# Effective versions of Serre's open image theorem for elliptic curves 

Alina-Carmen Cojocaru<br>Princeton University/MSRI Berkeley

April 2006

## 1. INTRODUCTION

- $K$ a number field
- $E / K: y^{2}=x^{3}+A x+B$ an elliptic curve over $K$, of conductor $N_{E}$.
- for a rational prime $\ell$,

$$
E[\ell]:=\{P \in E(\mathbb{C}): \ell P=\mathcal{O}\}
$$

the $\ell$-th division group of $E$.

Then:

- $E[\ell] \simeq \mathbb{Z} / \ell \mathbb{Z} \times \mathbb{Z} / \ell \mathbb{Z}$;
- $K(E[\ell]) / K$ is a finite Galois extension.

Thus there exists a natural representation

$$
\rho_{E / K, \ell}: \operatorname{GaI}(K(E[\ell]) / K) \longrightarrow \mathrm{GL}_{2}(\mathbb{Z} / \ell \mathbb{Z}) .
$$

Properties of $\rho_{E / K, \ell}$ :

1. $\rho_{E / L, \ell}$ is injective.
2. (Complex Multiplication theory)

Suppose $E / L$ is with CM by $L$.

Then

$$
\operatorname{Gal}(L(E[\ell]) / L) \simeq\left(\frac{\mathcal{O}_{L}}{\ell \mathcal{O}_{L}}\right)^{*} \quad \forall\left(\ell, 6 N_{E}\right)=1 ;
$$

in particular,

$$
\rho_{E / K, \ell} \text { is not surjective. }
$$

3. (J-P. Serre, 1972)

Suppose $E / K$ is without $C M$. Then
$\exists c(E, K)$ such that

$$
\rho_{E / K, \ell} \text { is surjective } \quad \forall \ell \geq c(E, K)
$$

OR
$\exists A(E, K)$ such that
$\rho_{E / K, n}$ is surjective for all $n$ coprime to
$A(E, K)$.

## 2. Questions

Question 1 (Serre, 1981)

Is there an effective description of $c(E, K)$ in terms of $E$ and $K$ ?

Question 2 (Serre, 1972 \& 1981)

Is it true that $c(E, K)=c(K)$ ?

# Reformulation of Serre's uniformity question 

Let

$$
\begin{gathered}
S_{E / K}:=\left\{\ell: \rho_{E / K, \ell} \text { is not surjective }\right\}, \\
S_{K}:=\cup_{E / K} \text { non-CM } S_{E / K} .
\end{gathered}
$$

Serre's theorem says that $S_{E / K}$ is finite.

Can one also show that $S_{K}$ finite?

## FURTHER REFINEMENTS

- $B:=$ Borel subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$
- $N_{s}:=$ normalizer of a split Cartan $C_{s}$ subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$
- $N_{n s}:=$ normalizer of a non-split Cartan $C_{n s}$ subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$
- $D:=$ subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$ whose projective image is $S_{4}, A_{4}$ or $A_{5}$

Fact

If $\rho_{E / K, \ell}$ is not surjective, then
$\operatorname{Im} \rho_{E / K, \ell} \subseteq H$ for some $H \in\left\{B, N_{s}, N_{n s}, D\right\}$.

## Refined Serre's question

For $H$ as above, is

$$
S_{K}^{H}:=\cup_{E / K} \text { non-CM }\left\{\ell: \operatorname{Im} \rho_{E / K, \ell} \subseteq H\right\}
$$

finite?

## 2. SOME MOTIVATION

### 2.1. Lang-Trotter constants

2.2. Diophantine equations

# 3. FINITENESS OF $S_{\mathbb{Q}}^{D}$ 

By using local methods:

Serre's Theorem (1970s)

$$
S_{\mathbb{Q}}^{D} \subseteq\{\ell \leq 13\} .
$$

## 4. FINITENESS OF $S_{\mathbb{Q}}^{B}$

Mazur's Theorem (1978)

Let $\ell$ be a prime such that $\exists E / \mathbb{Q}$ which admits a $\mathbb{Q}$-rational $\ell$-isogeny. Then

$$
\ell \in\{2,3,5,7,3,13 ; 11,17,19,37,163\} .
$$

Corollary 1

$$
S_{\mathbb{Q}}^{B} \subseteq\{\ell \leq 37\} .
$$

Corollary 2

If $E / \mathbb{Q}$ semistable, then $\rho_{E / \mathbb{Q}, \ell}$ surjective for all $\ell \geq 11$.

