
CHAPTER 3

COMPLEX MANIFOLDS AND COVERS

Chap. 4 replaces the field C(z, f(z)) generated by an algebraic function f(z)
over C(z) by a geometric object, a 1-dimensional complex manifold (Riemann sur-
face) that maps to the Riemann sphere P1

z. To prepare for this idea requires building
some manifolds, and developing intuition for basic examples. We use fundamental
groups to create new 1-dimensional complex manifolds from the space Uzzz with zzz a
finite subset of P1

z.
Chap. 5 collects various Riemann surfaces into families. The parameter spaces

for these families — one point in the space for each member of the family — are
manifolds called moduli spaces. Chap. 4 has a prelude, the moduli space classically
called the j-line: P1

j \ {∞}. We use it for more general families than do classical
texts on Riemann surfaces. Our moduli spaces may have arbitrarily high complex
dimension. Still, their construction uses covering spaces (coming from fundamental
groups) of open subsets of projective spaces. This chapter builds an intuition for
using group theory to construct these spaces.

1. Fiber products and relative topologies

There is so much topology and we have so little space for it despite the need for
some special constructions. The treatment is expedient and not completely classical
to emphasize some subtle properties of manifolds.

1.1. Set theory constructions. For X and Y sets, the cartesian product of
X and Y is the set

X × Y = {(x, y) | x ∈ X, y ∈ Y }.
Let {Xα}α∈I be a collection of subsets of the set X indexed by the set I. The
union of {Xα}α∈I is the set of x ∈ X for which x ∈ Xα for some α ∈ I. Denote this⋃

α∈I Xα. The complement of Xα in X, X \Xα, is {x ∈ X | x /∈
⋃

α∈I Xα}. The
intersection of {Xα}α∈I is the set of x ∈ X with x ∈ Xα for each α ∈ I. Denote
this

⋂
α∈I Xα.

Definition 1.1. For X1 and X2 sets, Yi ⊂ Xi, i = 1, 2, let f : Y1 → Y2 be
a one-one onto function. The sum of X1 and X2 along f is the disjoint union of
X1\Y1, Y2, and X2\Y2. Denote this X1

⋃
f X2. Along with this, we have maps

fi : Xi → X1

⋃
f X2, i = 1, 2: with f2(x2) = x2 for x2 ∈ X2, f1(x1) = x1 if

x1 ∈ X1\Y1, and f1(x1) = f(x1) for x1 ∈ Y1. Call f1 and f2 the canonical maps.
Example 1.2 (The set behind a non-Hausdorff space). Consider

Xi = {(t, i) ∈ R2 | −1 < t < 1}, i = 1, 2, with

Yi = Xi\{(0, i)}, i = 1, 2, and f : Y1 → Y2 by f(t, 1) = (t, 2) for (t, 1) ∈ Y1. Then,
X1

⋃
f X2 is the disjoint union of X2 and the point (0, 1) (see Def. 1.4 and Ex. 2.4).
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82 3. COMPLEX MANIFOLDS AND COVERS

Definition 1.3 (Set theoretic fiber products). Let fi : Xi → Z be two func-
tions with range Z, i = 1, 2. The fiber product X1 × ZX2 consists of

{(x1, x2) ∈ X1 ×X2 | f1(x1) = f2(x2)}.
Denote the natural map back to Z by f1 ×Z f2. Suppose Xi ⊂ Z and fi : Xi → Z
is inclusion, i = 1, 2. Then, identify X1 × ZX2 with X1 ∩X2.

Suppose X1 = X2 = Z = C, and f1 and f2 are polynomials. Then, X1 × ZX2

is the subset of (x1, x2) ∈ C2 defined by f1(x1) = f2(x2). Define the ith projection
map, pri : X1 × ZX2 → Xi by pri(x1, x2) �→ xi, i = 1, 2.
The fiber product is an implicit set: an equation describes it.

The ball of radius r about xxx0 ∈ Rn is the basic open set {xxx ∈ Rn | |xxx−xxx0| < r}.
When necessary denote this B(xxx0, r). Open sets of Rn are either empty or are
(arbitrary) unions of basic open sets. Closed sets are complements (in Rn) of open
sets. Bounded sets are those contained in some basic open set. The collection of
open sets, U , in Rn therefore satisfies the axioms for a topology: U contains the
empty set and the whole space, and it is closed under taking arbitrary unions and
finite intersections.

Definition 1.4 (Relative topology I). Let X be a subset of Rn. Denote the
collection of sets X ∩ U for U open subset in Rn by UX . Then UX gives the
relative topology on X. For x1, x2 ∈ X, two distinct points, B(x1, r/3) ∩ X and
B(x2, r/3) ∩X are disjoint open neighborhoods of the respective points x1 and x2

if r = |x1 − x2|. Thus, in this relative topology, X is a Hausdorff space.
Suppose X (resp. Y ) is a topological space with open sets UX (resp., UY ). Let

f : X → Y be a function with domain a subset of X. Then f is continuous (for
the relative topology) if for each U ∈ UY ,

f−1(U) = {x in the domain of f | f(x) ∈ U} is in UX .

For U open in Y , denote restriction of f to f−1(U) by fU : f−1(U) → U . If f is
continuous, so is fU .

The concept of relative topology generalizes to data {(Xα, ϕα)}α∈I on a set X
with the following properties:

⋃
α∈I Xα = X; ϕα : Xα → Rn is a one-one map into

Rn; and ϕβ ◦ϕ−1
α : ϕα(Xα ∩Xβ)→ ϕβ(Xα ∩Xβ) is a continuous function for each

α, β ∈ I. We call the functions {ϕβ ◦ ϕ−1
α }α,β∈I transition functions.

Definition 1.5 (Relative topology II). Let X and {(Xα, ϕα)}α∈I be as above.
Consider subsets of X that are unions of ϕ−1

α (U) with U running over open sets of
ϕα(Xα), α ∈ I. Denote this collection of sets by UX . The topology on X from UX

is the relative topology on X induced from the topologizing data {(Xα, ϕα)}α∈I .
For x ∈ X and U an open set containing x, U is a neighborhood of x.

1.2. Extending topologies from Rn. Two sets of topologizing data on X,
{(X ′α′ , ϕ′α′)}α′∈I′ and {(Xα, ϕα)}α∈I , are equivalent (the same, or give the same
topology) if each defines the same open sets on X.

Consider X and Y , topological spaces with respective data {(Xα, ϕα)}α∈I and
{(Yβ , ψβ)}β∈J . A one-one map f : X → Y is a (topological) embedding if the
topologizing data from {(f−1(Yβ), ψβ◦f)}β∈J is equivalent to {(Xα, ϕα)}α∈I . Note:
Ex. 2.4 has a space with no embedding in Rn (for any n). It isn’t Hausdorff. Yet,
each point has a neighborhood embeddable as an open interval in R1.

Associate to each subset Y of a topological space X the closure Ȳ of Y in X:
Ȳ (a closed set) is the points x ∈ X with each neighborhood of x containing at
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least one point of Y . If each neighborhood of x contains a point of Y distinct from
x, then x is a limit point of Y .

Compact subsets of Rn are those both closed and bounded. The Heine-Borel
covering theorem [Rud76, p. 40] characterizes these sets through the concept of an
open covering. A collection U = {Uα}α∈I of open subsets of Rn is an open cover of
Y if Y ⊆

⋃
α∈I Uα. Then Y has the finite covering property if for each open cover

U there is a finite collection {Uαi
}ti=1, α1, . . . , αt ∈ I, covering Y .

Theorem 1.6 (Heine-Borel). The finite covering property is equivalent to com-
pactness for subsets of Rn.

Thus, for any topological space X, without reference to the concept of bounded
set, one says a subset Y is compact if it has the finite covering property.

A subset Y of a topological space X is disconnected if there are two nonempty
open sets U1 and U2 of Y (in the relative topology) with U1 ∩ U2 empty and
U1

⋃
U2 = Y . If Y is not disconnected call it connected (in X). For any x ∈ X,

there is a maximal connected set Ux containing x. So, each topological space
decomposes into a union of disjoint connected components. If f : Y → X is
continuous, the image of any connected subset of Y is a connected subset of X.

2. Functions on X from functions on Rn

There are several points to make about Def. 1.5. First it includes many topolo-
gies as our next example illustrates.

Example 2.1. Let X be any set whose points, xα, are indexed by α ∈ I. Let
Xα = {xα} and ϕα : {xα} → {000}, α ∈ I, where 000 is the origin of Rn. The relative
topology on X is the discrete topology.

By using another target space Y with a well-known topology on it (like the
p-adic numbers Zp, replacing Rn), we could include p-adic topologies, too. Still,
it does not include all the topologies significant to modern mathematics even for
spaces we consider as manifolds. Later we will extend it to Grothendieck topologies.
It is appropriate for that example to notice we don’t need a topology on X to start
the process (§2.1).

Further, the point of topologizing data is to pull back functions (differentials,
and other objects) from Rn so X has local functions (differentials, etc.) just like
those of Rn. Since Rn also has the notion of real analytic, differentiable and
harmonic functions, transition functions also allow us to pull those back, to identify
such functions on X. For these definitions, however, to be meaningful, they must
be locally independent of which function we use for pullback. This requires the
transition functions also have these respective properties (§3).

When n = 2m is even, suppose the following two conditions hold.

(2.1a) We have chosen a fixed R linear map L = Ln : Rn → Cm.
(2.1b) Using L, the transition functions are analytic from Cm → Cm.

These conditions allow identifying a set of functions in a neighborhood of any point
on X as analytic (§3.1.2).

Finally, there is a warning. Local function theory immediately challenges us
to identify global functions and differentials on X through their local definitions.
There is an immediate first problem to assure a simple property we expect from
functions in Rn. If a function f in a neighborhood of x ∈ X has good behaviour
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as x′ ∈ X approaches x, then it should have a unique limit value (see §2.2 on the
Hausdorff property).

2.1. Defining a topological space from its atlas. Def. 1.5 shows we don’t
need X to start with a topology. It inherits one from its topologizing data. So, it
is reasonable to ask if we need an a priori space X at all.

2.1.1. Equivalence relations define topological spaces. For example, suppose
{Uα}α∈I is a collection of open sets in Rn, and for some subset (β, α) ∈ I× I, there
are invertible continuous maps ψβ,α : V α

β → V β
α , with V β

α open in Uα (resp. V α
β

open in Uα). Can we form an X so that {ψβ,α}α,β∈I are the transition functions
for its topological structure? Almost!

Let X be the disjoint union ∪̇α∈IUα modulo the relation RI on this union
defined by x ∈ Uα ∼ x′ ∈ Uβ if ψβ,α(x) = x′. If RI is an equivalence relation,
then the equivalence classes form a set X and on it a topological structure. On
this space, of course, the open sets do look like those of Rn (in contrast to Ex. 2.1).
The following lemma keeps track of the definitions.

Lemma 2.2. The relation RI is an equivalence relation if and only if the fol-
lowing properties hold:

(2.2a) ψα,α is the identity map; ψα,β = ψ−1
β,α; and

(2.2b) ψγ,β ◦ ψβ,α = ψγ,α wherever any two of the maps are defined.

Suppose RI is an equivalence relation. Then the inverse of the natural inclusion
maps Uα → X are functions ϕα giving transition functions ϕβ ◦ ϕ−1

α = ψβ,α.

2.1.2. Quotient topologies. Suppose X is a topological space with topologizing
data {(Xα, ϕα)}α∈I . Let f : X → Y be any surjective map. Then, there is a
topology on Y with open sets UY the images by f of all sets in UX . We can’t,
however, expect topologizing data on Y by pushing down the functions ϕα without
extra conditions. It usually makes sense to write f for restriction of f to any subset
V ⊂ X. The argument here, however, requires tracking the domain, and so we
write fV .

Let J be the subset of I for which fXβ
: Xβ → Y is one-one for β ∈ J . Let

UX,Y be {Xβ}β∈J and assume UX,Y is a cover of X. With no loss assume the
coordinate chart for X contains only sets from UX,Y . The hypothesis provides
coordinate functions ψα : f(Xα)→ Rn by setting ψα = ϕα ◦ f−1

Xα
on f(Xα).

From Lem. 2.2 we want an equivalence relation on ∪̇α∈Jψα(f(Xα)) that re-
produces the set Y as equivalence classes: y ∈ ψα(f(Xα)) ∼ y′ ∈ ψβ(f(Xβ)) if
ψβ,α(y) = y′. So, the problem is to define ψβ,α, using that f−1

Xα
is different from

f−1
Xβ

on f(Xα) ∩ f(Xβ). If f(Xα ∩Xβ) = f(Xα) ∩ f(Xβ), then it is consistent to
define ψβ,α as ψβ ◦ ψ−1

α = ϕβ ◦ ϕ−1
α . More generally, an additional hypothesis is

essentially necessary and sufficient if we use the full set UX,Y .

Lemma 2.3. Suppose in addition to the above, for each pair Xα, Xβ ∈ UX,Y

with f(Xα) ∩ f(Xβ) �= ∅, there exists Xβ′ ∈ UX,Y with
(2.3) f(Xβ′) = f(Xβ) and f(Xα ∩Xβ′) = f(Xα) ∩ f(Xβ′).

Then, the topologizing data on X provides topologizing data on Y .

Proof. Apply f to UX,Y get UY . Suppose f(Xα) ∩ f(Xβ) �= ∅. Then, choose
(Xβ′ , ϕβ′) and form ψβ,α by replacing f−1

β by f−1
β′ . �
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2.2. Rn-like behavior requires Hausdorffness. Here is the problem with a
space that isn’t Hausdorff. Suppose f : [0, 1)→ X is a continuous function, every-
thing of a path except the end point. Manifolds in this book appear as extensions
of open subsets of Rn. So, the only thing that should prevent us from extending our
path (continuously) to f∗ : [0, 1] → X is that there is no point f∗(1) ∈ X giving
a continuous f∗. If there are several possible choices f∗(1) giving a continuous
function f∗, these extending points would have more exotic neighborhoods than do
points in Rn. In practice, the use of Hausdorff is to assure in theorems of Chap.
Chap. 4 that there is a unique manifold solution to many existence problems.

Example 2.4 (Continuation of Ex. 1.2). As in Ex. 1.2, let ϕi : Xi → R1 by
ϕi(t, i) = t, i = 1, 2. The relative topology on X1

⋃
f X2 is not Hausdorff [9.1].

Figure 1. An undecided function.

f(x)=(x,0), −1≤x<0, f(0)=?

−1 −.5 0
| | |

??
•

• •

There is a topological formulation of the possibility that we could end a path
in two different points. That is, (f, f) : [0, 1) → X × X has topological closure
not in the diagonal ∆X = {(x, x) | X] × X}. That is, if f∗(1) and f†(1) are two
different ways to extend f to a path on [0, 1], then (f∗(1), f†(1)) is in the closure
of ∆X . Conveniently, the exact property that prevents this situation is that X is
Hausdorff [9.1b].

Lemma 2.5. X is Hausdorff if and only if ∆X is closed in X ×X [9.1d].

Here is a classical fact. If f : X → Y is continuous and one-one and Y is
Hausdorff, then the restriction of f to any compact subset of X is a homeomorphism
onto its image. This uses that the image of a compact set is compact; then Hausdorff
assures that the image of the compact set (and all closed subsets of it) is closed. It
is, however, common to have such an f where the inverse image of some compact
sets are not compact. For example, let f : C∗z → Cz be the identity map. Then,
the inverse image of the unit disk is not compact (compare with [9.1e]). Call a map
f : X → Y proper if the inverse image of compact sets is compact.

3. Manifolds: differentiable and complex

Let X be a topological space with topologizing data {(Xα, ϕα)}α∈I (relative to
Rn). We add conditions to define differentiable and complex manifolds. Classical
cases of the latter include the Riemann sphere, the complex torus and algebraic
sets defined by m ∈ C[z, w] with nonzero gradient everywhere.

Definition 3.1. Let X be a Hausdorff space with {(Xα, ϕα)}α∈I as topologiz-
ing data. Assume ϕα maps Uα to an open connected subset of Rn for each α ∈ I.
Call X an n-dimensional (topological) manifold.

In this case, replace the open sets Xα by the notation Uα. Call {(Uα, ϕα)}α∈I a
coordinate system or atlas. An individual member ϕα : Uα → Rn is a (coordinate)
chart. Ex. 2.4 shows the Hausdorff condition isn’t automatic.
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3.1. Manifold structures. Let f : Rn → R be a continuous function defined
on an open set U . For xxx0 ∈ U and vvv ∈ Rn, the directional derivative of f at xxx0 in
the direction vvv is the limit

lim
t→0

f(xxx0 + tvvv)− f(xxx0))
t

def=
∂f

∂vvv
(xxx0),

if it exists. If eeei = vvv is the vector with 1 in the ith coordinate and 0 in the other
coordinates, denote the directional derivative by ∂f

∂xi
(xxx0). Then

∇f(xxx0)
def=

( ∂f

∂x1
(xxx0), . . . ,

∂f

∂xn
(xxx0

)
)

is the gradient of f at xxx0.

Lemma 3.2. [Rud76, p. 218] Suppose ∂f
∂xi

exists and is continuous near xxx0 for
i = 1, . . . , n. Then, for each vector vvv, ∂f

∂vvv (xxx0) exists and equals ∇f(xxx0) · vvv.
Call a function satisfying the hypotheses of Lemma 3.2 differentiable at xxx0. A

function fff = (f1(xxx), . . . , fm(xxx)) from Rn to Rm is differentiable at xxx0 if each of
the coordinate functions fi(xxx) is differentiable at xxx0. While it is not absolutely
necessary, our manifolds often have transition functions with continuous partial
derivatives of all orders: smoothly differentiable.

Assume g : Rm → R is a composite of Rm H−→Rn f−→R. Let yyy0 ∈ Rm. Suppose
each coordinate function from H(yyy) = (h1(yyy), . . . , hn(yyy)) of H is differentiable at
yyy0 and f is differentiable at H(yyy0). Write J(H)(yyy0) for the matrix whose ith row
is ∇hi(yyy0). As a slight generalization of Lem. 3.2, ∇g(yyy0) exists and equals

(3.1) = ∇f(H(yyy0)) · J(H)(yyy0).

3.1.1. Differentiable functions. Let X be an n-dimensional manifold. Denote
an atlas for it by {(Uα, ϕα)}α∈I .

Definition 3.3. Call X a differentiable manifold if each transition function
ϕβ ◦ ϕ−1

α is smoothly differentiable on its domain of definition.

For any x ∈ Uα on a chart of a differentiable manifold X, define the (smoothly)
differentiable functions on Uα to be C∞(Uα) = {f ◦ ϕα | f ∈ C∞(ϕα(Uα))}.
This definition should be independent of the chart: We declare that restricting a
differentiable function to an open subset of Uα still gives a differentiable function.
This, however, must be compatible with the definition of differentiable using any
other coordinate chart (Uβ , ϕβ) which also contains x.

Lemma 3.4. Suppose x ∈ Uα ∩ Uβ, and f ◦ ϕα is restriction of a differentiable
function to an open neighborhood W of x in Uα ∩ Uβ. Then, f ◦ ϕα = g ◦ ϕβ for
some differentiable function g defined on ϕβ(W ).

Proof. Write f ◦ ϕα as f ◦ ϕα ◦ ϕ−1
β ◦ ϕβ and take g as f ◦ ϕα ◦ ϕ−1

β . This is
defined on ϕβ(W ). As the composite of two differentiable functions f and ϕα ◦ϕ−1

β ,
g is differentiable from (3.1). �

Definition 3.5 (Global differentiable functions on X). If X is a differentiable
manifold, then a function f : X → R is differentiable if its restriction to each Uα

in a coordinate chart is differentiable.
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3.1.2. Complex functions. Decompose a complex number zi into its real and
complex parts as xi + i yi. This produces (as in (2.1)) a natural one-one map:

L = Ln : R2n → Cn by (x1, y1, . . . , xn, yn) �→ (z1, . . . , zn).

Topologize Cn so L (and its inverse) are continuous. Identify Cn and R2n to consider
any differentiable function: g : R2n → R as a function g ◦ L−1 : Cn → R. Further,
a pair u and v of differentiable functions with a common domain U from R2n → R
produces a differentiable function f : Cn → C on U :

zzz �→ u ◦ L−1(zzz) + iv ◦ L−1(zzz).

Call f : Cn → C analytic at zzzo = (z1,0, . . . , zn,0) if each complex partial derivative

∂f

∂zi
(zzz′) = lim

zi→z′
i

(f(z′1, . . . , z
′
i−1, zi, z

′
i+1, . . . , z

′
n)− f(zzz′))

zi − z′i

exists and is continuous, i = 1, . . . , n, with zzz′ near zzz0. We say fff = (f1(zzz), . . . , fm(zzz))
from Cn to Cm is analytic at zzz0 if each coordinate function fi(zzz) is analytic at zzz0.
Analytic functions behave for differentiation (or integration) as if each zi ranging
over a 2-dimensional set were a single real variable. [9.4] explores how changing
the particular linear identification Ln affects this definition. In the first half of the
1800’s, researchers realized the geometry underlying this definition could character-
ize special recurring collections of integrals. A motivating problem (Chap. 4) was
whether the integrals of these functions were serious new functions. By, however,
defining — as in Def. 3.6 — analytic manifolds, Riemann replaced complicated sets
of functions by geometric properties.

To match with previous notation, if U be an open connected subset of Cn,
denote the analytic functions on U by H(U). The natural quotient field M(U)
of H(U) (Lem. 3.9), the field of meromorphic functions on U , consists of ratios
from H(U) with nonzero denominators. When n = 1, at each point of U any
meromorphic function takes a well-defined value in P1

z. Simple examples like z1
z2

at
(0, 0) show this is not true for n ≥ 2 [9.11e].

Definition 3.6. Let X be a 2n-dimensional manifold with atlas {(Uα, ϕα)}α∈I

where ϕα : Uα → Cn. Call X an analytic (or complex) n-dimensional manifold if
each transition function ψβ,α = ϕβ ◦ϕ−1

α is analytic on ϕα(Uα∩Uβ). So, an analytic
manifold is differentiable. A Riemann surface is a 1-dimensional complex manifold.

For any x ∈ Uα on a chart U of an analytic manifold X, define analytic
(resp. meromorphic) functions on Uα to be HU (Uα) = {f ◦ ϕα | f ∈ H(ϕα(Uα))}
(resp.MU (Uα) where we replace f analytic by f meromorphic). Exactly as previ-
ously, Lem. 3.4 has a version for analytic or meromorphic functions. What changes
if we adjust the atlas {(Uα, ϕα)}α∈I in simple ways?

Definition 3.7. Assume X = XU is an n-dimensional analytic manifold, and
hα : Cn → Cn is one-one, differentiable, but not necessarily analytic, on ϕα(Uα) for
each α ∈ I. Topologies of X from {(Uα, ϕα)}α∈I = U or {(Uα, hα ◦ ϕα)}α∈I = Uhhh

are the same. Call hhh a coordinate adjustment and Uhhh the adjustment of U by hhh.
Then, hhh is an analytic adjustment if transition functions for Uhhh are analytic.

Only special coordinate adjustments are analytic. Even if hhh is an analytic
adjustment, unless all the hα s are analytic themselves, the functions we call analytic
(or meromorphic) on an open set Uα of XU are usually different from those on the
same open set of XUhhh

. For example, suppose I = {α} and Uα = D is an open set in
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C. Then, the functions H(D,h)(D) = {f ◦h | f ∈ H(D) we call analytic on {(D, h)}
are the same as H(D) if and only if h is analyic.

If D is simply connected (and not all of Cz), then Riemann’s Mapping Theorem
says H(D, h) is isomorphic as a ring to the convergent power series on the unit disk
in Cz. [Ahl79, p. 230] says this if h is the identity, though composing with h−1

for any diffeomorphisms is a ring isomorphism. A nontrivial case of adjustments
is where all the hα s are the same (see [9.4c]). We explore this further in Chap. 4
§7.7.1. In the next observation (see §5.2.1 for the definition of ∂

∂z̄ ) denote range
variables for ϕα : Uα → Cn by zα,1, . . . , zα,n.

Lemma 3.8. That XUhhh
is an analytic manifold is equivalent to

(3.2) hβ ◦ϕβ ◦ϕ−1
α ◦h−1

α is analytic on hα◦ϕα(Uα∩Uβ) for all (α, β) ∈ I2:
∂
∂z̄α,i

applied to each of its matrix entries is 0, i = 1, . . . , n.
If the {hα}α∈I are all analytic, then HU (Uα) = HUhhh

(Uα) for all α ∈ I.
Suppose XU and XUhhh

are both analytic manifolds. Lem. 3.8 shows the local
analytic functions change unless hhh consists of analytic functions. We regard the
complex structures as the same if and only if both XU and XUhhh

have the same
analytic functions in a neighborhood of each point. A special case appears often
in the theory of complex manifolds. It is when all the functions hα are complex
conjugation (Chap. 4 Lem. 7.15). Notice: Complex conjugation reverses orientation
in C by mapping clockwise paths around the origin to counterclockwise paths.

3.1.3. A tentative definition of algebraic manifold. For complex manifolds, a
coordinate chart allows us to define global meromorphic functions as a collection
gα ∈ M(Uα) for which gα = gβ on any points of Uα ∩ Uβ where both make sense.
Our major study treats families of compact Riemann surfaces. Often each family
member appears explicitly with a finite set of points removed, using Riemann’s
Existence Theorem to produce such surfaces as covers of Uzzz. Meromorphic functions
mean for us functions meromorphic on some compactification of this manifold. This
includes that the functions are ratios of holomorphic functions at those points that
might not be included in the initial presentation. For example, global meromorphic
functions on Uzzz refer to elements of C(z). They are among the ratios of algebraic
functions on Uzzz, so they have no essential singularities as we approach zzz.

Understanding manifolds which have a coordinate description is important to
the goals of this book. When we deal with compact complex manifolds, global
coordinate functions live inside the field of global meromorphic functions. Our first
tentative definition of algebraic excludes some manifolds that everyone considers
algebraic. Still, it is simple, close to the general meaning of algebraic and it leads
naturally to that definition.

Lemma 3.9. Suppose XU is a connected topological space and an analytic man-
ifold. Then, the (global) meromorphic functions on X = XU form a field, C(X).

Proof. Add (resp. multiply) functions of form f1(ϕα) and f2(ϕα) by com-
puting the value at x ∈ Uα as f1(ϕα(x)) + f2(ϕα(x)) (resp. f1(ϕα(x))f2(ϕα(x))).
Quotients, too, are obvious for they will also be ratios of holomorphic functions
at each point. We need only to see that C(X) is an integral domain. If, however,
f1(ϕα(x))f2(ϕα(x)) = 0 for x ∈ Uα, then f1(zzz)f2(zzz) = 0 for zzz on the open set
ϕα(Uα). Chap. 2 [9.8a] shows either f1(ϕα) or f2(ϕα) is 0 on Uα. �

A goal for compact Riemann surfaces is to understand adjustments well enough
to be able to list the isomorphism classes of fields C(XUhhh

), the function field of
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XUhhh
, as hhh varies. How can we describe the complete set of function fields up to

isomorphism? This book shows how to apply various answers to many seemingly
unrelated problems.

Suppose x1, x2 ∈ X and f ∈ C(XU ) are holomorphic in a neighborhood of x1

and x2 and takes different values there. We say f separates x1, x2. If for each pair
of distinct points x1, x2 ∈ X there is an f ∈ C(XU ) separating them, we say C(XU )
separates points. Suppose XU has complex dimension n, x ∈ XU is in a coordinate
chart ϕα : Uα → Cn and there are n functions f1, . . . , fn ∈ C(XU ) all holomorphic
in a neighborhood of x. If the Jacobian of f1, . . . , fn — determinant of the matrix
with (i, j)-entry of ∂fi◦ϕ−1

α

∂zj
, i = 1, . . . , n, j = 1, . . . , n — is nonzero at ϕα(x), we

say f1, . . . , fn separate tangents at x.
Definition 3.10. An n-dimensional compact complex manifold X (with topol-

ogizing data U) is P1-algebraic if there is a collection f1, . . . , fN ∈ C(XU ) so the
following conditions hold.

(3.3a) For each x ∈ XU , there is a collection ε1, . . . , εN ∈ {±1} (dependent on
x) so that f ε1

1 , . . . , f εN

N are all holomorphic at x.
(3.3b) Among f ε1

1 , . . . , f εN

N there are n that separate tangents at x.
(3.3c) Given distinct x1, x2 ∈ X, one from f1, . . . , fN separates x1 and x2.

Note: In (3.3c), if fi is holomorphic at x, and fi(x) = 0, we include ∞ as the
value of 1/fi(x). Algebraic manifolds are the analytic manifolds XU most significant
to us (P1-algebraic manifolds are a special case; see §4.1.2). There are 2-dimensional
analytic manifolds with function fields consisting only of constant functions. Our
examples will be complex torii. The phrase abelian variety (Chap. 4§6.9; usually
with a extra structure called a polarization) is the name for a complex torus that
is algebraic. Chap. 4 analyzes all analytic structures on a dimension one complex
torus by corresponding them precisely to the isomorphism class of their function
fields. This topic starts in § 3.2.2.

There are two distinct generalizations: To compact Riemann surfaces and to
abelian varieties. The former are P1-algebraic while the latter are not in general.

3.2. Classical examples. We discuss two natural first cases of compact com-
plex manifolds.

3.2.1. The Riemann sphere P1
z. Let X be the disjoint union of the complex

plane C and a point labeled ∞. Here is a coordinate chart:

U1 = C, ϕ1 : U1 → C by ϕ1(z) = z; and
U2 = (C\{0}) ∪ {∞}, ϕ2 : U2 → C by ϕ2(∞) = 0 and

ϕ2(z) = 1
z for z ∈ C\{0}.

Chap. 2 used the Riemann sphere. It embeds in R3. So it is Hausdorff. Then, X
is a complex manifold: ϕ2 ◦ ϕ−1

1 (z) = ϕ1 ◦ ϕ−1
2 (z) = 1

z on C\{0} are analytic.
If a complex manifold is compact, some atlas for it contains only finitely many

elements. The Riemann sphere required only two (one wouldn’t do, would it?).
3.2.2. Complex torus. An atlas for our next example will require four open sets.

Let ω1 and ω2 be two nonzero complex numbers satisfying the lattice condition: ω2
ω1

is not real. Consider the lattice ω1 and ω2 generate:

(3.4) L(ω1, ω2) = {m1ω1 + m2ω2 | m1, m2 ∈ Z}.
The lattice condition guarantees the natural quotient map C → C/L(ω1, ω2) has
open sets that are like open sets in C [9.6c]. According to Lem. 2.3, the manifold
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structure on C automatically gives the manifold structure on C/L(ω1, ω2). Use the
chart {(U ′i , ϕ′i)}i∈{0,1,2,3} of Fig. 3 with ϕ′i the inclusion of U ′i in C. This assures
satisfying the Lem. 2.3 condition: Each z ∈ C has an i = iz for which z ∈ U ′i and
the natural map C→ C/L(ω1, ω2) is one-one on Ui.

