Effective versions of Serre's open image theorem for elliptic curves

Alina-Carmen Cojocaru Princeton University/MSRI Berkeley

April 2006

1. INTRODUCTION

- K a number field
- $E/K : y^2 = x^3 + Ax + B$

an *elliptic curve* over K, of conductor N_E .

• for a rational prime ℓ , $E[\ell] := \{P \in E(\mathbb{C}) : \ell P = \mathcal{O}\}$ the ℓ -th division group of E.

Then:

- $E[\ell] \simeq \mathbb{Z}/\ell\mathbb{Z} \times \mathbb{Z}/\ell\mathbb{Z};$
- $K(E[\ell])/K$ is a finite Galois extension.

Thus there exists a natural representation $\rho_{E/K,\ell}$: Gal $(K(E[\ell])/K) \longrightarrow \text{GL}_2(\mathbb{Z}/\ell\mathbb{Z}).$ Properties of $\rho_{E/K,\ell}$:

1. $\rho_{E/L,\ell}$ is injective.

2. (Complex Multiplication theory)

Suppose E/L is with CM by L.

Then

$$\mathsf{Gal}(L(E[\ell])/L) \simeq \left(\frac{\mathcal{O}_L}{\ell \mathcal{O}_L}\right)^* \quad \forall (\ell, 6N_E) = 1;$$

in particular,

 $\rho_{E/K,\ell}$ is not surjective.

3. (J-P. Serre, 1972)

Suppose E/K is without CM. Then

 $\exists c(E,K)$ such that

 $\rho_{E/K,\ell}$ is surjective $\forall \ell \ge c(E,K).$

OR

$\exists A(E,K)$ such that

 $\rho_{E/K,n}$ is surjective for all n coprime to A(E,K).

2. Questions

Question 1 (Serre, 1981)

Is there an effective description of c(E, K) in terms of E and K?

Question 2 (Serre, 1972 & 1981)

Is it true that c(E, K) = c(K)?

Reformulation of Serre's uniformity question

Let

$$S_{E/K} := \{\ell : \rho_{E/K,\ell} \text{ is } \mathbf{not} \text{ surjective}\},\$$

$$S_K := \cup_{E/K \text{ non-CM}} S_{E/K}.$$

Serre's theorem says that

 ${\cal S}_{{\cal E}/{\cal K}}$ is finite.

Can one also show that S_K finite?

FURTHER REFINEMENTS

- B := Borel subgroup of $GL_2(\mathbb{F}_{\ell})$
- N_s := normalizer of a split Cartan C_s subgroup of GL₂(𝔽_ℓ)
- $N_{ns} :=$ normalizer of a non-split Cartan C_{ns} subgroup of $GL_2(\mathbb{F}_{\ell})$
- D := subgroup of $GL_2(\mathbb{F}_{\ell})$ whose projective image is S_4, A_4 or A_5

Fact

If $\rho_{E/K,\ell}$ is not surjective, then

Im $\rho_{E/K,\ell} \subseteq H$ for some $H \in \{B, N_s, N_{ns}, D\}$.

Refined Serre's question

For H as above, is

$$S_K^H := \bigcup_{E/K \text{ non-CM}} \{\ell : \text{Im } \rho_{E/K, \ell} \subseteq H\}$$
 finite?

2. SOME MOTIVATION

2.1. Lang-Trotter constants

2.2. Diophantine equations

3. FINITENESS OF $S^D_{\mathbb{Q}}$

By using local methods:

Serre's Theorem (1970s)

$$S^D_{\mathbb{Q}} \subseteq \{\ell \le 13\}.$$

4. FINITENESS OF $S^B_{\mathbb{Q}}$

Mazur's Theorem (1978)

Let ℓ be a prime such that $\exists E/\mathbb{Q}$ which admits a \mathbb{Q} -rational ℓ -isogeny. Then

 $\ell \in \{2,3,5,7,3,13;11,17,19,37,163\}.$

Corollary 1

$$S^B_{\mathbb{Q}} \subseteq \{\ell \leq \mathbf{37}\}.$$

Corollary 2

If E/\mathbb{Q} semistable, then $\rho_{E/\mathbb{Q},\ell}$ surjective for all $\ell \geq 11$.

