Contents

List of Figures	
Chapter 1 SCOPE OF THE EXISTENCE THEOREM	1
1 Context for the book	1
2 A quick summary	3
2. A concise description chapter by chapter	3
2.2. Meaning of the word elementary in the title	5
3 Early historical motivation	6
3.1 Consider functions of one variable	6
3.2 Motivating integrals	7
4 Algebraic functions among extensible functions	7
4.1 One element of $\mathcal{E}(U_r, z_0)$ is versal for $\mathcal{E}(U_r, z_0)^{\text{alg}}$	7
4.2 Uniformizing from above versus below	9
5. $\mathcal{E}(U_{\mathbf{r}}, z_0)^{\text{alg}}$ and data from groups	10
5.1. Identifying a fundamental group requires generators	10
5.2. Changing classical generators	11
5.3. Moving \mathbf{z}_{0} even with z_{0} fixed, forces changing generators	11
5.4. The moduli spaces appear	12
6. Abelian theory on \bar{X}_f and integration	13
6.1. Changes of significance for algebraic f	14
6.2. Extending Cauchy's Theorem to \bar{X}_f	14
6.3. Jacobians and generalizing Abel's Theorem	15
6.4. Complication 1: The role of f	16
6.5. Complication 2: \tilde{X}_f and nilpotent covers	17
7. Acting with $G_{\mathbb{Q}}$	18
7.1. Acting on Laurent series	18
7.2. Profinite fundamental groups	19
7.3. Extending $G_{\mathbb{Q}}$ action	20
7.4. Motivation from the Inverse Galois Problem	20
8. Extensible nilpotent functions and the group \tilde{G}	20
8.1. A guide from dihedral groups	21
8.2. Applying the Branch Cycle Lemma	21
8.3. Thm. 8.2 and Modular Towers	22
8.4. A diophantine view of a nilpotent theory	22
9. The Grothendieck-Teichmüller group	24
9.1. Moduli spaces with several components	24
9.2. Deligne's tangential base points	24
9.3. The first two relations	25
9.4. Detecting $\hat{\mathcal{GT}}$ at the level of a Modular Tower	26

CONTENTS

9.5. Variants of the Drinfeld-Ihara relations Chap. 9	27
10. Combining the Existence Theorem and θ functions	28
10.1. Theta functions and Hurwitz spaces	28
10.2. Conjugacy class products	29
10.3. The diophantine effect of few components	30
10.4. Height functions	31
10.5. Introducing nonordinary points	31
10.6. Weil's distributions	33
10.7. Prelude to the general case?	34
11. Aids to the reader and choice of actions	35
12. Poetry and Mathematics	36
12.1. The grandest virtues	36
12.2. The eve of the beholder	36
12.3. Two afterthoughts	37
-	
Chapter 2. ANALYTIC CONTINUATION	39
1. Why Riemann's Existence Theorem?	39
1.1. Introduction to algebraic functions	39
1.2. Equivalence of algebraic functions of z	40
1.3. Puiseux expansions	41
1.4. Monodromy groups and the genus	41
1.5. Advantages of Riemann's definition	42
2. Paths	42
2.1. Notation from calculus	43
2.2. Elementary properties and paths	43
2.3. Integrals along a simplicial path	44
2.4. Relation between integrals and analytic functions	45
2.5. More explanation of differential forms	46
3. Branch of $\log(z)$ along a path	47
3.1. How e^z defines branches of $\log(z)$	47
3.2. Questions about branches of log	47
3.3. Proof of Prop. 3.2	48
3.4. Branch of log as a primitive	48
4. Analytic continuation along a path	49
4.1. Definition of analytic continuation	49
4.2. Practical analytic continuation	50
4.3. A branch of a primitive	53
4.4. Continuation along products of paths	53
4.5. Proof of Lemma 4.12	54
4.6. Extending analytic continuation to \mathbb{P}^1_z	55
5. Winding numbers and homology	56
5.1. Extending Def. 5.1	56
5.2. Homology for domains including ∞	57
5.3. Computing $H_1(D)$ for explicit domains	58
5.4. Proof of Prop. 5.4	58
6. Branch of solutions of $m(z, w) = 0$	60
6.1. Branch of inverse of $f(z)$	60
6.2. Implicit function theorem	62
7. Equivalence of the two definitions of algebraic	63