The resulting complex manifold C/L(ω1, ω2) depends only on L(ω1, ω2). Among
the many choices we can make of ω1, ω2 generating this lattice, it is traditional to
choose them satisfying special conditions. Elements of the group SL2(Z) act on
ω1, ω2 to give all pairs of basis elements Chap. 2 [9.15c]. Further, for a ∈ C∗ the
scaling C→ C by z �→ az induces a homomorphism C/L(ω1, ω2)→ C/L(aω1, aω2)
of abelian groups. At the level of coordinate charts, the same scaling gives the map.
So, it induces an analytic isomorphism (for precision use Def. 4.1). With no loss
take a = 1/ω1, to change the basis of the lattice to 1, ω2/ω1. The ratio ω2/ω1 = τ
aptly indicates the shape of the parallelogram (3.6). This starts a typical normaliza-
tion for the complex structure. If we could uniquely indicate the complex structure
by τ , that would be an excellent way to parametrize them. The problem is that the
complex structure depends only on the lattice L(1, τ) generated by 1 and τ . Many
values of τ giving the same L(1, τ). For example, here are three obvious changes:

(3.5a) If necessary, replace {1, τ} by {1,−τ} to assume �(τ) is in the upper half

plane H
def= {τ ∈ C | �(τ) > 0}; or

(3.5b) replace {1, τ} by {1, τ +n} for some integer n to assume 0 ≤ �(τ) < 1; or
(3.5c) scale by −1/τ to replace {1, τ} by {1,−1/τ}.

Changes from (3.5) generate a group, PSL2(Z) (< PSL2(R); §8.2), acting on τ ∈ H.

Lemma 3.11. Together, (3.5) permits restricting a τ representing a given com-
plex torus (up to isomorphism) to the narrow strip in H over the closed interval
[0, 1) ⊂ R lying within the closed unit circle around the origin.

Transition functions restrict on each connected component of an intersection
of charts to be translation in the complex plane. Topologically this is the same as
a torus in R3. Topologists deal with torii, too, though they concentrate especially
on the topological space in which the torii sit (see [9.5] for the point of Fig. 2). We
care most about this additional complex structure, while they rarely distinguish
between one complex torus and another. See §7.2.3 for additional comments on
attempts to draw pictures in R3.

Figure 2. These two torii could unknot in R4.

Here is the set behind the manifold:

(3.6) X = {t1ω1 + t2ω2 | 0 ≤ ti < 1, i = 1, 2}.



3. MANIFOLDS: DIFFERENTIABLE AND COMPLEX 91

Standard open parallelograms in C represent each of four coordinate charts in Fig. 3,
Ui, i = 0, 1, 2, 3, that do lie in X.

Figure 3. Four open sets sort of covering a torus
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← U ′0
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Let U0 = {t1ω1 + t2ω2 | 0 < ti < 1, i = 1, 2}, with ϕ0 : U0 → C the identity
map. The corresponding U ′0 is equal to U0 in Fig. 3. On the other hand, consider

U1 = {t1ω1 + t2ω2 |
1
3

< t2 <
2
3

and either 0 ≤ t1 <
1
3

or
2
3

< t1 < 1},

and ϕ1 : U1 → C by

ϕ1(t1ω1 + t2ω2) =
{

t1ω1 + t2ω2 for 0 ≤ t1 < 1
3

(t1−1)ω1 + t2ω2 for 2
3 < t1 < 1.

.

Form the corresponding U ′1 by translating a pieces of the range of ϕ1.
The remaining charts are similar (though slightly more complicated):

U2 = {t1ω1 + t2ω2 | 1
3 < t1 < 2

3 and either 0 ≤ t2 < 1
3 or 2

3 < t1 < 1},
ϕ2(t1ω1 + t2ω2) =

{
t1ω1 + t2ω2 for 0 ≤ t2 < 1

3
t1ω1 + (t2−1)ω2 for 2

3 < t2 < 1.

U3 = {t1ω1 + t2ω2 | 0 ≤ t1 < 1
2 or 1

2 < t1 < 1, 0 ≤ t2 < 1
2 or 1

2 < t2 < 1}, and

ϕ3(t1ω1 + t2ω2) =




t1ω1 + t2ω2 for 0 ≤ t1, t2 < 1
2 ,

(t1−1)ω1 + t2ω2 for 1
2 < t1 < 1, 0 ≤ t2 < 1

2 ,
t1ω1 + (t2−1)ω2 for 0 ≤ t1 < 1

2 , 1
2 < t2 < 1,

(t1−1)ω1 + (t2−1)ω2 for 1
2 < t1, t2 < 1.

To see X is a 1-dimensional complex manifold check the transition functions
ϕj ◦ ϕ−1

i : ϕi(Ui ∩Uj)→ ϕj(Ui ∩Uj). For each i and j, ϕi(Ui ∩Uj) is the union of
a finite number of connected open sets. For example,

ϕ0(U0 ∩ U1) = U ′1\
{

t2ω2 |
1
3

< t2 <
2
3

}
.

On each connected component of ϕi(Ui ∩Uj), ϕj ◦ϕ−1
i is translation by one of the

complex numbers δ1ω1 + δ2ω2 where δk is 0 or ±1, k = 1, 2.
With this manifold structure, X is the complex torus with periods ω1 and ω2.

3.3. Manifolds from algebraic functions. Let m ∈ C[z, w] be an irre-
ducible polynomial. Denote the branch points of m by zzz with z0 ∈ Uzzz = P1

z \zzz as in
Chap. 2 Def. 6.3. Assume f(z) is analytic in a neighborhood of z0 and it satisfies
m(z, f(z)) ≡ 0. Chap. 2 started with two definitions of algebraic functions Def. 1.1
and Def. 1.2. They characterize the same set of functions (Chap. 2 Prop. 7.3).

Riemann’s Existence Theorem starts by attaching to each algebraic function
a unique (up to analytic isomorphism) compact complex manifold of dimension
1. The next two examples are the first step in that construction, producing an
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open subset of the final manifold. We introduce some algebraic geometry using as
an excuse showing how to construct explicit manifold compactifications in special
cases. We expect coordinates for the abstract compactification of a general Riemann
surface to be somewhat mysterious.

3.3.1. An unramified cover of Uzzz. Consider first the set

X [0] = Xf = {(z, w) ∈ C× C | z �∈ zzz, m(z, w) = 0}.
Proposition 3.12. The projection map prz : X [0] → Uzzz by (z, w) �→ z

produces a natural atlas on X [0] making it a connected complex manifold. For
λ ∈ Π1(Uzzz, z0, z1) (Chap. 2 §1.1), naturally identify the manifolds Xf and Xfλ

.

Proof. To simplify the construction, assume ∞ ∈ zzz. As usual, apply an
element of PGL2(C) to zzz to arrange that situation (Chap. 2 §5.2.1; see Lem. 4.3).

Use the implicit function theorem (Chap. 2 §6.2) as follows. For (z′, w′) ∈ X [0],
let ∆z′ be the open disk centered at z′ of radius the minimum distance from z′ to a
point of zzz. Then, for some one-one analytic function fz′,w′(z) the following holds.

(3.7) The points (z, fz′,w′(z)) are on X [0] and fz′,w′(z′) = w′.

For each (z′, w′) let Uz′,w′ be the range of z �→ Fz′(z) def= (z, fz′,w′(z)) on
∆z′ . The inverse of Fz′ is prz, projection of a pair (z, w) onto its z-coordinate.
Compatible with the definition of manifold, here denote prz by ϕz′,w′ . Then, Fz′

parametrizes the neighborhood Uz′,w′ of (z′, w′) and ϕz′,w′ maps it into Cz. If
V = Uz′,w′ ∩ Uz′′,w′′ is nonempty, then ϕz′′,w′′ ◦ ϕ−1

z′,w′ is the identity map on the
overlap of ∆z′ ∩∆z′′ .

That gives an atlas. As it is a subspace of the Hausdorff space C × C, X [0] is
Hausdorff. So, it is a connected (from Chap. 2 §6.4) complex manifold. Let λ be a
path as in the statement of the proposition. The point set of Xf consists of pairs
(z′, x′) ∈ C × C of the form (z′, fγ(z′)) with γ : [a, b] → Uzzz with γ(a) = z0 and
γ(b) = z′. As Xfλ

is connected, we can write any point on it as the endpoint of
(z, fλ·γ) for some λ. So, Xfλ

is the same subset of points in C× C. �

Note: Each z′ ∈ Uzzz has a neighborhood ∆z′ with this property.
(3.8) prz restricted to each connected component Uz′,w′ of pr−1

z (∆z′) is a home-
omorphism with ∆z′ .

This is a stronger property than prz being an immersion. It means prz : X [0] → Uzzz

is an (unramified) cover according to Def. 7.12. The inverse image by prz of small
closed disks around z′ are closed disks around points lying over z′. That is, the
preimage of a compact set is compact, and prz is a proper map [9.1d].

Remark 3.13 (Finite atlas). The atlas of Prop. 3.12 contains an infinite number
of elements. For a manifold that adds one complication §3.2.1 and §3.2.2 don’t have.
This came about to include a deleted neighborhood of (zi, w

′) with zi ∈ zzz and w′

a solution of m(zi, w
′). That’s because we chose disks on Cz as the domain for the

Fz′ parametrization. To remedy this choose other simply connected sets, including
traditional slit disks given by scaling, translating and rotating

{z ∈ C | |z| < 1} \ {0 ≤ �(z) < 1}.
Chap. 4 §2.4 has further justification for these charts.

3.3.2. Further compactification and use of equations. Chap. 4 Thm. 2.6 shows
there is a unique compact complex manifold, up to analytic isomorphism (Def. 4.1),
extending X [0] (and also the analytic map to P1

z). To get it we must compatibly
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add points and analytic disk neighborhoods to match with the analytic structure on
X [0]. Using the equation m(z, f(z)) ≡ 0 often allows adding further points (zi, w

′)
to X [0] and their local analytic functions to extend the complex manifold structure.
The simplest such extension includes those points (zi, w

′) where, even though zi is
a branch point, ∂m

∂w (zi, w
′) �= 0. That is, consider

X [1] =
{

(z, w) ∈ C× C | m(z, w) = 0,
∂m

∂w
(z, w) �= 0

}
.

The variable for a local chart around w′ is w. Prop. 3.15 gives the details.
Example 3.14. Suppose h ∈ C[w] of degree n > 1 produces h : P1

w → P1
z. Let

zi be a branch point of m(z, w) = h(w) − z and let gzi
∈ Sn be a representative

of the conjugacy class attached to zi (Chap. 2 Lem. 7.9). Then, there is a one-one
correspondence between the following sets. Chap. 2 [9.4]:

(3.9a) Points (zi, w
′) over zi for which z �→ (z, fzi,w′(z)) (3.7) parametrizes a

neighborhood of (zi, w
′).

(3.9b) Disjoint cycles of length 1 in gzi
.

Example: Consider h1(w) = w(w−1)(w−2). Use notation from Chap. 2 Lem. 7.9.
The group attached to an algebraic f1(z) satisfying h1(f1(z))− z ≡ 0 is S3.

Branch cycles gz1 and gz2 at the two branch points z1, z2 have the shape (1)(2)
(§7.1.1): disjoint cycles of length 1 and 2. So each branch point has two points
above it. Then, for each zi there are two solutions wi,1 and wi,2 of h(w)−zi. Select
wi,1 so that dh

dw (wi,1) �= 0 and dh
dw (wi,2) = 0, i = 1, 2. Adding (zi, wi,1) to X [0]

produces an open set on which prz maps one-one to P1
z. This does not hold for the

point (zi, wi,2). So, X [1] has exactly one point on it over each of z1 and z2.

For any h(w) in Ex. 3.14, X [1] will have missing points in that the map prz

is not proper over some points zi ∈ zzz (§2.2). For f analytic in several variables
z1, . . . , zn in a neighborhood of a point zzz0, we call

∇f(zzz0)
def=

( ∂f

∂z1
(zzz0), . . . ,

∂f

∂zn
(zzz0)

)

the complex gradient of f at zzz0. Now consider a set (usually) larger than X [1]:

X [2] = {(z, w) ∈ C× C | m(z, w) = 0, ∇(m)(z, w) �= 0}.
Proposition 3.15. A natural atlas makes X [2] into a complex manifold.

Proof. Since X [2] is a subspace of C×C it is Hausdorff. From Prop. 3.12 we
have only to add (zi, w

′) lying over zi ∈ zzz sitting in X [2] to their neighborhoods in
X [1]. Change the w′ coordinate by an element of PGL2(C) to assume none of the
finitely many w′ s is ∞.

By assumption ∇(m)(zi, w
′) �= 0, though by definition ∂m

∂w (zi, w
′) = 0. There-

fore, ∂m
∂z (zi, w

′) �= 0. Apply the implicit function theorem to find a disk ∆w′ ⊂ Cw

and hzi,w′(w) analytic on ∆w′ with the following properties.

(3.10a) The points (hzi,w′(w), w) are on X [1].
(3.10b) The radius of ∆w′ is the minimum distance from w′ to any branch point

of m∗(w, z) def= m(z, w) (switch the variables z and w).
Similar to the proof of Prop. 3.12, let Vzi,w′ be the range of w �→ (hzi,w′(w), w) on
∆w′ . Then the coordinate map at (zi, w

′) is prw by (z, w) �→ w.
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The essence of producing the manifold structure is to check the transition
functions. The key check occurs when the intersection a neighborhood of (zi, w

′)
meets a neighborhood of (z′′, w′′) with z′′ �∈ zzz. For example:

prw ◦ pr−1
z : z �→ (z, fz′′,w′′(z)) �→ fz′′,w′′(z)

is analytic. Similarly, so is

prz ◦ pr−1
w : w �→ (hzi,w′(w), w) �→ hzi,w′(w).

That concludes the proof of the lemma. �

4. Coordinates and meromorphic functions

Here we define analytic maps between complex manifolds. In many areas of
mathematics, being able to compare all objects of study with a core of special
cases can help. For example, it is helpful to know that all finite groups have a
Jordan-Hölder series of finite simple groups and that this collection of finite simple
groups (including their multiplicities) is an invariant of the group. Still, even an
expert on the classification of finite simple groups can’t be confident of a complete
understanding of the finite group from knowing its Jordan-Hölder series.

For certain compact complex manifolds, knowing how to use their meromorphic
functions can help decide how such a manifold fits among all related manifolds.
That is a rough statement of how we use coordinates on compact complex manifolds.
This subsection uses explicit (though only partial) compactification of Riemann
surfaces of algebraic functions to illustrate how coordinates give defining equations.

4.1. Comparing analytic spaces. We define maps between analytic spaces,
and then emphasize the significance of such maps to P1.

4.1.1. Maps between spaces. Let Xi be a differentiable (resp., complex) mani-
fold of dimension ni with topologizing data {(Uαi , ϕαi)}αi∈Ii . Consider a function
f : X1 → X2 and the functions

(4.1) ϕα2
◦ f ◦ ϕ−1

α1
: ϕα1(Uα1 ∩ f−1(Uα2))→ ϕα2(f(Uα1) ∩ Uα2)

for (α1, α2) ∈ I1 × I2.
Definition 4.1 (Analytic map). Call f differentiable (resp. analytic) if the

functions of (4.1) are differentiable (resp. analytic) on their domains. For X1 ⊆ Rn

and X2 ⊆ Rm, this is equivalent to f being differentiable as usual. If f is one-one
and onto, call f a differentiable (resp. analytic) isomorphism between X1 and X2.

The phrase isomorphism in Def. 4.1 implies there is a differentiable (resp. an-
alytic) g : X2 → X1 inverse to f . That is the gist of our next statement.

Lemma 4.2. Let X and Y be differentiable manifolds. Assume f : Y → X
is a differentiable map, and in a neighborhood Uy of some point y ∈ Y , one-one.
Then, there exists differentiable g : f(Uy)→ Uy that is an inverse to f . So, if f is
one-one and onto, it has differentiable inverse. If we replace the word differentiable
by analytic, there is an analogous result.

Proof. Both statements are consequences of the inverse function theorem.
This says that a local inverse exists and is differentiable. There is an inverse function
to a one-one onto map (§2.2), so the differentiability is all we need. The definition
of differentiable (or analytic) function reverts this result to one about f : Rn → Rn

(or for f : Cn → Cn) for some integer n.
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Chap. 2 §6.1 discusses the inverse function theorem for one complex variable.
The full inverse function theorem is an inductive procedure for several complex
variables. See [C89, p. 72] or [Rud76, p. 224] for the general case. For differentiable
functions, equation (3.1) says that an inverse g to f : Rn → Rn would have Jacobian
matrix J(g)(yyy) = J(f(xxx))−1 at yyy = f(xxx). This is a differential equation for g =
(g1(yyy), . . . , gn(yyy)), given f . The case when f is real analytic is much more likely
for our use, and that has easier proofs in the literature. �

4.1.2. P1-algebraic spaces. Let ϕ : X → Y be an analytic map of complex
manifolds. If U is an open subset of Y , denote the restriction of ϕ over U by
ϕU : ϕ−1(U)→ U . Then, composing holomorphic functions on an open set U ⊂ Y
with ϕ produces a map ϕ∗ : H(U) → H(f−1(U)). In particular, if both spaces
are connected, and ϕ is onto, this induces an injection ϕ∗ : C(X) → C(Y ), an
embedding of the function field of Y into that of X.

Chap. 2 Def. 4.13 includes the definition of analytic maps from a domain on
P1

w to P1
z, a special case of Def. 4.1. More generally, for any complex manifold X,

a nonconstant analytic map ϕ : X → P1
z is a meromorphic function on X (repre-

sented by z). Chap. 2 Lem. 2.1 guarantees a nonconstant map of compact Riemann
surfaces is surjective. This also applies to ϕ, even if X (compact) has larger dimen-
sion, for again these functions come locally from power series expressions and so
give an open map. Further, if X is a compact Riemann surface, Chap. 4 Thm. 2.6
shows any meromorphic function on X extends to give an analytic map from X to
projective 1-space. Chap. 4 Lem. 2.1 shows the following points. If X is compact
(and ϕ is nonconstant), then ϕ has a degree, |ϕ−1(z′)| for z′ ∈ P1

z not in a finite set
of values where this cardinality is a smaller number. Further, if we count points in
ϕ−1(z′) with appropriate multiplicity for their appearance in the fiber, the degree
is independent of z′ ∈ P1

z.
Many compact complex manifolds of dimension at least 2 (example: Pn, n ≥ 2,

[9.11e]), have the following property. Though they have many nonconstant mero-
morphic functions, none are represented by an analytic map to P1

z. The compact
complex manifolds that are P1-algebraic are exactly those that embed in (P1)N for
some integer N . That is, they have sufficiently many functions represented by an
analytic map to P1, the gist of condition (3.3a).

A virtue of the definition P1-algebraic is its simplicity, this use of special ele-
ments of the function field giving maps to P1. Still, Chap. 4 §5.2 extends this, as
is traditional, to say a manifold is algebraic if it embeds in PN for some N . The
effect of that is to show why a set of basic principles forces extending P1-algebraic
manifolds to include PN as algebraic. We hope this adds historical perspective on
what was less than a century ago a complicated issue. Witness this [Mu66, p. 15]
quote on going directly from affine space to projective space:

Among others, Poncelet realized that an immense simplication
could be introduced in many questions by by considering “projec-
tive” algebraic sets (cf. Felix Klein, Die Enwicklund der Mathe-
matik, Part I, p. 80–82). Even to this day, . . . projective algebraic
sets play a central role in algebro-geometric questions: therfore
we shall define them as soon as possible.
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Mumford’s quote, and the total acceptance of it in [Har77], shouldn’t deny the
natural way that P1-algebraic spaces and fiber products illuminate special mero-
morphic functions arise in providing coordinates.

In practice, on many intensely studied algebraic manifolds, you can choose a
finite set, f1, . . . , fm, of global meromorphic functions to construct the manifold,
whose points we can then see as given by the values of f1, . . . , fm at the given
point. From these, it is theoretically possible to construct anything else you would
expect attached to the manifold from f1, . . . , fm. Still, much classical algebraic
geometry spends great time on using coordinates (embeddings in projective space)
of special types to make these constructions. For many applications, however, this
is a too-detailed reliance on specific use of coordinates. We hope discussions in this
chapter help the reader see why coordinates are necessary, though one shouldn’t
insist on seeing them explicitly at all stages.

We especially study families of compact Riemann surfaces with each family
member appearing with an attached equivalence class of maps to P1

z. What, how-
ever, is the analogy, so important to individual measurements, for comparing dif-
ferent function fields (Lem. 3.9) associated to different complex manifolds? Where
would we expect such comparisons to arise? Comparing Riemann surfaces is pos-
sible if there is an efficient labeling of function field generators. The easiest event
is if all these Riemann surfaces embed naturally in a space with global coordinates
that restrict to give coordinates on the individual surfaces. §4.2 gives examples of
how coordinates can help compactify some Riemann surfaces.

An easy way to get new analytic maps from old appears if ϕ : X → P1
z is

a meromorphic function. Let α ∈ PGL2(C). Then α ◦ ϕ : X → P1
z is a new

meromorphic function.
For Ex. 3.14, Prop. 3.15, produces X [2] analytically isomorphic to Cw. We

already knew this was a manifold. The proof of Props. 3.12 and 3.15 simplifies
because ∞ ∈ zzz. The following lemma removes that assumption [9.1b].

Lemma 4.3. Let Ui ⊂ P1
z, i = 1, 2 be domains. Let ϕ : X → U1 ∪ U2 denote

projection of a manifold for an algebraic function onto the z coordinate. With
αi ∈ PGL2(C), i = 1, 2, assume αi ◦ ϕUi

: ϕ−1(Ui) → α−1
i (Ui) is a manifold from

the construction of Prop. 3.15, i = 1, 2. Then, X is a complex manifold extending
the manifold structure on ϕ−1(Ui).

Assume X is a manifold from Prop. 3.15. Let ϕ : X → U ⊂ P1
z be the algebraic

function giving projection onto the z coordinate. Riemann’s Existence Theorem
(Chap. 4) produces a unique compact complex manifold X̄ containing X as an
open subset. We do this by extending ϕ to an analytic map ϕ̄ : X̄ → P1

z. This is
an abstract approach to compactification. It will help to see preliminary examples
that relate compactifications and coordinates. In §4.2 we give these.

4.2. Compactifications and fiber products. Continue the notation for m
and its branch points zzz from §3.3. Denote

{w′ ∈ P1
w | (z′, w′) ∈ X [0], z′ �∈ zzz} by Upr−1

z (zzz).

To further compactify we might embed the subset X [0] of Uzzz × Upr−1
z (zzz) into a

compact space Z; then take the closure X of X [0] in Z. (Or apply to the already
extended spaces X [1] or X [2].) As a closed subspace of compact space, X is compact.



4. COORDINATES AND MEROMORPHIC FUNCTIONS 97

4.2.1. Local holomorphic functions from equations. We note especially that
equations give more than an (implicit) description of a point set. Using the implicit
function theorem, they often give local parametrizing functions. In this section we
use spaces Z to compactify that give natural local equations around points of the
closure of X [0]. Such equations help decide which points of the closure have ex-
tensions to the analytic structure on X [0] (or just manifold structure). This is an
aspect of saying such Z provide global coordinates.

We need a notation for holomorphic functions compatible with §1.3 for the
Laurent field Lz′ . We use Lh

z′ for the ring of functions, with each holomorphic in
some disk (dependent on the function) about z′: power series

∑∞
n=0 an(z − z′)n,

convergent in some neighborhood of z′. For a general space X and point x ∈ X,
the notation would be Lh

X,x. For the holomorphic elements of Pz′,e use Ph
z′,e.

We’ve been giving examples of point sets {(z, w) | m(z, w) = 0} in C × C
using just one equation. Defining algebraic functions f(z1, . . . , zn) in several vari-
ables is easy: Consider Xm = {(z1, . . . , zn, w) | m(z1, . . . , zn, w) = 0}, and we
say m algebraically defines f(z1, . . . , zn), holomorphic in the variables z1, . . . , zn,
if m(z1, . . . , zn, f(z1, . . . , zn)) ≡ 0. Also, the notation above extends to consider
Lh

z′
1,...,z′

n
. Suppose m(z′1, . . . , z

′
n, w′) = 0, for (z′1, . . . , z

′
n, w′) ∈ Cn+1. Assume also

that m defines f(z1, . . . , zn) algebraically, and f(z′1, . . . , z
′
n) = w′. Then, we say the

local holomorphic (or analytic) functions around (z′1, . . . , z
′
n, w′) consists of elements

of the ring Lh
z′
1,...,z′

n
. This ring is invariant under analytic change of variables.

The next definition extends this to consider local holomorphic functions even
with no a priori algebraic function f satisfying m. Recall the residue class map
rcz′

1,...,z′
n,w′ : C[z1, . . . , zn, w] → C by (z1, . . . , zn, w) �→ (z′1, . . . , z

′
n, w′). This is a

ring homomorphism, and we record this in the form of the following. The comple-
tion of the ring C[z1, . . . , zn, w]/(m) at (z′1, . . . , z

′
n) is

Lh
z′
1,...,z′

n
[z1, . . . , zn, w]/(m(z1, . . . , zn, w)) def= Lh

Xm,z′
1,...,z′

n
.

Definition 4.4. Analytic functions on Xm around (z′1, . . . , z
′
n, w′) are elements

of the localization of Lh
Xm,z′

1,...,z′
n

at w = w′:

Lh
Xm,z′

1,...,z′
n,w′

def= {u/v | u ∈ Lh
Xm,z′

1,...,z′
n
, v ∈ C[z1, . . . , zn, w],

with u(z′1, . . . , z
′
n, w′) �= 0.

Lemma 4.5. If z′1, . . . , z
′
n, w′ is on Xm, then rcz′

1,...,z′
n,w′ factors naturally through

C[z1, . . . , zn, w]/(m) and even through Lh
Xm,z′

1,...,z′
n,w′ . This defines the value of

s ∈ Lh
Xm,z′

1,...,z′
n,w′ at (z′1, . . . , z

′
n, w′) as rc(s). Suppose the leading coefficient of

m(z, w) is invertible in Lh
z′
1,...,z′

n
and Wm is the set of distinct solutions w′ = w of

m(z′1, . . . , z
′
n, w) = 0 (the case of multiple zeros being our emphasis). Then, there

is a natural injective homomorphism

Lh
Xm,z′

1,...,z′
n
→ ⊕w′∈WmLh

Xm,z′
1,...,z′

n,w′ .

Definition 4.6 (Local holomorphic functions). Suppose m(z′1, . . . , z
′
n, w′) =

0, for (z′1, . . . , z
′
n, w′) ∈ Cn+1 and there are but finitely many solutions w to

m(z′1, . . . , z
′
n, w′) = 0. Then, the local holomorphic (or analytic) functions that m

defines consist of elements of Lh
Xm,z′

1,...,z′
n,w′ [z1, . . . , zn, w]/(m(z1, . . . , zn, w)) = R.

We say this defines a manifold neighborhood if R is isomorphic to the convergent
power series around a point of Cn.
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It is appropriate to say R is the restriction of local holomorphic functions on Cn+1

to the set Xm around (z′1, . . . , z
′
n, w′). Further, the definition works as well if several

equations, m1, . . . , mu, instead of just one, define the set.
4.2.2. P1

z × P1
w compactification. Since Z = P1

z × P1
w is a product of compact

spaces, it is compact. Further, the compactification of X [0], if it is a manifold, suits
the definition for P1-algebraic in (3.3).

The natural manifold structure on Z has four open sets in its atlas following
Ex. 3.2.1. Label these Ui,z × Uj,w, 1 ≤ i, j ≤ 2: U1,z = Cz and U2,z = C∗z ∪ {∞},
etc. The atlas gives an isomorphism of each of the four opens sets Ui,z ×Uj,w with
C × C, by a map we call ϕi,j . Let X̄ be the closure of X [0] in Z. We describe
the part of X̄ lying inside Ui,z × Uj,w by an algebraic equation. Then a previous
procedure allows checking points at which X has a manifold structure.

Start with X̄ ∩U2,z×U2,w, and leave the other open sets as analogous. On the
open subset C∗ × C∗ ⊂ U2,z × U2,w, ϕ2,2 acts as

(z, w) �→ (1/z, 1/w) = (z′, w′).

An equation in (z′, w′) describes ϕ2,2 applied to X∩(U2,z×U2,w) = X2,2: ϕ2,2(X2,2)
is the closure of {(z′, w′) | m(1/z′, 1/w′) = 0} in Cz′ ×Cw′ . Get the closure points
by allowing z′ or w′ to go to 0. To include those limit values, multiply m(1/z′, 1/w′)
by the minimal powers of z′ and w′ to clear the denominators.

Example 4.7 (Continuation of Ex. 3.14). Continue with m(z, w) = h(w) − z
and deg(h) = n. The set ϕ2,2(X2,2) is {(z′, w′) | z′h∗(w′) − (w′)n = 0} where
h∗(w′) = h(1/w′)(w′)n. Check that X1,2 and X2,1 have no new points beyond those
already in X1,1. Still, X2,2 has a new point, corresponding to (z′, w′) = (0, 0). The
gradient of z′h∗(w′) − (w′)n at zero is (h∗(0), 0) �= (0, 0). So, there is a manifold
neighborhood of this point [9.10a].

4.2.3. Tensor products and fiber products of P1 covers. We combine two cases
of Ex. 4.7. Suppose m(z, w) = h(w)−g(z), a variables separated equation. Rename
z to a variable w′, and use z for the value h(w). Rewrite m(z, w) as m(w′, w).

Consider (w′, w) ∈ Cw′ × Cw satisfying m(w′, w) = 0. Call this Xm. Denote
the Riemann surface for a function w′(z) (resp. w(z), as in Ex. 4.7) of z satisfying
h(w′(z)) ≡ z (resp. g(w) = z) by Xw′ (resp. Xw). There is a map ϕw′ : Xw′ → P1

z

by w′ �→ h(w′) = z. Similarly for a map ϕw.
Compare with Def. 1.3: Xm as a set is the same as the fiber product of these

two maps. Now apply the P1
w′ × P1

w compactification to m(w′, w). The resulting
set is X̄w′ ×P1

z
X̄w = X̄m. (In our example, X̄w′ = P1

w′ and X̄w = P1
w.) This is the

fiber product (over P1
z) of the compactifications of Xw′ and Xw from Ex. 4.7.

Now consider points of X̄m to decide what are the natural local analytic func-
tions in a neighborhood within one of the four charts for P1 × P1:

(4.2) Xi,j = Ui,z × Uj,w, 1 ≤ i, j ≤ 2.

For (w′0, w0) ∈ X̄m. Let ew′
0

(resp. ew0) be the ramification index (Chap. 2 Def. 7.6)
of w′0 over h(w′0) = z0 (resp. w0 over g(w0) = z0). New cases are with ew′

0
= e′ > 1

and ew0 = e > 1.
Local holomorphic functions in a neighborhood of (w′0, w0) that come from the

coordinates w′ and w are analytic in the solutions w′ of h(w′) = z expanded about
w′0 and in the solutions w of g(w) = z expanded about w0. As usual, use ζd for the
complex number e2πi/d. Assume R is a ring, and S1 and S2 are two R algebras.
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Then the tensor product S1 ⊗R S2 is the natural direct sum of R algebras. That
is, it is an R algebra T with R algebra homomorphisms ψi : Si → T , i = 1, 2
(ψ1 : s1 ∈ S1 �→ s1 ⊗ 1, etc.) and any such homomorphism will naturally factor
through the map to S1 ⊗R S2. As in Chap. 2 Cor. 7.5: [e1, e2] is the least common
multiple of e1 and e2; u(z) = (z− z′)1/[e1,e2] is a choice of [e1, e2]th root of z− z′ (a
generator of Pz′,[e1,e2]); and ζd = e2πi/d. Our first lemma is a famous consequence
of the Euclidean algorithm.

