(2H∗)α

2
√
π

)d ∫
exp
[
−ik̃Ĉ2p · yz−1−1/(2H∗)γ1/H∗−1

]
e−|y|2H∗/2dy

with

Ĉ2 = (k̃C∗)
−1/H∗ .

The integrals in (4.42), (4.43), and (4.44) give rise to Levy-like density functions
which do not admit simple, explicit expressions. As in (4.36), (4.38), and (4.39), M2,
M̂2, and M̃2 here have heavy tails with ill-defined variances for H∗ < 1. They do
have, however, convergent first absolute moments which can be used to define the
turbulence-induced spreads as

s∗ ≡

√∫
|x − x̄|2F [T ]2(z,x)dx∫

F [T ]2(z,x)dx
< ∞, x̄ ≡

∫
xF [T ]2(z,x)dx∫
F [T ]2(z,x)dx

,(4.45)

ŝ∗ ≡

√∫
|p − p̄|2F [T̂ ]2(z,p,p; k̃)dp∫

F [T̂ ]2(z,p)dp
< ∞, p̄ ≡

∫
pF [T̂ ]2(z,p)dp∫
F [T̂ ]2(z,p)dp

,(4.46)

s̃∗ ≡

√∫
|q − γzp̄/k̃|2F [T̃ ]2(z,q)dq∫

F [T̃ ]2(z,q)dq
=

γzŝ∗

k̃
,(4.47)

where F [T ] denotes the Fourier transform of T . The spreads s∗, ŝ∗, and s̃∗ are
measures of the pulse’s dispersion in position, transverse wavevector, and spatial fre-
quency, respectively. The turbulence-induced spreads have the following asymptotics:

s∗ ∼ C
1/H∗
∗ k̃−1+1/H∗z1+1/(2H∗)γ1−1/H∗ ,(4.48)

ŝ∗ ∼ C
1/H∗
∗ k̃1/H∗z1/(2H∗)γ−1/H∗ ,(4.49)

s̃∗ ∼ C
1/H∗
∗ k̃−1+1/H∗z1+1/(2H∗)γ1−1/H∗(4.50)

for zγ � k̃/η. The turbulence effect dominates when

s∗ � s0, ŝ∗ � ŝ0, s̃∗ � s̃0.(4.51)

In particular, for the Kolmogorov spectrum H∗ = 5/6 the wave pulse scales as
z8/5γ−1/5 in position and spatial frequency and z3/5γ−6/5 in transverse wavevector.
Consider the case of vertical propagation through the atmosphere with H = 1/3 and
λ = 0.5µm and the altitude dependence of C2

n based on the data in [29]. This gives
5cm as an estimate for s̃∗ at the altitude h = 10–15km [23, 24, 25]. The apparent
smallness of the value is due to the smallness of the structure parameter C∗ ∼ Cn.

The spreads are related to the following notions of contrast or band-width defined
as the ratio of the peak intensity to the total transmitted wave energy:

κ∗ =
supx M2(z,x,x; k̃)∫
M2(z,x,x; k̃)dx

, κ̂∗ =
supp M̂2(z,p,p; k̃)∫
M̂2(z,p,p; k̃)dp

, κ̃∗ =
supq M̃2(z,q,q; k̃)∫
M̃2(z,q,q; k̃)dq

.
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It is easily seen that when (4.51) holds,

κ∗ ∼ s−d
∗ , κ̂∗ ∼ ŝ−d

∗ , κ̃∗ ∼ s̃−d
∗ .(4.52)

The turbulent medium gives rise to an increasingly wider distribution, and thus
smaller contrast, in both position and transverse wavevector, of the transmitted wave
energy as H and γ decrease and as C∗ and z increase.

4.3.5. Diversity exponent. Summarizing the above we have found that the
spread takes place on the lateral scale in position and spatial frequency like z1+ζ/2γ1−ζ

and in wavevector like zζ/2γ−ζ with

ζ =
1

H∗
∈ [1, 2),(4.53)

which measures the roughness of the medium with ζ = 2 for the persistently correlated
(H > 1/2) isotropic medium, ζ = 1 for the merely continuous (H = 0) isotropic
medium, and ζ ∈ (1, 2) for the antipersistently correlated (H ∈ (0, 1/2)) isotropic
medium. We shall refer to ζ as the diversity exponent.

The limit H ≥ 1/2, corresponding to H∗ = 1, gives rise to a smooth white-noise
medium while the limit H → 0, corresponding to H∗ → 1/2, mimics the case of a
rough medium. The Kolmogorov spectrum H = 1/3 possesses the diversity exponent
ζ = 6/5. We remark that an anisotropic medium which has the power-law spectrum
(2.5) with d = 1 in the two transverse dimensions and a finite correlation length in the
direction of propagation gives rise to a white-noise model with the effective Hölder
exponent H∗ = H ∈ (0, 1) (i.e., ζ ∈ (1,∞)).

Alternatively, we can interpret the result by associating the spreading by turbu-
lence with the notion of turbulence-induced entrance aperture by the relation

α∗ ≡ γz

k̃s̃∗
∼ C

−1/H∗
∗ k̃−1/H∗z−1/(2H∗)γ1/H∗ = C−ζ

∗ k̃−ζz−ζ/2γζ ,(4.54)

whose meaning can be appreciated by considering (4.29).

From (4.47) it follows that

α∗ =
1

ŝ∗
.(4.55)

The turbulence effect becomes important when α∗ < α or, equivalently, when

ŝ∗α > 1

(cf. (4.30)). In the case of vertical propagation through the atmosphere with H = 1/3
and C2

n based on the data [29] at the wavelength λ = 0.5µm and the altitude of up to
10 or 15km, the turbulence-induced entrance aperture α∗ is never more than 20cm.

