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Abstract. Drinfeld and Vladut proved that Drinfeld modular curves have
many Fq2 -rational points compared to their genera. We propose a conjectural
generalization of this result to higher dimensional Drinfeld modular varieties,
and prove a theorem giving some evidence for the conjecture.

1. Introduction

Let q be a power of a prime p and let Fq denote the finite field with q elements.
Let X be a smooth, geometrically connected, d-dimensional variety defined over
Fq. Fix an algebraic closure Fq of Fq. Also, fix a prime number ` 6= p and an
algebraic closure Q` of the field Q` of `-adic numbers. Grothendieck’s theory of
étale cohomology produces the `-adic cohomology groups with compact supports

H∗(X) := H∗
c (X ⊗Fq Fq,Q`).

These groups are finite dimensional Q`-vector spaces endowed with an action of the
Galois group Gal(Fq/Fq). It is known that Hi(X) = 0 for i > 2d, cf. [20, Ch. VI].
Denote by hi(X) := dimQ`

Hi(X) the (compact) `-adic Betti numbers of X.
Let Frobq be the inverse of the standard topological generator x 7→ xq of

Gal(Fq/Fq), i.e., the so-called geometric Frobenius element. Assume Hi(X) 6=
0. Denote the eigenvalues of Frobq acting on Hi(X) by αi,1, αi,2, . . . , αi,s (here
s = hi(X)). Deligne proved that {αi,j} are algebraic numbers. Moreover, for any
isomorphism ι : Q` → C the absolute value |ι(αi,j)| is independent of ι and is equal
to qm/2 for some 0 ≤ m ≤ i; see [3, Thm. 3.3.1].

For an integer n ≥ 1 denote by Fqn the degree n extension of Fq, and let X(Fqn)
be the set of Fqn-rational points on X. By the Grothendieck-Lefschetz trace formula
[20, Thm. 13.1]

(1.1) #X(Fqn) =
∑

i≥0

(−1)iTr(Frobn
q | Hi(X)) =

∑

i≥0

(−1)i

hi(X)∑

j=1

αn
i,j .

If one combines this formula with Deligne’s bounds, then there results the estimate

#X(Fqn) ≤
∑

i≥0

qin/2hi(X).

When X is a curve, this estimate is equivalent to Weil’s famous bound.

Since the early 80’s, partly due to Goppa’s construction of algebra-geometric
codes, the question of the “optimality” of the bound (1.1) received a considerable
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amount of attention. More precisely, it became important to know whether there
exist varieties over Fq which have many rational points compared to their Betti
numbers. One way to formulate this problem is as follows: Assume d, q and n are
fixed. For a smooth, geometrically connected d-dimensional variety X over Fq put
h(X) :=

∑
i hi(X). How large can the ratio #X(Fqn)/h(X) be when h(X) À q?

Not much is known about this question beyond dimension 1.
We recall the principal results for the case of curves, i.e., for d = 1. Refining an

idea of Ihara, Drinfeld and Vladut [26] proved that when h(X) À q

(1.2)
X(Fqn)
h(X)

≤ qn/2 − 1
2

.

(Note that Weil’s bound only gives X(Fqn)/h(X) ≤ qn/2.) Now the modular curves
(classical, Shimura, Drinfeld) enter the picture in a key manner, since they provide
examples of curves which attain the previous bound for n = 2 (and in fact the
modular curves are the only known such examples). We recall the result for the
Drinfeld modular curves, which is due to Vladut [19]. First we need to introduce
some notation.

Let T be a transcendental parameter over Fq, and let A = Fq[T ] be the ring
of polynomials in T with Fq coefficients. Let n ¢ A be an ideal, and let Md+1

n

be the Drinfeld modular scheme parametrizing Drinfeld A-modules of rank (d + 1)
with full level n structure (we refer to §4 for the definitions). Drinfeld proved that
Md+1

n → Spec(A[n−1]) is a smooth affine scheme of pure relative dimension d. Its
fibre over a prime l ¢ A[n−1] will be denoted by Md+1

n,l . The group GLd+1(A/n)
acts on Md+1

n,l . Denote by Xd+1
n,l the quotient of Md+1

n,l under the action of (A/n)×

embedded into GLd+1(A/n) as the subgroup of scalar matrices.
Assume n = p 6= (T ) is a prime of odd degree. In Chapter II of [19] Vladut

shows that X2
p,T is a smooth, affine, geometrically connected curve defined over Fq,

h(X2
p,T ) →∞ when deg(p) →∞, and

lim inf
deg(p)→∞

(
#X2

p,T (Fq2)
h(X2

p,T )

)
≥ q − 1

2
.

Therefore, by comparing with (1.2), we have

(1.3) lim
deg(p)→∞

(
#X2

p,T (Fq2)
h(X2

p,T )

)
=

q − 1
2

.

This result can be extended to other Drinfeld modular curves having different types
of level structures, and also to their canonical compactifications; see [19] or [10].

Almost nothing is known about the accumulation points of the set of rational
numbers S(q, n, d) := {#X(Fqn)/h(X) | dim(X) = d} ⊂ [0, qdn] unless d = 1.
Even in the case of curves there are still some fundamental open problems. For
example, the largest accumulation point of S(p, n, 1) is not known for any p unless
n is even, in which case the answer is (pn/2 − 1)/2.

In this paper we would like to propose a conjectural generalization of the result
of Vladut and Drinfeld to an arbitrary d ≥ 1. Fix q and d, and let n = d + 1.

Definition 1.1. Let p ¢ A be a prime. We say that p is admissible if x 7→ xn is
an automorphism of (A/p)×/F×q .
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It is easy to show that there are infinitely many admissible primes; see Lemma
4.6. (Note that the primes of odd degree are admissible when d = 1.) In §4 we will
prove that for an admissible prime p 6= (T ), Xn

p,T is a smooth, affine, geometrically
connected variety of dimension d defined over Fq. Moreover, h(Xn

p,T ) → ∞ when
deg(p) →∞.

Conjecture 1.2.

lim
deg(p)→∞

(
#Xn

p,T (Fqn)
h(Xn

p,T )

)
=

1
n

n−1∏

i=1

(qi − 1),

where the limit is over the admissible primes not equal to (T ).

When n = 2, this is exactly (1.3). From a general perspective, the conjecture
specifies an accumulation point of S(q, n, n).

Let F be the fraction field of A. Fix a separable closure F of F . Denote by
η : A[n−1] ↪→ F the generic point of Spec(A[n−1]) and by Mn

η (n) := Mn(n)⊗A[n−1]F

the generic fibre of Mn(n). Consider the virtual Gal(F/F )-module

H =
∑

i≥0

(−1)iHi
c(M

n
η (n)⊗F F,Q`).