Lemma 4.8. Assume K is a characteristic 0 field and f ∈ K[x] is
∏u

i=1 gi(x)ri

with g1, . . . , gu irreducible and distinct monic polynomials over K. Then the natural
map µ : K[x]/(f(x))→ ⊕u

i=1K[x]/(gei
i ) by h(x) �→ (h mod (ge1

i ), . . . , h mod (ge1
i )

is an isomorphism.

Proof. Check that the kernel of µ trivial. So this linear vector space map,
injects a space of dimension deg(f) into one of the same dimension

∑u
i=1 ei deg(gi).

Conclude: µ is onto. �

Proposition 4.9. Suppose U is an open subset of P1
z, and ϕ : X → U is an

analytic map of Riemann surfaces. For x′ over ϕ(x′) = z′ with ramification index
ex′/z′ = e, Lh

X,x′ is a natural Lh
P1

z,z′ algebra that identifies with Ph
z′,e.

Let ϕi : Xi → U be two such maps, with x′i ∈ Xi over z′ having ramification
index ei, i = 1, 2. Let d = (e1, e2). Then, the ring of local holomorphic func-
tions about (x1, x2) on X1 ×P1

z
X2 = Y is Lh

X1,x′
1
⊗Lh

P1z
z′ Lh

X2,x′
2
. So ue1/d = u2

(resp. ue2/d = u1) is an e2th (e1th) root of (z−z′). Then, Lh
Y,(x1,x2)

naturally iden-
tifies with Lh

P1
z,z′ [u1⊗ 1, 1⊗ u2] = R (with (u1⊗ 1)e1 = z⊗ 1 = (1⊗ u2)e2 according

to the rules of tensoring over Lh
P1

z
z′). This ring has a single maximal ideal. There

is an injective homomorphism

µ : Lh
P1

z,z′ [u1 ⊗ 1, 1⊗ u2]→ ⊕d
j+1Lh

P1
z,z′ [x, y]/(xe1/d − ζj

dye2/d, z = ye2)

by u1 ⊗ 1 �→ x and 1⊗ u2 �→ y in each coordinate. Each summand on the right of
(4.9) is an integral domain whose quotient field naturally identifies with Pz′,[e1,e2].

Then, R is an integral domain if and only if d = 1, and the image of µ in each
summand is a proper subring of the summand unless one of ei/d is 1. Conclude:
Restricting local holomorphic functions on X1 × X2 defines an analytic manifold
structure around (x′1, x

′
2) if and only if one of the ei s is 1. Yet, the image of µ

generates the quotient field of each summand.

Proof. According to Def. 4.1, by rewriting ϕ using local analytic coordinates
zx′ and zz′ around x′ and z′, we get a very simple normal form. A local analytic
change of variables identifies zx′ with one of the solutions of ue = zz′ . Chap. 2
Cor. 7.5 shows this when ϕ is given by an algebraic function. Chap. 4 (proof of
Lem. 2.1) shows it is not dependent on a priori knowing ϕ is algebraic. That gives
the first paragraph in the lemma.

Now consider ϕi, i = 1, 2, in the statement of the lemma. From above, identify
an analytic coordinate around xi(z) around x′i with (z − z′)1/ei and the map ϕi

with the eith power map, i = 1, 2. The only relations among u1 ⊗ 1 and 1⊗ u2 are
generated by (u1 ⊗ 1)e1 = z ⊗ 1 = (1⊗ u2)e2 and the kernel of the map µ is in the
ideal generated by this relation.

If d > 1, then (u1 ⊗ 1)e1/d − ζj
d(1⊗ u2)e2/d divides (u1 ⊗ 1)e1 − (1⊗ u2)e2 = z.
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Replace Lh
P1

z,z′ by Lz′(y) = K, a field (leaving x as a variable). Then applying
Lem. 4.8 to µ actually gives an isomorphism. The corresponding summands on the
right side of (4.9) would be fields identified with the quotient fields of the summands
on the right side of the actual (4.9). So, to finish the result we have only to show the
quotient field of the summand Lh

P1
z,z′ [x, y]/(xe1/d − ζj

dye2/d, z = ye2) identifies with
Pz′,[e1,e2], though the summand itself is a proper subring of the locally holomorphic
functions in (z − z′)1/[e1,e2] [9.11b]. �

Now apply Prop. 4.9 to (4.2).
Corollary 4.10. Restricting local holomorphic functions on P1

w′ × P1
w to

the fiber product P1
w′ ×P1

z
P1

w compactification gives an analytic manifold structure
around (w′0, w0) if and only if (e′w0

, ew0) = 1.
Remark 4.11 (simplifying the use of Prop. 4.9). Riemann’s Existence Theorem

gives a unique compact manifold by completing a cover of Uzzz. In so doing, it com-
putes precisely what to expect when you take the fiber product of two ramified
covers of P1

z (over of any other Riemann surface). Chap. 4 §3.4 shows the combina-
torial result of getting d distinct points on the correctly compactified fiber product
(ramified of order [e1, e2] over z′) over the pair (x′1, x

′
2) is built transparently into

the use of branch cycles. Since, however, fiber products (and tensor products) are
so important, Prop. 4.9 gives a relatively simple example readers may return to for
help with other examples.

4.3. Pn compactifications. Denote the origin in Cn+1 by 0. There is an
action of C∗ on Cn+1 \ {0}. Given a nonzero vector vvv = (v0, . . . , vn) ∈ Cn+1 and
α ∈ C∗ form the result of scalar multiplication α · vvv = (αv0, . . . , αvn). Projective
n-space is a quotient definition like that of a complex torus: Pn = Cn+1 \ {0}/C∗.
Mapping vvv to the set equivalent to vvv gives Γn : Cn+1 \ {0} → Pn.

4.3.1. An atlas on Pn. In this form, it can be convenient (though cumber-
some) to label Pn as either Pn

v1/v0,...,vn/v0
(inhomogeneous coordinates) or Pn

v0,...,vn

(homogenous coordinates). The extra notation means we have added data for a
standard set of coordinate functions for Pn. Algebraic geometry texts might refer
to a manifold analytically isomorphic to this manifold as Pn. Still, there is a signif-
icance to adding specific coordinates as Chap. 5 does. To practice this distinction
try [9.11e]. Taking n = 1 and v1/v0 = z gives the notation for P1

z from Chap. 2.
Standard coordinates on Pn produce standard transition functions for its man-

ifold structure. Typical of forming an object by an equivalence relation, each point
of Pn is a set in Cn+1. As some coordinate is not 0, such a point has a repre-
sentative with some coordinate equal 1. If you tell which coordinate that is, the
representative will be unique.

Let Ui be the points with representative having 1 in the ith position. Each
point of Pn has a representative in Ui for some i. Projecting Ui onto coordinates
different from the ith gives a coordinate chart ϕi : Ui → Cn, i = 0, . . . , n. If vvv is
any other representative of a point in Ui, first scale it by 1/vi before this projection.

Lemma 4.12. The atlas {Ui, ϕi}ni=1 makes Pn a compact dimension n complex
manifold. The map Cn+1 \ {000} → Pn is a map of analytic manifolds.

Proof. An explicit computation of the transition function

ϕj ◦ ϕ−1
i : Cn

v0,v1,...,vi−1,vi+1,...,vn
→ Cn

v0,v1,...,vj−1,vj+1,...,vn
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is easy. If i = j it is the indentity. Otherwise, it maps (v0, v1, . . . , vi−1, vi+1, . . . , vn)
to 1/vj(v0, v1, . . . , vj−1, vj+1, . . . , vn) (with vi = 1). It is analytic on ϕi(Ui ∩ Uj).

To see Pn is compact, use the standard absolute value |v| on C. Let Cn+1
c be

the vectors vvv with maxn
i=0(|vi|) ≤ 1. This is a closed bounded subset of Cn+1. So,

by the Heine-Borel compactness theorem, it is compact. Every point of Pn has a
representative in Cn+1

c : Scale it by the largest nonzero entry. Now use that the
image of a compact set under a continuous map is compact. An alternate could
use this characterization of compactness: Infinite sequences of points in a separable
metric space have convergent subsequences [9.10b].

The diagonal in Pn × Pn is the image of a compact subset of the diagonal in
Cn+1 × Cn+1. Though the image is compact, until we know Pn is Hausdorff we
can’t invoke Lem. 2.5 to see the image is closed. Here, however, a direct argument
can establish that Pn is Hausdorff. Suppose two points are in one of the Ui s, a copy
of Cn. As this is Hausdorff, separate the two points by open sets. So, given any
two points it suffices to change coordinates to assure, in the new coordinates, these
are both in one of the Ui s. Do that choosing a linear combination Laaa =

∑n
i=0 aivi

so neither point lies on the zero set of Laaa. Use Laaa in place of vj as one of the new
coordinates for any j for which aj �= 0.

Use Γ−1
n (Ui) = Vi ⊂ Cn+1 and the same transition functions for a coordinate

chart on Cn+1. This shows Γn is a map of complex manifolds. �

4.3.2. P2
z,w,u compactifications. As in §4.2.2, let Z ′ = P2

z,w,u. Embed Cz × Cw

in this by ϕ−1
u : (z, w) �→ (z, w, 1) mod C∗ ∈ Z ′. Call the image Uu. Similarly, let

Uw be points of P2
z,w,u with a representative of form (z, 1, u) and Uz points with a

representative of form (1, w, u). Take X ′ to be the closure of {(z, w) | m(z, w) = 0}
in the compact space Z ′. To check points of X ′ for a manifold neighborhood requires
an equation around each point of X ′. It suffices to define this equation for points
of X ′ ∩ Uz and X ′ ∩ Uw. We do the former; the latter is similar.

Since ϕz identifies Uz with Cw × Cu, it suffices to define the image of X ′ ∩ Uz

under ϕz. With n′ the total degree of m, it is

X ′z = {(w, u) | un′
m(1/u, w/u).

4.3.3. Hyperelliptic curves. Suppose ϕ : X → P1
z is a degree 2 map of compact

Riemann surfaces. Let zzz be the finite set of branch points (as in Chap. 4 Lem. 2.1).
The theme of Chap. 2 §8 is that we already know, from branches of log, what are
the abelian covers of Uzzz = U (see Chap. 4 Prop. 2.10). That is, πU : XU → Uzzz is
equivalent to the cover defined by a branch of square root of h(z) ∈ C(z). Also,
h has multiplicity one zeros and poles contained in zzz (Chap. 2 (8.1)): ϕ is a cover
from a branch of solutions f(z) of m(z, w) = w2 − h(z) with h(z) =

∏t
i=1(z−zi)∏r

j=t+1(z−zj)
.

Suppose the zi s are distinct, and all different from 0 or∞ (r = 2t so the degrees
of the numerator and denominator are the same). Then, according to Prop. 4.9,
this is an if and only if condition that for a manifold compactification given by the
fiber product embedding in pr1z ×P1

w. This is good, yet the standard normalization
of hyperelliptic curves changes the variables so that h is a polynomial. Do this by
multiplying both sides by the square of the denominator, then change the variable
w to w

∏r
j=t+1(z− zj). For simplicity we keep the name of the variables the same.

So, now consider the equation wr = h(z) where h =
∏r

i=1(z − zi). Here r is even,
and we assume it is at least 4. Another common normalization is make the changes
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z �→ z1 +1/z and w �→ w/z, thereby replacing h by a polynomial having odd degree
r ≥ 3. As it stands let us consider the P2

z,w,u compactification.
Then, X ′u = {(z, w) | w2−h(z) = 0} has a manifold neighborhood around each

point: ∇(m) = 0 implies w = 0 and dh
dz = 0 (z is a repeated root of h). From above,

(4.3)
X ′w = {(z, u) | un−2 − unh(z/u) = m(w)(z, u) = 0} and
X ′z = {(w, u) | un−2w2 − unh(1/u) = m(z)(w, u) = 0}.

On X ′w new points (not already represented on X ′u) have u = 0 and z = 0. For r > 3,
∇(m(w))(0, 0) = 0. So, it has no manifold neighborhood. Note this contrasts with
the P1

z×P1
w compactification of m, in which all points have manifold neighborhoods

when you use the right algebraic change of coordinates [9.11c]. For r = 3, however,
the point (0, 0) has a manifold neighborhood in P2. There are no new points on
X ′z; u = 0 gives no solution in w to m(z)(w, u) = 0.

4.3.4. Coordinates give meromorphic functions. Let X̄ be the P1
z × P1

w com-
pactification (§4.2.2) of X = {(z, w) | m(z, w) = 0} with m ∈ C[z, w]. Assume
every point of X̄ has a manifold neighborhood in this compactification. Then, ev-
ery point of X̄ has the form (z, w) ∈ P1

z ×P1
w. Thus, projection of (z, w) onto z (or

onto w) provides a meromorphic function on X̄.
Similarly, suppose X̄ is the P2

z,w,u compactification (§4.3.2) of X and every
point of X̄ has manifold neighborhood. Then, many meromorphic functions come
from this compactification. A linear form in (z, w, u) is a nonzero linear combination
of z, w, u (like Laaa, used in the proof of Lem. 4.12). Assume X̄ is not in the zero
set of any linear form. For example, suppose m(z, w) is irreducible and has total
degree n > 1.

Proposition 4.13. Let L1 and L2 be linear forms in (z, w, u), not multiples
of one another. Let (z0, w0, u0) represent the unique point of intersection of the
zero sets of L1 and L2. Then, with z′ = L1(z, w, u)/L2(z, w, u), there is a nat-
ural (nonconstant) meromorphic function ϕ̄ : X̄ → P1

z′ . The degree of ϕ̄ is n if
(z0, w0, u0) �∈ X̄ and n− 1 otherwise.

Proof. Give the map by (z, w, u) ∈ X̄ �→ L1(z, w, u)/L2(z, w, u). We verify
this map is well-defined. If (z0, w0, u0) �∈ X̄, then meaningfully assign a value
z′ ∈ C∪ {∞} to the evaluation of L1/L2 at any point of X̄. Let Hz′

0
be the line in

P2 given as the zero set of Lz′
0

= L1−z′0L2. To see the degree, check the number of
points in the intersection of Hz′

0
and X̄ if z′0 is suitably general. This is n. These

are exactly the points that go to z′0.
On the other hand, suppose (z0, w0, u0) ∈ X̄. Then each Hz′

0
goes through

(z0, w0, u0). If z′0 is general, L1(z, w, u)/L2(z, w, u) has a clear ratio value at the
n−1 points other than (z0, w0, u0). So, this gives a map of degree n−1 of X̄ → P1

z′ .
Check: For only one value z′0 is Hz′

0
tangent to X̄ at (z0, w0, u0) because we assumed

X̄ is nonsingular [9.11f]. Interpret such a z′0 as having (z0, w0, u0) above it. �

5. Paths, vectors and forms

Notation for paths started in Chap. 2 §2.2. Let X be a topological space. A
path in X is a continuous γ : [a, b]→ X for some choice of a and b with a < b. The
points γ(a) and γ(b) are, respectively, the initial and end points of the path. The
path γ is closed if γ(a) = γ(b).
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The idea a path being piecewise differentiable (simplicial) works if X is an
n-dimensional differentiable manifold (or, more generally, a finite union of differen-
tiable manifolds), with topologizing data {(Uα, ϕα)}α∈I . Then, γ is differentiable if
d
dt (ϕα ◦γ(t)) = vvvα(t) exists for each t ∈ [a, b] (use one-sided limits at the endpoints)
and each α ∈ I with γ(t) ∈ Uα. The vector vvvα(t) is the tangent vector to γ at t
with respect to (Uα, ϕα). It depends only on γ close to t.

As in Chap. 2, simplicial paths support applications to integration, and to form-
ing convenient analytic continuations of functions. Still, it is awkward to analyze
homotopy classes of paths without allowing paths that are only continuous in the
homotopy (see Prop. 6.10).

5.1. Tangent vectors. The above formulation presents a tangent vector as
something attached to a path. We recognize a tangent vector at a point x0 without
having a path through the point. Let C∞x0

= Cx0,X be functions, differentiable and
complex valued, defined in some neighborhood of x0.

Definition 5.1. A (complex valued) tangent vector to a differentiable manifold
X at a point x0 is a linear map vvv : C∞x0

→ C∞x0
satisfying Leiznitz’s rule:

(5.1) vvv(f1f2)(x0) = vvv(f1)(x0)f2(x0) + (f1)(x0)vvv(f2)(x0).

That is, vvv is a derivation of Cx0 defined at x0.
5.1.1. Tangent vectors and paths. To relate to tangent vectors attached to a

path, assume x0 ∈ Uα. A function f in a neighborhood of x0 defines a function
f ◦ ϕ−1

α on a neighborhood of ϕα(x0) ∈ Rn. Denote the variables of Rn here by
yyy = (y1, . . . , yn). Consider F : Rn → Rn by yyy �→ (F1(yyy), . . . , Fn(yyy)). Suppose each
coordinate function Fi(yyy) has continuous partial derivatives. The Jacobian matrix
J(F ) of F is the n× n matrix with (i, j)-entry ∂Fi

∂yj
at the point yyy.

Lemma 5.2. [Rud76, p. 214] Identify derivations of functions f ∈ Cϕα(x0),Rn

with linear combinations Tvvv =
∑n

i=1 vi
∂
∂yi

, v1, . . . , vn ∈ Cϕα(x0),Rn .
So, Tvvv(f)(ϕα(x0)) is the directional derivative of f in the direction vvv(ϕα(x0)).
For γ(t) ∈ Uα ∩ Uβ, the chain rule relates vvvα(t) and vvvβ(t):

(5.2)
(
J(ϕβ ◦ ϕ−1

α )|(ϕα◦γ)(t)

)
(vvvα(t)) = vvvβ(t).

So, vvvα(t) is nonzero if and only if vvvβ(t) is nonzero. To check if γ has a nonzero
tangent vector doesn’t depend on the choice of (Uα, ϕα).

5.1.2. Vector fields. A vector field TU on an open set U in a (differentiable)
manifold X is a differentiable assignment of derivations at each point of U . A formal
definition shows the effect of transition functions from an atlas. Sometimes it is
confusing to use yyy for variables of all copies of Rn. So, we use yyyα = (yα,1, . . . , yα,n)
for variables in the range of ϕα.

Definition 5.3. Assume {Uα, ϕα}α∈I is an atlas for the differentiable manifold
X. Then, TU consists of giving Tα =

∑n
i=1 fα,i

∂
∂yα,i

with the fα,i s differentiable
functions on Vα = ϕα(Uα), for each α ∈ I, subject to the following rule. Assume
Uα ∩ Uβ is nonempty. Consider any differentiable function f : Uα → Rn. Use
the same notation Tα for the restriction of Tα to ϕα(Uα ∩ Uβ). Here is a relation
between Tα and Tβ on Uα ∩ Uβ :

(5.3) Tα(f ◦ ϕ−1
α (yα,1, . . . , yα,n)) = Tβ(f ◦ ϕ−1

β (yβ,1, . . . , yβ,n)).
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Apply ( ∂
∂yβ,1

, . . . , ∂
∂yβ,n

) to f ◦ ϕ−1
α (yyyβ) = fα(yyyα) to get a gradient vector of

(fα1, . . . , fαn)(yyyα) functions. A traditional expression rewrites (5.3) as

(5.4) J(ψyyyβ ,yyyα
)−1

( ∂

∂yα,1
, . . . ,

∂

∂yα,n

)
=

( ∂

∂yβ,1
, . . . ,

∂

∂yβ,n

)

applied to f(ψβ,α(yyyα)) [9.14c]. Thus, (5.3) translates to a linear relation between
(fα,1, . . . , fα,n)(yyyα)) and (fβ,i, . . . , fβ,n)(ψβ,α(yyyα)) [9.14].

So, a chart produces a preferred basis for vector fields and a preferred basis for
differential 1-forms from the coordinate functions for the chart.

Definition 5.4. As in Chap. 2 Def. 2.1, γ : [a, b]→ X is simplicial if there is
an integer n and t0 = a < t1 < · · · < tn−1 < tn = b with γ|[ti,ti+1]

differentiable,

i = 0, . . . , n − 1. Also, γ is special simplicial if either d
dt (γ(t)) is identically zero

for t ∈ (ti, ti+1) or it is nonzero for each t ∈ (ti, ti+1), i = 0, . . . , n − 1. A space
X is simplicially connected if, for each pair x0, x1 ∈ X, there is a simplicial path
γ : [a, b]→ X with γ(a) = x0, γ(b) = x1.

Lemma 5.5 (Integrating vector fields). Let TU be a vector field on the open
set U of the differentiable manifold X. For each u0 ∈ U there exists ε > 0 and a
unique differentiable path γ : [−ε, ε] → U , with γ(0) = u0, so the following holds.
The derivation TU,γ(t) at γ(t) is the directional derivative of γ at t ∈ [−ε, ε].

Proof. With no loss, assume u0 is in an atlas element Uα. We summarize the
meaning of the lemma using the previous notation ϕα : Uα → Cn.

Let yyy be coordinates on Rn ⊃ ϕα(Uα). Use the path t �→ ϕα ◦ γ(t) = γ∗(t).
By definition, TUα

is an expression
∑n

i=1 fα,i
∂

∂yi
. The lemma says there is γ∗(t) so

dγ∗
i

dt (t) = fα,i(γ∗(t)), i = 1, . . . , n.
Many books quote this result ([Hi65, p. 12], for example) by referring to the

existence and uniqueness of solutions to ordinary differential equations. The path
in Uα is then ϕ−1

α (γ∗(t)). All general proofs we’ve seen use fixed point arguments
and involve considerable detail, as in the exercises of [Rud76, p. 118, #25–29,
p. 170, #25-26] giving uniquess and existence under all conditions that would come
up for us. Analytic dependence of the solutions on u0 is considered more difficult
(see [Bo86, p. 171-174, Thm. 4.1]). �

Suppose TU is a vector field on U and γ : [a, b] → U is a differentiable path.
Then, call γ an integral curve of TU . With some assumptions there is a useful
converse producing TU from a path. [9.13].

5.2. Holomorphic vector fields and differential forms. Analogs of dif-
ferentiable vector fields reflect the complex structure on a manifold X. The main
example from Def. 5.3 has Vα as Tα =

∑n
i=1 fα,i

∂
∂zα,i

with the fα,i s holomorphic
in the complex coordinates zα,i, i = 1, . . . , n. Though Tα initially only applies to
functions analytic in (zα,1, . . . , zα,n), we may extend it to all differentiable functions
taking complex values.

5.2.1. Extend T differentiably. Let zzz = (z1, . . . , zn) be the coordinate functions
on Cn. Write zj = xj + iyj and z̄j = xj − iyj , breaking the coordinates into their
real and imaginary parts. Then, xj = 1

2zj + z̄j and yj = 1
2izj − z̄j . Define ∂

∂zj
on

holomorphic functions f(z1, . . . , zn) as the jth partial derivative with respect to the
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variables z1, . . . , zn. The partials ∂
∂xj

and ∂
∂yj

act on any differentiable functions
of the variables x1, . . . , xn, y1, . . . , yn (see Chap. 2 Lem. 2.6).

Lemma 5.6. The operator 1
2 (∂

∂xj
− i∂

∂yj
) maps zj to 1, zk to 0 for k �= j. Fur-

ther, it maps z̄l to 0 for all l. So, it extends ∂
∂zj

to act as previously on holomorphic
functions, and to kill anti-holomorphic functions. Similarly, 1

2 (∂
∂xj

+ i∂
∂yj

) extends
∂
∂z̄j

from anti-holomorphic functions to all differentiable functions.

5.2.2. Vector fields in local coordinates. Suppose Tα and Tβ are the expres-
sions for a holomorphic vector field on two coordinate charts. Interpret the relation
between the fα,i s and fβ,j s given by the complex version of the Jacobian of the
transition functions. So, for X a 1-dimensional complex manifold, the equation
relating fα(zα)∂

∂zα
and fβ(zβ)∂

∂zβ
comes from expecting the same value upon ap-

plication of both to zβ = ψβ,α(zα):

(5.5) fβ(ψβ,α(zα)) = fα(zα)
∂ψβ,α

∂zα
.

5.2.3. Differential 1-forms. Now consider the collection of differential 1-forms
ΩU defined on an open set U in a differentiable manifold X. Use notation of §5.1.2
analogous to that for vector fields. As in §Chap. 2 2.3 our motivation is to form
integrals of ωU ∈ ΩU along any piecewise differentiable path in U .

Definition 5.7. Such an ωU comes by giving ωα =
∑n

i=1 gα,i dyα,i with the
gα,i s differentiable functions on Vα = ϕα(Uα ∩ U), for each α ∈ I, subject to the
following rule. If Vα ∩Vβ is nonempty, denote restriction of ωα to ϕα(Vα ∩Vβ) also
by ωα and let γ : [a, b]→ Vα ∩ Vβ be a differentiable path. Then,

(5.6)
∫

ϕα◦γ
ωα =

∫
ϕβ◦γ

ωβ .

Equation (5.6) translates to a linear relation between (gα,1, . . . , gα,n)(yyyα) and
(gβ,i, . . . , gβ,n)(ψβ,α(yyyα)). This formula applies with γ[t,t+ε] (restriction of γ to
[t, t + ε]) replacing γ for any value of t ∈ [a, b] and ε > 0. So, it gives equality of
the integrands as a function of t.

Definition 5.8 (Contraction). Suppose TU is a vector field defined on U .
Use the previous notation for expressing TU on Vα: Tα =

∑n
i=1 fα,i

∂
∂yα,i

. The
contraction of Tα and ωα is the function

∑n
i=1 fα,igα,i. Denote it by 〈Tα, ωα〉. More

generally, the contraction 〈TU , ωU 〉 of TU and ωU is F ∈ C∞U with this property.
(5.7) F ◦ ϕ−1

α (yyyα) = 〈Tα, ωα〉 on ϕα(Vα), for each α ∈ I.

Lemma 5.9. As above, F ◦ϕ−1
α at ϕα(x) does not depend on α and the contrac-

tion 〈TU , ωU 〉 is a differentiable function on U . Further, the vector of differentials
(dyβ,1, . . . , dyβ,n) evaluated at ψβ,α(yyyα) is J(ψβ,α)(dyα,1, . . . , dyα,1).

Proof. By explicit computation using Lemma 5.2, f ◦ϕ−1
α is the integrand of

the left of (5.6). The comment following (5.6) shows this equals the contraction for
β evaluated at ψβ,α(yyyα). To conclude the proof use the vector field formula [9.14c].
Contract each side with the differentials dyβ,j to see the transformation formula for
differentials is inverse to that for vector fields. �
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5.2.4. Tensors. Suppose {Uα, ϕα}α∈I is an atlas for a differentiable manifold
X. On each Uα let T0

Uα
(resp. D0

Uα
) be the tensor algebra over C∞(Uα) generated

by tangent vectors (resp. differential 1-forms) on Uα. By definition that means
elements of T0

Uα
are finite sums of terms gT1⊗T2⊗· · ·⊗Tk with k any nonnegative

integer, g ∈ C∞(Uα) and T1, . . . , Tk tangent vectors on Uα. If k = 0, the element
is just the function g.

Suppose h1, h2 ∈ C∞ and T
(1)
i and T

(2)
i are tangent vectors on Uα. Further,

interpret the tensor sign ⊗ to be a formal symbol modulo the following relations.
Replacing Ti by h1T

(1)
i + h2T

(2)
i replaces gT1 ⊗ · · · ⊗ Ti ⊗ · · · ⊗ Tk by the sum

gh1T1 ⊗ · · · ⊗ T
(1)
i ⊗ · · · ⊗ Tk + gh2T1 ⊗ · · · ⊗ T

(2)
i ⊗ · · · ⊗ Tk.

There are two things to note:
(5.8a) Unless it follows from these allowed relations, we do not expect T1 ⊗ T2

to equal T2 ⊗ T1.
(5.8b) Declaring T1⊗· · ·⊗Tk times T ′1⊗· · ·⊗T ′k′ (in that order) to be T1⊗· · ·⊗

Tk ⊗ T ′1 ⊗ · · · ⊗ T ′k′ generates an associative ring multiplication on T0
Uα

.

Similarly for D0(Uα). Both have C∞(Uα) as a subring acting by multiplication
on each element of T0

Uα
(or D0

Uα
): These are associate algebras over C∞(Uα). We

may even tensor together elements of T0
Uα

and D0
Uα

for a bigger algebra T0
Uα
⊗

D0
Uα

. In this convention, however, we can distinguish between tangent vectors and
differential forms, and typically we pass all the tangent vectors to the left.

A subtlety occurs in comparing elements ωα ∈ T0
Uα
⊗D0

Uα
and ωβ ∈ T0

Uα
⊗D0

Uα

on the intersection Uα ∩ Uβ . Use the transition function ϕβ ◦ ϕ−1
α to reexpress ωβ

in the variables yα,1, . . . , yα,n for (Uα, ϕα) as previously for 1-forms (and vectors).
Then, using the formal rules for ⊗, compare ωα and ωβ upon their restriction to
Uα ∩ Uβ . Suppose the restriction of ωα and ωβ (using the variables yα,1, . . . , yα,n)
are the same on Uα ∩ Uβ . Then, we declare them together as forming a general
element ω of the tensor algebra on Uα ∪ Uβ . The subtlety is that ω likely will not
be in T0

Uα∪Uβ
⊗ D0

Uα∪Uβ
. Drop the 0 superscript for a more general algebra.

Definition 5.10. The (mixed) tensor algebra TX ⊗ DX on X consists of col-
lections ωαi ∈ T0

Uαi
⊗ D0

Uαi
, i = 1, . . . , t, with ∪t

i=1Uαi = X and ωαi and ωαj

restricting to equal elements in T0
Uαi
∩Uαj

⊗ D0
Uαi
∩Uαj

for all allowed i and j.

Elements of DX are covariant tensors. If everywhere locally ω ∈ DX is a sum
of terms with each a tensor of exactly k differential 1-forms, then it is a k-covariant
tensor. Generalize contraction (Def. 5.8) to define ω paired with k ordered tangent
vectors (T1, . . . , Tk). Notice how this requires local expressions of ω as a sum of
terms like gω1⊗· · ·⊗ωk, with each ωi a local differential 1-form. This contraction,
〈(T1, . . . , Tk), ω〉, is a global C∞ function on X. For ω = gω1⊗· · ·⊗ωk write it as as
g

∏k
i=1 〈Ti, ωi〉. Such an ω is symmetric if 〈(T1, . . . , Tk), ω〉 = 〈(T(1)π, . . . , T(k)π), ω〉

for any permutation π ∈ Sk. It is alternating (or a differential k-form) if

〈(T1, . . . , Tk), ω〉 = Det(π)〈(T(1)π, . . . , T(k)π), ω〉 π ∈ Sk (§7.1.4).

5.2.5. Orientation of a differentiable manifold. A traditional and fuller treat-
ment of the tensor algebra appears in texts on Riemannian geometry like [Hi65,
Chap. 4]. Riemannian geometry starts with a differentiable manifold and a given
symmetric 2-tensor furnished for measuring distances and angles [9.19]. From that
tensor appear others for measuring other quantities on the manifold. For example,
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if on a differentiable 2-manifold we can measure distances along parametrized paths,
then we should also be able to define the area of an open subset. The problem here
is that you aren’t likely to find a single parametrization by R2 of the whole area,
and you must parametrize it in pieces, then add up the resulting areas. This forces
the notion of orientation. The only 2-manifolds that have a well-defined area are
orientable, which does include all Riemann surfaces Chap. 4 [10.9].