Because the turbulent medium with H∗ ∈ (1/2, 1] provides a natural interpolation
between the smooth randomness (H∗ = 1) and the rough randomness (H∗ = 1/2),
in what follows we will focus on the calculation with H∗ and contrast it with the
homogeneous case. We will comment on the limiting cases only when necessary.

4.4. Coherence lengths. We generalize the above calculations to the correla-
tion at two different lateral points in this section.
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We define the centered coherence function in position and transverse wavevector

R2(z,x,y; k̃) = E

[
Ψ
(
z,x + y/2; k̃

)
Ψ
(
z,x − y/2; k̃

)]
= M2(x + y/2,x − y/2);(4.56)

then

R2(z,x,y; k̃) =

∫
eip·y/γW (1)(z,x,p; k̃)dp

=
1

(2π)3d

∫
ei(p·y/γ−p·ȳ)Ψ0

(
x̄ +

γȳ

2

)
Ψ0

(
x̄ − γȳ

2

)
ei(w·(x−x̄)+r·(p−p̄)−zw·p̄/k̃)

× exp

[
−k̃2/(2γ2)

∫ z

0

D∗(γ(r + w(z − s)/k̃))ds

]
dȳdrdwdx̄dp̄dp

=
1

(2π)d

∫
Ψ0

(
x̄ + y/2 − γzw/(2k̃)

)
Ψ0

(
x̄ − y/2 + γzw/(2k̃)

)
eiw·(x−x̄)

× exp

[
−k̃2/(2γ2)

∫ z

0

D∗(−y + γw(z − s)/k̃)ds

]
dwdx̄

=
1

(2π)d

∫
Ψ0

(
x̄ +

γzq

2k̃

)
Ψ0

(
x̄ − γzq

2k̃

)
ei(−q+k̃y/(γz))·(x−x̄)

× exp

[
−k̃2/(2γ2)

∫ z

0

D∗(−sy/z − γq(z − s)/k̃)ds

]
dqdx̄.

For the Gaussian initial data (4.21) we have

R2(z,x,y; k̃)(4.57)

=

(
α√
2π

)d ∫
e−|q−k̃y/(γz)|2/(4α2)e−γ2z2|q|2/(4k̃2α2)ei(−q+k̃y/(γz))·x

× exp

[
−k̃2/(2γ2)

∫ z

0

D∗(−sy/z − γq(z − s)/k̃)ds

]
dq

=

(
α√
2π

)d ∫
e−|w|2/(4α2)e−|y−γzw/k̃|2/(4α2)eiw·x

× exp

[
−k̃2/(2γ2)

∫ z

0

D∗(−y + γw(z − s)/k̃)ds

]
dw.

In the regime γz � k̃ we define the turbulence-induced (de)coherence length d∗
as

d∗ =

√∫
|y|2F [T2]2(z, 0,y; k̃)dy∫

T 2
2 (z, 0,y; k̃)dy

(4.58)

with

T2(z,w,y; k̃) = exp

[
−k̃2/(2γ2)

∫ z

0

D∗(−y + γw(z − s)/k̃)ds

]
.

Note that T2(z, 0,y; k̃) = T̂ (z,y; k̃).
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4.4.1. Homogeneous medium. Let R0 be the coherence function in the ho-
mogeneous case. We have

R0(x,y; k̃) =

(
2α4

1 + γ2z2/k̃2

)d/2

exp

[
− α2|x|2

1 + γ2z2/k̃2

]
× exp

[
− |y|2

4α2(1 + γ2z2/k̃2)

]
exp

[
iγzx · y

k̃(1 + γ2z2/k̃2)

]
.

The decoherence length d0 is then given by

d0 =
√

2α

√
1 + γ2z2/k̃2.

4.4.2. Turbulent medium. For zγ � k̃/η we have the approximation

R2(z,x,y; k̃) ≈
(

α√
2π

)d

e−|y|2/(4α2)

∫
e−|w|2/(4α2)eiw·x

× exp

[
−k̃2/(2γ2)

∫ z

0

C2
∗ |−y + γw(z − s)/k̃|2H∗ds

]
dw.

The above integration is the inverse Fourier transform of a function which, unlike
exp[−|w|2H∗ ] in (4.42), is smooth at w = 0 for y �= 0. Hence its inverse Fourier
transform has rapid decay at large |x|. In other words, the two-point correlation
decays exponentially fast as the pair of points of a fixed distance move away from the
center of the beam, while the intensity of the wave field decays like a power law, as
noted in the previous section.

On the other hand, if we let x be fixed but y increased, then we can make the
further approximation

R2(z,x,y; k̃)

≈ αde−|y|2/(4α2)

(∫
e−|w|2/(4α2)eiw·x dw

)
exp
[
−k̃2/(2γ2)D∗(−y)z

]
≈ R0(x,y; k̃) exp

[
−k̃2/(2γ2)D∗(−y)z

]
, γ � 1,(4.59)

and we see that the turbulence-induced (de)coherence length has the asymptotic

d∗ ≈

√∫
|y|2T̂ 2(z, 0,y; k̃)dy∫
T̂ 2(z, 0,y; k̃)dy

, γ � 1,(4.60)

∼ C−ζ
∗ k̃−ζz−ζ/2γζ ∼ α∗, ζ ∈ [1, 2).