Write H as a sum of irreducible modules with integral coefficients H =
∑

j≥0 ajHj .
Assume

(1.4)
∑

i≥0

dimQ`
Hi

c(M
n
η (n)⊗F F ,Q`) ∼

∑

j≥0

|aj |dimQ`
Hj ,

where ∼ means that the left-hand side divided by the right-hand side tends to 1
as deg(n) → ∞. The assumption essentially says that the same irreducible repre-
sentation of Gal(F/F ) tends to appear only in the cohomology groups of the same
parity. Most likely this is always true, and will follow from a certain refinement of
the Langlands conjecture over function fields; we will say more about this in §4. In
any case, (1.4) is true for n = 2 as easily follows from Drinfeld’s theorem [4]. The
main result of this paper is the following evidence for Conjecture 1.2:

Theorem 1.3. Under the assumption (1.4) we have

1
n

n−1∏

i=1

(qi − 1) ≤ lim inf
deg(p)→∞

(
#Xn

p,T (Fqn)
h(Xn

p,T )

)
,

lim sup
deg(p)→∞

(
#Xn

p,T (Fqn)
h(Xn

p,T )

)
≤ q

n(n−1)
2 .

Note that the degrees of the upper and lower bounds in the theorem, as polyno-
mials in q, are the same, so the bounds are not that far from each other. Moreover,
we will show that the upper bound is exactly the limit limp

(∑
i,j |αn

i,j |
)

/h(Xn
p,T ),

so the Drinfeld modular varieties Xn
p,T come close to having as many Fqn-rational

points as the Weil-Deligne bound allows.

The organization of the paper and the outline of the proof of Theorem 1.3 are
as follows: The definition and the main properties of Drinfeld modular varieties
Mn(n) are recalled in §4. In the same section we show that Xn

p,T are geometrically
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irreducible when p is admissible. The proof relies on the analogue of the Weil
pairing for Drinfeld modules constructed by van der Heiden. To get an estimate
on #Xn

p,T (Fqn), we show that the super-singular points are Fqn-rational. Next,
under the assumption (1.4), we use Laumon’s proof of a special case of Langlands
conjecture over function fields to reduce the calculation of the asymptotic size of
h(Xn

p,T ) to the calculation of the dimension of a certain space of cusp forms on
GLn. A theorem of Harder relates the dimension of this space of cusp forms to the
Euler-Poincaré characteristic of the quotient of the Bruhat-Tits building of PGLn

under the action of level-n principal congruence subgroup of GLn(A); see §3.5. The
calculation of the Euler-Poincaré characteristic is carried out in §3. Our methods
are combinatorial. The final result expresses the Euler-Poincaré characteristic as a
sum of the special values of a partial zeta-function of F . This can be interpreted as a
Gauss-Bonnet type formula in the non-archimedean setting, and is of independent
interest. Once we know the asymptotic size of h(Xn

p,T ) and a lower bound on
#Xn

p,T (Fqn), the lower bound in Theorem 1.3 easily follows. To get the upper bound
we use the Ramanujan-Petersson conjecture proven in this setting by Laumon [18].

Acknowledgements. The work on this article was started while I enjoyed the
hospitality of IHÉS. The financial support of Institut Post-Doctoral Européen is
gratefully acknowledged. I thank G. Andrews and A. Yang for helpful communica-
tions related to the proof of Lemma 3.2.

2. Conventions

The purpose of this section is to introduce the terminology and notation which
will be used in later sections of the paper.

2.1. Simplicial complexes. Recall that an n-dimensional simplex s (or an n-
simplex, for short) is the smallest convex set in a real vector space containing
n + 1 points v0, v1, . . . , vn in general position. The points vi are the vertices of the
simplex s. A specific ordering of the vertices of s is called an orientation of s; two
orientations which can reach each other through an even number of permutations
of vi’s are regarded as equal. Hence, every positive dimensional simplex has exactly
two orientations. Any simplex spanned by a subset of {v0, v1, . . . , vn} is called a
face of s. We say that σ is an oriented face of s, and write it as s > σ, if σ is a face
of s and the orientation of σ is the restriction of that of s.

A simplicial complex D is a collection of simplices such that a face of a simplex of
D is in D, and the intersection of two simplices of D is a face of each of them. The
dimension of D is the supremum of the dimensions of its simplices. A subcollection
D′ of D that contains all the faces of its elements is called a subcomplex of D.

A ∆-complex, as defined in [16], is a quotient space of a collection of disjoint
simplices obtained by identifying certain of their faces via canonical linear home-
omorphisms that preserve the ordering of vertices. From the point of view of
homology theory, ∆-complexes are equivalent to simplicial complexes. In fact, it is
easy to see that a simplicial complex is a ∆-complex, and a ∆-complex is home-
omorphic to a simplicial complex. (Note also that simplicial complexes are the
∆-complexes whose simplices are uniquely determined by their vertices.) Denote
the set of oriented i-simplicies of a ∆-complex D by Si(D), and the set of non-
oriented i-simplices by S̃i(D). We also denote the set of vertices of D by Ver(D),
so Ver(D) = S0(D) = S̃0(D)
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The homology groups H∗(D, R) (and the cohomology groups H∗(D, R)) of a ∆-
complex D with coefficients in a ring R are defined in a usual manner; see [16, Ch.
2]. We simply write H∗(D) for H∗(D,Q). Assume D is n-dimensional, and Hi(D)
are finite dimensional. The Euler-Poincaré characteristic of D is

χ(D) :=
n∑

i=0

(−1)i dimQHi(D).

If D is finite, then, as is easy to check,

χ(D) =
n∑

i=0

(−1)i#S̃i(D).

Let G be a group acting on the vertices of D. We say that G preserves the
simplicial structure of D, or simply, G acts on D, if for any n-simplex {v0, . . . , vn}
of D and any g ∈ G the set {gv0, . . . , gvn} is also a n-simplex of D.

If G acts on D then we can construct a ∆-complex D/G, which is naturally the
quotient space of this action. For s ∈ Si(D) denote by Gs the orbit of the action of
G on s. Let Si(D/G) = {Gs | s ∈ Si(D)} be the set of such orbits. Set Gσ < Gs
if and only if there is σ′ < s such that Gσ′ = Gσ. By gluing the simplices in
Si(D/G) and Sj(D/G) for 0 ≤ i, j ≤ dim(D), along their common faces, we obtain
the desired ∆-complex. Note that dim(D/G) = dim(D).

If G acts on D then for any oriented simplex w of D we denote by StabG(w) or
Gw the stabilizer of w in G.

(The ∆-complexes which arise in this paper turn out to be simplicial; see Remark
3.16. This extra property will not play a significant role in what follows, as we are
primarily interested in the homology of these complexes.)

2.2. Levi decomposition. Let n be a positive integer. An ordered partition of n
is an expression of n as an ordered sum of positive integers. We will write ordered
partitions as row vectors. Let P(n) be the set of all ordered partitions of n, so
p = (p1, . . . , ph) ∈ P(n) if n = p1 + · · · + ph, and all pi ∈ Z>0. It is easy to check
that P(n) has 2n−1 elements. Define the length of p = (p1, . . . , ph) to be `(p) = h.

To each p = (p1, . . . , ph) ∈ P(n) we associate the subgroup Pp of GLn consisting
of matrices of the form 



G11 G12 · · · G1h

0 G22 · · · G2h

...
. . .

...
0 0 · · · Ghh


 ,

where Gij is a pi × pj block. The group Pp is a semidirect product

Pp = Mp o Up,

where Mp is characterized by the condition that Gij = 0 unless i = j, and the
normal subgroup Up is characterized by the condition that each Gii is the identity
matrix in GLpi . The groups Pp are called the standard parabolic subgroups of GLn.
The subgroup Up is called the unipotent radical of Pp, and Mp is called the standard
Levi subgroup of Pp. Evidently,

Mp
∼= GLp1 × · · · ×GLph

.