An orientation on a 2-dimensional differentiable manifold X consists of a rule
for continuously assigning a left and right direction at the transversal meeting of
two paths on the manifold. Precisely: Suppose given γi : [−1, 1] → X, i = 1, 2,
differentiable paths for which xγi(0) = x ∈ X, i = 1, 2, and (Uα, ϕα) is a coordinate
chart containing x. So, we start with oriented 1-dimensional differential manifolds
meeting at a point. Assume also that ϕi◦γi

dt (0) = vvvi, i = 1, 2, are distinct nonzero
vectors. View a traveler as moving along ϕα ◦ γ1(t), facing at time t = 0 the
direction vvv1 in R2 regarded as the (x, y) plane in R3. Then, the parametric line
L0 = {ϕα ◦ γ1(0) + svvv1 | s ∈ R1} cuts the plane so that vvv2 points in the direction
of the left half or the right half.

Definition 5.11. Suppose there is a new {(Vβ , ψβ)}β∈J on X, compatible with
the original atlas (usually taken as a subcollection of its coordinate charts) with
this property. Independently of the choice of a coordinate chart in the new atlas
containing x, the vector vvv2 lies consistently in the same half plane (left or right)
defined by the corresponding L0. Then, we say the new atlas defines an orientation
at x. The atlas defines an orientation on X if it gives an orientation at each x ∈ X.
Riemann surfaces are examples of oriented manifolds.

A generalizing definition inductively allows discussing an orientation of X de-
fined by the oriented meeting of an oriented n − 1 dimensional manifold meeting
an oriented 1-dimensional manifold Chap. 4 [10.5c].

5.3. Meromorphic vector fields and differentials. The definition of vec-
tor fields and differential forms is formal. So for each chart, (Uα, ϕα), it extends to
objects of form Tα =

∑n
i=1 fα,i

∂
∂zα,i

or ωα =
∑n

i=1 fα,i dzα,i with the fα,i s mero-
morphic in the complex coordinates zα,i, i = 1, . . . , n. Then, since the jacobian of
transition functions (and its inverse) have holomorphic function entries, this assures
it maps a vector of meromorphic functions to a vector of meromorphic functions.

Example 5.12 (Differential of a meromorphic function). Suppose X is a Rie-
mann surface (not necessarily compact) and ψ : X → P1

z is a (nonconstant) mero-
morphic function on X. We produce a meromorphic differential from ψ and an
atlas UX = {Uα, ϕα}α∈I for X. Define dψα to be dψ◦ϕ−1

α

dzα
dzα. Check: This is a

differential form satisfying transformation formula (5.6).
Finally, let ω be a meromorphic differential 1-form on the Riemann surface X.

Let x0 ∈ X lie in Uα where ω has the expression fα(zα) dzα. Suppose ϕα(x0) = 0.
Then, the order mx0 of ω at x0 is the order of fα at 0. Transition functions have
neither zeros nor poles. So this order doesn’t change if we compute it from another
coordinate chart through ϕβ with x0 ∈ Uβ .

5.3.1. Divisors. Conclude: For a given ω, the formal sum
∑

x∈X mxx has mean-
ing. Denote it (ω) or Dω depending on the notational context. It is the divisor
of ω. Similarly, for any meromorphic function and meromorphic tangent vector on
X we may define its divisor (f) or Df . Call any formal sum D =

∑
x∈X mxx a

divisor, and mx is its support multiplicity at x.
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Lemma 5.13. On a connected Riemann surface X, let D be the divisor of a
nonconstant meromorphic differential, function or tangent vector. Then, the points
of nonzero support multiplicity for D have no accumulation point. So, if X is also
compact, divisors of nonconstant meromorphic differentials, functions or tangent
vectors have only a finite number of nonzero support multiplicities.

Proof. We do the case for differentials. The others are similar. Suppose
(ω) =

∑
x∈X mxx is the divisor of a differential and infinitely many of the mx

are nonzero. Then, this set of x s has an accumulation point, x0. Let (Uα, ϕα)
be a coordinate chart containing x0, so the statement is that on ϕα(Uα) we have
a meromorphic differential fα(zα) dzα having an accumulation of zeros or poles
at ϕα(x0) = z′α. As in Chap. 2 [9.8a], this implies fα is identically zero (or ∞)
and using connectedness, that the same holds for the differential, contrary to our
assumption (for extra help, see the argument of Chap. 4 Lem. 2.1). �

If X is not compact, divisors as in Lem. 5.13 may have infinitely many nonzero
support terms (as with a holomorphic nonpolynomial function in the complex plane
Cz). In fact, the next general result in the complex plane has a similar version for
any noncompact Riemann surface attached to an algebraic function [Ahl79, p. 195].

Proposition 5.14 (Weierstrass factorization). Suppose {mxi}i∈I is any col-
lection of nonzero integers attached to a sequence of distinct points {xi ∈ Cz}i∈I

with no accumulation point in Cz. Then, there is a holomorphic function f(z)
with (f) =

∑
i∈I mxixi. Also, f(z) dz (resp. f(z) ∂

∂z ) is a holomorphic differential
(resp. vector field) with exactly the same divisor.

Still, our tool will be the investigation of differentials, functions, etc., that
extend meromorphically to a natural compactification of X. So, we typically assume
(unless otherwise said) that mx = 0 except for finitely many x ∈ X. For such a
divisor D, the sum

∑
x∈X mx is the degree deg(D) of D. A divisor D is positive

(or D ≥ 0) if all its support multiplicities are nonnegative. This definition gives a
partial ordering on divisors: With D =

∑
x∈X mxx and D′ =

∑
x∈X m′xx, D ≥ D′

if mx ≥ m′x for each x ∈ X. Equivalently, with the obvious subtraction of divisors,
D −D′ is positive.

Multiplying two functions or a function and a differential gives an object with
divisor having the sum of the constituent multiplicities: (fω) = (f) + (ω).

Definition 5.15. Suppose X is a compact Riemann surface. We say two divi-
sors D1 and D2 on X are linearly equivalent if D2−D1 = (f) for some meromorphic
function f : X → P1

z. This is an equivalence relation between divisors.

Our notation for the linear equivalence class of a divisor D on a compact Rie-
mann surface will be [D]. On a compact Riemann surface, the divisor of a mero-
morphic function has degree 0 (Chap. 4 Lem. 2.1; see Ex. 5.17). Anticipating that,
conclude there is a well-defined degree attached to a linear equivalence class of divi-
sors. Finally, we have a crucial definition attached to a divisor for which the reader
should practice the notation.

Definition 5.16. For any divisor D on a Riemann surface, the linear system
of D, L(D), is the collection of meromorphic functions f for which (f) + D ≥ 0.

5.3.2. Relation between functions and differentials. As in Ex. 5.12, any (non-
constant) meromorphic function on a Riemann surface X provides us a nontrivial
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meromorphic differential form. Further, assume ω1, ω2 are meromorphic differ-
entials and ω1 is not a constant multiple of ω2. This produces a nonconstant
meromorphic function ψ : X → P1

z by the formula

(5.9) ψ ◦ ϕ−1
α (zα) = ωα,1/ωα,2.

So, all nonconstant differentials are linearly equivalent, and (see Def. 5.15), on
a compact Riemann surface, all have the same degree.

Example 5.17. Consider the identity map z : P1
z → P1

z by z �→ z. Carefully
consider what is dz = ω using Ex. 3.2.1. To clarify notation, denote ϕ1 by ϕα and
ϕ2 by ϕα′ . Then, ϕα : Cz → Czα

by z �→ z, and so ωα = dzα

dzα
dzα = dzα. Also,

ϕα′ : C∗z ∪ {∞} → Czα′ by z �→ z−1. So,

(5.10) ωα′ =
dz−1

α′

dzα′
dzα′ = −z−2

α′ dzα′ .

The differential dz is meromorphic, not holomorphic, and it has degree -2. To see
there are no nonconstant holomorphic differentials on P1

z, write such a differential
as g(z) dz with g a meromorphic function on P1

z. Liouville’s Theorem says g has
as many zeros as poles [Ahl79, p. 122]. So the degree of g(z) dz also is −2, and
(g(z) dz) cannot be positive. A similar computation shows the vector space of
holomorphic differentials on a complex torus has dimension 1 [9.8].

5.3.3. Pulling back differentials. Let f : X1 → X2 be an analytic and surjective
map between complex manifolds. Then, a meromorphic function ψ : Y → P1

z

produces a meromorphic function ψ ◦ f
def= f∗(ψ) : X → P1

z giving an embedding
C(Y ) ⊂ C(X) (§4.1.2).

Lemma 5.18. We may extend f∗ to embed meromorphic differentials M1(Y )
on Y into meromorphic differentials M1(X). Further, this maps holomorphic dif-
ferents Ω1(Y ) on Y into holomorphic differentials on X. Then ϕ∗ has the following
property. For ω ∈ M1(Y ), suppose γ ∈ Π1(X, x0) does not go through a pole of
ϕ∗(ω). Then,

∫
γ

ϕ∗(ω) =
∫

ϕ∗(γ)
ω.

Proof. Use the notation of (4.1). To simplify we do this for the case of
1-dimensional complex manifolds, though the many variable case is just a slight
addition to the notation. This is truely a local statement. Write ω as hα2(zα2) dzα2

on ϕα2(f(Uα1) ∩ Uα2). Then, define f∗(ω) by

hα2(ϕα2 ◦ f ◦ ϕ−1
α1

(zα1)) d(ϕα2 ◦ f ◦ ϕ−1
α1

(zα1)) on Uα1 ∩ f−1(Uα2).

The equality of the integrals is nothing more, after substituting for the coordinates
of the path γ, than the change of variables formula Chap. 2 Lem. 2.3. �

5.4. Half-canonical differentials. Square-roots of differentials appear on a
Riemann surface X when we seek a canonical choice of θ function attached to the
surface. The case when X has genus 1 (Chap. 4 §6.5) will be our guide.

Riemann’s θ functions often allow us to put coordinates (as in the initial dis-
cussion of §4) on such total familes. Whenever possible, we would like the con-
struction of such coordinates to be canonical. Usually, however, constructing θ
functions depends on choices. So, we are careful to note, for curves in families, how
the construction varies with the points parametrizing the family members.

Riemann used θ functions to give coordinates for constructing objects, like
differentials and functions on a Riemann surface. When the Riemann surface has
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genus 1 (or 0) there are natural choices for working with Riemann’s coordinates.
When, however, the genus exceeds 1, and the surface is not special, there are
several (22g−1 − 22g−2) potential choices of the odd θ function Riemann required
to generalize Abel’s Theorem. We will see that half-canonical differentials precisely
differentiate between these choices.

5.4.1. Cocycles. For X an n-dimensional complex manifold, let {Uα, ϕα}α∈I

be the coordinate chart, and {ψβ,α = ϕβ ◦ ϕ−1
α }α,β∈I the corresponding collec-

tion of transition functions (as in Def. 3.6). Each ψβ,α then is a one-one analytic
function on an open subset of Cn whose coordinates we label zα,1, . . . , zα,n. De-
note the n × n complex Jacobian matrix for ψβ,α by J(ψβ,α). Call the matrices
{J(ψβ,α)}α,β∈I the (transformation) cocycle attached to meromorphic differentials.
Similarly {J(ψβ,α)−1}α,β∈I is the cocycle attached to meromorphic tangent vectors.
Recall the notation for n × n matrices, Mn(R) with entries in an integral domain
R and for the invertible matrices GLn(R) with entries in R under multiplication.
Cramer’s rule says for each A ∈Mn(R) there is an adjoint matrix A∗ so that AA∗

is the scalar matrix det(A)In given by the determinant of A. This shows the invert-
ibility of A ∈ Mn(R) is equivalent to det(A) being a unit (in the multiplicatively
invertible elements R∗) of R. Denote the n× n identity matrix (resp. zero matrix)
in GLn(R) by In (resp. 000n).

Definition 5.19 (1-cycocle). Suppose gβ,α ∈ GLn(H(Uα ∩ Uβ)), α, β ∈ I.
Assume also that gγ,βgβ,α = gγ,α for all α, β, γ ∈ I on Uα ∩ Uβ ∩ Uγ (if this is
nonempty). Then, {gβ,α}α,β∈I is a multiplicative 1-cocycle with values in GLn,X .
Similarly, suppose gβ,α ∈ Mn(H(Uα ∩ Uβ)), α, β ∈ I. Suppose gγ,β + gβ,α = gγ,α

for all α, β, γ ∈ I on Uα ∩Uβ ∩Uγ . Then, {gβ,α}α,β∈I is an additive 1-cocycle with
values in GLn,X .

We also name (1-)cocycles for collections of subgroups in GLn,X (resp.Mn,X)
for which it makes sense to multiply (resp. add) gγ,β and gβ,α. So, for example, we
may consider a multiplicative cocycle with values in {±In} or an additive cocycle
with values in ZIn. When there are 1-cocycles, there are also 0-chains and their
associated 1-boundaries. We write the definition for GLn, recognizing there are
analogous versions for all other types of cocycles.

Definition 5.20 (1-boundary). With uα ∈ GLn(H(Uα)), α ∈ I, suppose
gβ,α = uβ(uα)−1 for all α, β, γ ∈ I in Uα ∩ Uβ (if nonempty). Then, {gβ,α}α,β∈I

is a 1-cocycle, called a 1-boundary with values in GLn,X . Call the set {uα}α∈I a
0-chain with values in GLn,X .

5.4.2. Half-canonical divisors. Suppose ω is a meromorphic differential on a
Riemann surface X, written locally as fα(zα)dzα on simply connected domains Uα

(Chap. 2 §8.3). Assume also the square hypothesis:
(5.11) The divisor of fα(zα) has the form 2Dα for Uα running over a subchart

covering X.
Then, there is a branch hα(zα) of square root (of fα(zα)) on Uα (Chap. 2 (8.1)).
Of course, there are two of these; our notation means we have chosen one. Call
the symbol τα = hα(zα)

√
dzα, a half-canonical divisor on Uα. The squares of these

form a global differential on X. Denote the collection {hα(zα)}α∈I , by hhh and refer
to it as a square-root of ω.

Lemma 5.21 (Half-canonical divisor). The collection of divisors {(hα(zα))}α∈I

from a square root of ω give a well-defined divisor: a half-canonical divisor on X.



6. HOMOTOPY, MONODROMY AND FUNDAMENTAL GROUPS 111

Proof. Let D = (ω) be the divisor of ω. Since, h2
α = fi,α, the support

multiplicities of D are all even integers. So, a square-root of ω defines D1/2 = (ω)/2,
a divisor uniquely given by the zeros and poles of the hα s. �

Now consider how to decide, based on a square-root of ω, if there is an object
ω1/2 with values at points on X whose divisor is D1/2 = (ω)/2. Continue the
transition function notation ψβ,α from §5.4.1. This requires us to make sense, on
Uα ∩ Uβ , of equality between

(5.12) τα(zα) = hα(zα)
√

dzα and τβ(ψβ,α(zα)) = hβ(ψβ,α(zα))
√

dψβ,α(zα).

Proposition 5.22. Assume each component of Uα∩Uβ, (α, β) ∈ I×I is simply
connected and for such, we have made a choice of

√
J(ψβ,α) = gβ,α on Uα ∩ Uβ.

Then, independent of α with x′ ∈ Uα, setting the value of τα to hα(ϕα(x′)) is well-
defined if and only if {gβ,α}(α,β)∈I×I = ggg is a 1-cocycle. If there is a ggg that is a
1-cocycle, call the resulting half-canonical differential ω1/2,hhh,ggg. Then, with ggg fixed,
but hhh′ varying over square-roots of ω, any pair of ω1/2,hhh′,ggg differ by a 1-boundary
with values in {±1}.

Proof. We need only add that the cocycle condition on ggg is necessary and
sufficient for (5.12). For this check that if x′ ∈ Uα ∩ Uβ ∩ Uγ , then all the values
hα(ϕα(x′)), hβ(ϕα(x′)) and hγ(ϕγ(x′)) at x′ match up using ggg. Comparing (5.12)
for each of the pairs (α, β), (β, γ) and (α, γ) gives the cocycle condition. �

5.4.3. Square-hypothesis for hyperelliptic curves. Suppose the affine part of a
hyperelliptic curve X, with compactification from Ex. 4.2.3, is {(z, w) | w2 = h(z)}.
We explicitly display differentials ω satisfying the square hypothesis of (5.11). For
simplicity, assume h has odd degree and distinct zeros z1, . . . , zr−1 (with zr =∞).
Denote the point on X over zi by xi, with x∞ lying over z =∞. As in [Mum76,
p. 7], form the differentials

ωi =
(z − zi)

1
2

(
∏

j �=i z − zj)
1
2

dz, i = 1, . . . , r − 1.

Since w =
√

h(z), the factor in front of the dz in ωi is just z−zi

w , a meromorphic
function on X. The divisor of ωi is therefore 2xi − 2x∞ = Di. For the check at a
neighborhood of x∞ over z = ∞, use t = 1/

√
z as the uniformizing parameter on

X. Consider the case deg(h) = 3. Then, (t−1 − zi)(−2wt3) dt has t = 0 as a pole
of order 2. So, Di is the same divisor as (z − zi).

Now consider the case deg(h) = r − 1, r ≥ 6 an even integer. Similarly,
(ωi) = 2xi +2(r/2−3)x∞, as z−zi

−2wt3 dt has t = 0 as a zero of multiplicity 2(r/2−3).

6. Homotopy, monodromy and fundamental groups

Complex structure provides the notion of analytic continuation. We detect
the effects of analytic continuation through monodromy action, a representation
of some fundamental group. In practice this can be a permutation representa-
tion, a representation as automorphisms of a vector space or a representation into
automorphisms of a more general group. The prototype use of monodromy is
Riemann’s Existence Theorem: We replace constructing a compact Riemann sur-
face using charts with permutation representations of a fundamental group. For
example, using classical generators (Chap. 4 Fig. 3) for the fundamental group of
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Uzzz = P1
z \ {zzz} gives an effective listing of Riemann surface covers (and their corre-

sponding algebraic functions; Chap. 4 Cor. 2.8).

6.1. Homotopy of paths. Let γi : [ai, bi] → X, i = 1, 2, be two one-one
simplicial paths in X with the same range, initial, and end points. The function
f(t) = γ−1

2 ◦ γ1 is a simplicial path f : [a1, b1] → [a2, b2] for which d
dt (f(t)) ≥ 0

(where the derivative is defined) and γ2(f(t)) = γ1. (Use the chain rule.) We give
a more general statement.

Definition 6.1 (Image equivalent paths). Let γ : [a1, b1]→ X be a simplicial
path in X, and let f1 : [a2, b2] → [a1, b1] and f2 : [a1, b1] → [a2, b2] be simplicial
paths with d

dt (fi(t)) ≥ 0 where it is defined, i = 1, 2. Assume also γ◦f1◦f2(t) = γ(t)
for t ∈ [a1, b1]. Call γ and γ ◦ f1 image equivalent paths. It is a simple exercise to
show each path is image equivalent to a path γ : [0, 1]→ X.

Definition 6.2 (Homotopically equivalent paths). Consider a continuous map
F : [a, b] × [0, 1] → X, and points xa, xb ∈ X, with the following properties:
F (t, s) = γs(t) is a path for each s ∈ [0, 1] with initial point xa and end point xb.
Call F a homotopy between γ0 and γ1 (or γ0 and γ1 are homotopic).

Remark 6.3 (Warnings!). The end points of the paths γs remain fixed through-
out a homotopy, or else all paths in a connected space would be homotopic.

Even if γ0 and γ1 are simplicial paths, we do not initially assume γs is also
simplicial. Still, the argument of Chap. 2 Lem. 4.3 generalizes easily to any (union
of) differentiable manifold(s) to say that any continuous path is homotopic to a
simplicial path. Further, it is then image equivalent to a product of simplicial
paths that are either constant or have nonzero derivative, and if it is a nonconstant
path, you can toss out — up to equivalence — the constant paths. We use this
statement freely [9.12]. It is common to think of both s and t as time parameters.
It is compatible to consider the range of γ0 as a physical object layed down para-
metrically. As a function of time, each point γ0(t) of the range of γ0 moves to a
different position γs(t). So, F represents deforming an initial path, perhaps along
which it is more efficient to accrue similar information from traversing γ0.

In Fig. 4 the space X is the same as Fig. 3. Note: γ1 and γ2 are closed,
beginning and ending at 0 mod L ∈ C/L.

Figure 4. γ1 can’t deform to γ2 on X

✏✏✏✏✏✶
✂
✂
✂
✂
✂

✂
✂
✂
✂
✂✍

✏✏✏✏✏

↖
γ1

← γ2

ω2

ω1

Definition 6.4. Extend the definition of homotopic paths. We say two paths
γi : [ai, bi] → X, i = 1, 2, with γ1(a1) = γ2(a2) and γ1(b1) = γ2(b2) are equivalent
(or homotopic) if γ1 and γ2 are image equivalent, respectively, to homotopic paths
γ∗i : [a, b]→ X, i = 1, 2, for some a < b. This is an equivalence relation.
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6.2. Analytic continuation on a manifold. Suppose f ∈ E(D, z0) is ex-
tensible in a domain D and γ[a, b] → D is a path. Chap. 2 Rem. 4.4 notes the
production of a simplicial path γ∗ in D for which the analytic continuations fγ and
fγ∗ are the same. Further, assume f is extensible as a holomorphic (rather than
just meromorphic) function in D. Then, define Fγ for any antiderivative F of f
(around z0) as the analytic continuation Fγ∗ . Chap. 2 Lem. 4.3 produces γ∗ from
γ by a succession of homotopies, between a piece of path on γ contained in a disk
and a line segment joining two points on the boundary of the disk. Disks are a
crucial case of the following definition. The simple lemma following it, hidden in
the construction of γ∗, appears in most arguments about homotopy classes.

Definition 6.5. Call a topological space X contractible (to x0 ∈ X) if there
is a continuous function f : X × [0, 1]→ X satisfying f(x, 0) = x and f(x, 1) = x0

for each x ∈ X.
Lemma 6.6. A closed or open ball (or anything homeomorphic to such) in Rn

is contractible. If X is contractible, then any two paths with the same endpoints are
homotopic [9.12b].

Analytic continuation of a meromorphic function (Chap. 2 Def. 4.1) extends to
manifolds by imitating the other extensions to manifolds. Suppose X is a complex
manifold with coordinate chart {(Uα, ϕα)}α∈I . Consider any path γ : [a, b] → X.
Our notation follows the case for a dimension 1 complex manifold, though it extends
easily to the general case.

By a disk (or ball) D on X we mean an open set in X which lies in one
coordinate neighborhood Uα where ϕα(D) is a disk (or ball) in ϕα(Uα) = Vα.

6.2.1. Extensible functions on X. Follow Chap. 2 §4.1 to extend analytic con-
tinuation of a function along a path to where the path is in a complex manifold.

Definition 6.7 (Analytic continuation along a path). Suppose f is meromor-
phic in a neighborhood Ux0 ⊂ X of x0 ∈ X and γ : [a, b] → X is a path based at
x0. Let f∗ : [a, b]→ P1

z be a continuous function with the following properties.
(6.1a) f∗(t) = f(γ(t)) for t close to a (in [a, b]).
(6.1b) For each t′ ∈ [a, b], there is a neighborhood Uγ(t′) of γ(t′) and an analytic

function ht′ : Uγ(t′) → P1
z with ht′(γ(t)) = f∗(t) for t near t′ (in [a, b]).

As before, ht′ is the analytic continuation of f to t′. It is an analytic function
in some neighborhood of γ(t′). Reference is usually to the end function hb = fγ ,
analytic in a neighborhood of γ(b). This is the analytic continuation of f (along
γ). As with analytic continuation along a path in P1

z, f∗(t) determines all data for
an analytic continuation. Also, it is unique: its difference from another function
suiting (6.1) must be constant (restrict to coordinate neighborhoods of points of
the path and apply Chap. 2 [9.8a]). Again, there is a related definition.

6.2.2. Algebraic functions on X. An analytic function f̂ : X → P1
z satisfying

f̂(x) = f(x) for all x ∈ Ux0 is an analytic continuation or extension of f to X.
Definition 6.8. Denote by E(X, x0) all functions meromorphic in a neighbor-

hood of x0 that analytically continue along every path in X based at x0.
Further, suppose there is compact Riemann surface X̄ with X = X̄ \ xxx where

xxx is a finite set of points on X̄. Chap. 4 shows, if such a X̄ exists, it is unique up
to analytic isomorphism. If xxx consists of r points, call such an X an r-punctured
Riemann surface. Dropping reference to r, call it just a punctured Riemann surface.
This tacitly assumes r is a finite number.
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Definition 6.9. Suppose X is a punctured Riemann surface. Then, E(X, x0)alg

consists of the f ∈ E(X, x0) for which both the following sets are finite.
(6.2a) All analytic continuations, Af (X) = {fγ}γ∈Π1(X,x0) of f in X.
(6.2b) For x′ ∈ xxx, the limit endpoint values of fγ along all γ ∈ Π1(X, x0, x

′).
Proposition 6.10. Let D be a disk on X, and suppose f : D → P1

z is analytic.
There is a partition a = t0 < t∗0 < t1 < t∗1 < · · · < t∗n−1 < tn = b of [a, b], coordinate
neighborhoods (Ui, ϕi), a disk Di centered about γ(ti) in Ui and fi ∈ H(Di), i =
1, . . . , n−1, with these properties.

(6.3a) Di ∩Di+1 �= ∅ and fi(z) = fi+1(z) for z ∈ Di ∩Di+1.
(6.3b) γ(t) ∈ Di for t ∈ [ti, t∗i ], γ(t) ∈ Di+1 for t ∈ [t∗i , ti+1], i = 0, . . . , n− 1.
(6.3c) f0(z) = f(z) for z ∈ Uz0 .

Further, let γ∗ be the path along the consecutive line segments γ(ti) to γ(t∗i ), then
γ(t∗i ) to γ(ti+1), i = 0, . . . , n− 1. Then, fγ∗ = fγ .

Proof. The proof reduces to that of Chap. 2 Lem. 4.3 by using the definition
of function and coordinate charts on a complex manifold. �

Proposition 6.11 (The general monodromy theorem). Let γ1, γ2 : [a, b]→ X
be two paths with γ1(a) = γ2(a) = x0 and γ1(b) = γ2(b) = x1. Suppose γ1 and γ2

are homotopic on X. Let Ux0 be a neighborhood of x0 and f : Ux0 → P1
z Then,

fγ1 = fγ2 ([Ahl79, p. 295] and [Con78, p. 219]).

Proof. Let F : [a, b] × [0, 1] → X be a homotopy between γ1 and γ2 fixing
points xa = x0, xb = x1 ∈ X. A continuous function on a compact space is
absolutely continuous. From absolute continuity of F there are partitions

a = s0 < s1 < · · · < sn = b of [a, b] and 0 = t0 < t1 < · · · < tm = 1 of [0, 1]

so that F : [si, si+1]× [tj , tj+1]→ X has range in a coordinate chart Ui,j on X and
ϕi,j : Ui,j → C has range in a disk.

Suppose h is meromorphic in a neighborhood of F (si, tj) and extensible on the
range of F on [si, si+1]× [tj , tj+1]. Denote the product of the paths

s �→ F (s, tj) = Fij,1, s ∈ [si, si+1] and t �→ F (si+1, t) = Fi+1j,2, t ∈ [tj , tj+1]

by µ+
ij . Similarly, let µ−ij be the product of paths t �→ F (si, t) = Fij,2, t ∈ [tj , tj+1]

and s �→ F (s, tj+1) = Fij+1,1, s ∈ [si, si+1]. From Chap. 2 Lem. 4.6, hµ+
ij

= hµ−
ij

.
Write the path γ1 as the product of the paths Fi0,1, i = 0, . . . , m. Similarly,

γ2 is the product of the paths Fin,1, i = 0, . . . , m. We give a sequence of paths
(with the same endpoints) that starts with γ1, and ends with γ2. The terms of
the sequence differ from path-to-path in the chain by a product of paths of form
(µ+

ij)
−1µ−ij or of form γγ−1. This shows fγ1 = fγ2 . Simply replace Fi0,1 by

Fi0,1Fi+10,2F
−1
i+10,2(µ

+
i0)
−1µ−i0

for each i = 1, . . . , m. These substitutions lead from γ1 to the path that is the
product of Fi1,1, i = 0, . . . , m. Continue inductively to the path γ2, which is the
product of Fi1,n, i = 0, . . . , m. �

Chap. 2 §4.4 defines the product of two paths γi : [ai, bi] → X, i = 1, 2, for
which the end point of γ1 is the initial point of γ2. Many treatments on fundamental
groups (like [Ma; Chap. 2]) restrict the domain interval for a path to [0, 1]. The
treatment here aids computation of the Artin braid group (Chap. 4 [10.7], [??] and
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Chap. 5). It has other virtues: If γi : [ai, bi]→ X, i = 1, 2, 3, are three paths with
γi(bi) = γi+1(ai+1), i = 1, 2, then γ1(γ2γ3) and (γ1γ2)γ3 are identical rather than
just equivalent as in [Ma67, p. 59]. Thus, forming products is trivially associative.

6.3. Path equivalence classes form a group. We say γ : [a, b] → X, a
closed path with initial (and end) point x0 ∈ X, is based at x0. The set of paths
based at x0 is closed under taking products. Denote the (homotopy) equivalence
class of γ by [γ]. Note: [γ∗1γ∗2 ] is independent of the choice of γ∗i ∈ [γi], i = 1, 2.
The function γ : [a, b] → X by γ(t) = x0 is called a constant path; denote [γ] by
εx0 . The set of equivalence classes of paths in X based at x0 is the fundamental
group of X based at x0.

Theorem 6.12. Equivalence classes of paths into X based at x0 form a group,
denoted π1(X, x0), under the multiplication given by [γ1][γ2]

def= [γ1γ2]. The identity
element is εx0 . The inverse of [γ] is the class [γ−1] (Chap. 2 §4.4).

Proof. Consider γ : [a, b] → X and γ−1 as above. Let s′ = a+s(b−a) and
consider the function F : [a, 2b−a]× [0, 1]→ X defined by

(6.4) F (t, s) =




γ(t) for t ∈ [a, s′]
γ(s′) for t ∈ [s′, 2b−s′]
γ(2b−t) for t ∈ [2b−s′, 2b−a].

So, F is a homotopy between γγ−1 and the constant path from [a, 2b−a] into {x0}.
From [9.12b], for γ0 : [a0, b0] → {x0}, the paths γ0γ and γγ0 are equivalent to

γ. Thus, [γ][γ−1] = εx0 , [γ]εx0 = [γ] = εx0 [γ]. This shows π1(X, x0) is a group. �

The fundamental group does depend on the base point x0, though its isomor-
phism class does not. Indeed, for x0, x1 ∈ X, let α : [a, b] → X be a path with
initial point x0 and end point x1. Define ψ(x0, x1) : π1(X, x1)→ π1(X, x0) by

ψ(x0, x1)([γ]) = [αγα−1] for each [γ] ∈ π1(X, x1).

Check that ψ(x0, x1) is a homomorphism of groups inverse to the homomor-
phism ψ(x1, x0): [γ] ∈ π1(X, x0) �→ [α−1γα] ∈ π1(X, x0). Note: The isomorphism
π(x0, x1) depends on the choice of α if π1(X, x0) is not an abelian group.