The turbulence-induced (de)coherence length d∗ represents the intrinsic aperture asso-
ciated with the turbulent medium, and when the turbulence effect becomes important
we have d∗ ≤ d0. This happens, for example, when the propagation distance is beyond
the boundary layer such that

z � k̃−2α−2H∗γ2C−2
∗ .(4.61)

The forward resolution is s̃∗ ∼ s∗ and is related to the speckle size d∗ as

s̃∗ ∼ γz

k̃d∗
.(4.62)
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We have seen how rough turbulent medium fluctuations affect the wave field and
give a wide spreading of the wave energy and a fine scale for the scintillations or
the speckle pattern. In the next section we will analyze time reversal of waves. The
dual situation can then be observed. For time reversal of waves on a mirror with a
given aperture, rough medium fluctuations give a wide apparent mirror and a very
fine-scaled time-reversal resolution. We summarize this duality picture in section 6.

5. Phase-conjugating mirror and superresolution. An important phenom-
enon in wave propagation in heterogeneous media is related to time reversal of the
wave field. In a generic time-reversal example the wave received by an active trans-
ducer or antenna (receiver-emitter) array is recorded and then reemitted into the
medium time reversed; that is, the tails of the recorded signals are sent first. The
time-reversal procedure is equivalent to phase conjugation on the spatial component
of the time-harmonic wave field which, in the parabolic approximation, is the same
as changing the sign of the wave number k̃. Phase conjugation is an essential element
in holography. Phase conjugation can be produced from a holographic procedure of
four-wave mixing in a photorefractive crystal [32].

The phenomenon is related to the time reversibility of the wave equation; if we
capture, time reverse, and reemit a sufficient part of the wave field, the reemitted
wave will approximately refocus on the target [18]. The surprising and important
fact is that the focusing resolution typically will be enhanced rather than hampered
by heterogeneity or “randomness” in the medium. The effect has numerous applica-
tions. In the case of ultrasound, this process can be iterated to pinpoint the wave
beam to destroy kidney stones, detect defects in materials, and communicate with
submarines. In the case of electromagnetic waves this effect holds the potential
of increasing imaging resolution and channel capacity. The phenomenon has been
studied in the literature, both from the experimental and theoretical points of view
[2, 5, 6, 4, 11, 18, 19, 20, 21, 28, 31]. A cartoon of a time-reversal experiment is given
in Figure 5.1.

r∗

x

z

a

Fig. 5.1. The time-reversal procedure. A source with central wavelength λ0 emits a pulse. The
transmitted field is recorded, stored, and time reversed at the mirror of size a at a distance z away
and then sent back toward the source point. There it refocuses on the spot size, r∗, described by
(5.12) when the medium is homogeneous. Medium heterogeneity typically enhances the refocusing
resolution.
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A crucial aspect of this effect is the enhanced performance of time-reversal reso-
lution by heterogeneity or medium roughness. Previous theoretical studies typically
assume that the medium is smooth in the sense of being differentiable with respect to
the lateral coordinates; see [35] and [36] for examples. There, scaling regimes associ-
ated with a robust and strong refocusing effect were identified by asymptotic analysis,
and the refocusing effect was precisely quantified.

Fractal-like self-similar media have much “rougher” variations and occur naturally
in wave propagation in the atmosphere and geophysical setting. They are the main
focus of the present study.

5.1. Time-reversed field. As in (3.4) we nondimensionalize the coordinates.
Let the phase-conjugated mirror be located on the plane z = 0 and the source at the
parallel plane a z-distance away with an aperture A. The aperture function of the
mirror is, in the simplest form, the indicator function χA of the set A representing
the physical boundary of the mirror.

Interestingly, the phase-conjugated, back-propagated wave field can be related to
the Wigner distribution as follows. Let GH(0,x, z,y) be the Green’s function, with
the point source located at (z,y), for the reduced wave (Helmholtz) equation for
which the Schrödinger–Itô equation is an approximation. By the self-adjointness of
the Helmholtz equation, GH satisfies the symmetry property

GH(0,x, z,y) = GH(z,y, 0,x).

The wave field Ψm received at the mirror is given by

Ψm(z,xm) = χA(xm)

∫
GH(0,xm, z,xs)Ψ0(xs)dxs

= χA(xm)

∫
GH(z,xs, 0,xm)Ψ0(xs)dxs.

After phase conjugation and back-propagation we have at the source plane the wave
field

ΨB(z,x; k̃) =

∫
GH(z,x, 0,xm)GH(z,xs, 0,xm)χA(xm)Ψ0(xs)dxmdxs.

In the parabolic and white-noise approximations the Green’s function GH(z,x, 0,y)

is approximated by eik̃zG(z,x,y), where GS(z,x,y) is the propagator of the Schrö-
dinger–Itô equation (3.15). Making the approximation in the above expression for the
back-propagated field we obtain

ΨB(z,x; k̃) =

∫
GS(z,x,xm)GS(z,xs,xm)Ψ0 (xs)χA(xm)dxmdxs

=

∫
eip·(x−xs)/γW

(
z,

x + xs

2
,p

)
Ψ0 (xs)dpdxs,(5.1)

where the Wigner distribution W is given by

W (z,x,p)(5.2)

=
1

(2π)d

∫
e−ip·yGS(z,x + γy/2,xm)GS(z,x − γy/2,xm)χA(xm)dydxm.

This is a mixed-state type of Wigner distribution (3.26). In general, the integral in
(5.1) should be interpreted in the distributional sense.
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The Wigner distribution in (5.2) has the initial condition W ,

W (0,x,p) =
χA(x)

γd(2π)d
,(5.3)

which is an L∞(R2d)-function and should be treated as a generalized function on R
2d.