The decomposition Pp = Mp o Up is called the Levi decomposition of Pp.
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Let Λ be the set {2, 3, . . . , n}. To each subset I ⊆ Λ we associate an ordered
partition p(I) ∈ P(n) as follows. First, put p(Λ) = (n). If I $ Λ, let

Λ− I = {i1 < i2 < · · · < ik}.

Now let p(I) = (i1−1, i2−i1, . . . , ik−ik−1, n+1−ik). Note that p(∅) = (1, 1, . . . , 1).
It is easy to see that I → p(I) is a one-to-one correspondence between the subsets
of Λ and the elements of P(n). Denote by PI , MI , UI the groups Pp(I),Mp(I), Up(I),
respectively.

2.3. Notation. From now on, unless specified otherwise, the following notation is
fixed:

n ≥ 2 is a fixed integer;
G = GLn;
B is the Borel subgroup of upper-triangular matrices of G;
Z is the center of G;
Fq is the finite field of q elements, where q is a power of the prime p;
A = Fq[T ] is the ring of polynomials in T with coefficients in Fq;
F = Fq(T ) is the fraction field of A (equiv. the field of rational functions on P1

Fq
);

Fv is the completion of F at the place v;
πv is a uniformizer of Fv;
ordv is the canonical valuation on Fv normalized by ordv(πv) = 1;
Ov = {x ∈ Fv | ordv(x) ≥ 0} is the ring of integers in Fv;
pv = πvOv is the maximal ideal of Ov;
Fv is the residue field Ov/pv;
qv is the order of the finite field Fv;
A is the ring of adeles of F ;
A× is the group of ideles of F ;
O =

∏
v Ov;

K(nv) = {M ∈ G(Ov) | M ≡ 1 mod nv}, where nv is an ideal of Ov, is the principal
congruence subgroup of G(Ov) of level nv;

Let n be a monic polynomial in A. We denote by the same letter the ideal
generated by n in A. If p ¢ A is a prime ideal, we denote the residue field A/p by
Fp. Consider the map deg : A → Z which to each polynomial f(T ) ∈ A associates
its degree in T (by convention, deg(0) = ∞). This induces a valuation w on F
by w(a/b) = deg(b) − deg(a), where a, b ∈ A. The place corresponding to this
valuation is denoted by ∞. This place will play a special role in what follows. A
natural uniformizer at ∞ is 1/T . Finally, denote

Γ = G(A);
Γ(n) = ker(G(A) → G(A/n));
Af =

∏′
v 6=∞ Fv;

A×f =
∏′

v 6=∞ F×v ;
Of =

∏
v 6=∞Ov.

Note that A = Af×F∞, A = A×f ×F×∞, O = Of×O∞, and Of is the completion
of A with respect to the ideal topology.
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Let K be a field, and let V be an n-dimensional vector space over K. A flag in
V is a sequence of linear subspaces

F : 0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vh−1 ⊂ Vh = V,

where V1 6= 0 and Vi 6= Vi+1 for 1 ≤ i ≤ h− 1. A flag with h = n is called maximal.

3. Quotients of Bruhat-Tits building

In this section we compute the Euler-Poincaré characteristic of the quotient the
Bruhat-Tits building of PGLn(F∞) under the action of Γ(n), and relate this number
to the dimension of a space of cusp forms on G(A).

3.1. Combinatorial identity. First we prove an identity for q-multinomial coef-
ficients, which we will use in §3.4. Denote

(a)k :=
k−1∏

i=0

(1− aqi) and (a)∞ :=
∞∏

i=0

(1− aqi).

(For now, q can be thought of just as a fixed parameter.) To each ordered partition
p = (p1, . . . , ph) of m ≥ 1 corresponds the q-multinomial coefficient :

[
m
p

]
=

(q)m

(q)p1(q)p2 · · · (q)ph

.

It is well-known that the q-multinomial coefficients are polynomials in q.

Remark 3.1. Let p = (p1, . . . , ph) ∈ P(m). Let C〈x1, x2, . . . , xh〉 be the non-
commutative polynomial ring where the constants commute with all xi’s and xjxi =

qxixj for any i < j. Then
[
m
p

]
is the coefficient of xp1

1 · · ·xph

h in (x1 + · · ·+ xh)m,

which explains the terminology.

Lemma 3.2. ∑

p∈P(m)

(−1)`(p)

[
m
p

]
= (−1)mq

m(m−1)
2 .

Proof. In the proof we will use two formulas of Euler [1, Cor. 2.2]:

(3.1) 1 +
∞∑

i=1

xi

(q)i
=

1
(x)∞

and

(3.2) 1 +
∞∑

i=1

(−1)ixiq
i(i−1)

2

(q)i
= (x)∞.

It is easy to see that the left-hand side of the desired identity is the coefficient of
xm/(q)m in

1 +
∞∑

h=0

∞∑
m=1

xm

(q)m
(−1)h

∑
p1+···+ph=m

p1,...,ph≥1

(q)m

(q)p1(q)p2 · · · (q)ph

= 1 +
∞∑

h=1

(−1)h
∑

p1,...,ph≥1

xp1+p2···+ph

(q)p1(q)p2 · · · (q)ph

.



8 MIHRAN PAPIKIAN

By (3.1) this last expression is equal to

1 +
∞∑

h=1

(−1)h

(
1

(x)∞
− 1

)h

=
1

1−
(
1− 1

(x)∞

) = (x)∞.

Now the claim follows from (3.2), as the coefficients of xm/(q)m in the left-hand
side of that formula is (−1)mq

m(m−1)
2 . ¤

Remark 3.3. By taking q → 1 in Lemma 3.2, we get the following identity for the
usual multinomial coefficients:

∑

(p1,...,ph)∈P(m)

(−1)h

(
m

p1, . . . , ph

)
= (−1)m.

Notation 3.4. For m ≥ 1, let

φ(m) =
∑

p∈P(m)

(−1)`(p)−1(#Pp(Fq))−1.

Proposition 3.5.

φ(m) = − 1
(q)m

.

Proof. Let gk = #GLk(Fq). Then

(3.3) gk =
k−1∏

i=0

(qk − qi) = q
k(k−1)

2

k∏

i=1

(qi − 1) = (−1)kq
k(k−1)

2 (q)k.

Let p = (p1, . . . , ph) ∈ P(m). It is easy to check that

#Pp(Fq) = gp1 · gp2 · · · gph
· qθ(p),

where θ(p) = m2−∑h
i=1

∑h
j=i pipj . Plugging in the expression (3.3) and simplify-

ing, we get

#Pp(Fq) = (−1)mq
m(m−1)

2

h∏

i=1

(q)pi .