- $X(\ell):=$ the complete modular curve of level $\ell$ which parameterizes elliptic curves $E / \mathbb{Q}$ together with chosen bases of $E[\ell]$
- For $H \leq \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$,

$$
X_{H}(\ell):=X(\ell) / H
$$

Fact The curve $X_{H}(\ell)$ classifies elliptic curves $E / \mathbb{Q}$ (up to $\overline{\mathbb{Q}}$-isom.) such that $\operatorname{Im} \rho_{E / \mathbb{Q}, \ell} \subseteq H$.

Reformulation of Serre's question

Are

$$
X_{B}(\ell)(\mathbb{Q}), X_{N_{s}}(\ell)(\mathbb{Q}), X_{N_{n s}}(\ell)(\mathbb{Q}), X_{D}(\ell)(\mathbb{Q})
$$

trivial for $\ell$ sufficiently large?

# 4. FINITENESS OF $S_{\mathbb{Q}}^{N_{s}}, S_{\mathbb{Q}}^{N_{n s}}$ ??? 

### 4.1 Momose's Theorem (1984)

Let $\ell$ be a prime.

Let $E / \mathbb{Q}$ be non-CM and such that

- $j(E) \notin \mathbb{Z}\left[\frac{1}{2 \ell}\right]$
- $\operatorname{Im} \rho_{E / \mathbb{Q}, \ell} \subseteq N_{s}$.

Then

$$
\ell=13 \text { or } \ell \leq 7
$$

### 4.2. Connection with congruence primes

## Theorem (Imin Chen, 2000)

Let $\ell$ be an odd prime.

Let $E / \mathbb{Q}$ be non-CM, of conductor $N_{E}$, and with associated newform $f_{E} \in S_{2}\left(\Gamma_{0}\left(N_{E}\right), \mathbb{Z}\right)$.

1. If $\operatorname{Im} \rho_{E / \mathbb{Q}, \ell} \subseteq N_{s}$ or $N_{n s}$, then
$\ell$ is a congruence prime for $f_{E}$.
2. If $3<\ell \nmid N_{E}$ and

$$
\operatorname{Im} \rho_{E / \mathbb{Q}, \ell} \subseteq N_{n s},
$$

then $\exists$ newforms

$$
g \in S_{2}\left(\Gamma_{1}(M)\right), \quad h \in S_{2}\left(\Gamma_{0}(M)\right)
$$

such that
(a) $g, h$ are induced from a Grossencharacter of the quadratic field cut out by the Dirichlet character
$\epsilon: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \operatorname{Im} \rho_{E / \mathbb{Q}, \ell} \rightarrow N_{n s} / C_{n s} \simeq$ $\{ \pm 1\}$
(b) $f \equiv g(\bmod \lambda)$ and $f \equiv h(\bmod \lambda)$ for $\lambda$ prime above $\ell$.

Remark Bounding congruence primes is related to bounding the degree of the modular parameterizations of elliptic curves over $\mathbb{Q}$;
this, in turn, is related to the $A B C$ conjecture.
We will see this connection once again...

### 4.3 Parent's Theorem (2003)

$X_{N_{s}}(\ell)(\mathbb{Q})$ is trivial if
$\ell \geq 11, \ell \neq 13,37$, and $\ell \notin \mathcal{A}$,
where
$\mathcal{A}:=\{$ primes which are simultaneously a square $\bmod 3, \bmod 4, \bmod 7$ and a square mod at least five of $8,11,19,43,67,163\}$.
(the density of $\mathcal{A}$ is $0.986 \ldots$ )

# 5. EFFECTIVE RESULTS FOR $S_{\mathbb{Q}}^{N}$ 

### 5.1. Isogeny estimates

By using upper estimates for the degree of an isogeny over $\bar{K}$ between (principally polarized) abelian varieties/ $K$ :

Masser-Wüstholz Theorem (1992)

There exist absolute constants $c, \gamma$ such that:
if $E / K$ is a non-CM elliptic curve over a number field $K$, then

$$
\operatorname{Im} \rho_{E / K, \ell}=\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)
$$

for any prime $\ell \nmid \operatorname{disc}(K / \mathbb{Q})$ such that

$$
\ell>c \cdot \max \{|K: \mathbb{Q}|, h(E)\}^{\gamma},
$$

where $h(E)$ is the Weil height of $E$.

Remark 1 One can replace $h(E)$ with $\log H(E)$, where $H(E)$ is the naive height of $E$.

Remark 2 The constants $c, \gamma$ are effective, but huge; e.g.

$$
\gamma<10^{25,000}
$$

worked out by Takashi Kawamura (2003).