Indeed, for any θ ∈ C∞
c (Rd) we have〈

ΨB , θ
〉

=

∫∫
W (z, r,p)Θ(r,p)dydp,(5.4)

where the function Θ is defined as

Θ(r,p) = 2d
∫

θ(r′)ei2p·(r
′−r)/γΨ0(2r − r′)dr′.

If, for instance, Ψ0 ∈ C∞
c (Rd), then it is easy to see Θ(y,p) is compactly supported in

y ∈ R
d and decays rapidly (faster than any power) in p ∈ R

d. Therefore the mixed-
state Wigner distribution given by (5.2) can be treated as a tempered distribution. As
a result we can always approximate to arbitrary accuracy the distributional initial data
such as (5.3) by square-integrable initial data whose evolution is in turn approximately
described by the Wigner–Itô equation (3.23).

Following (5.1) we can write the coherent field Ψ̄B ≡ E
[
ΨB
]

in terms of W (1) as

Ψ̄B(z,x; k̃) =

∫
eip·(x−xs)/γW (1)

(
z,

x + xs

2
,p

)
Ψ0 (xs)dpdxs.(5.5)

In contrast, an ordinary mirror would result in the following expression for the back-
propagated wave field Ψb:

Ψb(z,x) =

∫
GS(z,x,xm)GS(z,xs,xm)Ψ0 (xs)χA(xm)dxmdxs,

which upon averaging becomes

Ψ̄b(z,x) =

∫
F (2)(z,x,xs)Ψ0(xs)dxs,

where

F (2)(z,x,xs) =

∫
G

(2)
S (z,x,xs;xm,xm)χA(xm)dxm

is the solution of (3.17) for n = 2 with the initial data

F
(2)
0 (x,xs) = δ(x − xs)χA(x).

The problem for F (2) does not lead to a simple solution, as is the case for W (1).
Recall that the governing equation for W (1) is given by the averaged Wigner–

Itô equation (4.12) and the associated Green’s function has the form given in (4.13).
Thus, the explicit expression for W (1) taking the initial data into account is in this
case

W (1)(z,x,p) =
1

(2πγ)d

∫
G

(1)
W (z,x,p; x̄, p̄)χA(x̄)dx̄dp̄(5.6)

=
1

γd(2π)2d

∫
χA(x̄) exp

[
i
(
w · (x − x̄) − zw · p/k̃

)]
× exp

[
−k̃2/(2γ2)

∫ z

0

D∗(−γws/k̃)ds

]
dwdx̄.
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This then gives an expression for the quantity of interest, the mean time-reversed and
back-propagated field:

Ψ̄B(z,x; k̃) =
1

γd(2π)d

∫
Ψ̂0

(
p

γ

)
χA(x̄)ei(p·x/γ+w·x−w·x̄−zw·p/k̃−γz|w|2/2k̃)

× exp

[
−k̃2/(2γ2)

∫ z

0

D∗(−sγw/k̃)ds

]
dx̄dpdw

=
1

(2π)d

∫
Ψ̂0 (q)χA(x̄)ei(q·x+w·x−w·x̄−γzw·q/k̃−γz|w|2/2k̃)

× exp

[
−k̃2/(2γ2)

∫ z

0

D∗(−sγw/k̃)ds

]
dx̄dqdw.

We introduce the time-reversal point-spread function Ptr by substituting the Dirac-
delta function for Ψ0 in the above expression:

(5.7)

Ptr(z,x; k̃) =
1

(2π)d

∫
χ̂A(w)ei[q·(x−γzw/k̃)+w·(x−γzw/2k̃)]

× exp

[
−k̃2/(2γ2)

∫ z

0

D∗(−sγw/k̃)ds

]
dqdw

=

(
k̃

γz

)d

χ̂A

(
k̃x

γz

)
exp
[
ik̃|x|2/(2γz)

]
exp

[
−k̃2/(2γ2)z

∫ 1

0

D∗(−sx)ds

]
.

The mean refocused wave field has a spatial support that is determined by the reso-
lution function

P̃(z,x; k̃) ≡
(

k̃

γz

)d

χ̂A

(
k̃x

γz

)
exp

[
−k̃2/(2γ2)z

∫ 1

0

D∗(−sx)ds

]
.(5.8)

It is clear from (5.8) that the effect of the random media is the damping of the
homogeneous resolution function

P̃0(z,x; k̃) =

(
k̃

γz

)d

χ̂A

(
k̃x

γz

)
(5.9)

by the phase factor

Ttr ≡ exp

[
−k̃2/(2γ2)z

∫ 1

0

D∗(−sx)ds

]
.(5.10)

The homogeneous resolution function (5.9) is analogous to the focusing of uniform
light through the aperture stop A by a lens on its focal plane. The lensing effect
results, of course, from phase conjugation. The homogeneous resolution function
(5.9) converges in the sense of distribution to the Dirac-delta function in the limit of
infinite aperture A → R

d. To further analyze the differences between the resolution
functions of homogeneous and random media, we will now set A to be a circular
aperture of diameter a.
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5.1.1. Homogeneous medium. For a circular aperture we have the well-known
formula [7]

P̃0 =
ak̃

4πγz|x|J1

(
k̃|x|a
2γz

)
,(5.11)

where J1 is the first order Bessel function given by

J1(w) =
1

2π

∫ 2π

0

eiφ+iw sinφdφ.