Hence

−φ(m)(q)m = (−1)mq−
m(m−1)

2

∑

p∈P(m)

(−1)`(p)

[
m
p

]
= 1,

where the last equality is due to Lemma 3.2. ¤

3.2. Definition of the building and its basic properties. Let V be an n-
dimensional vector space over F∞. By a basis of V we always mean an ordered
basis. Let C = (b1, b2, . . . , bn) be a basis of V. The O∞-module

CO∞ := b1O∞ ⊕ b2O∞ ⊕ · · · ⊕ bnO∞
is a lattice in V. Given a lattice L, the group F×∞ acts by scalar multiplications,
and xL is also a lattice for any x ∈ F×∞. This defines an equivalence relation on the
set of lattices in V. We denote the equivalence class of L by [L] := {xL | x ∈ F×∞}.
Since F∞ is a local field, [L] can be identified with {πi

∞L | i ∈ Z}.



RATIONAL POINTS ON MODULAR VARIETIES 9

Definition 3.6. The Bruhat-Tits building of PGLn(F∞) is the simplicial complex B
with the set of vertices {[L] | L is a lattice in V} and the set of i-simplices consisting
of {[L0], . . . , [Li]}, such that there is L′j ∈ [Lj ] for each j with

L′0 % L′1 % · · · % L′i % π∞L′0.

B is (n− 1)-dimensional. Indeed, any i-simplex as above produces the flag

L′0/π∞L′0 ⊃ L′1/π∞L′0 ⊃ · · · ⊃ L′i/π∞L′0 ⊃ 0

in the n-dimensional Fq-vector space L′0/π∞L′0.

Fix a basis E = {e1, . . . , en} of V. For any n-tuple i1, . . . , in ∈ Z denote by
[i1, i2 . . . , in] the equivalence class of the lattice πi1∞e1O∞ ⊕ · · · ⊕ πin∞enO∞. The
maximal subcomplex A of B having set of vertices

Ver(A) = {[i1, i2 . . . , in] | i1, . . . , in ∈ Z}
is called the standard apartment of B. The maximal subcomplex W of B having
set of vertices

Ver(W) = {[i1, i2 . . . , in] | i1 ≤ i2 ≤ · · · ≤ in}
is called the standard Weyl chamber of B. Note that every vertex of A has a unique
representative of the form [0, i2 . . . , in].

The group G(F∞) operates on the vertices of B by g[L] := [gL]. Since G(F∞)
preserves the inclusions of lattices, it acts on B.

Definition 3.7. Let C = {b1, . . . , bn} be a basis and let [L] = [CO∞ ]. Let det(C)
be the determinant of the matrix having as its columns the basis elements bi. The
type of [L] is an element of Z/nZ defined by

Type([L]) := ord∞(det(C)) mod n.

The following lemma is well-known and is easy to prove.

Lemma 3.8. Type([L]) is well-defined and is invariant under the action of Γ.
Each (n− 1)-simplex of B has a vertex of each type. Two vertices having the same
type are not adjacent in B.

Lemma 3.9. Let Γ′ be a subgroup of Γ, and let s = {v0, · · · , vm} be a m-simplex
of B. Then

StabΓ′(s) =
m⋂

i=0

StabΓ′(vi).

Proof. Suppose g ∈ Γ′. According to Lemma 3.8, the type of each vi differs from
the type of other vertices in s. Since by the same lemma g preserves the type of
each vertex, g{v0, . . . , vm} = {v0, . . . , vm} if and only if gvi = vi for 0 ≤ i ≤ m. ¤

Locally, B describes the incidences of Fq-rational linear subvarieties of Pn−1
Fq

.
More precisely, let us fix v ∈ Ver(B). Let Star(v) be the maximal simplicial sub-
complex of B all of whose vertices are adjacent to v. Then the vertices of Star(v)
are in one-to-one correspondence with the positive dimensional linear subspaces of
Fn

q . The vertices {v0, . . . , vi} form an i-simplex in Star(v) if the linear subspaces
corresponding to these vertices fit into a flag.
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Example 3.10. Assume n = 3. Then any vertex v of B is adjacent to 2(q2 + q + 1)
other vertices, v is a vertex of exactly (q2 + q + 1)(q + 1) 2-simplices in B, any edge
belongs to (q + 1) 2-simplices. All these claims follow from the previous remark
coupled with the following easy facts: F3

q has (q2 + q + 1) lines and (q2 + q + 1)
planes passing through the origin, any such line lies on (q + 1) planes and every
such plane contains (q + 1) lines through the origin.

3.3. The action of Γ.

Notation 3.11. Let 0 := [0, . . . , 0] ∈ A.

Lemma 3.12. Let v = [i1, . . . , in] ∈ A. Then StabΓ(v) is the group of all matrices
(ajk) ∈ Γ, with deg(ajk) ≤ ik − ij.

Proof. First, consider the stabilizer of v in G(F∞). Let D = diag(πi1∞, . . . , πin∞), so
that D · 0 = v. If gv = v then

D−1gD ∈ StabG(F∞)(0) = G(O∞) · Z(F∞).

Hence, StabG(F∞)(v) is the group {(πij−ik∞ αjk) | (αjk) ∈ G(O∞)} · Z(F∞). Now
note that StabΓ(v) = StabG(F∞)(v)∩Γ. As A∩ πm

∞O∞ is the set of polynomials of
degree ≤ −m, the claim follows. ¤
Theorem 3.13. W is a fundamental domain for the action of Γ on B.

Proof. See [23]. ¤
Remark 3.14. The isomorphism B/Γ ∼= W can be proven using some algebraic
geometry (the proof in [23] is different). The idea is the following: Let I∞ ∼=
OP1Fq (−1) be the sheaf of ideals of the point∞ = 1/T on P1

Fq
. Two vector bundles V

and V ′ on P1
Fq

are said to be I∞-equivalent if there is m ∈ Z such that V ′ ∼= I⊗m
∞ ⊗V .

As in [22, §II.2.1], one shows that there is a bijection between Ver(B/Γ) and the
set of I∞-equivalence classes of rank-n vector bundles on P1

Fq
. On the other hand,

by a theorem of Grothendieck every vector bundle V over the projective line is a
direct sum of line bundles, so can be written as

I⊗i1∞ ⊕ I⊗i2∞ ⊕ · · · ⊕ I⊗in∞ ,

where i1 ≤ i2 ≤ i3 ≤ · · · ≤ in, cf. [15, Cor. V.2.14]. The map

I⊗i1∞ ⊕ I⊗i2∞ ⊕ · · · ⊕ I⊗in∞ 7→ [i1, i2, . . . , in]

establishes a bijection between the I∞-equivalence classes of rank-n vector bundles
and the vertices of W.

Notation 3.15. Denote by B(n) the ∆-complex B/Γ(n).

Clearly B(n) is connected since a path between two vertices in B descends to a
path between the images of these vertices in B(n).

Remark 3.16. One can show that B(n) is in fact a simplicial complex; see [7, Thm.
4.13]. (Although the running hypothesis in loc. cit. is n = 3, the proof readily
generalizes to an arbitrary n ≥ 2.) A key intermediate fact which goes into the
proof is the following:

Let {v0, . . . , vi} and {u0, . . . , ui} be i-simplices of B. Suppose there are γ0, . . . , γi ∈
Γ(n) with γ0v0 = u0, . . . , γivi = ui. Then there is some γ ∈ Γ(n) with γv0 =
u0, . . . , γvi = ui.
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This property is very specific to Γ(n) and is false for general congruence sub-
groups. For example, take n = 2 and consider the quotient B′(n) of B (a tree in
this case) by the Hecke congruence subgroup Γ0(n). Then B′(n) quite often has two
distinct edges joining the same two vertices, i.e., B′(n) is not a simplicial complex.