 X(ℓ) := the complete modular curve of level ℓ which parameterizes elliptic curves E/Q together with chosen bases of E[ℓ]

• For
$$H \leq \operatorname{GL}_2(\mathbb{F}_{\ell})$$
,

$$X_H(\ell) := X(\ell)/H$$

<u>Fact</u> The curve $X_H(\ell)$ classifies elliptic curves E/\mathbb{Q} (up to $\overline{\mathbb{Q}}$ -isom.) such that $\operatorname{Im} \rho_{E/\mathbb{Q},\ell} \subseteq H$.

Reformulation of Serre's question

Are

 $X_B(\ell)(\mathbb{Q}), X_{N_s}(\ell)(\mathbb{Q}), X_{N_{ns}}(\ell)(\mathbb{Q}), X_D(\ell)(\mathbb{Q})$ trivial for ℓ sufficiently large?

4. FINITENESS OF
$$S_{\mathbb{Q}}^{N_s}$$
, $S_{\mathbb{Q}}^{N_{ns}}$???

4.1 Momose's Theorem (1984)

Let ℓ be a prime.

Let E/\mathbb{Q} be non-CM and such that

- $j(E) \notin \mathbb{Z}\left[\frac{1}{2\ell}\right]$
- Im $\rho_{E/\mathbb{Q},\ell} \subseteq N_s$.

Then

$$\ell = 13$$
 or $\ell \leq 7$.

4.2. Connection with congruence primes

Theorem (Imin Chen, 2000)

Let ℓ be an odd prime.

Let E/\mathbb{Q} be non-CM, of conductor N_E , and with associated newform $f_E \in S_2(\Gamma_0(N_E), \mathbb{Z})$.

1. If $\operatorname{Im} \rho_{E/\mathbb{Q},\ell} \subseteq N_s$ or N_{ns} , then

 ℓ is a congruence prime for f_E .

2. If $3 < \ell \nmid N_E$ and

 $\operatorname{Im} \rho_{E/\mathbb{Q},\ell} \subseteq N_{ns},$

then \exists newforms

$$g \in S_2(\Gamma_1(M)), h \in S_2(\Gamma_0(M))$$

such that

 (a) g, h are induced from a Grossencharacter of the quadratic field cut out by the Dirichlet character

 $\epsilon : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{Im} \rho_{E/\mathbb{Q},\ell} \to N_{ns}/C_{ns} \simeq \{\pm 1\}$

(b) $f \equiv g \pmod{\lambda}$ and $f \equiv h \pmod{\lambda}$ for λ prime above ℓ .

Remark Bounding congruence primes is related to bounding the degree of the modular parameterizations of elliptic curves over \mathbb{Q} ;

this, in turn, is related to the ABC conjecture.

We will see this connection once again...

4.3 Parent's Theorem (2003)

 $X_{N_s}(\ell)(\mathbb{Q})$ is trivial if

 $\ell \geq 11, \ \ell \neq 13, 37, \ \text{and} \ \ell \not\in \mathcal{A},$

where

 $\mathcal{A} := \{ \text{ primes which are simultaneously a square mod 3, mod 4, mod 7 and a square mod at least five of 8, 11, 19, 43, 67, 163 <math>\}$.

(the density of A is 0.986...)

5. EFFECTIVE RESULTS FOR $S_{\mathbb{O}}^N$

5.1. Isogeny estimates

By using upper estimates for the degree of an isogeny over \overline{K} between (principally polarized) abelian varieties/K:

Masser-Wüstholz Theorem (1992)

There exist absolute constants c, γ such that:

if E/K is a non-CM elliptic curve over a number field K, then

 $\operatorname{Im} \rho_{E/K,\ell} = \operatorname{GL}_2(\mathbb{F}_\ell)$

for any prime $\ell \nmid \operatorname{disc}(K/\mathbb{Q})$ such that

 $\ell > c \cdot \max\{|K : \mathbb{Q}|, h(E)\}^{\gamma},$

where h(E) is the Weil height of E.

Remark 1 One can replace h(E) with log H(E), where H(E) is the naive height of E.

Remark 2 The constants c, γ are effective, but huge; e.g.

$$\gamma < 10^{25,000};$$

worked out by Takashi Kawamura (2003).