iv

CONTENTS

7.1 Proof of Prop. 6.4	63
7.2 The converse and integrals along naths	64
7.2. \mathcal{D}_{i} is algobraically closed	65
7.4 Proof of Prop. 7.4	65
7.5 Ramification indices branch cycles and inertia groups	66 66
8 Abelian functions from branch of log	68
8.1 Further notation around extensible functions	68
8.2 Abalian monodromy	60 60
8.3 Deeper into the Monodromy Theorem	60 60
8.4 Primitive tangential base points	03 70
8.5 Describing all algebraic abolian functions	70
0 Evoreisos	71
9. Exercises	14 79
9.1. Substitutions and the chain rule 0.2 Bational functions and field theory	14 73
9.2. Calois theory of composite folds and using group theory	73
9.5. Galois theory of composite helds and using group theory	74
9.4. Dianch of log and Fulseux expansions 0.5. Elementary normulations from $\Pi_{c}(D, \alpha)$	70 77
9.5. Elementary permutations from $\Pi_1(D, z_0)$	77
9.0. Fractional transformations and the elementary divisor theorem 0.7 . Metrics on \mathbb{D}^1 . A conductor proceeduate	11
9.7. Metrics on \mathbb{P}_z^+ , Δ and more generally	18
Chapter 3 COMPLEX MANIFOLDS AND COVERS	81
1 Fiber products and relative topologies	81
1.1 Set theory constructions	81
1.1. Set theory constructions 1.2 Extending topologies from \mathbb{R}^n	82
2 Functions on X from functions on \mathbb{R}^n	83
2. I difference of A from functions of \mathbb{R}	84
2.1. Defining a topological space from its attact	85
3 Manifolds: differentiable and complex	85
3.1 Manifold structures	86
3.2 Classical examples	89
3.3 Manifolds from algebraic functions	91
4 Coordinates and meromorphic functions	94
4.1 Comparing analytic spaces	94
4.2 Compactifications and fiber products	96
4.2. Compactifications and not products $4.3 \mathbb{P}^n$ compactifications	100
5 Paths vectors and forms	100
5.1 Tangent vectors	102
5.2 Holomorphic vector fields and differential forms	103
5.3 Meromorphic vector fields and differentials	107
5.4 Half-canonical differentials	101
6 Homotopy monodromy and fundamental groups	105
6.1 Homotopy of paths	112
6.2 Analytic continuation on a manifold	112
6.3 Path equivalence classes form a group	115
6.4 Fundamental group of a circle	115
6.5. Fundamental group of a product	117
7. Permutation representations and covers	118
7.1. Permutation representations	118
7.2. Covering spaces	123
	-