Nevertheless, treating B(n) as a ∆-complex will be sufficient for our purposes.

3.4. Euler-Poincaré characteristic of B(n). Define the operators d2, d3, . . . , dn

on Ver(A) by

dj([i1, . . . , in]) = [i1, i2, . . . , ij−1, ij + 1, ij+1 + 1, . . . , in + 1].

Note that we could have defined d1 by the same formula, but then d1 is simply
the identity map since [i1 + m, . . . , in + m] = [i1, . . . , in] for any m ∈ Z. It is
clear that dj ’s commute with each other and any vertex of W can be obtained
from 0 by a unique (up to permutations) sequence of dj ’s. Let v ∈ Ver(W), and
v = ds2

2 . . . dsn
n (0), where sj ≥ 0 and if sj = 0 then d0

j means the identity map.
Define degj(v) = sj . The map v 7→ ds2

2 . . . dsn
n gives a one-to-one correspondence

between the vertices of W and the monomials in dj ’s.
There is a partial ordering on the vertices of W. If v = [0, a2, a3, . . . , an] and

v′ = [0, b2, b3, . . . , bn] are in W, then we put v ¹ v′ if aj ≤ bj for all 2 ≤ j ≤ n, and
v ≺ v′ if at least one of the inequalities is strict. From the definitions, it is easy
to see that the vertices {v0, . . . , vi} of W form an i-simplex if and only if, up to
reindexing, v0 ≺ v1 ≺ · · · ≺ vi ¹ d2(v0). We call v0 the smallest vertex of σ.

For any k ≥ 0, letWk be the the maximal subcomplex ofW having set of vertices

Ver(Wk) = {v | deg2(v) ≤ k, . . . ,degn(v) ≤ k}.
Let v be a vertex of W. Denote by K(v) the maximal subcomplex of W having

set of vertices

Ver(K(v)) = {ds2
2 . . . dsn

n (v) | 0 ≤ sj ≤ 1 for 2 ≤ j ≤ n}.

v v v

Figure 1. K(v) for n = 2, 3, 4.

For a fixed 2 ≤ m ≤ n, define Kx
m(v), for x = 0 or 1, to be the subcomplex with

Ver(Kx
m(v)) = {ds2

2 . . . dsn
n (v) | 0 ≤ sj ≤ 1 for 2 ≤ j ≤ n, and sm = x}.

Let K0(v) = K(v)−⋃n
m=2 K1

m(v) be the the set of simplices in K(v) which do not
completely lie in one of the K1

m(v)’s. Note that K0(v) is not a simplicial complex
since not every face of a simplex in K0(v) lies in K0(v).

Since Γ(n) is a normal subgroup of Γ, Γ(n)\Γ is a group, which we denote Υ(n).
It is well-known that Υ(n) ∼= F×q n SLn(A/n). For a simplex w ∈ W, denote the
image of Γw = StabΓ(w) in Υ(n) by Γw.
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v v

Figure 2. K0(v) for n = 2, 3.

Let S be a set of simplices in W (for example, a simplicial subcomplex). Define

χ̃(S) =
∑

w∈S
(−1)dim(w)(#Γw)−1,

where the sum is over all non-oriented simplices in S.

Proposition 3.17.

χ̃(K0(v)) =
{

φ(n), if v = 0;
0, otherwise.

Proof. First we prove the claim assuming n = 2, as this case is somewhat degener-
ate. If n = 2 then W is the infinite half-line:

[0, 0]− [0, 1]− [0, 2]− · · · − [0,m]− · · ·
Lemma 3.12 implies that StabΓ(0) = GL2(Fq), and StabΓ([0,m]) is the group of

the upper-triangular matrices
(

a b
0 d

)
, with a, d ∈ F×q and b ∈ A, deg(b) ≤ m.

Now K0([0,m]) consists of one 0-dimensional simplex, namely [0,m], and one 1-
dimensional simplex, namely the edge joining [0,m] to [0,m+1]. The stabilizer of
this latter edge is StabΓ([0,m])∩ StabΓ([0,m + 1]), which is equal to StabΓ([0,m])
when m > 0, and is the Borel subgroup of upper-triangular matrices in GL2(Fq)
when m = 0. From this the claim of the proposition easily follows.

Now assume n ≥ 3. Let K00(v) be the subset of K0(v) consisting of simplices
not containing v. First, we show that χ̃(K00(v)) = 0 for any v. In fact, we will
prove a stronger statement: The set K00(v) can be divided into pairs of simplices
(s, σ) such that s is a face of σ, the smallest vertices of s and σ are the same,
dim(σ) = dim(s)+1, Γs = Γσ, and each simplex of K00(v) appears exactly once in
some pair. (This clearly implies χ̃(K00(v)) = 0 as the summands corresponding to
s and σ cancel each other.) We proceed by induction on n.

When n = 3, K00(v) consists of the 1-simplex s = {d2(v), d3(v)}, and the 2-
simplex σ = {d2(v), d3(v), d2d3(v)}. The smallest vertex of both σ and s is d3(v).
Using Lemma 3.9 and Lemma 3.12, one easily checks that Γs = Γσ.

Assume we have proven the claim for n − 1. Let v′ ∈ Ver(K(v)) be v′ =
ds2
2 . . . dsn

n (v). Define π2(v′) := ds3
3 · · · dsn

n (v). This gives a map

π2 : Ver(K(v)) → Ver(K0
2 (v)).

We claim that π2 is a simplicial map from K(v) onto K0
2 (v), i.e., if σ = {v0, . . . , vi}

is an i-simplex in K(v) then the vertices (modulo repetitions) {π2(v0), . . . , π2(vi)}
form a simplex in K0

2 (v). Since σ is a simplex, we can assume v0 ≺ v1 ≺ · · · ≺
vi ¹ d2(v0). We need to show that the vertices in π2(σ) can be arranged to satisfy
similar inequalities. We can assume there is vj with deg2(vj) = 1; otherwise π2 is
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the identity on σ and the claim is trivial. Let j be the smallest index for which
deg2(vj) = 1. Then deg2(vk) = 1 for any k ≥ j. If j = 0 then clearly

π2(v0) ≺ π2(v1) · · · ≺ π2(vi) ¹ d2π2(v0).

Now assume j > 0. We claim that

π2(vj) ≺ π2(vj+1) ≺ · · · ≺ π2(vi) ¹ π2(v0) ≺ π2(v1) · · · ≺ π2(vj−1) ¹ d2π2(vj) = vj .

Since π2(vk) = vk for k ≤ j − 1, all the inequalities are obvious except possibly
for π2(vi) ¹ π2(v0) = v0, which is true since vi ¹ d2(v0). (Note that π3, π4, etc.
defined similarly to π2 are not necessarily simplicial maps. Take for example, n = 4
and consider the edge {[0, 0, 1, 1], [0, 1, 1, 2]} in K(0). Then π3([0, 0, 1, 1]) = 0,
π3([0, 1, 1, 2]) = [0, 1, 1, 2] which are not adjacent.)