Corollary 6.13. For x0, x1 ∈ X, π1(X, x0) and π1(X, x1) are isomorphic.
Still, we eventually come to fundamental groups of members of a family of

topological spaces (Chap. 5), where all members have the same fundamental group.
Our most profound (the braid and Hurwitz monodromy) groups appear to account
for different identifications among these fundamental groups.

6.4. Fundamental group of a circle. For any differentiable manifold X,
there is a natural map from the fundamental group π1(X, x0) computed with piece-
wise differentiable paths to the fundamental group computed with continuous paths,
π1(X, x0)cont. This induces an isomorphism (though we don’t exploit this seriously)
from Rem. 6.3. This point shows in a comparison of the two fundamental groups
when X = S1, a circle which we take to be the unit circle in Cz. We give two proofs
that it is isomorphic to Z. The first explicitly uses simplicial paths. The other uses
the universal covering space (Lem. 8.4).

Consider the path γ∗|[a,b]
: [a, b] → S1 by t �→ cos(2πt) + i sin(2πt), t ∈ [a, b].

For n ≥ 0 an integer, denote γ∗|[0,n]
by γ∗n, and let S1 be the image of γ∗1 . Denote
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the inverse of γ∗|[0,1]
by (γ∗)−1

|[0,1]
. Since (γ∗1 )n = γ∗n it is consistent to define γ∗−n to

be (γ∗1
−1)n. For n = 0 let γ∗0 be the constant path mapping to 1.

Figure 5. Homotopically speaking, a path going nowhere. Tra-
versal for t ∈ [ i

6 , i+1
6 ], i = 0, 1, 2, 3, 4, 5

γ( 1
6 )

γ(0)

γ( 1
6 )

γ( 2
6 ) γ( 2

6 )

γ( 3
6 ) γ( 3

6 )

γ( 4
6 )

γ( 4
6 )

γ( 5
6 ) γ( 5

6 )

γ(1)

i = 0 i = 1 i = 2 i = 3

i = 4 i = 5
Final path range−−−−−−−−−−−−−→

Write this path using γ( i
6 ), i = 0, 1, 2, 3, 4, 5

Theorem 6.14. The group π1(S1, 1) is infinite cyclic with generator [γ1].

Proof. From Rem. 6.3 any nonconstant path γ : [a, b] → S1 is equivalent
(Def. 6.4) to a product of paths with nonzero derivative. Each such is then image
equivalent to (γ∗)ε

|[r,s]
for some r < s and ε ∈ {±1}. So, we can write the path as∏7

i=1(γ
∗)εi

|[ri,si]
with si = ri+1. Suppose εi and εi+1 have opposite sign. Further

subdivide one of paths corresponding to i or to i+1 to assume [ri, si] and [ri+1, si+1]
have the same length. From (6.4),

(γ∗)εi

|[ri,si]
(γ∗)εi+1

|[ri+1,si+1]

is equivalent to the constant path with image (γ∗)εi(ri) [9.12a]. Thus the whole path
is equivalent to a path with a smaller A. An induction on the integer

∑7
i=1 |εi+1 − εi|

shows γ is equivalent to γ∗n for some integer n.
The proof is complete if γ∗n is inequivalent to γ∗m for m �= n. Decompose

γ : [a, b]→ S1 into its real and imaginary parts: γ = γ1 + i γ2 where γi : [a, b]→ R,
i = 1, 2. Define deg(γ) through the formula

2πi deg(γ) =
∫ b

a
(γ1(t), γ2(t)) · (dγ1

dt (t), dγ2
dt (t)) dt

+i
∫ b

a
(−γ2(t), γ1(t)) · (dγ1

dt (t), dγ2
dt (t)) dt

(as in Chap. 2 Lem. 2.3). By direct computation deg(γ∗n) = n.
If γ is homotopic to γ∗n, then Chap. 2 Lem. 2.3 shows deg(γ) = n. As deg(γ)

depends only on [γ] [9.12d], [γ∗n] is distinct from [γ∗m] for n �= m. �
Chap. 4 computes fundamental groups of many spaces from Thm. 6.14.
Let γ : [a, b] → X1 be a (simplicial) path. Consider f ◦ γ : [a, b] → X2, and

for x1 ∈ X1, denote f(x1) by x2. For [γ] ∈ π1(X1, x1), [f ◦ γ] ∈ π1(X2, f(x1)) is
independent of the choice of γ representing [γ]. To a product of paths γ1γ2 in X1,
apply the formula f◦(γ1γ2) = (f◦γ1)(f◦γ2). This shows [f◦γ1][f◦γ2] = [f◦(γ1γ2)].
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Lemma 6.15. Conclude: f induces a homomorphism of groups

f∗ : π1(X1, x1)→ π1(X2, x2).

If f is one-one and onto then f∗ is an isomorphism of groups.
Example 6.16. Let X1 = X2 = S1 and consider cos(2πt) + i sin(2πt) = z(t).

For a fixed positive integer n define a function f by the formula f(z(t)) = z(nt) =
cos(2πnt) + i sin(2πnt). Thus f∗ : π1(S1, 1) → π1(S1, 1). Also, for γ∗1 , the gener-
ating path for π1(S1, 1), f ◦ γ∗1 (t) = f(z(t)). Therefore f ◦ γ∗1 is image equivalent
to γ∗n. Identify π1(S1, 1) with Z, the group of integers, by identifying the integer
1 with [γ∗1 ]. Then, f∗ : π1(S1, 1) → π1(S1, 1) sends the integer m to f∗(m) = nm.
The image of f∗ is the subgroup of π1(S1, 1) = Z that n generates.

6.5. Fundamental group of a product. Let (X, x0) and (Y, y0) be two
differentiable manifolds with a base point. The projections onto each factor, prX :
X × Y → X and prY : X × Y → Y , induce homomorphisms

prX∗ : π1(X × Y, (x0, y0))→ π1(X, x0) and prY ∗ : π1(X × Y, (x0, y0))→ π1(Y, y0).

So, there is a homomorphism

(6.5) (prX∗,prY ∗) : π1(X × Y, (x0, y0))→ π1(X, x0)× π1(Y, y0).

The right side is the product group with factors π1(X, x0) and π1(Y, y0).
Theorem 6.17. π1(X × Y, (x0, y0)) and π1(X, x0)× π1(Y, y0) are isomorphic.

Proof. Let fX (resp. fY ) map X → X × Y by fX(x) = (x, y0) (resp. map
Y → X × Y by fY (y) = (x0, y)). For γ : [a, b] → X × Y consider the paths
(fX ◦ prX ◦ γ) = ψX : [a, b]→ X × Y and (fY ◦ prY ◦ γ) = ψY : [a, b]→ X × Y .

We show the map taking ([γ1], [γ2]) ∈ π1(X, x0)×π1(Y, y0) to fX
∗ ([γ1])fY

∗ ([γ2])
in π1(X × Y, (x0, y0)) is inverse to (prX∗,prY ∗). This only requires showing γ is
equivalent to ψXψY . Fig. 6.5 illustrates this when X = Y = S1 and X × Y is the
complex torus of Fig. 3 with ω1 = 1 and ω2 = i [9.5b].

Figure 6. The diagonal recomposes itself

ω1

ω2

X
prX(γ)

Y

prY (γ)

γ

Write γ(t) = (γX(t), γY (t)) for t ∈ [a, b] and assume [a, b] = [0, 1]. Then γ is
image equivalent to the path (γX( t

2 ), γY ( t
2 )) for t ∈ [0, 2]. Also, ψX is the path

t �→ (γX(t), y0) for t ∈ [0, 1] and (x0, γ
Y (t−1)) for t ∈ [1, 2]. Here is a homotopy

between these paths running over s ∈ [0, 1]:

γs(t) =




(γX( t
2−s ), y0) for t ∈ [0, s]

γX( t
2−s ), γY ( t−s

2−s )) for t ∈ [s, 2−s]
(x0, γ

Y ( t−s
2−s )) for t ∈ [2−s, 2].
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�

Example 6.18 (Continuation of §3.2.2). Here Xi = C/L(ωi
1, ω

i
2) is

{t1ωi
1 + t2ω

i
2 | 0 ≤ ti < 1, i = 1, 2}

where ωi
1/ωi

2 ∈ C \R, i = 1, 2. For the lattice {m1ω
i
1 +m2ω

i
2 | m1, m2 ∈ Z} use the

letter Li, i = 1, 2. For z ∈ C, there is a unique ω ∈ Li with z−ω ∈ Xi. Then z−ω

represents the coset z mod Li
def= {z + u | u ∈ Li} (as in §7.1). Let πi : C → C/Li

be the map that takes z to z mod Li. Then πi is an analytic map. It becomes a
homomorphism of groups if we make Xi into a group using this addition formula:

z1 mod Li + z2 mod Li
def= z1+z2 mod Li[9.9d].

Suppose L1 ⊆ L2. Then, for z ∈ C, the set

(π1)−1(z mod L1) = {z + ω | ω ∈ L1}
is in (π2)−1(z mod L2). So, the map f taking z mod L1 to z mod L2 depends only
on z mod L1, not on z. Identify π1(Xi, 0) with Li (as in [9.9g]). The induced map
f∗ is the inclusion L1 into L2. For each x2 ∈ X2 the cardinality of the set f−1(x2)
is the order of the quotient group L2/L1 [9.7d].
Note: These concepts work equally well for finite unions of manifolds.

7. Permutation representations and covers

Two types of group theory arise in analyzing algebraic functions from Rie-
mann’s viewpoint. One is the presentation of fundamental groups, as free groups
on generators with relations. Elementary examples of that do appear in many topol-
ogy books (here too, starting with Chap. 4 §1.1). The second type is less common:
Analyzing homomorphisms of fundamental groups into other groups. Motivating
problems and sufficient group theory show how finite and profinite group theory
apply to the study of moduli of Riemann surfaces. The group theory starts with
permutation representations and their associated group representations.

7.1. Permutation representations. Denote by {xxx} = {x1, . . . , xn} any set
of n distinct elements. Let Sn be the collection of permutations of {xxx}, and regard
Sn as a group in the usual way. Multiplication of permutations corresponds to
functional composition of maps on {xxx}. Reminder: As the introduction states,
we typically act with Sn on the right of elements from xxx, though sometimes the
presence of a second action forces us to act on the left.

7.1.1. Permutation notation and actions. Denote the identity element of Sn by
1. Here is an inefficient, though clear way to express the effect of g ∈ Sn:(

1 2 · · · n
(1)g (2)g · · · (n)g

)

where k = (j)g is the integer subscript of the image of xj under g.
Example 7.1. Suppose n = 16, and the display of g is(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
16 12 9 8 1 3 2 5 6 10 11 7 4 13 14 15

)
.

The notation indicates g maps x9 to x6. Disjoint cycle notation for g represents
it as a product of disjoint cycles of integers. It requires fewer symbols than the
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complete permutation notation. Also, it shortens computations in Sn by parsing
the group action into memorable pieces. The disjoint cycle representation for g:

(1 16 15 14 13 4 8 5)(2 12 7)(9 6 3).

The order of the disjoint cycles is unimportant; (i)g goes to the right of i. That
is, (1)g = 16 is right of 1, and the cycle closes at 5 because (5)g is 1, back to the
beginning. Exclude cycles of length 1 ((10)g = 10 gives a cycle (10)) for efficiency.
An element of Sn is a k-cycle, k > 1 if it has one and only one cycle — of length k
— of length bigger than 1.

For another unique, less orthodox way to write permutations see [9.17a].
Let G be any group. A degree n permutation representation of G is a homo-

morphism T : G → Sn. Such a T is the same as giving an action of G on the set
S = {x1, . . . , xn}.

With G a group and S a set, a right action is a function: A = AR : S×G→ S:
A(s, g) �→ (s)g with two action properties:

(7.1a) (s)g1g2 = ((s)g1)g2 for s ∈ S, g1, g2 ∈ G. Using A we would write this

A(A(s, g1), g2) = A(s, g1g2).

(7.1b) (s)1G = s for s ∈ S (the identity in G leaves s ∈ S fixed).

A left action is from a function AL : G× S → S with the action composite

AL(g1, AL(g2, s)) = AL(g1g2, s).

An orbit of an action is the range of the set s × G, under A, for some s ∈ S.
The kernel of the action ker(A) consists of those g ∈ G that act like the identity on
S. The most important example is where G acts on the right cosets of a subgroup
H of G. The set Hg = {hg}h∈H is a right coset of H in G. Two right cosets Hg
and Hg′ are either equal or have no elements in common. Assume there are exactly
n distinct right cosets of H in G: H, Hg2, . . . , Hgn. Call n the index (G : H) of H
in G. Finding good representatives for cosets is an art (try [9.17c]).

The archetype of a right action: A : (Hg′, g) �→ Hg′g, or g ∈ G maps a right
coset Hg′ to (Hg′)g = Hg′g. For any subgroup H there is both a set of right cosets
of H and a set of left cosets of H. Only if H is normal in G are all right cosets
also left cosets. The map (g, g′H) �→ gg′H is a left action on left cosets. There are
further actions of groups in [9.16]. We emphasize a right action because this is the
natural action of fundamental groups acting on points as in Lem. 7.13.

Definition 7.2. Suppose G is a group with a normal subgroup H and another
subgroup W . Assume 〈H, W 〉 = G and H ∩W = {1}. We say G is the semi-direct
product of H and W , written H ×sW .

If G = H×sW , then elements of G act as automorphisms of H by conjugation.
This is an action A: For g ∈ G, A(g) : h ∈ H �→ g−1hg

def= hg. This is a right
action. The following lemma, in a left or right action form is in almost all graduate
texts in algebra.

Lemma 7.3. Each element of H ×sW has a unique expression as wh, h ∈ H,
and w ∈ W . Suppose A : W → Aut(H) is a homomorphism giving a right action
of W on H. Then, there is a group G given as a semi-direct product of H and W .
Multiplication in this group satisfies the formula w1h1w2h2 = w1w2(h1)A(w2)h2.
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Remark 7.4 (Affine action). There is a memorable notation for multiplication
by imitating matrix multiplication of lower triangular 2 × 2 matrices. Associate

wihi with
(

wi 0
hi 1

)
, i = 1, 2. Then, the multiplication in H ×s W imitates an

expected matrix calculation:

(
w1 0
h1 1

)(
w2 0
h2 1

)
=

(
w1w2 0

(h1)A(w2)h2 1

)
.

Further, H ×sW acts as permutations of H. For its matrix form, replace h′ ∈ H

by the vector (h′, 1): (h′, 1)
(

w 0
h 1

)
= ((h′)A(w)h, 1) or h′ �→ (h′)A(w)h. The left

action version with upper triangular matrices has a little glitch in it, unless H is an
abelian group. That, however, comes up often in important examples (see [9.6]).

7.1.2. Transitive and intransitive representations. We discuss concepts that use
coset representations. Lem. 7.7 shows how to go from the definition of action to
the language of homomorphisms. When using groups acting on manifolds we often
translate from actions into representations.

Definition 7.5. The right coset representation TH : G → Sn, defined by the
subgroup H ≤ G, comes from the formula

(7.2) for g ∈ G, i ∈ {1, 2, . . . , n}, (i)TH(g) = j with Hgj the right coset
equal to Hgig.

Denote the subgroup of elements g ∈ G for which T (g) fixes the integer j by
G(T, j) = G(j). For T a permutation representation, ker(T ) is {g ∈ G | T (g) = 1G},
the kernel of the action of G. Call T faithful if ker(T ) consists only of 1G. Also, T is
transitive (G under T has one orbit) if for each i ∈ {1, 2, . . . , n}, there is gi ∈ G with
(1)T (gi) = i. Then, G(1)gi is the set of g ∈ G taking 1 to i. By definition, ker(T ) is⋂n

i=1 G(i). Assume T is transitive and (1)T (gi) = i, i = 1, . . . , n. Then, g−1
i G(1)gi,

the conjugate of each element of G(1) by gi, equals G(i). So, G(1) . . . , G(n) is a
complete list of conjugates of G(1) in Sn.

Definition 7.6. Let Ti be a degree n permutation representation of G, i = 1, 2.
Suppose there is h ∈ Sn with h−1T1(g)h = T2(g) for each g ∈ G. Then T1 is permu-
tation equivalent to T2: T1 and T2 are equivalent as permutation representations.

Lemma 7.7. In notation above, G acts on (right) cosets of H ≤ G, permuting
them, and TH : G → Sn is a homomorphism. The kernel is those g ∈ G that fix
each coset. This is the same as the elements of ∩g∈Gg−1Hg. Reordering cosets of
H in G changes the representation TH only up to permutation equivalence.

Suppose AS (resp. AS′) is an action of G on S (resp. S′) with S and S′ disjoint
sets. Then, there is an action of G on S × S′, the direct product action: A × A′ :
(S × S′) × G → S × S′ by g ∈ G : (s, s′) ∈ S × S′ �→ ((s)g, (s′)g). There is also
an action of G on S ∪ S′, the direct sum action: A ⊕ A′ : (S∪̇S′) ×G → S∪̇S′ by
g ∈ G : s ∈ S∪̇S′ �→ (s)g given by A if s ∈ S, and by A′ if s ∈ S′. For T : G→ Sn

an arbitrary permutation representation, partition {1, . . . , n} into a disjoint union
X1 ∪X2 ∪ · · ·Xt of the G orbits. Suppose ni = |Xi|, i = 1, . . . , n.

Theorem 7.8. Let TH : G → Sn be the right coset representation associated
to the subgroup H of G. Then TH is a transitive representation with ker(TH) equal
to

⋂
g∈G g−1Hg. Conversely, if T : G → Sn is a transitive representation of G,

then T is permutation equivalent to TH with H = G(1). Generally, in the notation



7. PERMUTATION REPRESENTATIONS AND COVERS 121

above for T , T = ⊕t
i=1Ti : G→ ⊕t

i=1Sni presents T as the direct sum of right coset
representations corresponding to subgroups of G.

Proof. For each i ∈ {1, 2, . . . , n}, formula (7.2) shows (1)TH(σi) = i. So TH

is transitive. The subgroup ker(TH) consists of the g′ ∈ G such that Hgig
′ = Hgi,

i = 1, . . . , n: g′ ∈ g−1
i Hgi, i = 1, . . . , n. Each element in G has the form hgi for

some h ∈ H and i ∈ {1, 2, . . . , n}. So, g′ ∈ ker(TH) if and only if g′ ∈
⋂

g∈G g−1Hg.
Let T : G→ Sn be an arbitrary transitive permutation representation. Choose

g1, . . . , gn so that (1)T (gi) = i, i = 1, . . . , n. Thus, the cosets G(1)g1, . . . , G(1)gn

are distinct. Conclude that (7.2), with G(1) replacing H, gives TG(1). As

{g ∈ G | (i)T (g) = j} = g−1
j G(1)gi,

(i)T (g) = j exactly if (i)TG(1)(g) = j. This means TG(1) and T are the same
permutation representation. We made choices in selecting the gj s. So, independent
of choices, the representations are permutation equivalent.

Now suppose the representation is not transitive. Since the orbits are all dis-
tinct, there is a natural map from the representation to the direct sum representa-
tion on the collection of orbits. �

7.1.3. Primitive representations and equivariant maps. A subgroup H ≤ G is
normal if g−1Hg = H for each g ∈ G. Only then is the set of pairwise products
HgHg′ of two cosets a single coset, equal to Hgg′. So, the cosets have a natural
group multiplication. Denote this set by G/H: Each element ḡ = g mod H ∈ G/H
denotes the coset Hg. For H any subgroup of G, the normalizer of H in G is
NG(H) = {g ∈ G | g−1Hg = H}. Similarly, define the centralizer of H in G:

CenG(H) = {g ∈ G | g−1hg = h for each h ∈ H} [9.15].

Definition 7.9. Consider a transitive permutation representation T : G→ Sn

of G. Call T primitive if there are no groups properly between G(1) and G. Let
G(1) be the subgroup of G that fixes 1. If T is transitive, then it is T is doubly
transitive if for each j ∈ {2, . . . , n} there is a g ∈ G(1) with (2)T (g) = j: G(1) is
transitive on {2, . . . , n}.

When the notation shows G is in Sn, we drop the T notation for permutation
representations. The transitivity formula for a chain of subgroups K ≤ H ≤ G says
that (G : K) = (G : H)(H : K).

Lemma 7.10. Doubly transitive permutation representations are primitive.

Proof. Suppose G ≤ Sn is doubly transitive. Let H be a subgroup of G
properly containing G(1). Choose h ∈ H \ G(1). Then (1)h = j ∈ {2, . . . , n}.
For any j′ ∈ {2, . . . , n}, use double transitivity to produce g′ with (1)g′ = 1 and
(j)g′ = j′: hg′ ∈ H takes 1 to j′. So, the number of cosets of G(1) in H is the same
as the number of cosets of G(1) in G. Apply the transitivity formula to the chain
G(1) < H ≤ G to conclude the index of H in G is 1 and T is primitive. �

Assume group G acts on two sets: It has an action AS (resp. AS′) on S (resp. S′)
with S and S′ related by a function f : S → S′. We say f commutes with (is
equivariant for) these actions if f((s, g)AS) = (f(s), g)AS′ for s ∈ S, g ∈ G.

Example 7.11 (Compatible permutation representations). For G a group and
M a normal subgroup, let uM : G → G/M be the natural homomorphism with
kernel H. Suppose H1 is a subgroup of G and H2 is a subgroup of G/M for which
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fM (H1) ≤ H2. Then uM induces a map fM : {H1g | g ∈ G} → {H2g | g ∈ G}.
This map commutes with G acting on the cosets of H1 and on the cosets of H2.

7.1.4. Representations from permutation representations. [9.6] gives many ex-
amples of primitive groups that are not doubly transitive. For g ∈ G, some authors
abuse notation to write T (g) = (s1) · · · (st) where s1, · · · , st are the integer lengths
of the disjoint cycles of T (g) (we usually omit cycles of length one) to indicate a
cycle type (conjugacy class) in Sn. Denote the count of length one cycles in T (g)
by t(T (g)), the trace of T (g). For example, the permutation example of §7.1.1 has
trace 2 and its cube has trace 5. We remind why T (g) it is a trace.

Regard the formal symbols {x1, . . . , xn} as basis vectors for a vector space V
over a field F . Then each permutation g ∈ Sn extends linearly to act on V . That is,
applying g ∈ G to v =

∑n
i=1 aixi ∈ V gives

∑n
i=1 aix(i)g. Write the result of g on xi

to be
∑n

j=1 ai,jxi with coefficients denoting what would appear in the ith position
of a matrix Mg acting on the right of (row) vectors. When F has characteristic
0, the matrix Mg has trace

∑n
i=1 ai,i, the count of the number of xi s that g fixes.

In each row and column the matrix Mg has exactly one non-zero entry and that is
a 1. So, Mg is an element of the orthogonal group On: Mg times its transpose is
the identity matrix. The determinant function is multiplicative on n× n matrices.
Conclude that Mg has determinant Det(Mg)

def= Det(g) equal to ±1. When the
field F has characteristic p, the count of the integers fixed by g is the trace mod p.
We may revert, when acting with matrices to a traditional left-hand action.

The result is that a degree n permutation representation T of a group G pro-
duces a homomorphism ρT : G → GLn(F ). If T is a faithful permutation rep-
resentation, then ρT is a faithful group representation: Its kernel is trivial. Any
homomorphism ρ : G → GLn(F ) is called a representation of G over the field
F . With V = Fn, we often write VT to indicate we mean V with the action
through T . Then, for any representation, extend this notation to use Vρ. In fact,
group theory doesn’t restrict to just finite dimensional representations, though we
will. Most situations regard permutation representations as the same if they are
equivalent. If M ∈ GLn(F ), then the two permutation representations g �→ ρ(g)
and g �→ M−1ρ(g)M are (representation) equivalent. Though two permutation
representations may be inequivalent, their corresponding representations might be
equivalent (§8.6.2 and [9.20]).

The group representation attached to the sum of permutation representations
is the action on the direct sum of the vector spaces. When F has characteristic
0, every permutation representation of degree exceeding 1 is the direct sum of the
identity representation and another representation. These are the only summands
if and only if the permutation representation is doubly transitive [9.19d]. Further,
the group representation of the direct product of two permutation representations
is their tensor product; the trace is the product of the constituent traces [9.19a].
The group ring of G over F has the notation F [G]. The product of

∑
g∈G agg

and
∑

g∈G bgg (with ag, bg ∈ F ) is given by convolution:
∑

g∈G cgg with cg =∑
h∈G ahbh−1g, g ∈ G. A representation ρ then produces a homomorphism of

associative rings:
∑

g∈G agg �→
∑

g∈G agρ(g) ∈ Mdeg(ρ)(F ). Call an idempotent I
in this ring G invariant if it commutes with multiplication by elements of G. That
means the range of I is a G invariant space: I is a G invariant projection [9.19h].
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7.2. Covering spaces. Let X and Y be differentiable (resp. analytic) man-
ifolds. Assume f : Y → X is a differentiable (resp. analytic) map. We will often
use that if f is one-one, and onto in a neighborhood of a point, then it has a dif-
ferentiable (resp. analytic) inverse (Lem. 4.2). Suppose ϕ : X → X ′ is any map
between spaces, and x0 maps to x′0 under ϕ. As in Lem. 6.15, this induces a homo-
morphism on fundamental groups ϕ∗ : π1(X, x0)→ π1(X ′, x′0) by mapping a closed
path γ : [a, b] → X to [ϕ ◦ γ] ∈ π1(X ′, x′0). This makes sense because composing
with ϕ preserves homotopy classes of paths into X. Though obvious, it doesn’t
trivialize computing the image of π1(X, x0) under ϕ∗.

Definition 7.12 (Covering space). The pair (Y, f) (or just Y if there is no
confusion) is a covering space (or cover) of X if each point x ∈ X has a con-
nected neighborhood (Chap. 2 §2.2.2) Ux with this property: for each connected
component V of f−1(Ux), restricting f to V is a one-one and onto map V → Ux.

7.2.1. Degree of a cover. Assume X is connected, and f : Y → X is a cover.
Then, the cardinality of the fibers |f−1(x)|, x ∈ X, being locally constant, must
actually be constant. This is the degree deg(f) of f . We say (Y, f) is finite, or that
f is a finite cover if deg(f) <∞.

Two covers fi : Yi → X, i = 1, 2 are equivalent (as covers of X) if there is a
one-one and onto continuous map ψ : Y1 → Y2 with f2 ◦ ψ = f1 [9.21]. Note: For
any covering space (Y, f) of X, U an open subset of X, and V a union of connected
components of f−1(U), the restriction of f to V gives a cover (V, f|V ) of U .

A framework for considering equivalence classes of finite covers of a manifold X
is the goal remaining to this subsection. This immediately reduces to considering
connected finite covers (Y, f); we assume Y is a connected space. The classification
hinges on producing an equivalence class, T (Y, f), of permutation representations
(§7.1) from an equivalence classes of covers (Y, f). We do that now.

Note: Covers in this section are what topologists call covers. In algebraic
geometry the word cover includes complex analytic maps of manifolds having some
fibers that ramify (their cardinality is smaller than the degree). The phrase then
includes, for example, any nonconstant analytic map f : Y → P1

z, with Y a compact
Riemann surface and deg(f) ≥ 2. As the fundamental group of P1

z is trivial, such
an f must ramify (Chap. 4 Thm. 1.8). By the end of Chap. 4, a cover will include
any surjective analytic map between compact complex manifolds with finite (point
sets in their) fibers. Reference back to this chapter will speak of the unramified
covers corresponding to subgroups of fundamental groups as in Thm. 7.16.

7.2.2. Covers and permutation representations. Let f : Y → X be a cover with
γ : [a, b]→ X a path having initial point x0 and end point x1.

Lemma 7.13 (Action of path lifting). For y′ ∈ Y with f(y′) = x0, there is a
unique path γ̃ : [a, b]→ Y with f ◦ γ̃ = γ: the lift of γ with initial point y′.

So, γ produces a unique map γ∗ : f−1(x0) → f−1(x1) depending only on the
image of γ in π1(X, x0, x1). In particular, consider paths γi : [ai, bi]→ X, i = 1, 2,
with γ1(b1) = γ2(a1) and γ1(a1), γ2(b1), γ2(b2) respectively x0, x1, x2. Then, there
is a transitivity formula:

(7.3) (γ1 · γ2)∗ = (γ1)∗ ◦ (γ2)∗ : f−1(x0)→ f−1(x2).

Proof. Each γ(t) has a neighborhood Ut with f one-one on the connected
components of f−1(Ut). The argument of Chap. 2 §3.3.2 works here as it did there,
by assuming you have extended the path lifting γ̃ to an interval [a, t′] with t′ < b.



124 3. COMPLEX MANIFOLDS AND COVERS

Let [r, s] be a closed nontrivial interval for which t′ ∈ [r, s] and there is neighborhood
Ut′ of (̃t′) containing γ([r, s]) with U ′ ⊂ f−1(Ut′) a connected component on which
f is one-one and γ∗(t′) ∈ U ′. For each t ∈ [r, s] define γ̃(t) to be the unique point
of U ′ lying over γ(t). Finish exactly as in Chap. 2 §3.3.2.

Now considering (7.3) Since the map γ∗ is clearly continuous and varies con-
tinuously in a homotopy family, as a map on a finite set, it is a homotopy class
invariant. So, γ∗ depends only on the image of γ in π1(X, x0, x1). The path γ̃1 · γ2

starting at y′ is the same as the path γ̃1 · γ̃2 where γ̃2 is the unique path starting
at the end point of γ̃1. The formula (7.3) just says the endpoint of both of these
paths are the same. �

Label the points of f−1(x0) as yyy = {y1, . . . , yn}. Consider a path γ : [a, b]→ X
based at x0. Then, the end point of the lift of γ with initial point yj , j = 1, . . . , n
associates to γ and yyy a unique labeling of f−1(γ(b)). A closed path γ gives an
element of Sn, Tyyy(γ), as follows:

(7.4) (i)Tyyy(γ) = j with yj the end point of the lift of γ with initial point yi.
For γ1, γ2 ∈ Π1(X, x0) (closed paths based at x0) (7.3) gives

Tyyy(γ1γ2) = Tyyy(γ1)Tyyy(γ2).

The right side consists of elements multiplied in Sn. So, Tyyy defines a permutation
representation of π1(X, x0) whose equivalence class we denote by T (Y, f).

In Fig. 7, for example, w �→ wn = z gives the map f : C∗w → C∗z (C∗ = C\{0}).
A lift of γ (a clockwise circle, compatible with our choices in Chap. 4) is γ̃ going 1

n
of the way around a clockwise circle. The associated permutation is an n-cycle of
Sn representing that γ̃ goes from the lift y′ = 21/n of γ(0) = 2 to y′′ = 2

1
ne

−2πi
n , the

point on γ̃ lying 1
n of the way around from y′. §7.2.3 discusses a traditional picture

representing the nth power map as if it were the projection on a real coordinate.