Remark 3 If $K=\mathbb{Q}$, we can use the modularity of $E / \mathbb{Q}$; thus there is a nontrivial surjective rational morphism

$$
\phi: X_{0}\left(N_{E}\right) \longrightarrow E .
$$

There is a relation between deg $\phi$ and $h(E)$ :

$$
\begin{aligned}
& (1-\varepsilon) \log N_{E}+2 h(E) \\
& <\log \operatorname{deg} \phi+O(1)<
\end{aligned}
$$

$$
(1+\varepsilon) \log N_{E}+2 h(E) \forall \varepsilon>0
$$

Now we can invoke the degree conjecture

$$
\operatorname{deg} \phi=\mathrm{O}_{\varepsilon}\left(N_{E}^{2+\varepsilon}\right)
$$

to get:

## Theorem

If $\ell \geq c\left(\log N_{E}\right)^{\gamma}$, then $\operatorname{Im} \rho E / \mathbb{Q}, \ell=\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$.

### 5.2 Serre's criterion

Let $E / \mathbb{Q}$ be non-CM, of conductor $N_{E}$.

Let $\ell \neq 37, \geq 19$ be such that $\rho_{E / \mathbb{Q}, \ell}$ is not surjective.

Let

$$
\epsilon: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \longrightarrow\{ \pm 1\}
$$

be the quadratic Dirichlet character mentioned before.

Then:

1. $\epsilon$ is unramified outside $N_{E}$;
2. $\ell \mid a_{p}(E)$ for any prime $p \nmid N_{E}$ such that $\epsilon(p)=-1$.

## Another reformulation of Serre's question

Find an upper bound for the least prime $p_{0}$ such that

- $p_{0} \nmid N_{E}$;
- $\epsilon\left(p_{0}\right)=-1$;
- $a_{p_{0}}(E) \neq 0$.

By combining this with Serre's criterion and Hasse's bound $\left|a_{p_{0}}\right|<2 \sqrt{p_{0}}$, we will get an upper bound for $\ell$.

General strategy

Twist $E / \mathbb{Q}$ by the character $\epsilon$ and get an elliptic curve $E^{\prime} / \mathbb{Q}$.

Since $E / \mathbb{Q}$ is non-CM, there are infinitely many primes $p$ such that

$$
a_{p}(E) \neq a_{p}\left(E^{\prime}\right) .
$$

Also, one can show that $E^{\prime} / \mathbb{Q}$ has good reduction outside $N_{E}$.

FIND A WAY to estimate (perhaps in terms of $N_{E}$ ) the least prime $p_{0}$ such that

- $p_{0} \nmid N_{E}$
- $a_{p_{0}}(E) \neq a_{p_{0}}\left(E^{\prime}\right)$.


# (I) Use effective versions of the Chebotarev density theorem: 

Serre's Theorem (1981)

Assume GRH.

Let $E / \mathbb{Q}$ be non-CM, of conductor $N_{E}$.
If $\ell \geq 19, \ell \neq 37$ and

$$
\ell \geq c\left(\log N_{E}\right)\left(\log \log 2 N_{E}\right)^{2}
$$

then $\operatorname{Im} \rho_{E / \mathbb{Q}, \ell}=\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$.

# (II) Use modularity and theory of modular forms: 

Theorem (A. Kraus 1995; A.C. Cojocaru 2001)

Let $E / \mathbb{Q}$ be non-CM, of conductor $N_{E}$.

If

$$
\ell \geq c N_{E}\left(\log \log N_{E}\right)^{1 / 2}
$$

then $\operatorname{Im} \rho_{E / \mathbb{Q}, \ell}=\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$.

## (III) Use modularity and the Rankin-Selberg method:

$$
\sum_{\substack{n \leq x \\\left(n, N_{E}\right)=1}}\left[\tilde{a}_{n}\left(f_{E}\right)-\tilde{a}_{n}\left(f_{E^{\prime}}\right)\right]^{2}=\text { Main term }+ \text { error. }
$$

A.C. Cojocaru and R. Murty -work in progress:

Expect to find $\theta<1$ such that

$$
\operatorname{Im} \rho_{E / \mathbb{Q}, \ell}=\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)
$$

for all

$$
\ell \geq c N_{E}^{\theta} .
$$

## 6. AVERAGE RESULTS

- $\mathcal{F}$ infinite family of elliptic curves $E / K$
- $\mathcal{E}_{\ell_{0}}:=\left\{E \in \mathcal{F}: \exists \ell \geq \ell_{0}\right.$ s.th. $\rho_{E / K, \ell}$ not surj. $\}$


## Question

Can we show that

$$
\frac{\left|\mathcal{E}_{\ell_{0}}\right|}{|\mathcal{F}|}=0 ?
$$

### 6.1 Two-parameter average

Let

$$
\alpha:=x^{2}, \quad \beta:=x^{3} .
$$

Let $A, B \in \mathbb{Z}$,

$$
|A| \leq \alpha, \quad|B| \leq \beta,
$$

such that

$$
E_{A, B}: y^{2}=x^{3}+A x+B
$$

elliptic curve/ $\mathbb{Q}$.