Suppose σ is an i-simplex in K(v). By the previous paragraph π2(σ) is a simplex.
Moreover, since the kernel of π2 extended to the ambient R-vector space containing
K(v) is 1-dimensional, π2(σ) is either i or (i−1)-dimensional. If dim(π2(σ)) = i−1,
then σ has an (i − 1)-dimensional face s such that σ = {s, d2(v′)} for some v′ ∈
Ver(s). It is easy to check that this face can be uniquely characterized as follows:
If σ = {v0, . . . , vi} with v0 ≺ · · · ≺ vi, then s = {v0, . . . , vi−1} and vi = d2(v0).
We call s the d2-bottom of σ. On the other hand, if s is an i-simplex in K0(v)
and dim(π2(s)) = i then s is the d2-bottom of a unique σ in K0(v). Indeed, let
s = {v0, . . . , vi} with v0 ≺ · · · ≺ vi. The vertex v0 is not in K1

2 (v) as otherwise
s ∈ K1

2 (v), which contradicts the assumption s ∈ K0(v). Hence π2(v0) = v0.
Now the assumption that dim(π2(s)) = i implies vi � d2(v0). The set of vertices
{v0, . . . , vi, d2(v0)} form an (i + 1)-simplex σ, with d2-bottom s. The previous
arguments also show that σ is the only (i + 1)-simplex having s as its d2-bottom.

Let (s, σ) be a pair of simplices in K(v) such that s is the d2-bottom of σ.
As is easy to see, if one of these simplices lies in K0(v) then so does the other
one. Combining this with the previous paragraph, we conclude that all simplices
in K0(v) can be divided into disjoint pairs (s, σ), s is the d2-bottom of σ.

Let (s, σ) be as above. Assume either s does not lie in K0
2 (v), or deg2(v) ≥ 1.

We claim that under one of these assumptions Γs = Γσ. Let s = {v0, . . . , vi} with
v0 ≺ · · · ≺ vi. Then σ = {v0, . . . , vi, d2(v0)}. Using Lemma 3.9, we can assume
i = 1, and need to show

StabΓ(v0) ∩ StabΓ(v1) ⊂ StabΓ(d2(v0)).

Since deg2(v1) ≥ 1, this follows from Lemma 3.12.
Now let deg2(v) = 0, and s ∈ K0

2 (v). In this case we don’t necessarily have
Γs = Γσ. We will pair all simplices of K00(v) lying or having a codimension one
face in K0

2 (v) in a different way. Write v = [0, 0, i3, . . . , in]. Let v′ = [0, i3, . . . , in].
We have a canonical isomorphism of simplicial complexes K0

2 (v) ∼= K(v′), where
the second complex is in the building of PGLn−1(F∞), which preserves the partial
ordering ≺ on the vertices. Denote Γ′ := GLn−1(A). By induction hypothesis, all
simplices in K00(v′) can be divided into disjoint pairs (s′, σ′) where s′ is a face of σ′

of codimension one, s′ contains the smallest vertex of σ′, and Γ′s′ = Γ′σ′ . It is easy
to check that if we consider s′, σ′ as simplices of K00(v), we still have Γs′ = Γσ′ . Let
σ′ = {v0, . . . , vi}, v0 ≺ · · · ≺ vi. The set of vertices σ′′ = {v0, . . . , vi, d2(v0)} forms
an (i+1)-simplex in K00(v). Consider its codimension one face s′′ = {s′, d2(v0)}. If
Γs′ = Γσ′ then by Lemma 3.9 we also have Γs′′ = Γσ′′ . By the induction hypothesis,
v0 is a vertex of s′, so neither σ′′ nor s′′ is the d2-bottom of another simplex. The
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pair (s′′, σ′′) is uniquely characterized by (s′, σ′). Using the induction hypothesis
again, we conclude that any simplex whose d2-bottom lies in K0

2 (v) occurs in some
unique pair (s′′, σ′′). Since the union of the simplices in all pairs (s′, σ′), (s′′, σ′′)
is equal to the set of simplices of K00(v) lying or having a codimension one face in
K0

2 (v), this finishes the induction step.
Next, let K01(v) be the subset of K0(v) consisting of simplices containing v.

Since K0(v) is the disjoint union of K00(v) and K01(v),

χ̃(K0(v)) = χ̃(K00(v)) + χ̃(K01(v)) = χ̃(K01(v)).

Denote v2 := d2(v), v3 := d3(v), . . . , vn := dn(v). First, assume v 6= 0. Then v =
[0, 0, . . . , 0, ih, . . . , in], where ih 6= 0, for some h ≥ 2. By Lemma 3.12, StabΓ(v) ⊂
StabΓ(vh). Let s ∈ K01(v) be a simplex which does not have vh as one its vertices.
Then {s, vh} is also a simplex in K01(v) and StabΓ({s, vh}) = StabΓ(s). On the
other hand, if σ is a simplex in K01(v) which has vh as a vertex, then the unique
codimension one face s of σ which does not contain vh is also in K01(v) (as v 6= vh).
Again we have StabΓ(σ) = StabΓ(s). Summarizing, the set K01(v) can be divided
into pairs of simplices (σ, s) such that s is a codimension one face of σ, Γs = Γσ

and each simplex appears exactly once in some pair. This implies χ̃(K01(v)) = 0.
Now let v = 0. Let {e1, . . . , en} be our fixed basis of V. The vertex 0 corresponds

to the the lattice L = O∞e1⊕· · ·⊕O∞en in V, and vj corresponds to the sublattice
of L:

O∞e1 ⊕ · · · ⊕ O∞ej−1 ⊕ π∞O∞ej ⊕ · · · ⊕ π∞O∞en.

Hence, in the Fq-vector space V := L/π∞L, v corresponds to V , and vj corresponds
to the subspace Vj spanned by {e1, . . . , ej−1}. The stabilizer Γσ of the i-simplex
σ = {v, vj1 , . . . , vji}, where i ≥ 1, v ≺ vj1 ≺ · · · ≺ vji , is the stabilizer in GLn(Fq)
of the flag Vji ⊂ Vji−1 ⊂ · · · ⊂ Vj1 ⊂ V in V . This subgroup is Pp(Fq), where

p = (ji − 1, ji−1 − ji, ji−2 − ji−1, · · · , j1 − j2, n− j1 + 1).

Note that `(p) = i + 1. The stabilizer of the 0-simplex σ = {v} is P(n)(Fq) =
GLn(Fq). Since we assume deg(n) ≥ 1, Γσ = Γσ. We conclude

χ̃(K01(v)) =
∑

p∈P(n)

(−1)`(p)−1(#Pp(Fq))−1 = φ(n),

and this finishes the proof of the proposition. ¤

Definition 3.18. We say that a vertex v ∈ Ver(Wk) is a corner of Wk if degj(v)
is equal either to 0 or k for all 2 ≤ j ≤ n. Clearly, Wk has 2n−1 corners.

Let v be a corner of Wk. Let I0(v) ⊂ {2, . . . , n} be the set of indices i such that
degi(v) = 0, and let Ik(v) be the complement of I0(v) in {2, . . . , n}.