Remark 3 If $K = \mathbb{Q}$, we can use <u>the modularity</u> of E/\mathbb{Q} ; thus there is a nontrivial surjective rational morphism

$$\phi: X_0(N_E) \longrightarrow E.$$

There is a relation between deg ϕ and h(E):

$$\begin{array}{l} (1-\varepsilon)\log N_E+2h(E)\\ <\log \deg \phi+O(1)<\\ (1+\varepsilon)\log N_E+2h(E) \ \forall \varepsilon>0. \end{array}$$
 Now we can invoke the degree conjecture
$$\deg \phi= \mathsf{O}_\varepsilon(N_E^{2+\varepsilon}) \end{array}$$

to get:

<u>Theorem</u>

If $\ell \geq c(\log N_E)^{\gamma}$, then $\operatorname{Im} \rho E/\mathbb{Q}, \ell = \operatorname{GL}_2(\mathbb{F}_{\ell})$.

5.2 Serre's criterion

Let E/\mathbb{Q} be non-CM, of conductor N_E .

Let $\ell \neq 37, \geq 19$ be such that $\rho_{E/\mathbb{Q}, \ell}$ is **not** surjective.

Let

$$\epsilon : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \longrightarrow \{\pm 1\}$$

be the quadratic Dirichlet character mentioned before.

Then:

- 1. ϵ is unramified outside N_E ;
- 2. $\ell \mid a_p(E)$ for any prime $p \nmid N_E$ such that $\epsilon(p) = -1$.

Another reformulation of Serre's question

Find an upper bound for the least prime $p_{\rm 0}$ such that

- $p_0 \nmid N_E$;
- $\epsilon(p_0) = -1;$
- $a_{p_0}(E) \neq 0.$

By combining this with Serre's criterion and Hasse's bound $|a_{p_0}| < 2\sqrt{p_0}$, we will get an upper bound for ℓ .

General strategy

Twist E/\mathbb{Q} by the character ϵ and get an elliptic curve E'/\mathbb{Q} .

Since E/\mathbb{Q} is non-CM, there are infinitely many primes p such that

$$a_p(E) \neq a_p(E').$$

Also, one can show that E'/\mathbb{Q} has good reduction outside N_E .

FIND A WAY to estimate (perhaps in terms of N_E) the least prime p_0 such that

• $p_0 \nmid N_E$

• $a_{p_0}(E) \neq a_{p_0}(E').$

(I) Use effective versions of the Chebotarev density theorem:

Serre's Theorem (1981)

Assume GRH.

Let E/\mathbb{Q} be non-CM, of conductor N_E .

If $\ell \geq 19, \ell \neq 37$ and

 $\ell \ge c(\log N_E)(\log \log 2N_E)^2,$

then $\operatorname{Im} \rho_{E/\mathbb{Q},\ell} = \operatorname{GL}_2(\mathbb{F}_\ell).$

(II) Use modularity and theory of modular forms:

Theorem (A. Kraus 1995; A.C. Cojocaru 2001)

Let E/\mathbb{Q} be non-CM, of conductor N_E .

If

$$\ell \ge c N_E (\log \log N_E)^{1/2},$$

then $\operatorname{Im} \rho_{E/\mathbb{Q},\ell} = \operatorname{GL}_2(\mathbb{F}_\ell)$.

(III) Use modularity and the Rankin-Selberg method:

$$\sum_{\substack{n \leq x \\ (n,N_E)=1}} \left[\tilde{a}_n(f_E) - \tilde{a}_n(f_{E'}) \right]^2 = \text{Main term} + \text{error.}$$

A.C. Cojocaru and R. Murty –work in progress:

Expect to find $\theta < 1$ such that

$$\operatorname{Im} \rho_{E/\mathbb{Q},\ell} = \operatorname{GL}_2(\mathbb{F}_\ell)$$

for all

$$\ell \ge c N_E^{\theta}.$$

6. AVERAGE RESULTS

- \mathcal{F} infinite family of elliptic curves E/K
- $\mathcal{E}_{\ell_0} := \{ E \in \mathcal{F} : \exists \ell \geq \ell_0 \text{ s.th. } \rho_{E/K,\ell} \text{ not surj.} \}$

Question

Can we show that

$$\frac{|\mathcal{E}_{\ell_0}|}{|\mathcal{F}|} = 0?$$

6.1 Two-parameter average

Let

$$\alpha := x^2, \quad \beta := x^3.$$

Let $A, B \in \mathbb{Z}$,

 $|A| \le \alpha, \quad |B| \le \beta,$

such that

$$E_{A,B}: y^2 = x^3 + Ax + B$$

elliptic curve/ \mathbb{Q} .