Figure 7. An n-cycle of path liftings

Cz↘

2
1
ne

−2πi
n

↘• ↖ γ̃

←− γ

Cw

�

2
1
n→• •←3

1
n 2→• •←3

7.2.3. Impossible pictures. We discuss the problem of representing covers by
pictures in R3. Consider the ramified cover f : Uw:0,∞ → Uz:0,∞ by w �→ wn in
Fig. 7. Points of Uw:0,∞ over z ∈ Uz:0,∞ correspond on the graph of f to C × C
points on the line with constant second coordinate z. You can’t draw pictures in
C × C = R4. So first year complex variables texts try to represent Uw:0,∞ and
Uz:0,∞ as subsets of R3.
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Let (x1, x2, x3) be coordinates for R3, and let x3 = 0 represent Uz:0,∞ sitting in
R3\{(0, 0, 0)}. Pictures try to represent an annulus around the origin in Uw:0,∞ as a
set M in R3 over an annulus D0 in Uz:0,∞. Then, points of M over (x1, x2, 0) ∈ D0

are on the line in R3 whose points have first coordinates x1 and x2. That is, f
appears as a coordinate projection. There is, however, no topological subspace M
of R3 that can work! If there were, then a cylinder perpendicular to the plane
x3 = 0, with (0, 0, 0) on its axis, would intersect M in a simple closed path winding
n times around the cylinder. Represent such a path by γ : [0, 1] → R3 where
t ∈ [0, 1] maps to

γ(t) = (cos(2πnt), sin(2πnt), x3(2πnt)) and x3(2πn) = x3(0).

Conclude: w(t) = x3(2πnt) − x3(2πnt + 2π) is 0 for some value of t between
0 and (n − 1)/n. So, the path isn’t simple. The author has never seen such
a picture attempt in the literature for any noncyclic cover, much less for more
demanding nonsolvable groups. Still, we discuss this more in Chap. 4 §2.4 which
also uses symbolic representations that assume we understand cyclic covers from
their description in Chap. 2.

7.3. Pointed covers and a Galois correspondence. Let f : Y → X be a
cover. Call the triple (Y, f, y′) a pointed cover if y′ ∈ Y . Then, we regard f(x′) = x0

as the base point for X, and (Y, f, y′) is a pointed cover of (X, x0).
Definition 7.14. Suppose (Y, fi, y

′
i), i = 1, 2, are two pointed and connected

covers of X. We say they are compatibly pointed (or compatible) if whenever
we have covers h : Z → X and hj : Yj → Z, with h ◦ hj = fj , j = 1, 2, then
h1(y1) = h2(y2).

If it is clear a cover is pointed, we may refer just to the covering maps f1 and
f2 to say these are compatible. Extension Lem. 8.1 shows the difference between
a pointed cover on one hand, and a cover without a point on the other. Group
theoretically this interprets as the difference between giving a subgroup of a group
and giving a conjugacy class of subgroups.

7.3.1. Fiber products of covers. The basic theorems of Galois theory, including
the construction of the Galois closure of a cover (§8.3), that translates geometrically
using fiber products.

Lemma 7.15. Given connected covers fj : Yj → X, j = 1, 2, of X, any con-
nected component of Y1 ×X Y2 is minimal among among connected covers (Y, f)
of X factoring through each fj. If the covers are compatibly pointed with y′j ∈ Yj,
j = 1, 2, then a unique pointed component of Y1 ×X Y2, (Y, (f1, f2), (y′1, y

′
2)) is

compatible with both (Yi, fi, y
′
i), i = 1, 2.

Proof. Let Y be a connected component of Y1 ×X Y2. Denote projection of
Y on Yj by prj . Consider any (y1, y2) ∈ Y1 ×X Y2 lying over x ∈ X. Choose a
neighborhood Ux of x for which there is a neighborhood Uyj ⊂ Yj on which fj maps
one-one to Ux. Then, restricting (f1, f2) to Uy1 ×Ux

Uy2 gives a one-one map that
shows Y is a cover of X.

Now assume the covers are compatibly pointed. Let x0 ∈ X be f1(y′1) = f2(y′2).
Then, a unique component of Y1 ×X Y2 contains (y′1, y

′
2). �

Thm. 7.16 produces covers of any path-connected, locally path-connected space.
For, however, our main applications where X is a (complex) manifold, it shows any
cover of X is a (complex) manifold with a natural coordinate chart. It also says
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one cover of a space X dominates all others. This is the universal covering space
X̃ corresponding to H = {1} ≤ π1(X, x0).

Theorem 7.16 (Unramified Galois correspondence). Let (Y, f, y′) be a pointed
cover of (X, x0). This canonically corresponds to a subgroup HY,f,y′ ≤ π1(X, x0)
which we identify with π1(Y, y′). The index (π1(X, x0) : π(Y, y′)) is n = deg(f).
Any ordering yyy = {y1, . . . , yn} on the fiber f−1(x0) with y1 = y′ corresponds to a
transitive permutation representation TY,f,yyy in which the stabilizer of 1 is HY,f,y′ .
If y′′ ∈ f−1(x0), then HY,f,y′ and HY,f,y′′ are conjugate subgroups of π1(X, x0) and
we identify y′′ with a coset of H in π1(X, x0).

Conversely, each subgroup H ≤ π1(X, X0) of index n (possibly ∞) produces
a canonical pointed (connected) degree n cover (YH , fH , y′H) of X. We regard y′H
as the H coset of the identity in π1(X, X0). The fundamental group of YH maps
one-one onto H under (fH)∗.

Suppose H1 and H2 are two subgroups of π1(X, x0). Then, the unique con-
nected component of YH1 ×X YH2 containing (y′H1

, y′H2
) corresponds to the subgroup

H1 ∩H2. The maximal pointed cover of X through which both f1 and f2 factor is
(Y〈H1,H2〉, f〈H1,H2〉, y

′
〈H1,H2〉).

§7.3.2 consists of a proof of Thm. 7.16 and §8.1 has corollaries appropriate for
covers that aren’t pointed.

7.3.2. Proof of Thm. 7.16. Start with (Y, f, y′). Apply (7.4) to a closed path
γ : [a, b] → X based at x0. Use a specific ordering of f−1(x0) with y1 = y′. The
lift of γ to a path with initial point y1 is a closed path in Y based at y1 if and
only if (1)Tyyy = 1. So we identify π1(Y, y1) with H(f, y1), the subgroup of π1(X, x0)
stabilizing 1 under the map f∗.

Now consider how a subgroup H of π1(X, x0) of index n canonically produces a
degree n pointed cover of X. First: H produces an equivalence class of permutation
representations of π1(X, x0) of degree n (Thm. 7.8), with the coset of the identity
corresponding to the integer 1 in the permutation representation.

Define Y∞: As a set it is the collection of all equivalence classes of paths in X
— not necessarily closed — with initial point x0. For γ ∈ Y∞ let f∞([γ]) be the
endpoint of γ. Define YH to be Y∞ modulo the relation that equivalences

[γ1] and [γ2] if f∞([γ1]) = f∞([γ2]) and [γ1γ
−1
2 ] ∈ H.

Let fH : YH → X be the map induced by f∞ on the set YH . Now use that X is
a connected manifold. For each x ∈ X choose a path γ with initial point x0 and
endpoint x. A ball neighborhood Ux of x has this property: For γ1, γ2 : [a′, b′]→ Ux,
two paths with the same initial and endpoints, γ1γ

−1
2 is equivalent to the constant

path in Ux.
For each such pair (γ, Ux) consider the subset of YH represented by paths γγ1

with γ1 a path in Ux with initial point x. Denote this subset by Vγ,Ux . We declare
the topology on YH to have as a basis of open sets these Vγ,Ux s running over all
pairs (x, Ux). For y ∈ YH with fH(y) = x, f−1

H (Ux) has n connected components,
Vγi,Ux , i = 1, . . . , n, where [γ1γ

−1
i ] runs over distinct coset representatives of H in

π1(X, x0). With this topology (YH , fH) satisfies Def. 7.12. It also has an atlas of
open sets inherited from X. If we show YH is Hausdorff, then (YH , fH) is a cover of
X. As usual, since X is Hausdorff, we have only to find disjoint open sets around
two points over the same point of X. We have done exactly that above.
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To complete classifying pointed covers of X, we show the following. Given
(Y, f, y′) a connected cover and H(f, y′) the corresponding subgroup of π1(X, x0),
and (YH(f,y′), fH(f,y′), y

′
H(f,y′)) the cover of X associated to H(f, y′), then

(7.5) (Y, f, y′) is equivalent to (YH(f,y′), fH(f,y′)).
For y ∈ Y let γ∗ : [a, b]→ Y be a path from y′ to y, and let ψ(y) = fH(γ∗). Follow
the defined maps to see ψ : Y → YH(f,yyy) is a one-one map giving (7.5).

Suppose (YH , fH , yH) is the canonical cover defined by H ≤ π1(X, x0). Let
(YH , fH , y′′) by the same cover, those with a different point, y′′ ∈ f−1

H (x0). Any
γ ∈ π1(Y, yH , y′′) defines a coset H[γ] of H in π1(X, x0). Conversely, the elements
of π1(X, x0) that stabilize H[γ] are exactly the elements of the conjugate subgroup
[γ−1]H[γ]. That shows that using different points attached to a fixed cover corre-
spond to subgroups conjugate to H.

Now suppose H1 and H2 are two subgroups of π1(X, x0). We must show prop-
erties attached to the equivalence of two categories: Pointed covers of (X, x0) and
subgroups of π1(X, x0). The notion of fiber product is a categorical construction.
So, the association between H1 ∩H2 and (Y〈H1,H2〉, f〈H1,H2〉, y

′
〈H1,H2〉) is that they

are the fiber products of the two givens in their respective categories. Def. 1.3 notes
the fiber product for subsets of a set is just their intersection. As the intersection
of two subgroups is a subgroup, the fiber product from subgroups of a group is just
their intersection. For saying fiber product is categorical, see [9.3a]. Similarly, the
correspondence between 〈H1, H2〉 and (Y〈H1,H2〉, f〈H1,H2〉, y

′
〈H1,H2〉) is that these are

the pushouts of the two givens in their respective categories [9.3c].

8. Group theory and covering spaces

We won’t be able to make explicit computations with covers until Chap. 4.
Still, the topics of this section come from practical experience with covers. Fol-
lowing a discussion of algebraic functions (§8.2) and a geometric approach to the
Galois closure of a cover (§8.3), we consider the decomposing covers (§8.4) and the
relation between covers and locally constant bundles (§8.5). A problem from this
on computing components of covers shows the power of an elementary piece from
finite group representations (§8.6)

8.1. Corollaries of Thm. 7.16. Suppose (Yi, fi, y
′
i), i = 1, 2, are any two

pointed covers of (X, x0). By an isomorphism g : (Y1, f1, y
′
1)→ (Y2, f2, y

′
2) between

them, we mean an isomorphism between Y1 and Y2 with these properties:
(8.1a) g(y′1) = y′2 (g preserves basepoints); and
(8.1b) f2 ◦ g = f1 (g commutes with projections).

The crucial point is that if two pointed covers are isomorphic, this isomorphism is
unique. Suppose, however, we don’t assume g preserves basepoints?

Lemma 8.1 (Extension Lemma). Consider a pair of covers (Yi, fi), i = 1, 2,
without their basepoints, and any isomorphism g between them. Then, g maps the
fiber f−1

1 (x0) one-one to f−1
2 (x0), and what g does to any one element of f−1

1 (x0)
determines g. Further, isomorphisms between (Y1, f1) and (Y2, f2) correspond one-
one with automorphisms Aut(Yi, fi) of (Yi, fi) (for either i = 1 or 2).

Any automorphism of a cover (Y, f) of X lifts to an automorphism of the
universal cover (X̃, f̃) of X. If X is a complex manifold, then Aut(Y, f) is a group
of complex analytic isomorphisms.
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Proof. Assume g that maps y′1 ∈ f−1
1 (x0) to y′2 ∈ f−1

1 (x0). Then, g is an
isomorphism between (Y1, f1, y

′
1) and (Y2, f2, y

′
2), and so it is unique. Let A1,2 be

the set of isomorphisms between (Y1, f1) and Y2, f2). Then, we have an action of
Aut(Y1, f1) (resp. Aut(Y2, f2)) on the right (resp. left) of A1,2:

A1 : A1,2 ×Aut(Y1, f1)→ A1,2 by (g, α) �→ g ◦ α; and
A2 : Aut(Y2, f2)×A1,2 → A1,2 by (β, g) �→ β ◦ g.

For g′, g ∈ A1,2, g−1g′ = α is in Aut(Y1, f1). This shows g ◦ α = g′, and A1 is
transitive on A1,2 (as in §7.1). Similarly, A2 is transitive on A1,2.

Now consider an automorphism α of (Y, f). Again, let (Y, f, y′) with y′ over
x0 be a corresponding pointed cover. Then, (Y, f, y′) and (Y, f, α(y′)) are pointed
covers of (X, x0). So, Thm. 7.16 shows they correspond to conjugate subgroups H
and Hα: Hα = [γ−1]H[γ] for some [γ] ∈ π1(X, x0). A natural analytic isomorphism
between (YH , fH , y′H) and (YHα , fHα , y′Hα

) comes by mapping the homotopy class
of [γ′] defining a point of YHα

(in §7.3.2) to [γ][γ′]. The new base point (the coset
of [γ]) has stabilizer [γ−1]H[γ]. This automorphism lifts to the universal covering
space, because premultiplying by [γ] also defines it there. �

Definition 8.2. Let Tyyy : π1(X, x0)→ Sn be the representation of (7.4) associ-
ated to (Y, f). The image of π1(X, x0) is called the (geometric) monodromy group,
G(Y, f), of the cover. It is isomorphic to π1(X, x0)/

⋂n
i=1 π1(Y, yi) (Thm. 7.8).

Covers (Y, f) of a manifold (X, x0) have two extremes. For most, Aut(Y, f)
consists only of the identity element: We say (Y, f) has no automorphisms. The
other extreme is in this definition.

Definition 8.3. If Aut(Y, f) is transitive on the the fiber f−1(x0), we say
(Y, f) is Galois.

The Galois situation is our main tool, though what constantly arises in practice
is the situation with no automorphisms. §8.3 has the details for distinguishing
these and all the cases in between. An example of the Galois situation is the
universal cover of (X, x0) where the automorphism group is isomorphic to the whole
fundamental group of (X, x0). The fiber f−1(x0) in this case corresponds to the
elements of π1(X, x0), and by translation these give a permutation of the points.
Automorphisms also give a permutation of f−1(x0). Still, from Lem. 8.8, only
when π1(X, x0) is abelian can we expect to canonically identify these two groups
of permutations. The next lemma revisits Chap. 2 Prop. 3.2. As previously, use
the notation f̃ : X̃ → X for the universal cover of X with paths starting at x0

representing its points.

Lemma 8.4. In the notation above, let [γ] ∈ π1(X, x0) and let [γ′] represent
a homotopy class of paths on X with γ′ : [a, b] → X, γ′(a) = x0 and γ′(b) =
x. Then, multiplication by [γ]−1 on the left of γ′ induces an automorphism of X̃

giving an action AL : π1(X, x0) × X̃ → X̃. Regard the fiber f̃−1(x0) as elements
of π1(X, x0). Then, the usual right action of π1(X, x0) gives the group structure
identifying π1(X, x0) with the monodromy group of f̃ .

The exponential map exp : R → S1 by θ �→ e2πiθ presents R as the universal
cover of S1 with Z as its fundamental group. The path γ∗n corresponds to n ∈ Z
and the automorphisms of (R, exp) identify with Z acting by translation. Similarly,
the fundamental group of a complex torus Cn/L identifies with the lattice L.
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Proof. The universal covering space is unique up to homeomorphisms com-
muting with the map to X. One way to identify the fundamental group of a
space X is to find any space X̃ with trivial fundamental group and a covering map
f̃ : X̃ → X. Given x0 ∈ X, any other cover of X that has trivial fundamental
group must be isomorphic to (X̃, f̃), and this isomorphism is unique up to compo-
sition on the left with an element of (X̃, f̃). Since R and Cn are contractible, they
have trivial fundamental group (Lem. 6.6). The map θ ∈ R �→ e2πiθ is a covering
map with the elements of R over 1 given by the integers. The permutation of the
fiber over 1 given by the path γ∗n is translation by n. The argument is similar for
a complex torus. �

The next corollary tells when a map between spaces extends to a map between
covers of the spaces.

Corollary 8.5. Suppose ϕ : X → X ′ is a differentiable map between complex
manifolds mapping a point x0 ∈ X to x′0 ∈ X ′. Let ϕH′ : Y ′H′ → X ′ be the
cover defined by a subgroup H ′ ≤ π1(X ′, x′0). Then, there is a continuous (and so
automatically differentiable) map ψ : X → Y ′H′ with ϕH′ ◦ ψ = ϕ if and only if the
induced map ϕ∗ : π1(X, x0)→ π1(X ′, x′0) has image in a conjugate of H ′.

Proof. Suppose the induced map ϕ∗ has image in a conjugate m−1H ′m of
H ′. Let γ∗ be a representative path in X ′ for which [γ∗] = m. Then, let γ :
[a, b] → X start at x0 and end at x. Define ψm,H′ : X → Y ′H′ by ψ(x) is the class
m · [ϕ ◦ γ] ∈ Y ′H′ : the product of m and the image under ψ of γ. To show the map
doesn’t depend on γ, we consider another closed path γ′ from x0 to x. We are done
if the closed path (γ∗)−1 ·ψ(γ · (γ′)−1) ·γ∗ in X ′ defines a closed path in Y ′H′ . Since,
however, γ · (γ′)−1 is a closed path in X, its image under
phi∗ is some ρ ∈ m−1H ′m by hypothesis and the image of (γ∗)−1 ·ψ(γ · (γ′)−1) · γ∗
is therefore mρm−1 ∈ H ′. From the definition of Y ′H′ this exactly says the image
path is closed.

Conversely, suppose there is such a ψ : X → Y ′H′ . Then, closed paths in X
have image under ψ in X ′ that lift to closed paths in Y ′H′ . So, the image group
ψ∗(π1(X, x0)) = H∗ is a subgroup of π1(X ′, x′0) whose corresponding cover Y ′H∗

factors through ψH′ : Y ′H∗ → X ′. �

Suppose X is a connected complex manifold (like Uzzz = P1
z \ {zzz}). Define

analytic continuation along a path from Def. 6.7. Consider the extensible functions
E(X, x0): complex analytic functions defined in a neighborhood of x0 that have an
analytic continuation along every path in X (as in Chap. 2 Def. 4.5). Let ϕ : Y → X
be a cover with y0 ∈ Y lying over x0. Let γ : [a, b] → X be a path starting at x0

with γ† : [a, b]→ Y its unique path lift starting at y0 (Lem. 7.13).
Proposition 8.6. There is an isomorphism (of rings) between E(Y, y0) and

E(X, x0). In particular, for (X̃, x̃0) the universal cover of (X, x0), holomorphic
functions on X̃ form a ring isomorphic to E(X, x0). If ϕ is a finite cover of punc-
tured Riemann surfaces, this induces an analytic isomorphism between E(Y, y0)alg

and E(X, x0)alg. These results hold with extensible meromorphic replacing extensi-
ble holomorphic functions.

Proof. Since ϕ is a cover, there is a disk neighborhood Ux0 of x0 and a
component Uy0 of ϕ−1(Ux0) with y0 ∈ Uy0 on which ϕ maps one-one. So, restriction
of a function f ∈ E(X, x0) to Ux0 transports by ϕ−1 to a function f ∈ Uy0 . There
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is no harm in using the same notation to extend f along γ† : [a, b]→ Y starting at
y0. Let γ be ϕ ◦ γ†, and let f∗ : [a, b]→ P1

z be the continuous function defining the
analytic continuation along γ. Define the analytic continuation of f along γ† to be
the same, f∗. This shows f is extensible in Y . Clearly, if f is algebraic (on X) it
will also be algebraic on Y . �

8.2. The problem of identifying algebraic functions explicitly. Sup-
pose ϕ̃ : X̃ → X is the universal covering space of a complex manifold X and x̃ lies
over x0 ∈ X. Then, similar to formation of complex torii and other quotient mani-
folds, it is natural to regard points of X as the orbits of the action of π1(X, x0) on
X̃. Riemann’s approach was to identify the universal covering space of a Riemann
surface as a simply connnected domain on the Riemann sphere. Consider the case
of Prop. 8.6 when Y = X̃ and X = Uzzz, with |zzz| ≥ 3. Riemann’s Uniformization
Theorem says X̃ is analytically isomorphic to a disk ∆ in such a way that the map
extends continuously to the boundaries (Chap. 4 Def. 6.8 for an elementary proof,
or [Spr57, Thm. 9.6] for the more general case). So, E(Uzzz, z0) is ring isomorphic to
convergent functions in a disk. We find it convenient to replace a disk by the ana-
lytically isomorphic upper half plane H. This is the same exact space independent
of (z0, zzz). What changes, however, with zzz is the identification of algebraic functions
Fzzz. Suppose ϕzzz : H→ Uzzz is this uniformization.

Elements of PGL2(R) with positive determinant (Chap. 2 [9.14d]; this identifies
with PSL2(R)) represent the action of complex analytic isomorphisms of H. As
zzz varies, a different subgroup Γzzz (though abstractly isomorphic as a group) of
PSL2(R) defines Uzzz as a quotient of H.

Prop. 8.6 identifies extensible (meromorphic) algebraic functions on Uzzz with
certain meromorphic functions Fzzz on H. Though, which ones? Given g∗ mero-
morphic on H, composing it with an analytic isomorphism of H produces a new
meromorphic function on H. We call the compositions of g∗ with elements of Γzzz

transforms by Γzzz.

Proposition 8.7. Suppose f , meromorphic on H, has only finitely many trans-
forms under the action of Γzzz and a unique limit value as it approaches any point
in R ∪ {∞}. Then, f defines an algebraic element of E(Uzzz, z0) and conversely.

Outline. Let x̃ ∈ H lie over z0 ∈ Uzzz. From Prop. 8.6, any meromorphic
extensible function g on Uzzz identifies with a meromorphic function g∗ on H. Further,
the analytic continuation of g around [γ] ∈ π1(Uzzz, z0) produces g∗γ , the result of
composing g∗ with the analytic isomorphism of H associated to γ. If g is algebraic,
then it has only finitely many analytic continuations, so the different transforms
g∗γ , running over γ ∈ π1(Uzzz, z0) are finite in number. Conversely, if the number
of transforms of a meromorphic function g∗ on H are finite in number, then the
identification of g∗ with g ∈ E(Uzzz, z0) gives a function with only finitely many
analytic continuations. �

8.3. Galois theory and covering spaces. Use notation from Lem. 8.1:
(Y, f) is a cover of X.

8.3.1. Identifying automorphisms of a cover. Having Aut(Y, f) act on a fiber
{y1, . . . , yn} = f−1(x0) induces a homomorphism Λyyy : Aut(Y, f)→ Sn.

It is a mistake to confuse the Galois (geometric monodromy) group of a cover
with its automorphism group, even if the cover is Galois. The next lemma efficiently
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differentiates Aut(Y, f) from G(Y, f). It shows that having chosen a right action
for G(Y, f) forces using a left action of Aut(Y, f) on the set {1, . . . , n}.

Lemma 8.8. Let (Y, f) be a connected cover of X. The homomorphism Λyyy

injects Aut(Y, f) onto the centralizer CenSn
(G(Y, f)) of G(Y, f) in Sn. This is iso-

morphic to Nπ1(X,x0)(π1(Y, y1))/π1(Y, y1) (§7.1) and |Aut(Y, f)| ≤ n with equality
if and only if π1(Y, y1) is normal in π1(X, x0).

Proof. For y ∈ Y let γ∗ : [a, b] → Y be a path with initial point yi and
endpoint y. Consider ψ ∈ Aut(Y, f). Then ψ ◦ γ∗ : [a, b]→ Y is the (unique) lift of
f ◦ γ∗ with initial point ψ(yi). So, if i = 1 and ψ(y1) = y1, then ψ ◦ γ∗ = γ∗. Thus
ψ(y) = y for each y ∈ Y , and Λyyy is injective. This alone shows |Aut(Y, f)| ≤ n.

In the above, assume γ = f ◦ γ∗ is a closed path. If the endpoint of γ∗ is yj ,
then the endpoint of ψ ◦ γ∗ is ψ(yj). Thus

(i)Λyyy(ψ)−1 ◦ Tyyy(γ) ◦ Λyyy(ψ) = (i)Tyyy(γ).

Equivalently, Λyyy(ψ) ∈ CenSn
(G(Y, f)). Conversely, for α ∈ CenSn

(G(Y, f)) define
α to be a permutation of the points {y1, . . . , yn} from its action on {1, . . . , n}. Still,
use an action on the left: If (i)α = j, write α(yi) = yj). Our goal is to create an
automorphism—also called α—on Y that extends this action on the fiber over x0.

Take i = 1 and γ∗ as in the first paragraph above. Define ψα,γ∗ :
(8.2) ψα,γ∗(y) is the endpoint of the lift of f ◦ γ∗ with initial point α(y1).

If we show ψα,γ∗(y) is independent of γ∗ having endpoint y, then ψα,γ∗ defines
an element ψα ∈ Aut(Y, f). For this purpose let γ1 (resp., γ2) be a path in Y with
initial (resp., end) point y and end (resp., initial) point y1. If ψα,γ∗(y) �= ψα,γ1(y),
then ψα,γ∗γ2(y1) �= ψα,γ1γ2(y1). Therefore, ψα,γ∗(y) is independent of γ∗ if and only
if ψα,γ∗(y1) is independent of γ∗ for γ∗ ∈ π1(Y, y1). That is, we must show α(y1)
is the endpoint of the lift of f ◦ γ with initial point α(y1) for each γ ∈ π1(Y, y1).

With α(y1) = yj , this is equivalent to ((1)α)T (Y, f)(f ◦ γ) = j. (The right
action of α on 1 is intentional—α did come from Sn.) For γ a closed path on Y
with initial point y1, (1)T (Y, f)(f ◦ γ) = 1 is automatic. Apply α to the right side
of this and use that α commutes with T (Y, f)(f ◦ γ) to conclude from [9.15b].
Recall: G(1) is the subgroup of G(Y, f) leaving 1 fixed. Thm. 7.16 identifies
Nπ1(X,x0)(π1(Y, y1))/π1(Y, y1) with NG(Y,f)(G(1))/G(1). �

8.3.2. Fiber products and Galois closure. We say a connected cover (Y, f) of
X is a Galois cover (or is Galois) if |Aut(Y, f)| equals n = deg(f). By Lem. 8.8
this holds if and only if π1(Y, y1) is a normal subgroup of π1(X, x0)). Each cover
(Y, f) produces a Galois cover (Ŷ , f̂) of X called the Galois closure of (Y, f). If
H ≤ π1(X, x0) corresponds to Y , then ∩g−1Hg corresponds to (Ŷ , f̂). We use fiber
products to give an alternate construction of it (Def. 1.3). It correctly displays the
automorphism group action. We again warn: Don’t confuse it with the geometric
monodromy group, though they are isomorphic for a Galois cover.

Denote the fiber product of Y → X taken n = deg(f) times by

Y n
X

def= Y ×X × · · · ×X Y.

Points of Y n
X are n-tuples (y′1, . . . , y

′
n) ∈ Y n for which f(yi) = f(yj) for all i and

j. The fat diagonal, ∆Y,f,n, is the subset of n-tuples of Y n
X with at least two equal

coordinate entries. Remove it to form Y n
X \∆Y,f,n = UY,f,n. We use a copy of Sn

acting on the left of {1, . . . , n} to give an action of automorphisms on this set:
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(8.3) for σ ∈ Sn and yyy′ = (y′1, . . . , y
′
n) ∈ UY,f,n, ασ maps yyy′ to

(y′σ(1), . . . , y
′
σ(n)) = ασ(yyy′).

Restrict the natural map of Y n
X to Xto UY,f,n to present UY,f,n as a degree n!

cover of X with automorphism group containing Sn. The action of Sn is transitive
on points mapping to x0. Yet, UY,f,n may not be connected. (We don’t consider
it a Galois cover of X.) Decompose UY,f,n into connected components Ŷ1, . . . , Ŷt.
Let f̂i be the restriction to Ŷi of the projection map UY,f,n → X, i = 1, . . . , t. A
computation shows deg(f̂i) = |G(Y, f)| [9.22].

Theorem 8.9. The covers (Ŷi, f̂i) are equivalent as covers of X, i = 1, . . . , t.
Characterize members (Ŷ , f̂) of this equivalence class from these properties.

(8.4a) (Ŷ , f̂) is a Galois cover of X, with its group a transitive subgroup of Sn.
(8.4b) There is a commutative diagram of covers of X:

✑
✑

✑✑✸f
Ŷ

f̂−−−−→ X

fY

�
Y

(8.4c) For any Galois cover ĝ : Ẑ → X factoring through Y by gY : Ẑ → Y ,
there is commutative diagram of covers of X:

✑
✑

✑✸f❍❍❍❍❥gY

Ẑ
ĝY−−−−→ Ŷ

f̂−→ X

fY

�
Y

Proof. Choose y1 ∈ Y lying over x0 ∈ X. Thm. 7.3.2 identifies the subgroup
of π1(X, x0) corresponding to (Y, f) with π1(Y, y1). It also identifies its conjugates
(in π1(X, x0)) π1(Y, yi) with yi running over f−1(x0). A Galois cover corresponds
to a normal subgroup of π1(X, x0). So, the smallest Galois cover mapping through
(Y, f) corresponds to the largest normal subgroup, H =

⋂n
i=1 π1(Y, yi), of π1(X, x0)

contained in π1(Y, y1). So, there is a cover with property (8.4c).
Let pr1 : Y n

X → Y be projection onto the first factor, and let fY,i be the
restriction of pr1 to Ŷi. Then, with (Ŷ , f̂) (resp., fY ) replaced by (Ŷi, f̂i) (resp., fY,i)
properties (8.4a) and (8.4b) hold, i = 1, . . . , t. This shows the map h : Ŷi → Y has
degree 1: (Ŷi, f̂i) and (Ŷ , f̂) are equivalent covers of X. The proof is complete. �

Fig. 8 shows four discs on a degree 4 cover of Uzzz lying over a disk Uz0 around the
base point. Assume the cover has monodromy group S4. (Like that from a general
degree 4 polynomial f ∈ C[w].) We visibly can see the action of any element α ∈ S4

on the four points of f−1(z0) extend to the four disjoint disks over Uz0 . Yet, there
is no continuous extension of any nonidentity α to f−1(Uz0). Lem. 8.8 says such
extending α s must centralize the monodromy. We stipulated, however, this is S4,
a group with trivial center.
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Figure 8. α = (1 2)(3 4) ∈ S4 tries, but fails, to be an automor-
phism of Y : The four discs on the left constitute f−1(Ux0)

Ux0

x0

y1y2

y3y4

hα(2)h
−1
2 hα(1)h

−1
1

f−1(Ux0)
h1

hα(1)

h2

hα(2)

8.3.3. Galois closure orbits. Chap. 2 [9.5] has Galois exercises based on using
fields. We now explain how these have analogs where we replace field extensions of
a given field by covers of a given space. One tricky point: Composite of two fields
makes sense only if there is given a priori a field L containing them both. As with
the comments from §4.2.3 on local holomorphic functions, the next lemma shows
fiber product of covers is dual to tensor product of fields. This analogy will come
through even more when we deal with the field of meromorphic functions on a cover
in Chap. 4 Prop. 2.10.

Lemma 8.10. Let Ki, i = 1, 2, be two finite extensions of a field K (having 0
characteristic). The ring K1⊗K K2 is the direct sum of field extension of K. These
summands are, up to isomorphism of extensions of K, in one-one correspondence
with all compositions of K1 and K2.