Let K(v) be the set of simplices of the form {v, s}, where Ver(s) is a subset (pos-
sibly empty) of the set {di(v) | i ∈ I0(v)}. Note that K(0) is what we were denoting
by K01(0) in the proof of Proposition 3.17, and K(v) = v if v = dk

2dk
3 · · · dk

n(0).

Proposition 3.19. With notation as above, we have

χ̃(Wk) =
∑

v

χ̃(K(v)),

where the sum is over all corners of Wk.
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Proof. Let v be a corner. Let Wk(v) be the maximal subcomplex of Wk having set
of vertices

Ver(Wk(v)) = {v′ | v′ ∈ Ver(Wk), degj(v
′) = k if j ∈ Ik(v)}.

In particular, Wk(0) = Wk. Let Ξ(v) be the subset of corners of Wk contained in
Wk(v); we denote the set of all corners of Wk by Ξ (so Ξ = Ξ(0)). Denote by

W0
k(v) = Wk(v)−

⋃

y∈Ξ(v)

y 6=v

Wk(y),

the set of simplices of Wk(v) which are not completely contained in one of Wk(y),
y ∈ Ξ(v), y 6= v. Clearly Wk is the disjoint union

∐
v∈ΞW0

k(v). Hence

(3.4) χ̃(Wk) =
∑

v∈Ξ

χ̃(W0
k(v)).

Next, since W0
k(0) is the disjoint union

∐
v∈Wk−1

K0(v), Proposition 3.17 gives

χ̃(W0
k(0)) = χ̃(K(0)).

Note that each W0
k(v), v 6= 0, is isomorphic to W0

k(0) in the building of PGLm(F∞)
for some m < n, so one can adapt the argument for v = 0 to an arbitrary corner (es-
sentially by induction) to show that χ̃(W0

k(v)) = χ̃(K(v)) for any v ∈ Ξ. Combined
with (3.4), this proves the proposition. ¤

For v ∈ Ξ, let pv := p(I0(v)) ∈ P(n). This gives a one-to-one correspondence
between the corners of Wk and the elements of P(n). For p = (p1, . . . , ph) ∈ P(n),
let

θ(p) = n2 −
h∑

i=1

h∑

j=i

pipj =
∑

i<j

pipj and Φ(p) = φ(p1) · · ·φ(ph).

Proposition 3.20. Let v be a corner of Wk. Let pv be the corresponding partition
of n. Let d = deg(n). Assume k ≥ d− 1. Then

χ̃(K(v)) = Φ(pv) · q−d·θ(pv).

Proof. Given a partition p, let us denote by Gp the group Mp(Fq)Up(A/n).
Let σ be an i-simplex inK(v). Write σ = {v, dj1(v), . . . , dji(v)}, where j1, . . . , ji ∈

I0(v). Let
pσ := p(I0(v)− {j1, . . . , ji}).

Using Lemma 3.12, it is easy to check that if k ≥ d− 1 then

Γσ = Gpv ∩Gpσ .

Now the claim of the proposition follows from a simple calculation (which we omit),
similar to the ones we already carried out in this section. ¤

Theorem 3.21. Let d = deg(n). Then

χ(B(n)) = [Γ : Γ(n)]
∑

p∈P(n)

Φ(p) · q−dθ(p).
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Proof. Denote by Bk(n) the subcomplex of B(n) which maps onto Wk under the
quotient map B(n)/Υ(n) ∼−→ W. Let w ∈ Wk be an i-simplex. The number of
i-simplices in B(n) which map to w is equal to [Υ(n) : Γw]. Hence, using Euler’s
formula,

χ(Bk(n)) =
∑

w∈Wk

(−1)dim(w)[Υ(n) : Γw] = [Γ : Γ(n)] · χ̃(Wk).

From Proposition 3.19 and Proposition 3.20, we conclude that there is an equality
χ(Bk(n)) = χ(Bd−1(n)) for any k ≥ d − 1. On the other hand, since Bk(n) ⊂
Bk+1(n) and

⋃∞
k=1 Bk(n) = B(n), Harder’s results in [12], [14] imply that there are

isomorphism Hi(B(n)) ∼= Hi(Bk(n)), 0 ≤ i ≤ n − 1, when k is large enough. Thus
χ(B(n)) = χ(Bd−1(n)) (see also [16, Prop. 3.33]). Now the formula of the theorem
follows from Propositions 3.19 and 3.20. ¤

Example 3.22. Let n = 2. We compute χ(B(n)) by applying the formula in Theorem
3.21. The ordered partitions of 2 are (2) and (1, 1). Now θ((2)) = 0, θ((1, 1)) = 1,
and by Proposition 3.5

φ(1) =
1

q − 1
and φ(2) =

−1
(q2 − 1)(q − 1)

.

Hence
χ(B(n))
[Γ : Γ(n)]

=
−1

(q2 − 1)(q − 1)
+

1
(q − 1)2qd

=
1

(q − 1)2

(
1
qd
− 1

q + 1

)
.

This recovers the formula in [11, Cor. 5.8]; see also [22, Ch. II].

Example 3.23. Let n = 3. There are four ordered partitions of 3, namely (3), (2, 1),
(1, 2), (1, 1, 1). We have

θ((3)) = 0, θ((2, 1)) = θ((1, 2)) = 2, θ((1, 1, 1)) = 3.

Next, φ(3) = [(q3 − 1)(q2 − 1)(q − 1)]−1. Thus,

χ(B(n))
[Γ : Γ(n)]

= φ(3) + φ(1)φ(2)q−2d + φ(1)3q−3d

=
1

(q − 1)3

(
1

(q2 + q + 1)(q + 1)
− 2

(q + 1)q2d
+

1
q3d

)
.

This recovers the formula in [7, Cor. 6.11].

Remark 3.24. As we mentioned earlier, [Γ : Γ(n)] = (q − 1)#SLn(A/n). Therefore,
this number can be expressed in terms of q and the degrees of primary components
of n. For example, assume n = p1p2 · · · ps is square-free (pi are prime). Let di :=
deg(pi). Then

[Γ : Γ(n)] = (q − 1)

∏s
i=1

∏n−1
j=0 (qndi − qjdi)∏s

i=1(qdi − 1)
.

Corollary 3.25.

lim
deg(n)→∞

χ(B(n))
[Γ : Γ(n)]

= φ(n).

Proof. This is a trivial consequence of Theorem 3.21. ¤
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Let ζF (s) =
∏

v(1− q−s
v )−1 be the zeta-function of F . (Here the product is over

all valuations of F .) It is well-know (and easy to show) that

ζF (s) =
1

(1− q−s)(1− q1−s)
.

Let

ζF,∞(s) :=
∏

v 6=∞
(1− q−s

v )−1 =
1

1− q1−s
.

For any m ≥ 1

m−1∏

i=0

ζF,∞(−i) =
1

(1− q)(1− q2) · · · (1− qm)
= −φ(m).

Hence Theorem 3.21 relates the Euler-Poincaré characteristic of B(n) (equiv. the
Euler-Poincaré characteristic of Γ(n)) to the values at negative integers of the partial
zeta-function ζF,∞. This can be interpreted as a Gauss-Bonnet type formula; see
[21]. The contributions of the “cusps” correspond to the contributions of the corners
different from 0. Corollary 3.25 says that these contributions are minuscule when
deg(n) is large.