Take

$$
\mathcal{F}(x):=\left\{(A, B) \in \mathbb{Z}^{2}:|A| \leq \alpha,|B| \leq \beta, E_{A, B} / \mathbb{Q} \text { e.c }\right\} .
$$

Theorem (W. Duke, 1995):

$$
\lim _{x \rightarrow \infty} \frac{\left|\mathcal{E}_{2}(x)\right|}{|\mathcal{F}(x)|}=0
$$

## Uses Gallagher's two-dimensional large sieve,

## together with Deuring's formula

$$
\begin{aligned}
& \#\left\{(A, B) \in \mathbb{F}_{p}^{2}: a_{p}\left(E_{A, B}\right)=a\right\} \\
& =\frac{1}{2}(p-1) H\left(4 p-a^{2}\right) \quad \forall p \geq 5
\end{aligned}
$$

and Hurwitz's formula

$$
\begin{gathered}
\sum_{a \equiv \tau(\bmod \ell)} H\left(4 p-a^{2}\right) \\
=2 \frac{\ell+\left(\frac{\tau^{2}-4 \delta}{\ell}\right)}{\ell^{2}-1}(p-1)+\mathrm{O}\left(\ell p^{1 / 2}\right)
\end{gathered}
$$

for $p \equiv \delta(\bmod \ell)$.

### 6.2 One-parameter average

Let $A(t), B(t) \in \mathbb{Z}[t]$ such that

$$
E / \mathbb{Q}(t): y^{2}=x^{3}+A(t) x+B(t)
$$

e.c. $/ \mathbb{Q}(t)$ with $j \notin \mathbb{Q}$.

Let $\Delta_{A, B}:=-16\left[4 A(t)^{3}+27 B(T)^{2}\right]$.
Let $S:=\left\{t_{0} \in \mathbb{Q}: \Delta_{A, B}\left(t_{0}\right)=0\right\}$.

Take
$\mathcal{F}(T):=\left\{t_{0}=\frac{m}{n} \in \mathbb{Q} \backslash S: \max \{|m|,|n|\} \leq T\right\}$.

Theorem (A.C. Cojocaru and C. Hall, 2005)

$$
\lim _{T \rightarrow \infty} \frac{\left|\mathcal{E}_{17}(T)\right|}{|\mathcal{F}(T)|}=0
$$

# Uses Gallagher's two-dimensional large sieve, 

together with effective version of Igusa's theorem about division fields of elliptic curves over function fields:

Igusa's Theorem (1959)
Let:

- $C / \mathbb{F}_{q}$ proper, smooth, geom. connected curve
- $K:=\mathbb{F}_{q}(C)$
- $E / K$ elliptic curve with $j \notin \mathbb{F}_{q}$
- $\ell$ rational prime s.th. $q \equiv 1(\bmod \ell)$

Then

$$
\exists c(E, K) \text { such that }
$$

$\operatorname{Gal}(K(E[\ell]) / K) \simeq \mathrm{SL}_{2}(\mathbb{Z} / \ell \mathbb{Z}) \quad \forall \ell \geq c(E, K)$.

Theorem (A.C. Cojocaru and C. Hall, 2005)

The constant $c(E, K)$ depends at most on the genus of $K$.

It can be calculated as
$2+\max \left\{\ell: \frac{1}{12}\left[\ell-\left(6+3 \epsilon_{2}+4 \epsilon_{3}\right)\right] \leq \operatorname{genus}(K)\right\}$,
where

$$
\begin{aligned}
& \epsilon_{2}:= \begin{cases}+1 & \text { if } \ell \equiv 1(\bmod 4) \\
-1 & \text { otherwise, }\end{cases} \\
& \epsilon_{3}:= \begin{cases}+1 & \text { if } \ell \equiv 1(\bmod 3) \\
-1 & \text { otherwise. }\end{cases}
\end{aligned}
$$

6.4 Remaining question

What about $\ell<\ell_{0}$ ?

- Two-parameter average:
complete results by D. Grant, 2000
- One-parameter average:
in progress...


## 7. CONCLUSIONS

- Is the function field result

$$
c(E, K)=c(\operatorname{genus}(K))=\ldots
$$

best possible?

- Can we average over more general families?
- What can we say about (effective versions of) open image theorems for modular forms, abelian varieties, or Drinfeld modules?