Proof. Since the characteristic is 0 (only need separable extensions), the prim-
itive element theorem says K2 = K(α) for some α ∈ K2. Up to isomorphism of
extensions, K2/K is K[x]/(f2(x)) with f2 the irreducible polynomial for α over
K. Factor f2 as

∏u
i=1 gi(x) over K1, with the gi s monic and distinct. (Again use

characteristic 0, or just that irreducible polynomials have no repeated roots.) Now
apply Lem. 4.8 to write K1⊗K2 = K1[x]/(f2(x)) as ⊕u

i=1K1[x]/(gi(x)). Since each
of the gi s is irreducible over K1, each of the summands is a field. So each summand
is a field generated by extensions of K isomorphic to K1 and K2.

Conversely, suppose L is a field containing K1 and generated by K1 and K ′ =
K(α′)/K with α′ the image of α in an isomorphism of K2/K with it. Then, L is
isomorphic to one of the summands of K1 ⊗K2. This concludes the proof. �

Suppose Li/K (resp. fi : Yi → X) is a field extension (resp. connected cover)
of finite degree ni, with Gi its Galois closure group and L̂i/K (resp. f̂i : Ŷi → X
its Galois closure field (resp. cover), i = 1, 2. As in Chap. 2 [9.6a], consider the
fiber product Hf of G1 and G2 over the Galois group of the well-defined field
extension L̂1 ∩ L̂2. Then, G(L̂1 · L̂2/K) is Hf . The restriction of elements of
Hf to L̂i produces a permutation representation Ti, i = 1, 2. Now consider the
direct product representation Tf of Hf induced from T1 and T2 (§7.1.2). The next
lemma, in this analogy, shows different composites of field extensions correspond
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to the different components of the fiber product of the covers over X. The proof
shows also that inequivalent composite extensions L1 · L2 correspond one-one to
orbits of Tf (compare with Chap. 2 [9.6c]).

Lemma 8.11. Let g : Y → X be the maximal cover through which f̂i, i = 1, 2,
both factor. Then, g is a Galois cover. If M is its group, this induces homomor-
phisms fi∗ : Gi → M . Denote the fiber product of these group homomorphisms
by Hc. Then, any connected component Ŷ1,2 of Ŷ1 ×X Ŷ2 (as a cover of X) is the
minimal Galois cover of X factoring through f̂i, i = 1, 2. The group of this cover is
Hc, a subgroup of Sn1 ×Sn2 (acting on pairs (i, j), 1 ≤ i ≤ n1, 1 ≤ j ≤ n2). Orbits
of Tc correspond one-one to the components of Y1 ×X Y2.

Proof. Let CGal be the category of Galois covers of X up to isomorphism
commuting with the map to X. Similarly, let CNor be the category of normal
subgroups of π1(X, x0). The first part of the lemma is an equivalencing of fiber
products in each of these categories (as at the end of the proof of Thm. 7.16). The
fiber product for two normal subgroups of π1(X, x0) is their intersection, which
identifies the quotient as Hc in this case. Since the fiber product Ŷ1 ×X Ŷ2 may
not be connected, and therefore not Galois, this cannot be the fiber product in the
category of Galois covers of X. A connected component, however, of it defines an
equivalence class of connected and Galois covers. It is this that is the fiber product
in the category CGal.

Now consider the statement on orbits of Tc. Since Hc factors through Gi, with
its representation Ti, i = 1, 2, it makes sense to form the direct (tensor) product Tc

of T1 and T2. Direct summands in the category of permutation representations cor-
respond to components of covers in the category of covers of X. Since permutation
representations correspond to equivalence classes of covers, to show the statement
on orbits we have only to show that the direct product permutation representation
Tc corresponds to the fiber product Y1 ×X Y2. This is the equivalence of direct
product in their respective categories. �

8.4. Imprimitive covers and wreath products. Suppose f : Y → X is a
(connected) cover, and f factors through another cover f1 : Y1 → X. That gives a
series of covers Y

f2−→Y1
f1−→X. We say f1 ◦f2 is a decomposition of f if deg(fi) > 1,

i = 1, 2. If there is no such decomposition of f , we say it is indecomposable
or primitive. Equivalence two decompositions if the their corresponding covers
f1 : Y1 → X are equivalent to give equivalence classes of decompositions. As
G(Y, f) ≤ Sn, denote the subgroup stabilizing 1 by G(Y, f)(1).

Lemma 8.12. The monodromy group G(Y, f) is a primitive subgroup of Sn if
and only if f is primitive (Def. 7.9). Equivalence classes of decompositions of f
correspond one-one with subgroups properly between G(Y, f) and G(Y, f)(1).

Proof. Choose a basepoint y1 ∈ Y to apply Thm. 7.16. Groups between
G(Y, f) and H1 = {g ∈ G(Y, f) | (1)g = 1} correspond one-one to decompositions
of f . In particular, f is primitive if and only if there no decomposition of f . �

Suppose G and H are groups, with G1 ≤ G and H1 ≤ H. Let TG1 : G → Sn

and TH1 : H → Sm be corresponding coset representations. Use TG1 to have G act
on Hn, the product of n copies of H:

(8.5) g ∈ G acts by (h1, . . . , hn) �→ (h(1)TG1 (g), . . . , h(n)TG1 (g)).
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This gives a natural permutation representation TH�G : H 0G def= Hn×sG→ Snm

acting on a set L = {11, . . . , 1m, 21, . . . , 2m, . . . , n1, . . . , nm} by this formula:

(ij)TH�G(h1, . . . , hn, g) = (i)TG(g)(j)TH(hi).

Call TH�G the wreath product representation of TG and TH . Then, H 0 G is the
wreath product of G and H, though this assumes we know the corresponding per-
mutations representations. Now consider how the wreath occurs in covering theory.

Definition 8.13. Suppose ψ : Ĝ→ G is a cover of groups. Let TG1 (resp. TĜ1
)

be a faithful permutation representation of G (resp. Ĝ). Call TĜ1
an extension of

TG1 if ψ maps some conjugate of Ĝ1 maps surjectively to G1: TĜ1
extends TG1 .

Lemma 8.14. Suppose f : Y → X is a (connected) cover, and f factors as a
series of covers Y

f2−→Y1
f1−→X. Let Gfi be the group of the Galois closure of fi, with

Tfi
the corresponding permutation representations, i = 1, 2. Use similar notation

for f . Then, Tf extends Tf1 , Gf is a transitive subgroup of Gf2 0 Gf1 and Gf1(1)
maps surjectively to the group Gf2 . Further, Gf = Gf2 0Gf1 if and only if the kernel
of Gf → Gf1 is isomorphic to G

deg(f1)
f2

.

Proof. Choose a base point in y0 ∈ Y and therefore image base points in Y1

and X. Apply Thm. 7.16 to identify Gf (resp. Gf2 , Gf1) with permutation rep-
resentations of π1(X, f(y0)) (resp. π1(Y1, f2(y0)), π1(X, f(y0))) given by the cosets
of π1(Y, y0) (resp. π1(Y, y0), π1(Y, y0)). So, the permutation representation of Gf

(resp. Gf1) comes from the image Gf (1) (resp. Gf1(1) of π1(Y, y0) in Gf (resp. Gf1).
As Gf (1) and Gf1(1) are images of the same group, this shows Tf extends Tf1 . All
coset permutation representations are transitive. That shows Gf is transitive.

With x0 = f(y0), let W = y1, . . . , ydeg(f1) be the points of Y1 lying over x0.
Similarly, let Wi = {yi,ji}ji=1,...,deg(f2) be the points of Y lying over yi. Intersecting
the conjugates of Gf (1) gives the kernel of Gf → Gf1 . So, K acts as permutations
on each Wi, i = 1, . . . ,deg(f1). Restricting the action of Gf (1) to W1 gives the
group Gf2 in the representation Tf2 . Similarly, using the natural identification of
all the sets Wi, the kernel of Gf → Gf1 is isomorphic to a subgroup K of G

deg(f1)
f2

.
This identifies Gf with a subgroup of the wreath product. Since the order of Gf

is |Gf1 ||K|, the index of Gf in Gf2 0Gf1 equals (Gdeg(f1)
f2

: K). This gives the last
statement line of the lemma. �

8.5. Representations and groupoids. Rather than define groupoid gen-
erally, we present a classical case for later use. The idea is that of Deligne and
Grothendieck. Deligne has a notion of (fundamental group) realizations. We think
of these as ways a space declares its presence through types of analytic continua-
tion. This helps us to explain the profinite fundamental group of a complex manifold
(Chap. 4 §7.2). Mastering the Hurwitz monodromy group in Chap. 5 simplifies if
we understand how a fundamental group depends on a base point. That leads to
generalizing what will serve as a base point. Tangential base points (Chap. 2 §8.4)
are an example. We get much mileage from a particularly significant parameter
space, the classical j-line (Chap. 4 §6.8). This follows [De89, §10] which used the
related λ-line.

8.5.1. A law of composition. Suppose CX is the category of unramified covers
of an complex manifold X. For ϕ : Y → X an unramified cover and ψ : X ′ → X
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any map of complex manifolds, there is a natural contravariant map ψ∗ : CX → CX′

through fiber products: ψ∗(ϕ) =: X ′ ×X Y → X ′.

Lemma 8.15. The map ψ∗ preserves fiber products. For ϕ1, ϕ2 ∈ EX :

ψ∗(ϕ1 ×X ϕ2) = ψ∗(ϕ1)×X′ ψ∗(ϕ2).

Proof. Seeing this set theoretically makes it clear the cover structures are
compatible. First: Identify (Y1 ×X Y2)×X X ′ with (Y1 ×X X ′)×X′ (Y2 ×X X ′) by
mapping (y1, y2, x

′) all lying over a given x ∈ X to ((y1, x
′), (y2, x

′)). Then, both
maps send this element to x′. �

Let ϕ̂ : Ŷ → X be the Galois closure of this cover. Suppose this has group G.
Then G acts faithfully and transitively on the fibers of ϕ̂. On Ŷ × Ŷ → X ×X let
G act diagonally: (ŷ1, ŷ2)g

def= ((ŷ1)g, (ŷ2)g).
Denote Ŷ × Ŷ /G, the orbits of the action of G, by G. Let Gi,j be the pullback

of G to X ×X ×X induced from the projection of X ×X ×X on its (i, j) factors.
For example, G1,2 consists of triples (ŷ1, ŷ2, x3) with ŷi ∈ Ŷ , i = 1, 2, and x3 ∈ X.

This gives a composition law G1,2×G2,3 → G1,3 respecting fibers over X×X×X.
Here is what that means. For (x1, x2, x3) ∈ X × X × X, let (ŷ1, ŷ2, x̂3) (resp.
(x1, ŷ

′
2, ŷ
′
3)) represent a point of Gx1,x2 the fiber of G1,2 (resp. G2,3) over (x1, x2)

(resp. (x2, x3)). The composition law Gx1,x2 × Gx2,x3 → Gx1,x3 uses the following
formula. There is a unique g ∈ G taking ŷ′2 to ŷ2. Define the product of (ŷ1, ŷ2, x3)
and (x1, ŷ

′
2, ŷ
′
3) to be (ŷ1, x2, (ŷ′3)g).

We say G = Ŷ × Ŷ /G → X × X is a groupoid. Most significant is that it
induces a groupoid in FX′ by pullback, for each ψ : X ′ → X.

8.5.2. Fundamental groupoid. There is a fundamental groupoid that dominates
all (classical) groupoids over X. We define this directly, as it will appear in Chap. 5.

Consider this data: x1, x2 ∈ X, and Di a simply connected (path-connected)
neighborhood of xi on X, i = 1, 2. Suppose x′i ∈ Di, i = 1, 2. To read the next
lemma correctly, emphasize the word canonical.

Lemma 8.16. There is a canonical isomorphism (dependent on (D1, D2)):

ψD1,D2 : π1(X, x1, x2)→ π1(X, x′1, x
′
2).

Proof. For γi any path from xi to x′i in Di, i = 1, 2, map γ ∈ π1(X, x1, x2)
to [γ−1

1 · γ · γ2] = [γ−1
1 ][γ][γ2] ∈ π1(X, x′1, x

′
2). Under the hypotheses, [γi] depends

only on xi, x
′
i, Di and not the particular choice of path. That shows the lemma.

We will, however, confront repeatedly the dependence of ψD1,D2 on (D1, D2). �

Definition 8.17. The fundamental groupoid PX of X consists of the disjoint
union ∪̇x1,x2∈Xπ1(X, x1, x2). The composition law for π1(X, x1, x2)×π1(X, x2, x3)
is the usual path multipication: [γ1,2] ∈ π1(X, x1, x2) times [γ2,3] ∈ π1(X, x2, x3) is
[γ1,2][γ2,3] ∈ π1(X, x1, x3).

Restriction of PX to the diagonal of X ×X is the local system of fundamental
groups ∪̇x1∈Xπ1(X, x1). For x ∈ X, restrict PX to X × {x} ⊂ X × X to get the
universal cover of (X, x). Now we trace through an action of a groupoid on various
locally constant sets.
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8.5.3. Action of a groupoid. We recognized already that the category CX con-
sists of locally constant finite sets on X. That means, given f : Y → X an
unramified cover, the topology on Y comes from an open cover U of X so that
fU : YU → U makes of YU a finite collection of disjoint copies of U . Generalizing
the notion of covers allows defining related locally constant structures. We con-
centrate here on VX , the category of locally constant — or flat — vector bundles
on X. Suppose V is a vector space over C (say, Cn). Then, there is a natural
fiber preserving addition and scalar multiplication with the expected properties on
V × U . An object V ∈ VX consists of an analytic map L : V → X of manifolds
with an open cover U having the following properties.

(8.6a) For U ∈ U , there is an analytic isomorphism ψU : VUi
→ V × Uγ(ti) so

that LU : VU → U and prU ◦ ψU : VU → U are the same.
(8.6b) Local constancy: For U, U ′ ∈ U , with U ∩U ′, an element of GLn(C) gives

ψ−1
U ◦ ψU ′ restricted to V × (U ∩ U ′) along each fiber.

(8.6c) A fiber preserving complex analytic addition and multiplication by C on
V restricts over each U ∈ U to that structure on V × U .

Note the right action in (8.6b). We say V is a rank n (locally constant, or flat)
bundle. Two flat bundles V1 and V2 are bundle isomorphic if there is a compatible
open cover U for both and a fiber preserving analytic isomorphism ψ : V1 → V2.
Suppose ψ intertwines (8.6) for V2 relative to U to that for V1 so that for each
U ∈ U , an element gU ∈ GLn(C) gives ψ−1

1,U ◦ψ◦ψ2,U . Then, ψ is a flat isomorphism.
Warning: Some bundle isomorphisms have no corresponding flat isomorphism.

Example 8.18 (Flat bundle from a cover). Let f : Y → X be a degree n cover
(element of CX). For each x ∈ X, denote the space spanned over C by the points
of f−1(x) by Vx. We explain why Vf

def= ∪̇x∈XVx is a locally constant vector bundle
on X by taking Lf to be the natural projection. Suppose U ≤ X is open, x′ ∈ U
and fU identifies YU with ∪̇y′∈f−1(x′)Uy′ where Uy ≤ Y maps one-one onto U . This
means we have n sections to the map fU . We also call these y′1, . . . , y

′
n. So, for

each x ∈ U , {y′i(x)}ni=1 is a basis for Vx. Then, we have a natural analytic manifold
topology on Vf by identifying Vf,U with Cn ×U by mapping the standard basis of
Cn to y′1(x), . . . , y′n(x) running over x ∈ U .

Suppose P is a groupoid on X and V ∈ V. Regard P as a locally constant
bundle of sets over X ×X. Consider the fiber products pr∗i (V) def= V ×X (X ×X),
using pri : X ×X → X, projection on the ith factor, i = 1, 2. We say P acts on V
if there is a fiber preserving analytic map

(8.7) AX : pr∗1(V)×X×X P → pr∗2(V).

Regard each term P, pr∗1(V) and pr∗2(V) as a locally constant bundle over X ×X.
Denote the vector space Cn (with its canonical basis understood) by V , so

that there is an action of GLn(C) on the right of V . (To adjust to a left action
on GLn(C), see Ex. [9.16f].) For x0 ∈ X, and n a positive integer, consider pairs
(V, mx0) with V a flat bundle of rank n, and mx0 a fixed vector space isomorphism
of Vx0 with V , by Vx0,n. Compose mx0 with any element of GLn(C) gives a natural
action of GLn(C) on the pairs (V, mx0).

Proposition 8.19. The fundamental groupoid PX acts on every V ∈ VX .
Each (V, mx0) ∈ Vx0,n produces αV,mx0

∈ Hom(π1(X, x0),GLn(C)) and the map
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(V, mx0) �→ αV,mx0
is one-one and onto. Flat rank n bundles up to flat isomorphism

correspond to elements of Hom(π1(X, x0),GLn(C))/G.

Proof. Consider (x, x′) ∈ X × X and [γ] ∈ π1(X, x, x′). We give an action:
AX((v, x, x′), [γ]) = (v′, x, x′) with v ∈ Vx and v′ ∈ Vx′ . The construction, for a
given path γ, is exactly as in the proof of Lem. 7.13. We set appropriate notation.

If γ : [a, b] → X, then there is a partition t0 = a < t1 < · · · < tn = b and
contractible open subsets Uγ(ti), i = 0, . . . , n, with Uγ(ti) ∩ Uγ(ti+1) contractible,
i = 0, . . . , n− 1, so the following holds.

(8.8a) ψUi
: VUi

→ V × Uγ(ti) is one of the maps given by (8.6).
(8.8b) γ[ti−1,ti+1] ≤ Uγ(ti), i = 0, . . . , n, with the provisos t−1 = a and tn+1 = b.

Since the path γ has the information about the endpoints in it, we may simplify
notation by rewriting our expression for AX as AX(v, [γ]) = v′ with v (resp.v′) in
the beginning (resp. end) point of γ. Inductively define AX(v, γ[t0,tk+1]) = vk+1:

AX(AX(v, [γ[t0,tk]]), [γ[tk,tk+1]]) = AX(vk, [γ[tk,tk+1 ]) = (vk)(ψUk
)−1 ◦ ψUk+1 .

That defines the action for a particular path. We need to know the result
doesn’t depend on the partition, nor on the homotopy class of γ. Starting from
the definition of the action on γ with a partition, apply the General Monodromy
Theorem 6.11 proof. (Our contractibility assumptions on the Ui s allow us to use
this proof.) Line-for-line this shows AX depends only on the homotopy class [γ]
and not on γ.

Define αV as
∏n−1

k=0(ψUk
)−1 ◦ ψUk+1 . We use that the constituent elements

are in GLn(C) (locally constant as a function of x ∈ X), and that the result is
independent of the homotopy class of the path to see it is a homomorphism. Now
consider when two flat bundles are flat isomorphic.

Notice that the collection of isomorphisms ψU : VU → V × U gives a cocycle
condition: For U, U ′, U ′′ intersecting nontrivially,

(ψ−1
U ◦ ψU ′) ◦ (ψ−1

U ′ ◦ ψU ′′) = ψ−1
U ◦ ψU ′′ .

Apply Lem. 2.2 to see that V identifies with the disjoint union of ∪U∈UV × U
modulo the equivalence of points on V × U with V × U ′ on the overlap of U ∩ U ′

by ψ−1
U ◦ ψU ′ . Using this, a flat isomorphism between V1 and V2 interprets as the

existence of gU ∈ GLn(C) for which

g−1
U ◦ ψ−1

1,U ◦ ψ1,U ′ ◦ gU ′ = ψ−1
2,U ◦ ψ2,U ′ .

In running around any path given by a sequence of Ui s, the conclusion is that αV1

differs from αV2 on this path by conjugation by gU0 . That effect is determined by
its effect on mx0 . This concludes the proof of the theorem. �

8.6. Complete reducibility and covers with equivalent flat bundles.
Flat bundles appear in a few well-known papers long ago. [Gun67, p. 97], from
which the author first heard of these subjects many years ago, cites [We38] and
[At57]. Riemann knew of the distinction between holomorphic vector bundles and
flat bundles through his investigation general ordinary differential equations versus
differential equations with ordinary singular points. This topic appears in Chap. 4.
An advanced reader will note we have yet to define general holomorphic bundles.
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8.6.1. Decomposing the representations of a cover. A cover f : Y → X has a
flat bundle on X associated with it (Ex. 8.18). Let ρX ∈ Hom(π1(X, x0),GLn(C))
be the associated homomorphism. We explore the natural map EX → VX , es-
pecially noting it is not injective. [Sch70] and [Fri73] are sources for practical
problems in which this becomes significant. In particular, Chap. 4 [10.11] uses
Riemann’s Existence Theorem on the groups of [9.20] to produce primitive, inequiv-
alent covers whose fibers products are reducible. This is a chance to introduce the
significant topic of complete reducibility for fundamental groups representations.

Definition 8.20. Let G be a group and F a field. Suppose ρ : G → GLn(F )
is a representation of G. Then, ρ has an invariant subspace V ≤ Fn if ρ(g) maps
V into V for each g ∈ G. A representation is irreducible if it has no invariant
subspace. Two invariant subspaces V and W (for ϕ) are complements if V and
W span Fn, and V ∩W = {0}. Call ρ completely reducible if every ρ invariant
subspace V has a complement.

Recall: With R a ring, r ∈ R is an idempotent if r2 = r. Idempotents in
Mn(F ) are the matrices of projection onto subspaces of Fn.

Lemma 8.21. Suppose V is a ρ invariant subspace. If F has characteristic 0,
then V has a complement.

Proof. Let P : Fn → V be any projection onto V : Choose a basis v1, . . . , vk

of V , extend to a basis v1, . . . , vn of V , and define P by
∑n

i=1 aivi �→
∑k

i=1 aivi.
Then, P 2 = P and P is an idempotent. So, too is In − P=P’, and it defines a
complementary space by projection. If P commutes with the action of G, then
In−P would also be a G invariant subspace. To get this, average over G: Replace
P with PG = 1

|G|
∑

g∈G ρ(g)−1Pρ(g). Since each term ρ(g)−1Pρ(g) acts like the
identity on V , for v ∈ V , (v)PG = 1

|G|
∑

g∈G(v)ρ(g)−1Pρ(g) = v. �

[9.19] applies the complete reducibility of finite group representations when F
has zero characteristic. Complete reducibility does in general if either G is infinite
or F has positive characteristic [9.17]. If a representation ρ is completely reducible,
then we may write Fn as ⊕k

i=1Vi, a direct sum of invariant and irreducible subspaces
for the action of G. Another notation for this is ρ = (ρ1, . . . , ρk) with ρi restriction
of ρ to the space Vi: ρ is the direct sum of the actions of the ρi, i = 1, . . . , k.

The notation 111G is for the one-dimensional representation of G where the action
of G leaves each vector fixed. Given any representation ρ there is natural conjugate
representation ρ̄: g �→ ρ̄(g) by applying ¯ to each entry of ρ(g).

8.6.2. Components of fiber products. Suppose fi : Yi → X is a connected cover
of degree ni, with ρfi ∈ Hom(π1(X, x0),GLni(C)) the corresponding element from
Prop. 8.19, i = 1, 2. Then, ρf1 and ρf2 induce the tensor product representation
ρf1 ⊗ ρf2 ∈ Hom(π1(X, x0),GLn1n2(C)). Let Gi be the group of a Galois closure
Ŷi → X of fi, i = 1, 2. Lem. 8.11 shows each of these representations factors through
a faithful representation of G = G1 ×H G2 for some group H that is a quotient of
both G1 and G2. Here G is the group of the minimal Galois cover of X factoring
through f1 and f2. Use the notation ρf1 ⊗ ρf2 for this representation, too. Since G
is a finite group, each representation is completely reducible. Any representation
of Gi induces a representation of G through the canonical projection of G onto
Gi. Write ρfi

= ⊕ki
j=1Vi,j , i = 1, 2, indicating the irreducible representations of G

coming from those of Gi, i = 1, 2.
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Proposition 8.22. The number of connected components of the fiber product
Y1 ×X Y2 is the same as the number of times the identity appears in ρf1 ⊗ ρf2 . In
turn, this is the same as the number of distinct pairs (j, j′) where V1,j is equivalent
to the conjugate of V2,j′ .

If G = G1 = G2, and ρ1 = ρ2, Y1 ×X Y2 has at least two connected compo-
nents. In this case it has precisely two if and only if the permutation representation
associated with f1 (or with f2) is doubly transitive.

Proof. Apply Lem. 8.11 to conclude there are as many connected components
in Y1 ×X Y2 as the number of orbits in the direct product applied to G of the
permutation representations attached to f1 and f2. This counts the appearances of
the identity in the corresponding representation which in turn counts the number
of appearances of the identity in ρf1⊗ρf2 . Use the representation theory reminders
in [9.19b] to see this also counts the number of pairs (j, j′) listed in the statement
of the proposition. This completes the first part of the proof.

Suppose ρT = ⊕k
j=1VT,j is the decomposition of ρ1⊗ ρ2 given in the statement

into irreducible representations (over C). A permutation representation is the same
as its conjugate. So, for each VT,j , its conjugate also appears in the summands of
ρT . If ρ1 = ρ2 and G = G1 = G2, besides the identity in both ρ1 and ρ2, there must
exist at least one other pair indexed by (j, j′) of conjugate representations. From
[9.19d], k = 2 if and only if the permutation representation is doubly transitive. If,
however, k ≥ 3, there will be at least three pairs (j, j′) indicating corresponding
pairs of conjugate represenations. This concludes the proof. �

9. Exercises

We apply group theory exercises here to geometric applications in Chap. 4.
[FH91] contains a hurried encyclopedic account of classical representations. Yet,
it doesn’t cover our later needs. [Ben91] (very concise) and older relaxed texts like
[Ha63] work for Riemann surface applications requiring deeper group theory. We
have exercises that prepare some characteristic p representations. These appear in
Modular Towers (Chap. 5). Representation theory changes as much as Riemann
surface theory. As [Lam98, p. 369] notes, it is about 100 years old. Even such
topics as higher characters from its beginnings — unlike linear characters these do
determine the group — have still an uncertain place in the theory.

9.1. Constructing manifolds. Call a topological space a pre-manifold if it
has coordinate charts, but is not necessarily Hausdorff. We characterize Hausdorff.

(9.1a) Show the space of Ex. 2.4 is not Hausdorff.
(9.1b) Prove Lemma 2.5 using the argument before it.
(9.1c) Let {(Xαi

, ϕαi
)}αi∈Ii

(resp., {(Zα, ϕα)}α∈I) be topological data for Xi

(resp., Z), i = 1, 2. Let fi : Xi → Z, i = 1, 2 be continuous. Show

{(Xαi
×Xαj

) ∩ (X1 ×Z X2), (ϕαi
, ϕαj

)}(αi,αj)∈I1×I2

gives topologizing data on X1 ×Z X2 with continuous projections pri :
W

def= X1 ×Z X2 → Xi, i = 1, 2. Further, W is Hausdorff if X1, X2 and
Z are. Use this to prove Lemma 4.3.

(9.1d) Let f : X → Y be continuous, with X and Y pre-manifolds. Let γ :
[0, 1] → Y be a path. If a continuous γ1 : [0, 1) → X lies over γ[0,1)

(f ◦ γ1(t) = γ(t) for t ∈ [0, 1)). Show: For all pairs (γ, γ1), there is at
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most one extension of γ1 to a path γ∗1 : [0, 1] → Y if and only if the
diagonal in X ×Y X is closed. Call an f satisfying this separated.

(9.1e) With f in d) separated, consider extending γ1 to γ∗1 : [0, 1] → Y . Show:
Such γ∗1 exists (for each γ1) if and only if f is a proper map (§2.2).

Consider some manifolds (differentiable) from vector calculus.

(9.2a) If Xi is ni-dimensional, i = 1, 2, show X1 ×X2 is n1+n2-dimensional.
(9.2b) The n-sphere is Sn = {xxx ∈ Rn+1 |

∑n+1
i=1 x2

i = 1}. Here is some data for
defining a manifold structure on Sn:

U+ = {(x1, . . . , xn+1) ∈ Sn | xn+1 > 0}
and Rxxx is any rotation of the sphere that that takes xxx to (0, . . . , 0, 1). Let
Uxxx be the image of U+ under R−1

xxx , and define ϕxxx to be pr ◦ Rxxx where
pr(xxx) = (x1, . . . , xn). Show the (Uxxx, ϕxxx)’s are a differentiable atlas on Sn.

(9.2c) Consider f ∈ R[x1, . . . , xn] and the set Xf = {xxx ∈ Rn | f(xxx) = 0}. Let
X0

f = {xxx ∈ Xf | ∇(f)(xxx) �= 0} (Lemma 3.2). State a differentiable version
of the implicit function theorem [Rud76, p. 224] from Chap. 2 §6.2.

(9.2d) Assume n = 3 in c) and two open sets U1 and U2 with these properties:
∂f
∂x1

is nonzero in U1 and ∂f
∂x3

is nonzero in U2. Apply c) to conclude there
is a differentiable transition function ϕ2 ◦ ϕ−1

1 for the pair (U1, U2).
(9.2e) If X0

f is nonempty, show it is a differentiable n− 1 dimensional manifold.
(9.2f) State a complex analog of c) for f ∈ C[z1, . . . , zn] using complex partials.

How does this show the complex version of X0
f is an n − 1 dimensianal

analytic manifold?
(9.2g) Apply the fundamental theorem of algebra [Ahl79, p. 122] to show the

manifold in f) cannot be compact.

Fiber products and pushouts are categorical constructions. Chap. 4 [10.9] con-
tinues this exploration.

(9.3a) The fiber product of two maps fi : Yi → X, i = 1, 2, satisfies the following
universal property: If f : Y → X factors through each of the fi s, then f
factors through (f1, f2). Further, (f1, f2) is universal for this property.

(9.3b) The pushout for fi : Yi → X, i = 1, 2, satisfies a reverse diagram to the
fiber product. It is the maximal object through which both fi, i = 1, 2,
factor. For subsets of a set, the pushout would be the union. Show the
pushout of pointed covers is exactly as given in Thm. 7.16.

(9.3c) For subgroups of a group, the union is not a group. Show the subgroup
generated by the two groups is the pushout.

9.2. Complex structure and torii. Going from R to C is partly a linear
algebra constraint. Use the identifications {Ln}∞n=1 of R2n and Cn in §3.1.2. Con-
sider replacing {Ln}∞n=1 by the sequence {L′n}∞n=1 of linear (invertible) maps (from
R2n → Cn). Denote (x1, y1, . . . , xn, yn) �→ (−y1, x1, . . . ,−yn, xn) by Jn.

(9.4a) Show with L′n in place of Ln, though the functions labeled analytic in
any neighborhood of an analytic manifold X will change, the set of n-
dimensional analytic manifolds remains the same.

(9.4b) Show, for analytic manifolds X and Y (possibly of different dimensions),
the set of analytic maps X to Y using {Ln}∞n=1 map naturally to the
corresponding set using {L′n}∞n=1.
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(9.4c) Show {L′n}∞n=1 gives the same analytic functions on each analytic manifold
as {Ln}∞n=1 if and only if L′n = Bn ◦ Ln with Bn ∈ GLn(C) for all n.
Further, this is equivalent to L′n ◦ Jn = i · L′n for all n. Hint: Check on C
linear combinations of z1, . . . , zn in Cn using L′n. Also: Invertible R linear
maps Cn → Cn are in GLn(C) if and only if they commute with i.