The Rayleigh resolution is then simply the distance ρ0 to the first zero of P̃0 (5.11)
or the Airy spot size:

ρ0 ≈ 1.22γ
λ̃z

a
, λ̃ =

2π

k̃
,(5.12)

which is analogous to (4.54) and (4.62). One sees that the resolution is proportional
to γ and the distance to the mirror and inversely proportional to the aperture a. The
Rayleigh criterion is valid only for illumination by an incoherent light source [7].

Note that (5.12) is not in the standard form since we have rescaled and nondi-
mensionalized the coordinates (3.4) such that k̃ ≈ 1 and the true dependence of ρ0

on the wavelength is hidden in γ.

5.2. Turbulent medium: Superresolution and contrast enhancement.
In the presence of random fluctuations we have

P̃(z,x; k̃) ≡ ak̃

4πγz|x|J1

(
k̃|x|a
2γz

)
exp

[
−k̃2z

∫ 1

0

D∗(−sx)ds/(2γ2)

]
.(5.13)

As γ decreases, the random phase factor (5.10) with a rough structure function may
contain a smaller scale than (5.12) resulting in a turbulence-induced time-reversal
aperture αtr which is independent of the entrance aperture a.

For the power-law structure function given in (4.15) we obtain

P̃(z,x; k̃)(5.14)

≈ ak̃

4πγz|x|J1

(
k̃|x|a
2γz

)
exp
[
−C2

∗ k̃
2z|x|2H∗γ−2/(4H∗ + 2)

]
, |x| � 1,

with H∗ given by (4.16). The function

Ttr(z,x) = exp
[
−C2

∗ k̃
2z|x|2H∗γ−2/(4H∗ + 2)

]
in (5.14) determines the time-reversal resolution when

s∗ ∼ s̃∗ � a.(5.15)

In this case the turbulence-induced time-reversal resolution defined as

ρtr =

√√√√∫ |x|2T 2(2H∗+1)
tr (z,x; k̃)dx∫

T
2(2H∗+1)
tr (z,x; k̃)dx

(5.16)
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has the asymptotic for z−1/2γ � 1,

ρtr ∼ C−ζ
∗ k̃−ζz−ζ/2γζ ∼ d∗ ∼ ŝ−1

∗ , ζ = 1/H∗ ∈ [1, 2),(5.17)

corresponding to the turbulence-induced time-reversal aperture

αtr ≡
γz

k̃ρtr

∼ Cζ
∗ k̃

ζ−1z1+ζ/2γ1−ζ ∼ s∗ � a.(5.18)

It is worthwhile to mention that when the formula (5.16) is valid the time-reversal res-
olution improves as the propagation distance z and the random fluctuation (measured
by C∗) of the medium increase and as the Fresnel number γ decreases.

The case ζ = 1 corresponds to a smooth white-noise medium, while the case ζ = 2
corresponds to a rough white-noise medium as before (cf. section 4.1). The rougher
the medium, the smaller the exponent H∗, and so is the resolution scale (5.17). In
the case of a Gaussian white-noise model for the Liouville equation with a smooth
potential (i.e., ζ = 1), the turbulence-induced time-reversal aperture has a similar
dependence on z (i.e., z3/2) [36].

The definition (5.18) of the turbulence-induced time-reversal aperture αtr is com-
pletely analogous to the definition (4.54) of the turbulence-induced entrance aper-
ture α∗. By definition the turbulence-induced aperture is the largest aperture for
which the diffraction-limited resolution is not affected by the random medium. Even
when the size of the phase-conjugating mirror is bigger than αtr given by (5.18), and
hence a smaller diffraction-limited resolution than (5.17), the presence of random-
ness has the advantage of enhancing the contrast between the refocused spot and the
surrounding wave field due to the fast decay of the stretched exponential function
in (5.14). Physically speaking, it is no coincidence that αtr ∼ s̃∗ once the duality
between E[ΨB ] and M̂2 is established (see the next section).

At first the aperture-independent resolution formula (5.17) seems counterintu-
itive. On the other hand, it is hardly surprising that the scale of refocusing of
the coherent back-propagated field has the same order of magnitude as the deco-
herence length (4.60) of the transmitted beam. As a consequence, the coherent
back-propagated wave field behaves analogously to incoherent light wave, and the
time-reversal Airy spot size ρtr gives the true resolution of distinguishing two points.
As noted in the previous section, ρtr (5.17) is o(1), as long as the phase-conjugating
mirror is placed beyond the boundary layer (4.61). However, the question of whether
(5.17) remains valid for the time-reversal focal spot size in a given realization of the
random medium must be answered by considering the higher moments of the wave
field, the so-called scintillation theory which we will analyze in a separate paper. Here
we briefly remark that at least for a broad beam α � 1 (5.17) indeed describes the
time-reversal refocusing scale for almost all realizations of the medium. Indeed, the
focal spot itself is statistically stable. This is the self-averaging effect observed in [5]
and further analyzed in [36]. See [14] for a comprehensive analysis of the self-averaging
effect in various scaling limits.

Another aspect of the superresolution is the enhanced contrast or band-width of
the time-reversal focal spot due to the much faster decay of the stretched exponen-
tial function in (5.14) than J1 at large offset x. For instance, we can define the
time-reversal contrast or band-width κtr as the ratio of the central, peak intensity
|Ptr(z, 0; k̃)|2 to the total back-propagated energy which has the approximation when
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the effect of the random medium dominates:

κtr =
|Ptr(z, 0; k̃)|2∫
|Ptr(z,x; k̃)|2dx

(5.19)

∼
(∫

T 2
tr(z,x)dx

)−1

= (k̃−ζC−ζ
∗ γζz−ζ/2)−d

(∫
exp
[
−|x|2H∗/(2H∗ + 1)

]
dx

)−1

∼ ρ−d
tr ,

which increases as γ and H decrease and as C∗ and z increase, and is much better
than the time-reversal contrast in the homogeneous medium. This dependence on the
parameters γ,H,C∗, z is opposite to that of the forward contrasts as given in (4.52).