Take

 $\mathcal{F}(x) := \{ (A, B) \in \mathbb{Z}^2 : |A| \le \alpha, |B| \le \beta, E_{A,B}/\mathbb{Q} \text{ e.c} \}.$

Theorem (W. Duke, 1995):
$$\lim_{x \to \infty} \frac{|\mathcal{E}_2(x)|}{|\mathcal{F}(x)|} = 0.$$

22

Uses Gallagher's two-dimensional large sieve,

together with **Deuring's formula**

$$\#\{(A,B) \in \mathbb{F}_p^2 : a_p(E_{A,B}) = a\}$$
$$= \frac{1}{2}(p-1)H(4p-a^2) \quad \forall \ p \ge 5$$

and Hurwitz's formula

$$\sum_{a \equiv \tau \pmod{\ell}} H(4p - a^2)$$
$$= 2 \frac{\ell + \left(\frac{\tau^2 - 4\delta}{\ell}\right)}{\ell^2 - 1} (p - 1) + O(\ell p^{1/2})$$

for $p \equiv \delta \pmod{\ell}$.

6.2 One-parameter average

Let $A(t), B(t) \in \mathbb{Z}[t]$ such that $E/\mathbb{Q}(t) : y^2 = x^3 + A(t)x + B(t)$ e.c./ $\mathbb{Q}(t)$ with $j \notin \mathbb{Q}$. Let $\Delta_{A,B} := -16 \left[4A(t)^3 + 27B(T)^2 \right]$. Let $S := \{t_0 \in \mathbb{Q} : \Delta_{A,B}(t_0) = 0\}$.

Take

$$\mathcal{F}(T) := \left\{ t_0 = \frac{m}{n} \in \mathbb{Q} \setminus S : \max\{|m|, |n|\} \le T \right\}.$$

Theorem (A.C. Cojocaru and C. Hall, 2005) $\lim_{T \to \infty} \frac{|\mathcal{E}_{17}(T)|}{|\mathcal{F}(T)|} = 0.$

24

Uses Gallagher's two-dimensional large sieve,

together with **effective version of Igusa's theorem** about division fields of elliptic curves over function fields:

Igusa's Theorem (1959)

Let:

- $\bullet\ C/\mathbb{F}_q$ proper, smooth, geom. connected curve
- $K := \mathbb{F}_q(C)$
- E/K elliptic curve with $j \notin \mathbb{F}_q$
- ℓ rational prime s.th. $q \equiv 1 \pmod{\ell}$

Then

$$\exists c(E,K)$$
 such that

 $\operatorname{Gal}(K(E[\ell])/K) \simeq \operatorname{SL}_2(\mathbb{Z}/\ell\mathbb{Z}) \quad \forall \ell \ge c(E,K).$

Theorem (A.C. Cojocaru and C. Hall, 2005)

The constant c(E, K) depends at most on the genus of K.

It can be calculated as

$$2 + \max\left\{\ell : \frac{1}{12}[\ell - (6 + 3\epsilon_2 + 4\epsilon_3)] \le \operatorname{genus}(K)\right\},\$$

where

$$\epsilon_{2} := \begin{cases} +1 & \text{if } \ell \equiv 1 \pmod{4} \\ -1 & \text{otherwise,} \end{cases}$$
$$\epsilon_{3} := \begin{cases} +1 & \text{if } \ell \equiv 1 \pmod{3} \\ -1 & \text{otherwise.} \end{cases}$$

6.4 Remaining question

What about $\ell < \ell_0$?

• Two-parameter average:

complete results by **D. Grant, 2000**

• One-parameter average:

in progress...

7. CONCLUSIONS

• Is the function field result

$$c(E,K) = c(genus(K)) = \dots$$

best possible?

- Can we average over more general families?
- What can we say about (effective versions of) open image theorems for modular forms, abelian varieties, or Drinfeld modules?