(9.4d) Consider the case L = Ln : R2n → Cn by

(x1, y1, . . . , xn, yn) �→ (x1 − iy1, . . . , xn − iyn) = (z̄1, . . . , z̄n)

for examples where using {L′n}∞n=1 changes a given analytic structure.
Hint: See Chap. 4 §7.7.1.

Consider the topology of the torus of Fig. 3.
(9.5a) Show the complex torus C/L(ω1, ω2) of § 3.2.2 is compact.
(9.5b) Suppose R > 3r with r, R ∈ R. The torus, Tr,R;xxx0,vvv =, with radii (r, R)

centered at xxx0 = (0, 0, 0) ∈ R3 and perpendicular to vvv = (0, 0, 1) has this
underlying set of points:

{xxx0 + R(cos(θ), sin(θ), 0) + r(cos(θ) cos(β), sin(θ) cos(β), sin(β))}θ,β∈[0,2π].

Show Tr,R;xxx0,vvv is differentiably isomorphic to C/L(ω1, ω2).
(9.5c) Consider the two torii in Fig. 2: Assume one is T = Tr,R;xxx0,vvv, the other

T ′ = Tr,R;xxx′
0,vvv′ for vectors xxx′0, vvv

′ ∈ R3 and T ∩ T ′ = ∅. Call T and T ′

unknotted if for any C > 0 there is a continuous function

F : [0, 1]× R3 \ T → R3 \ T

with F (0, y) = y for y ∈ R3 \ T and |F (1, y)| > C for y ∈ T ′. Otherwise
they are knotted. Show there are two knotted torii in R3.

(9.5d) Regard R3 as in in R4: It is the set of xxx ∈ R4 with x4 = 0. Extend the
definitions above to show any pair of torii in R3 is unknotted in R4.

We start discussing the nature of the lattice attached to a complex torus.
(9.6a) Let C/L(ω1, ω2) = X be a complex torus with lattice L(ω1, ω2) = L as

in Ex. 6.18. For z1, z2 ∈ C define m(z1 mod L, z2 mod L) to be z1 +
z2 mod L. Define the inverse of z mod L to be −z mod L. Show X is a
differentiable group with multiplication m.

(9.6b) For t ∈ R, let z(t) = cos(2πt) +
√
−1 sin(2πt). Use f : X → S1 × S1

by t1ω1 + t2ω2 �→ (z1(t), z2(t)) to conclude that π1(X, 0 mod L) identifies
with L as a group isomorphic to Z2, pairs of integers.

(9.6c) Suppose x1, x2 ∈ S1 generate an infinite group 〈x1, x2〉. Consider the col-
lection TN = {xj

1x
j′

2 }−N≤j,j′≤N for large N to conclude 1 is a limit point
for 〈x1, x2〉. Conclude: w1, w2 ∈ C, C/L(w1, w2) satisfies the conditions
of Lem. 2.3 only if w1, w2 lie on different lines through the origin.

Consider comparing two lattices of complex torii. With Li = L(ω1,i, ω2,i),
i = 1, 2, continue Ex. 6.18. Assume λi = ω1,i

ω2,i
∈ C \ R, i = 1, 2.

(9.7a) Assume λ2 = aλ1+b
cλ1+d for some a, b, c, d ∈ Z for ad− bc = 1. Show C/L1 =

X1 and C/L2 = X2 are analytically isomorphic. Hint: Map t1ω1,1+t2ω2,1

to t1(aω1,1 + bω2,1)α + t2(cω1,1 + dω2,1)α with α ∈ C satisfying

(aω1,1 + bω2,1)α = ω1,2 and (cω1,1 + dω2,1)α = ω2,2.

(9.7b) Why assume ad − bc = 1 in a)? Why must we have a, b, c, d in Z, rather
than just a, b, c, d ∈ R?
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(9.7c) Suppose L1 ⊂ L2. Consider f : X1 → X2 given in Ex. 6.18. Show there
exist ω1, ω2 ∈ L2 and n1, n2 ∈ Z with these properties: L(ω1, ω2) = L1;
and the complex numbers

z(k1, k2) = ( k1
n1

)ω1 + ( k2
n2

)ω2, 0 ≤ ki ≤ ni, i = 1, 2,

give the n1n2 distinct elements z mod L1 mapping to 0 mod L2. Hint: Ap-
ply the Elementary Divisor Theorem Chap. 2 [9.15] to get a basis {uuui}2i=1

of L2 and integers n1, . . . , n2 so that {niuuui}2i=1 generates L1.
(9.7d) Conclude for x ∈ X1 that x + z(k1, k2) mod L1 are the distinct elements

of X1 mapping f(x) under f .

Now we describe holomorphic differentials on a complex torus.

(9.8a) Let L be a lattice in Cz. Define ωα on one of the local coordinate charts
ϕα(Uα) ⊂ Cz for C/L to be the differential dz (As in Ex. 6.18). Show
this defines a global differential form ωL on C/L, and the divisor of this
form is 0. Hint: Use that the transition functions, on connected subsets
of ϕα(Uα ∩ Uβ) have the form z �→ z + β.

(9.8b) Accept without proof that any meromorphic function has divisor of degree
0. Conclude: Holomorphic differentials on C/L have degree 0 divisor; so
they are constant multiples of ωL.

(9.8c) A g dimensional complex torus has the form A = Cg/L where L is a Z
module having dimension 2g and such that RL = Cg (a lattice). Imitate
b) to show holomorphic differentials on A form a dimension g vector space.

[9.8c] considers complex torii. Since Cg is contractible, π1(A,000) identifies with
L. We now see all differentiable groups have an abelian fundamental group.

(9.9a) Suppose that γ0,i and γ1,i are homotopic paths in a space X, i = 1, 2,
and that the end point of γ0,1 is equal to the initial point of γ0,2. Show
γ0,1γ0,2 is homotopic to γ1,1γ1,2.

(9.9b) Show the associative rule for multiplying paths.
(9.9c) Let ψ1 and ψ2 be two isomorphisms between π1(X, x0) and π1(X, x1) as

in Corollary 1.19. Show ψ−1
2 ◦ ψ1 is an inner automorphism of π1(X, x0).

That is, it is given by conjugation by an element of π1(X, x0).
(9.9d) A group G is differentiable G if it is a differentiable manifold, and its

multiplication and inverse are both differentiable maps. Similarly, there
is the notion of analytic group. Show a complex torus Cg/L (L a lattice)
is an analytic group.

(9.9e) Suppose M is a subvariety of GLn(C) (defined by a finite number of
equations in the n2 coordinates of the entries), closed under multiplication
and inverse. Show M is an analytic group.

(9.9f) For G a differentiable group consider f1 : G → (G, 1) (resp. f2 : G →
(1, G)) by g �→ (g, 1) (resp., g �→ (1, g)). Show for [γ1], [γ2] ∈ π1(G, 1):

m∗((f1)∗[γ1])(f2)∗[γ2]) = [γ1][γ2].

(9.9g) Continuing b), show π1(G, 1) is an abelian group. Conclude: A differ-
entiable manifold X with a nonabelian fundamental group (as often in
Chap. 4) has no differentiable group structure.

9.3. Pn compactification. Use the notation of §4.3.
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(9.10a) Consider h ∈ C(w), h = h1/h2, with (h1, h2) = 1. Let m = h2(w)z−h1(z)
as in Ex. 4.7. Show the P1

z × P1
w compactification of {(z, w) | m(z, w) =

0, z �∈ zzz} is a manifold.
(9.10b) Consider Pn = Cn+1 \ {0}/C∗. Induct on n to show Pn = U0∪̇Pn+1.

Inductively define a topology: neighborhoods of xxx ∈ Pn−1 are the image
in Pn of neighborhoods of (0, v1, . . . , vn) ∈ Cn+1.

(9.10c) Prove directly in Pn: Any infinite sequence has a limit point. Hint: Any
infinite sequence has an infinite subsequence in Ui for some i.

Fiber products help construct new manifolds from old. Consider some aspects
of this. Use the notation of §4.2.3.

(9.11a) Generalize the P2 compactification of h(w)− g(z) from Ex. 4.3.3.
(9.11b) Conclude the proof of Prop. 4.9 by noting Lh

z′ [(z − z′)1/e1 , (z − z′)1/e2 ] is
a proper subring of Ph

z′,[e1,e2]
, though its quotient field equals Pz′,[e1,e2].

(9.11c) Finish the hyperelliptic case according to Ex. 4.3.3: P1×P1-compactification
gives a manifold while no P2-compactification ever does.

(9.11d) Apply b) to f : X → P1
z of degree at least 3. Then, V = X×P1

z
X contains

the diagonal ∆ and it consists of the union of this and another compact
set V ′. Show V ′ has a manifold structure from its embedding in X ×X
if and only if there is only one ramified point over each branch point of f
and that ramification order is 2. That is, f is a simple-branched cover.

(9.11e) Show global meromorphic functions on Pn are ratios of (same degree)
homogeneous polynomials in the coordinates of Pn. Show there is no
analytic map ψ : P2 → P1. Hint: A ratio of same degree polynomials has
a singularity at common zeros.

(9.11f) Assume X̄ ⊂ pr2z,w,u is a compact manifold, and (z0, w0, u0) ∈ X̄ is the
intersection of L1 and L2 in Prop. 4.13. Show there is no other value
z′0 �= z0 so L1−z′0L2 is tangent to X̄. Hint: Otherwise, u′ = (L1−z′0L2)/z
and w′ = (L1 − z′1L2)/z give local coordinates for X̄ in a neighborhood
of (0, 0) ∈∈ Cu′ × Cw′ though both functions ramify at (0, 0).

9.4. Paths and vector fields. Let X be a manifold.

(9.12a) Show each (simplicial) path γ : [a, b] → X is image equivalent to γ1 :
[0, 1] → X. Show each nonconstant path is image equivalent to a path
constant on no interval.

(9.12b) Assume X is contractible (Def. 5.8). Suppose γ : [a, b]→ X is a path with
initial point x0 and endpoint x1. Form the function G : [a, b]× [0, 1]→ X
by G(t, s) = f(γ(t), s). Use this to show all paths in X with initial point
x0 and endpoint x1 are homotopic.

(9.12c) Let γ : [a, b] → Rn be a simplicial path. Let fff = (f1, . . . , fn) : Rn → Rn

be defined and continuous on the image of [a, b]. Consider

n∑
i=1

∫ b

a

fi(γ(t))
dγi

dt
dt

def=
∫

γ

fff · dxxx,

the line integral of fff along γ.
(9.12d) If γ1 and γ are image equivalent paths in Rn, show line integrals along

them are equal (use change of variables formula from Chap. 2 Lem. 2.3).
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(9.12e) Let F : [a, b]× [0, 1]→ Rn be a homotopy between paths γ0 and γ1 (write
F (t, s) = γs(t)) in Rn. Assume fff is continuous on the image of F . Show
the line integral of fff along γs is a continous function of s.

For a differentiable path γ : [0, 1]→ U with U open in Rn, there may not exist
a vector field TU having γ as an integral curve, though locally this is so.
(9.13a) If TU exists explain why γ(t1) = γ(t2) implies dγ

dt (t1) = dγ
dt (t2).

(9.13b) Let V be a neighborhood of the line segment t → (t, 0, . . . , 0) ∈ Rn
ttt ,

t ∈ [0, 1]. Assume there is a one-one differentiable Γ : V → U with
Γ(t, 0, . . . , 0) = γ(t). Show ∂γ

∂t1
(ttt) (applying ∂

∂t1
to all coordinates of Γ)

produces a vector field on Γ(V ) with γ an integral curve.
(9.13c) Assume dγ

dt is never 0. Consider Ht = {www ∈ Rn | www · dγ
dt = 0}. Find

differentiable one-one F : Rn → Rn with F (ttt) = γ(t1) + www(t1, t2, . . . , tn)
with www(t1, t2, . . . , tn) ∈ Ht1 linear in (t2, . . . , tn) (t1 fixed). Hint: Apply
the chain rule.

(9.13d) How does F give Γ in b)?
Returning to (5.3) we relate

(fα,1(yyyα), . . . , fα,n)(yyyα) to (fβ,i, . . . , fβ,n)(ψβ,α(yyyα))

.
(9.14a) Apply both sides of (5.3) to the coordinate function yβ,j to get

fβ,j(ψβ,α(yyyα)) =
n∑

i=1

fα,i
∂ψβ,α,j

∂yα,i
(yyyα)

where ψβ,α,j is the jth coordinate of ψβ,α. That is, the fβ s are the result
of applying the Jacobian matrix of ψβ,α(yyyα) to the fα s.

(9.14b) Consider the case ψ = ψ(x,y),(r,θ) : R2
r,θ → R2

x,y by (r, θ) �→ (x, y). Express
∂
∂x as fr

∂
∂r + fθ

∂
∂θ by applying both to x = r cos(θ) and y = r sin(θ).

Do the same for ∂
∂y , expressing it as f ′r

∂
∂r + f ′θ

∂
∂θ . Applying ( ∂

∂x , ∂
∂y )

to f(x, y) and evaluating at (r cos(θ), r sin(θ)) is the same as applying
J(ψ(x,y),(r,θ))( ∂

∂r , ∂
∂θ ) to f(r cos(θ), r sin(θ)).

(9.14c) Generalize b) to say (as in (5.4))

J(ψyyyβ ,yyyα
)−1

( ∂

∂yα,1
, . . . ,

∂

∂yα,n

)
=

( ∂

∂yβ,1
, . . . ,

∂

∂yβ,n

)
.

9.5. Permutation group properties. Suppose G ≤ Sn is transitive. Def. 7.9
defines primitive subgroup of Sn.
(9.15a) For g ∈ NG(G(1)), multiplication of g on the left of the distinct right

cosets G(1)σ1, . . . , G(1)σn of G(1) permutes these cosets. Conclude: This
induces a homomorphism ψ : NG(G(1))/G(1)→ CenSn

(G).
(9.15b) Show ψ is an isomorphism because both groups have order equal

|{i ∈ {1, 2, . . . , n} | σ(i) = i for each σ ∈ G(1)}|.
(9.15c) Show NG(G(1))/G(1) (or CenSn

(G)) is trivial if G is primitive and G(1)
is nontrivial.

(9.15d) Show a nontrivial normal subgroup of a primitive group is transitive.
(9.15e) Show a primitive subgroup of Sn containing a 2-cycle is Sn. Conclude any

transitive group generated by 2-cycles is Sn. Hint: Consider the normal
subgroup generated by the conjugates of the 2-cycle.
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Let G be a centerless group, Aut(G) its automorphisms and T : G→ Sn faithful
transitive permutation representation.

(9.16a) Explain this from [Isa94, p. 43]: In general neither (gH)A(g′) def= gHg′

nor (gH)A(g′) def= (gg′)H define an action on left cosets of H in G.
(9.16b) Let S be the collection of conjugates of a subgroup H of the group G,

with the action by conjugation by elements of G: S = g−1Hgg∈G and the
right action of g′ ∈ G �→ (g′)−1g−1Hgg′. What is the coset representation
associated with this transitive action, and when is it faithful?

(9.16c) Show (conjugation by) G is normal in Aut(G). The outer automorphism
group Out(G) of G is the quotient Aut(G)/G. Show the natural map ψT :
NSn

(G)→ Out(G) has kernel CenSn
(G) (§7.1.3; compare with [9.15c]).

(9.16d) Denote the image of ψT in Out(G) by OutT (G). Show OutT (G) = Out(G)
if and only if G(T, 1) (§7.1.2) has exactly n images under Aut(G). Hint:
Associate to α ∈ Aut(G) an element of Sn defined up to CenSn

(G) if it
maps among the conjugates of G(T, 1). Show [9.20b] gives examples where
T is doubly transitive and Out(G) �= OutT (G).

(9.16e) Case: G = An (resp. G = Sn), n ≥ 4, in its standard representation T .
Show Out(Sn) = {1} (resp. OutT (An) = Out(An) = Z/2) if and only if
Sn (resp. An) has exactly n transitive subgroups of index n under Aut(G).
Hint: Intransitive subgroups have small orders. (See [9.17b].)

(9.16f) Set notation in the proof of Prop. 8.19 to change to a left action of GLn.

We will need the following facts later.

(9.17a) For each i, 2 ≤ i ≤ n, consider Li = {1n, (1 i), (2 i), ..., (i − 1 i)} ⊂ Sn

(1n indicates the identity). Show each x ∈ Sn has a unique product
representation as x = x1x2 . . . xn with xi ∈ Li. (This gives a technique
to generate random elements of Sn with uniform distribution.) Hint: For
g ∈ Sn if (n)g = i, let h = g(i n) and induct on n.

(9.17b) [Isa94, p. 79-80] bases Out(Sn) = {1}, if n �= 6, on two observations:
• If α ∈ Aut(Sn) permutes transpositions, then conjugating by some

g ∈ Sn gives α. Hint: Elements of (Li)α in a) then have a unique
integer of common support.
• If n �= 6, among elements of order 2, the conjugacy class of transpo-

sitions has a unique cardinality.
(9.17c) Let TH : G → Sn be a permutation representation. Show all cosets of H

have the form Hgi, i = 0, . . . , n− 1, if and only if g is an n-cycle in TH .
(9.17d) Suppose F has characteristic p which also divides the order of finite group

G. Show a faithful permutation representation of G cannot be completely
reducible. Hint: Reduce to G = 〈g〉 with g having order p.

(9.17e) Suppose G is a free group on r ≥ 2 generators. Find representations
ϕ : G→ GLr(C) that are not completely reducible. Hint: Map G into an
upper-triangular, not diagonal, matrix group.

9.6. Affine groups as permutation representations. Let H ≤ GLk(F )

with F = Fq. Regard G = {
(

A v
0 1

)
| A ∈ H, v ∈ V = Fk

q} as a group V ×sH as

in Rem. 7.4. Note: If a nonabelian group replaced Fk
q , then A(v′) + v should more

naturally be written v + A(v′).
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(9.18a) Suppose {0} < V1 < V is an H invariant space. Then, V1 ×s H is a
subgroup of G properly containing H. Show conversely, a group properly
between H and G has the form V1 ×sH with H invariant V1.

(9.18b) Embed V in G by v �→
(

1 v
0 1

)
. Have G act on V by

(
A′ v′

0 1

)
maps

v �→ A(v) + v′ = v∗: equivalent to
(

A′ v′

0 1

)
multiplies

(v
1
)

to
(v∗

1
)
. Show

this gives a faithful transitive permutation representation of G.
(9.18c) From a) the representation of b) is primitive if and only if H acts irre-

ducibly. Suppose H = 〈A〉 has a single matrix generator, which we use to
makes V into an F [z] module by having f(z) ∈ F [z] map v ∈ V to f(A)(v).
The elementary divisor theorem (Chap. 2 §9.15) says V ≡ ⊕t

i=1F [z]/(fi)

(as an F [z] module). Example: If v = (a, b) ∈ F 2, and A =
(

1 3
1 2

)
,

f(z) = z2 + z + 1, then f(z)(v) =
(

6 12
4 10

)
(v) = (6a + 12b, 4a + 10b).

We can uniquely choose the fi s monic so that f1|f2| · · · |ft. Show G is
primitive if and only if t = 1 and f1 is an irreducible polynomial.

(9.18d) The multiplicative group F∗pn is cyclic. Let α be a generator, and A
the matrix of α acting on Fn

p by regarding it as Fpn . In equation form:
v ∈ Fpn �→ αv ∈ Fpn . Show V ×s〈A〉 is doubly transitive on F .

(9.18e) From Def. 7.9, b) is doubly transitive if and only if H is transitive on
V \ {0}. When H = 〈A〉, show G is doubly transitive if and only if, for
some isomorphism of Fpn and (Fp)n, A acts like multiplication by α ∈ F∗pn .

9.7. Group representations. In this exercise consider representations over
any field containing Q.

(9.19a) Show that the direct product of two permutation representations as a
group representation is the tensor product of the two group representa-
tions. Therefore the trace is the product of the traces.

(9.19b) Finish showing the number of orbits is the same as the number of appear-
ances of the identity.

(9.19c) Let Ti : G → Sni , i = 1, 2, be permutation representations for which
t(T1(g)) = t(T2(g)) for each g ∈ G (as in §7.1). Show n1 = n2 and T1(g)
and T2(g) are conjugate in Sn1 for each g ∈ G. Hint: Induct on the length
of the highest disjoint cycles and compare t(T1(g)) and t(T1(gr)) for some
prime r dividing the order of g.

(9.19d) Show 1
|G|

∑
g∈G t(T (g)) counts the orbits of a permutation representation

T . Hint: Put the additive operator t on the outside of the sum by re-
garding T (g) as a permutation matrix. Each orbit I gives a 1-dimensional
invariant subspace spanned by

∑
i∈I xi (as in §7.1.4).

(9.19e) Show the collection of LC =
∑

u∈C u with C a conjugacy class of G,
span the G invariant idempotents of C[G]. For ρ any representation,
1
|G|

∑
g∈G t(ρ(g)) counts appearances of 111G in ρ. Hint: 1

|G|
∑

g∈G ρ(g) is
an idempotent, and its trace equals the dimension of its range.
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(9.19f) Orthogonality Relations: Let ρV and ρW be representations of G on re-
spective spaces V and W . Show t(ρV ∗⊗W (g)) = t(ρV (g))t(ρW (g)) gives∑

g∈G

t(ρ̄V (g))t(ρW (g)) = dimC HomC[G](V, W ).

Further, this dimension gives the appearances of 111G in HomC(V, W ). Hint:
For ρ′ irreducible, 111G appears exactly once in HomC(Vρ′ , Vρ′).

(9.19g) Show VT is 111⊕V ′ with V ′ irreducible if and only if T is doubly transitive.
Hint: Apply d) to count appearances of 111G in VT⊗VT ; use that 111G appears
in ρ1 ⊗ ρ2 with ρ1, ρ2 irreducible only if ρ2 = ρ̄1.

(9.19h) Suppose the representation T : G→ Sn is doubly transitive. Show G does
not contain a subgroup H of degree m < n intransitive in T . Hint: Count
appearances of 111G in VT ⊗ VTH

using d).

Denote the finite field of q = pr for p a prime by Fq. Let G = GLk(F ) be the
k × k invertible matrices with coefficients in the field F = Fq. Write Pk−1(F ) for
lines through the origin in Fk

q : {αvvv | α ∈ F} for some vvv ∈ Fk
q \ {000}. Then, G has a

permutation action Tk,F on Pk−1(F ) induced from its action on Fk
q . Let ψ : Fk

q → Fq

be a nonconstant linear map (linear functional). Denote linear functionals up to
multiplication by elements of Fq \{0} by P̂k−1(F ), with a permutation action T̂k,F :

For ψ ∈ Pk−1(F ) and A ∈ GLk(F ), ψA(vvv) def= ψ((vvv)A−1) for vvv ∈ Fk
q .

(9.20a) Show Tk,F is doubly transitive of degree n(q) = (qk−1)
(q−1) for k > 1.

(9.20b) Show T̂k,F also has degree n(q) and is doubly transitive, though Tk,F and
T̂k,F are not permutation equivalent. Hint: Show the stabilizer in G of a
hyperplane in Pk−1(F ) fixes no point.

(9.20c) Show t(T̂k,F (g)) = t(Tk,F (g)), so T̂k,F and Tk,F are equivalent as repre-
sentations [9.19c]. Hint: T̂k,F (g) is induced from the transpose of g, and
a matrix and its transpose are conjugate.

(9.20d) As in [9.6d], identify Fk
q with Fqk as vector spaces over Fq to find α ∈ Fqk

producing A ∈ GLk(F ) with Tk,F (A) and T̂k,F (A) both n(q)-cycles.
(9.20e) Assume: T1, T2 are inequivalent degree n doubly transitive representations

of a group G; they are equivalent as group representations; and T1(g) =
T2(g) = (1 2 . . . n) for some g ∈ G. Let D be the orbit of 1 under G(T1, 1)
in the representation T2. Use double transitivity to show D is a difference
set: {di − dj | di �= dj ∈ D} contains each nonzero integer mod n with
the same multiplicity t [Fri73]. Further, t · (n − 1) = |D| · (|D| − 1).
Example: For k = 3, q = 2, n = 7 in b), D = {1, 2, 4} and t = 1.

9.8. Easy Galois covers.

(9.21a) Suppose X and Yi are differentiable manifolds, and that fi : Yi → X are
covering maps, i = 1, 2. Assume ψ : Y1 → Y2 is any continuous map
with f2 ◦ ψ = f1. Show ψ is a map of differentiable manifolds. Also: ψ is
analytic if X is a complex manifold.

(9.21b) Let f : Y → X be a finite cover of degree n. Use that X is connected to
show |f−1(x)| is n for each x ∈ X.

(9.21c) Consider X1 = {x +
√
−1 y ∈ S1 | y > 0} and X2 = S1. Show, for n > 0,

the map of Ex. 6.16 restricted to X1 is not a covering map.
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(9.21d) Follow the notation of Ex. 6.18 and of [9.7]. Let L and Li, with Li ⊆ L,
i = 1, 2, be lattices. Show that if fi : Xi = C/Li → C/L by z mod Li �→
z mod L, then the covers (Xi, fi) are equivalent if and only if L1 = L2.

(9.21e) Let Xi = X, i = 1, . . . , n, and let Y be the disjoint union of the Xi’s.
What is the automorphism group of the cover Y → X obtained by map-
ping each point of Y to its corresponding point in X?

(9.21f) Let f : Y → X be a cover and consider a subgroup G of Aut(Y, f) of order
equal to deg(f). Assume that, for some point x0 ∈ X, G acts transitively
on the set f−1(x0). Show f restricted to any connected component of Y
gives a Galois cover of X.

(9.21g) Let X = Y = C \ {0}. Show f : Y → X by z �→ zn is a Galois cover.
Hint: Consider ψk : z �→ e2π

√
−1 kz, 0 ≤ k ≤ n− 1.

(9.21h) Let Xi, i = 1, 2, be as in [9.7c] with L1 ⊂ L2. Show f : X1 → X2

in Ex. 6.18 is a Galois cover. Hint: Consider ψk1,k2 : z mod L1 �→ z +
z(k1, k2) mod L1.

(9.21i) Consider a) with f ∈ C[y] and f(y) = yn + cn−2y
n−2 + · · ·+ c1y. Assume

the greatest common divisor of the set {n and i with ci �= 0} is 1. Show
Aut(Y,pr) is trivial. Hint: Apply Liouville’s Theorem [Ahl79, p. 122] to
see elements of Aut(Y, f) have the form y �→ ay + b for some a, b ∈ C.

9.9. Imprimitive and Frattini covers. This discussion on imprimitivity
continues in Chap. 4 [10.12]
(9.22a) Let π1(X, x0) be the fundamental group of a connected differentiable

manifold X. Let Hσ1, . . . , Hσn be the distinct cosets of a subgroup
H ≤ π1(X, x0) of index n corresponding to the cover (Y, f) (with fiber
{y1, . . . , yn} over x0). Consider the points of UY,f,n (§8.3.2) over x0 that
connect by a path to (y1, . . . , yn). Show these correspond to distinct n-
tuples of cosets: {(Hσ1σ, Hσ2σ, . . . , Hσnσ) | σ ∈ π1(X, x0)}. Why is this
the same as |G|? Conclude deg(f̂i) = |G(Y, f)| (as prior to Thm. 8.9).

(9.22b) Show components of Y ×X Y of degree 1 over Y correspond to elements
of Aut(Y, f) (Lem. 8.8). If f : Y → X has automorphisms, and f is not
a cyclic Galois cover of prime degree, show G(Y, f) is imprimitive. How
does [9.21i] give explicit imprimitive covers with no automorphisms?

(9.22c) Show (Y, f) decomposes if and only if Y ×X Y → X properly factors
through a fiber product of form Y ′ ×X Y ′. If so, show Y ′ ×X Y ′ \∆ is a
nontrivial component of Y ×X Y .

Let K ⊂ L̂ ⊂ M̂ be a chain of fields with M̂/K (resp. L̂/K) Galois with
group G∗ (resp. G). This is a Frattini chain if the only subfield K ≤ T ≤ M̂ with
T ∩ L̂ = K, is T = K. Denote restriction of elements of G∗ to L̂ by rest : G∗ → G.
(9.23a) Suppose T = M̂H is the fixed field of a subgroup H of G∗. Show T∩L̂ = K

is equivalent to rest : H � G. Hint: Use that T ∩ L̂ = K allows extending
any automophism of L̂ to T · L̂ to be the identity on T .

(9.23b) Show a) is equivalent to this group statement: If H ≤ G∗ and rest(H) =
G, then H = G∗ (the map rest : G∗ → G is a Frattini cover). Hint:
rest(H) = G is equivalent to M̂H ∩ L̂ = K.

(9.23c) Suppose X̂ → Ŷ → Z is a sequence of covers with ψX : X̂ → Z Galois
with group G∗ and ψY : Ŷ → Z Galois with group G. Let ψ : G∗ → G be
the natural map and assume ψ is a Frattini cover. Show the equivalence
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with this. For any sequence X̂ →W → Z of covers with W �= Z, there is
a proper cover of Z that W → Z and Ŷ → Z factor through.

9.10. Laplacian. The Laplace operator ∇2 = ∂
∂x

∂
∂x + ∂

∂y
∂
∂y on R2

x,y acts on
C∞(R2). It generalize to a Riemann surface X (see Chap. 4 §10.9 for ∧ product).
Locally in z = x + iy, write a differential 1-form (not necessarily holomorphic) on
an open set U ⊂ C as ω = p(x, y) dx+q(x, y) dy. Consider ∗ω = −qdx+pdy. Write
w = u + iv for the real and imaginary components of the variable for Cw.
(9.24a) With z = f(w), suppose f : V ⊂ Cw → U ⊂ Cz is analytic, one-one and

onto from V to U . Write w = u(x, y)+iv(x, y) as the local inverse of f . Ex-
press ω as Ω(u, v) = p(x(u, v), y(u, v)) dx(u, v)+q(x(u, v) y(u, v)) dy(u, v).
Show ∗Ω(u, v) = −Q(u, v) du+P (u, v) dv equals ∗ω expressed in u and v.
Hint: Apply the Cauchy-Riemann equations: ∂x

∂u = ∂y
∂v and ∂x

∂v = − ∂y
∂u .

(9.24b) Conclude from a): On any Riemann surface X, ∗ defines a linear map on
differentiable 1-forms.

(9.24c) Show these further properties of ∗: Its square is multiplication by -1,
ω∧ ∗ ω=(p2 + q2)dx ∧ dy, and ∗ω = iω if ω is holomorphic. Conclude: ω
is holomorphic if and only if dω = 0 and ∗ω = iω.

(9.24d) Consider ∗d = − ∂
∂y dx + ∂

∂xdy acting on differentiable functions. So, for f

differentiable on X, ∗df = ∗d(f) is well-defined, and it extends to 1-forms:
p(x, y) dx+ q(x, y) dy �→ ∗d(p(x, y))∧ dx+ ∗d(q(x, y))∧ dy. Show ∗d(ω) is
−d ∗ω. Define ∇2(f) by d ∗ df = ∇2(f)dx∧ dy. Argue why this defines a
(complex) Laplacian ∇2

X on a 1-dimensional complex manifold.
(9.24e) Suppose differentiable f on X has a corresponding λ ∈ C with ∇2

X(f) =
λf dx∧dy (everywhere locally). Call λ an eigenvalue of∇2

X . If fi : Yi → X
are inequivalent covers of X, with equivalent locally flat bundles (Defn8.6),
over X, i = 1, 2, show their Laplacians have the same eigenvalues.