v

CONTENTS

7.3.	Pointed covers and a Galois correspondence	125
8. (Group theory and covering spaces	127
8.1.	Corollaries of Thm. 7.16	127
8.2.	The problem of identifying algebraic functions explicitly	130
8.3.	Galois theory and covering spaces	130
8.4.	Imprimitive covers and wreath products	134
8.5.	Representations and groupoids	135
8.6.	Complete reducibility and covers with equivalent flat bundles	138
9. I	Exercises	140
9.1.	Constructing manifolds	140
9.2.	Complex structure and torii	141
9.3.	\mathbb{P}^n compactification	143
9.4.	Paths and vector fields	144
9.5.	Permutation group properties	145
9.6.	Affine groups as permutation representations	146
9.7.	Group representations	147
9.8.	Easy Galois covers	148
9.9.	Imprimitive and Frattini covers	149
9.10.	Laplacian	150
Chapter	A DIEMANN'S EVISTENCE THEODEM	151
	Presentations of fundamental many of Diamonn surfaces	101
1. 1	Presentations of fundamental groups of memain surfaces	151
1.1.	Fundamental groups of unions of groups	151
1.2. 1.2	Proof of Saifert van Kammpon. Thm, 1.5	153
1.5.	Classical generators on an <i>r</i> -nunctured sphere	155
1.4.	Proof of classical generators Thm 1.8	156
2 F	Ramified covers from the Existence Theorem	150
2.1	Nonconstant maps of Riemann surfaces	159
$\frac{2.1}{2.2}$	Constructing ramified covers	161
2.3.	Combinatorial Existence, algebraic and abelian covers	164
2.4.	Impossible pictures and cuts	166
2.5.	Residues and traces	168
3. I	Vielsen classes and the Existence Theorem	171
3.1.	Artin Braids and Hurwitz monodromy	171
3.2.	Nielsen classes	172
3.3.	Normal fiber products	174
3.4.	Fiber products and Galois closure	175
3.5.	Riemann-Hurwitz and the genus of a cover of \mathbb{P}^1_z	177
3.6.	Reduced Nielsen classes and mapping class orbits	178
4. <i>A</i>	Applications of the Existence Theorem	180
4.1.	Dihedral covers and further genus 0 examples	180
4.2.	Genus 1 covers from the existence theorem	181
4.3.	Genus of the corresponding degree 10 covers	182
4.4.	Covers with group A_5	182
4.5.	Nontrivial components of fiber products	182
5. (Coordinates and covers	182
5.1.	Algebraic covers and relating $(\mathbb{P}^1)^N$ to \mathbb{P}^N	183
5.2.	Invariants and automorphisms of $(\mathbb{P}^1)^N$	183

vi

CONTENT	S
CONTRACT	\sim

5.3.	${\mathbb R}$ structures and the Branch Cycle Lemma	184
5.4.	Branch cycles for sequences of genus 0 covers	184
5.5.	Belyi's covers of \mathbb{P}^1_z	184
5.6.	Higher genus versions of Thm. 1.8 and uniformization	188
5.7.	The Schwarz-Christoffel Transformation	188
5.8.	Monodromy and hypergeometric functions	191
6. A	Abel's contributions and modular curves	192
6.1.	Hyperelliptic curves appear everywhere	193
6.2.	Starting Abel's Theorem	193
6.3.	Substitutions by elementary functions	194
6.4.	Explicit functions for dihedral covers	194
6.5.	The function $\zeta(z)$	195
6.6.	Abel's construction of functions when $q = 1$	195
6.7.	The unique θ function with odd characteristic	195
6.8.	Uniformization and the <i>j</i> -line	196
6.9.	Jacobian and half-canonical classes	197
7. A	Algebraic coordinates	198
7.1.	Points about algebraic varieties	198
7.2.	Completion of the fundamental group	198
7.3.	Functions on the universal covering space	198
7.4.	Some comparisons with [Har77] and [Mu66]	199
7.5.	The lemmas of Noether and Chow	199
7.6.	The Branch Cycle Lemma	200
7.7.	Adjusting complex structures	202
7.8.	Complex conjugate of a complex manifold	204
7.9.	Involution from an \mathbb{R} structure	206
8. U	Jsing algebraic coordinates and higher monodromy	206
8.1.	Complements on algebraic coordinates	206
8.2.	Fundamental groups from branch cycles and higher monodromy	206
8.3.	Flat bundles and complete reducibility	206
8.4.	Unramified Frattini covers	207
8.5.	Equations, coordinates and cryptography	207
9. S	ome documentation of the historical record	207
9.1.	The career view	207
9.2.	Influences on Riemann	208
9.3.	The place of Galois	211
10.	Exercises	214
10.1.	Topology of covers	214
10.2.	Artin braids and Hurwitz monodromy	215
10.3.	Seifert-van Kampen theorem and fiber products	215
10.4.	Residues and uniformization for covers of curves of genus 1	216
10.5.	Reducible fiber products	216
10.6.	Genus 1 covers and symbolic pictures	217
10.7.	Schwartzian and Beltrami equations	218
10.8.	Frattini covers and half-canonical classes	219
10.9.	Differential forms, orientation, area and the Laplacian	220
	· · · ·	
		0.01

Bibliography

221

vii