The price for the enhanced contrast is, however, the significant reduction of the
energy of the focal spot by the factor κ−1

tr ∼ ρdtr due to the reduction of the side
lobes, although the intensity at the center of the spot x = 0 remains the same as the
homogeneous case (Strehl ratio ≈ 1). The loss of refocused energy cannot always be
completely compensated by enlarging the aperture or decreasing the Fresnel number γ.
For example, to refocus the same amount of wave energy as in the homogeneous case,
we need to increase a/(zγ) by a factor of ρ−2

tr , but then the Rayleigh resolution would
have been much better than ρtr anyway.

5.3. Refocusing in time. The setting is the same as before: the source is
located at (z, 0), while the phase-conjugating mirror is at (0, 0); see Figure 5.1.

By decomposing the initial pulse u0(τ,x) into its various frequency components
Ψ0(x; k̃) as

u0(τ,x) =

∫
Ψ0(x; k̃)e−ik̃(τ+νz)dk̃, ν = k0Lz, τ = c0k0t,

we can apply the time-reversal procedure frequency by frequency and then synthesize
them to obtain the refocused wave field

E[uB ](τ,x) =

∫
u0(t,y)Qtr(τ + t,x,y)dydt,(5.20)

where the space-time time-reversal point-spread function Qtr(τ,x,y) is given by

Qtr(τ,x,y) =
1

2π

(
1

γz

)2 ∫
e−ik̃te

ik̃|x|2
2γz e−

ik̃|y|2
2γz k̃2χ̂A

(
k̃(x + y)

γz

)

× exp

[
− k̃2z

2γ2

∫ 1

0

D∗(s(x − y))ds

]
dk̃

=
1

(2πσtr(x − y))2

∫
Nσtr(x−y)

(
τ − t− |x|2 − |y|2

2γz

)
fA(t, |x + y|)dt,

where Nσtr(r) is the normal distribution with the variance

σtr(r) =
1

γ

√
z

∫ 1

0

D∗(−sr)ds
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and the function fA is given by

fA(t, r) =
γz

πar3
f

(
2γzt

ar

)
, f(s) =

∫
wJ1(w)e−iswdw.

We call σtr the turbulence-induced temporal spread for time reversal. In view of
(A.10) we see that the scale associated with σtr is proportional to the turbulence-
induced cross-range resolution ρtr as given by (5.16). This is contrary to the offset-
independent temporal spread σ of the forward propagating mean field as given by
(4.6). We note that in the case of longitudinally long-range correlated fractal media
the temporal pulse-shaping function Nσtr

may be a non-Gaussian function [16].
Consider the simplest case of a point source

u0(τ,x) = δ(x)

∫
ĝ(k̃)e−ik̃(τ+νz)dk̃.

Then we have the back-propagated pulse

E[uB ](τ,x) =

∫
g(t)fA(t′, |x|)Nσtr(x)

(
τ + t− t′ − |x|2

2γz

)
dt′dt.

The temporal spread due to propagation is given by

a|x|
γz

+ σtr(x),

which vanishes at |x| = 0 and increases with |x|. In the turbulence-dominated regime
αtr � a the second term σtr increases faster than the first term. On one hand, the
rapid increase of the temporal spread with the offset is the mechanism for sharp refo-
cusing in space time for a point source; on the other hand, when the pulse source has
a wide lateral support the temporal refocusing may deteriorate due to the interference
of the temporal spread from different source points.

6. Duality between transmission and time reversal. In this section we
would like to formulate a duality relation between M̂2 and R2 and between M̂2 and P̃
to explain the observed reciprocity between ŝ∗ and d∗ and between ŝ∗ and ρtr, respec-
tively. For simplicity we assume that M̂2 is centered, i.e., p̄ = 0.

The duality is based on the straightforward scaling relation

‖|x|f‖2

‖f‖2
× ‖|p|F [f ]‖2

‖F [f ]‖2
=

‖|x|fλ‖2

‖fλ‖2
× ‖|p|F [fλ]‖2

‖F [fλ]‖2
∀λ > 0

between any tempered function f and its rescaled version fλ(x) = f(λx), where F [f ]
denotes the Fourier transform of f as before.

First consider the function

f(x) = exp
[
−|x|2H∗/2

]
;(6.1)

then

T̂ (z,x) ≈ exp
[
−C2

∗ k̃
2z|x|2H∗/(2γ2)

]
can be written as

T̂ (z,x) ≈ fλ(x)
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with

λ = Cζ
∗ k̃

ζzζ/2γ−ζ .

Now applying the scaling relation above to f given in (6.1) we obtain

‖|x|T̂‖2

‖T̂‖2

× ‖|p|F [T̂ ]‖2

‖F [T̂ ]‖2

=
‖|x|f‖2

‖f‖2
× ‖|p|F [f ]‖2

‖F [f ]‖2
≡ uH ,(6.2)

whose right-hand side is independent of λ and z and varies mildly with the medium
roughness. In view of (4.60) and (4.46) this explains the reciprocity

d∗ŝ∗ ≈ uH ;(6.3)

cf. (4.60) and (4.49). The constant uH has a universal lower bound,

uH ≥
√

d

2(2π)d
,

which is achieved for the Gaussian function with H∗ = 1 corresponding to H ≥ 1/2
or persistently correlated media.

For the reciprocity of ŝ∗ and ρtr we consider next

Ttr(z,x) ≈ exp
[
−C2

∗ k̃
2z|x|2H∗γ−2/(4H∗ + 2)

]
,

which can be written as

Ttr(z,x) ≈ T̂ (z,x)1/(2H∗+1).

We find therefore that

T
2(2H∗+1)
tr (z,x; k̃)

/∫
T

2(2H∗+1)
tr (z,x; k̃)dx ≈ T̂ 2(z,x)

/∫
T 2(z,x)dx.

In view of the definition of ρtr in (5.16) the duality relation (6.2) again implies the
reciprocity of ρtr and ŝ∗:

ρtrŝ∗ ≈ uH .

In summary we have analyzed the relations among five length scales associated
with the effect of the turbulent medium:

• Spread in wavevector, ŝ∗, of the transmitted wave energy.
• Coherence length, d∗, of the transmitted wave field.
• Entrance aperture, α∗, of the “lensing” of the turbulent medium.
• Time-reversal resolution, ρtr, which is the time-reversed focal spot size.
• Time-reversal aperture, αtr, aperture of the phase-conjugating mirror which

can reproduce the time-reversal resolution in the absence of the turbulence.
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First, we have the duality relations

α∗ =
1

ŝ∗

and

ρtr ≈ d∗ ≈ uH

ŝ∗
,

where uH is a constant depending only on H. Second, we have

αtr ≈
γz

k̃uH

ŝ∗ =
s̃∗
uH

.

This duality picture is illustrated in Figure 6.1.

1/ŝ∗ uH/ŝ∗ uH/ŝ∗

γzŝ∗/(k̃uH)

Fig. 6.1. The left and right half figures indicate the turbulence-induced scales for the transmitted
field and the time-reversed and back-propagated field, respectively. The arrows indicate the direction
of propagation. For the transmitted field the solid vertical line to the left indicates the spread in
spatial frequency s̃∗ = γzŝ∗/(k̃uH). The entrance aperture α∗ = 1/ŝ∗ is shown to the far left, and
the coherence length of the transmitted field d∗ ≈ uH/ŝ∗ is marked at the center of the plot. The
time-reversal aperture αtr ≈ γzŝ∗/(k̃uH) is shown by the solid vertical line to the right, and the
time-reversal resolution ρtr ≈ uH/ŝ∗ is shown to the far right in the plot.

Appendix A. White-noise limit for the Schrödinger and Wigner equa-
tions. In this appendix we state the theorem and the precise conditions under which
the convergence to the white-noise models have been rigorously proved in [15] and [13].

First we state the three common assumptions for both cases.
Assumption 1.

Φ(η,ρ)(�k) ≤ K(η2 + |�k|2)−H−1/2−d/2
(
1 + ρ−2|k|2

)−2
, �k ∈ R

d+1, H ∈ (0, 1),

for some positive constant K.
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Let Fz and F+
z be the sigma-algebras generated by {Vs : ∀s ≤ z} and {Vs :

∀s ≥ z}, respectively. Let Ez define the expectation conditioned on Fz. Define the
correlation coefficient

rη,ρ(t) = sup
h∈Fz

E[h]=0,E[h2]=1

sup
g∈F+

z+t

E[g]=0,E[g2]=1

E [hg] ,(A.1)

where we emphasize the dependence on the cutoffs η, ρ in the subscript.
In the Gaussian case the correlation coefficient rη,ρ(t) equals the linear correlation

coefficient given by

rη,ρ(t) = sup
f1,f2

∫
eiξtf1(ξ,k)f2(ξ,k)Φ(η,ρ)(ξ,k)dξdk,(A.2)

where f1, f2 are elements of the Hardy space H2 of L2(Rd; Φ(η,ρ))-valued analytic
functions in the upper half ξ-space satisfying the normalization condition∫

|fj(ξ,k)|2Φ(η,ρ)(ξ,k)dξdk = 1, j = 1, 2.

There are various criteria for the decay rate of the linear correlation coefficients;
see [30].

Assumption 2. The correlation coefficient rη,ρ(t) is integrable for any η > 0,
ρ < ∞.

The importance of Assumption 1 lies in the following result.
Lemma A.1.

Ṽz(x) =

∫ ∞

z

Ez [Vs(x)] ds(A.3)

defines a square-integrable x-homogeneous process.
Next we assume the 6th order sub-Gaussian property.
Assumption 3.

sup
|y|≤L

E [V ε
z (y)]

4 ≤ C1 sup
|y|≤L|

E
2 [V ε

z ]
2
(y),(A.4)

sup
|y|≤L

E

[
Ṽ ε
z

]4
(y) ≤ C2 sup

|y|≤L

E
2
[
Ṽ ε
z

]2
(y),(A.5)

(A.6)

sup
|y|≤L

E

[
[V ε

z ]
2
[
Ṽ ε
z

]4]
(y) ≤ C3

{(
sup
|y|≤L

E [V ε
z ]

2
(y)

)(
sup
|y|≤L

E
2
[
Ṽ ε
z

]2
(y)

)
+

(
sup
|y|≤L

E
2
[
V ε
z Ṽ

ε
z

]
(y)

)(
sup
|y|≤L

E

[
Ṽ ε
z

]2
(y)

)}
for all L < ∞, where the constants C1, C2, and C3 are independent of ε, η, ρ, γ.

A.1. The Schrödinger case. In addition, we assume the following.
Assumption 4. For any fixed η > 0 and every θ ∈ C∞

c (R2)

sup
z<z0

∥∥∥θṼ ( z

ε2
, ·
)∥∥∥

2
= o

(
1

ε

)
∀ε ≤ 1 ≤ ρ(A.7)

with a random constant of finite moments independent of ρ and ε.
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When V is Gaussian, Ṽ is also Gaussian, and Assumption 4 is always satisfied:

sup
z<z0

∥∥∥θṼ ( z

ε2
, ·
)∥∥∥

2
≤ C̃ log

[z0

ε2

]
,(A.8)

where the random constant C̃ has a Gaussian-like tail by a simple application of
Borell’s inequality.

We consider the weak formulation of (3.10),

ik̃ [〈Ψε, θ〉 − 〈Ψ0, θ〉] = −
∫ z

0

γ

2
〈Ψε

s,∆θ〉 ds− k̃2

2γε

∫ z

0

〈
Ψε

s, V
( s

ε2
, ·
)
· θ
〉
ds,(A.9)

for any test function θ ∈ C∞
c (Rd), the space of smooth functions with compact sup-

port.
Theorem A.2. Let V ε

z be a z-stationary, x-homogeneous, almost surely locally
bounded random process such that Assumptions 1, 2, 3, and 4 are satisfied. Let η > 0
and ρ < ∞ be fixed as ε → 0. Then the L2-weak solution Ψε of (A.9) converges in
law to the L2-weak solution of the Gaussian white-noise model with the covariance
function given by (3.13).

Next we consider the limiting case η = 0. This would induce uncontrollable large
scale fluctuation in the Gaussian–Markovian model, which should be factored out
first. Thus we consider the solution of the form

Ψ(z,x) = Ψ′(z,x) exp

(
ik̃

γ
√

2

∫ z

0

Bs(0) ds

)
(A.10)

and the resulting Schrödinger–Stratonovich equation

dΨz =
i

2k̃
∆Ψz dz +

ik̃√
2γ

Ψz ◦ dB′
z, Ψ0(x) = Ψ0(x),(A.11)

where B′
z is given by

B′
z(x) = Bz(x) − Bz(0)(A.12)

with the covariance function

Γ′(x,y) = π

∫
(eix·p − 1)(e−iy·p − 1)Φ(0,∞)(0,p)dp.

Note that the above integral is convergent only if

H < 1/2;

in particular, the limit exists for the Kolmogorov value H = 1/3.

A.2. The Wigner case. We consider the weak formulation of the Wigner–
Moyal equation: to find W ε

z ∈ D([0,∞);L2(R2d)) such that ‖W ε
z ‖2 ≤ ‖W0‖2 ∀z > 0

and

〈W ε
z , θ〉 − 〈W0, θ〉 = k̃−1

∫ z

0

〈W ε
s ,p · ∇xθ〉 ds +

k̃

2ε

∫ z

0

〈W ε
s ,Lε

sθ〉 ds ∀θ ∈ S(A.13)
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with the test function space S defined as

S =
{
θ(x,p) ∈ L2(R2d); F−1

2 [θ](x,y) ∈ C∞
c (R2d)

}
.

Here F−1
2 stands for the inverse Fourier transform with respect to the second variable

(i.e., p).
Assumption 5. For any η > 0,

Rη = lim sup
ρ→∞

∫ ∞

0

rη,ρ(t)dt < ∞

such that

lim sup
η→0

ηRη < ∞.

For the Gaussian case with the generalized von Kármán spectrum

Φvk(�k) = 2H−1Γ

(
H +

d + 1

2

)
η2Hπ−(d+1)/2(η2 + |�k|2)−H−1/2−d/2, �k ∈ R

d+1,

(A.14)

a straightforward scaling argument shows that

rη,ρ(t) = r1,ρ(ηt),

which is also independent of ρ. This motivates Assumption 4.
Define

δγV
ε
z (x,y) ≡ V ε

z (x + γy/2) − V ε
z (x − γy/2),(A.15)

V ε
z (x) = Vz/ε2(x).(A.16)

Assumption 6. For every θ ∈ S and Ṽ ε
z given by (A.3), there exists a random

constant C such that

sup
z<z0

‖δγ Ṽ ε
z F−1

2 θ‖4 ≤ C√
ε

sup
|x|,|y|≤L

E
1/2|δγ Ṽ ε

z (x,y)|2 ∀θ ∈ S, ε, η, γ ≤ 1 ≤ ρ

with C possessing finite moments and depending only on θ, z0, where L is the radius
of the ball containing the support of F−1

2 θ.
The same remark following Assumption 3 is applicable here again: Assumption 6

is satisfied by the Gaussian case [13].
Theorem A.3. Let V ε

z be a z-stationary, x-homogeneous, almost surely locally
bounded random process such that Assumptions 1, 2, 3, 5, and 6 are satisfied. Let
γ > 0 be fixed.

(i) Let η be fixed and ρ be fixed or tend to ∞ as ε → 0 such that

lim
ε→0

ερ2−H = 0.(A.17)

Then the weak solution W ε of the Wigner–Moyal equation with the initial con-
dition W0 ∈ L2(R2d) converges in law to the L2-weak solution of the Gaussian
white-noise model (3.23) with the covariance operators given by (3.24) with
η > 0. The statement holds true for any H ∈ (0, 1).
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(ii) Suppose additionally that H < 1/2 and η = η(ε) → 0 such that

lim
ε→0

εη−1(η−1 + ρ2−H) = 0.(A.18)

Then the same convergence holds true.
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