3.5. Harder’s theorem. To state the main result of this subsection, we need to
recall some notions from the theory of automorphic forms.

For a subset I ⊆ {2, . . . , n} let VI be the vector space of C-valued locally con-
stant functions on G(F∞) which are left PI(F∞)-invariant. Let (VI , ρI) be the
representation ρI : G(F∞) → End(VI) of G(F∞) induced by right translations on
PI(F∞)\G(F∞). Each (VI , ρI) is a sub-representation of (V∅, ρ∅) since any PI(F∞)-
invariant function is automatically B(F∞)-invariant (B = P∅). The special (or
Steinberg) representation of G(F∞) is the representation on the space V∅/

∑
I 6=∅ VI .

We will denote this representation by Sp.
Let K be an open subgroup of G(O). An automorphic cusp form for K is a C-

valued function ϕ on G(A) which is left G(F )-invariant, right K · Z(F∞)-invariant
and which satisfies the condition:

∫

UI(F )\UI(A)

ϕ(ug)du = 0

for each I and g ∈ G(A) (here du is a normalized Haar measure on the compact
group UI(F ) \UI(A)). Denote the C-vector space of automorphic cusp forms for K
by W (K).

We say that the cusp form ϕ is special at ∞ if the right G(F∞)-translates of ϕ
generate a G(F∞)-module isomorphic with a direct sum of a finite number of copies
of Sp. Denote the subspace of W (K) spanned by the cusp forms which are special
at ∞ by Wsp(K).

Let I be the Iwahori subgroup of G(F∞). By definition, I is the inverse image
of B(F∞) under the reduction modulo p∞ homomorphism G(O) → G(F∞). Let n
be an ideal in A. For a place v 6= ∞ of F let nv be the ideal generated by n in Ov

under the injection A → Ov. Let K(n)f =
∏

v 6=∞K(nv). Note that K(n)f is the
adelic version of Γ(n), and in fact, Γ(n) = G(F ) ∩ K(n)f . Let K(n) = K(n)f × I.
Denote Wsp(K(n)) simply by Wsp(n).
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Theorem 3.26 (Harder). The space Wsp(n) is finite dimensional, and

dimCWsp(n) = [(A/n)× : F×q ] · dimQHn−1(B(n)).

For all 0 < i < n− 1,
Hi(B(n)) = 0.

We briefly indicate the ideas which go into the proof of this deep result. For the
proof itself see [14] (and also [12], [13]).

First, one shows that Hi(B(n)) is canonically isomorphic to Hi(Γ(n),Q) for
any 0 ≤ i ≤ n − 1; the argument is outlined in [21, §1.6. Rem. 1]. For a dis-
crete cocompact subgroup Γ′ of G(F∞), Serre conjectured that Hi(Γ′,Q) vanish
for 0 < i < n − 1. This conjecture was initially proven by Garland [6], under the
assumption that q is large enough, and by Casselman [2] in general. Garland’s argu-
ment relates the vanishing of cohomology groups to the estimates of the eigenvalues
of a certain combinatorial Laplace operator; Casselman’s argument uses the theory
of admissible representations of G(F∞). For a non-cocompact congruence subgroup
of G(O∞), such as Γ(n), the vanishing of the middle cohomology groups was proven
by Harder, using representation-theoretic methods similar to Casselman’s.

Now we discuss the first part of Theorem 3.26. Let K be an open subgroup of
G(O). Since G(O) is compact, K has finite index in G(O). Write K = Kf × K∞,
where Kf is an open subgroup of G(Of ) and K∞ is an open subgroup of G(O∞).
As results from the strong approximation theorem for SLn, the determinant induces
a bijection

(3.5) G(F ) \G(Af )/Kf

∼=−→ F× \ A×f / detKf ,

where G(F ) is embedded diagonally into G(A). It is well-known that

F× \ A×f /O×f ∼= Pic(A) = 1.

We conclude that the double coset space on the left-hand side of (3.5) is finite, as
detKf has finite index in O×f . Let S denote a set of representatives of this finite
coset space, and for x ∈ S let Γx := G(F ) ∩ xKfx−1, where the intersection takes
place in the group G(Af ). Each Γx is an arithmetic subgroup of G(F ). We get the
bijection

G(F ) \G(A)/KZ(F∞)
∼=−→

⊔

x∈S

Γx \G(F∞)/K∞Z(F∞).

Since the stabilizer of a maximal flag in Fn
∞ is isomorphic to B(F∞), the stabilizer

in G(F∞) of an oriented (n− 1)-simplex of B is isomorphic to I. Therefore,

PGLn(F∞)/I ∼= Sn−1(B),

and
G(F ) \G(A)/K(n)Z(F∞)

∼=−→
⊔

x∈S

Sn−1(B(n)x),

where B(n)x denotes the quotient of B by Γ(n)x := G(F ) ∩ xK(n)fx−1. Note that
all B(n)x are isomorphic to B(n)1 = B(n). Next, it is not hard to check that

F× \ A×f / detK(n)f
∼= (A/n)×/F×q ,

cf. [17, (6.6)]. Hence #S = [(A/n)× : F×q ]. The upshot is that

Wsp(n)
∼=−→

⊕

x∈(A/n)×/F×q

Hn−1
! (B,C)Γ(n)x ,
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where Hn−1
! (B,C)Γ(n)x is a space of C-valued functions on the oriented (n − 1)-

simplices of B which satisfy some conditions. These conditions turn out to be the
following: f is in Hn−1

! (B,C)Γ(n)x if and only if (i) f is a cochain; (ii) f is harmonic,
which means f is in the kernel of a certain operator δ acting on the cochains, cf.
[6]; (iii) f is Γ(n)x-invariant and has finite support modulo Γ(n)x. The final step
consists of showing

Hn−1
! (B,C)Γ(n)x ∼= Hn−1(B(n)x,C),

which is a non-archimedean version of Hodge decomposition.

Corollary 3.27.

lim
deg(n)→∞

dimCWsp(n)
[(A/n)× : F×q ] · [Γ : Γ(n)]

=
1

(q − 1)(q2 − 1) · · · (qn − 1)
.

Proof. First of all, Theorem 3.26 implies

χ(B(n)) = 1 + (−1)n−1 dimQHn−1(B(n)).

(Recall that B(n) is connected, so H0(B(n)) ∼= Q.) The rest is a trivial consequence
of Corollary 3.25 and the first part of Harder’s theorem. ¤

3.6. Cusps. This subsection plays no role in what follows after it and can be
skipped.

We saw that B(n) is an infinite complex, but at the same time all the information
about its homology is contained in a finite subcomplex Bk(n), for k large enough.
Hence one would expect that the complement of such Bk(n) in B(n) has a simple
simplicial structure, more or less independent of k À 0. Let us denote the minimal
simplicial subcomplex of B(n) containing B(n)− Bk(n) by Bc

k(n).
First, recall what happens for n = 2, cf. [22, II.2.3]. One shows that Bc

k(n),
k ≥ deg(n), is a disjoint union of a finite number of W’s, i.e., is a disjoint union of
a finite number of infinite half-lines. These half-lines are called cusps, and there is
a formula for their number in terms of prime divisors of n.

Now let n ≥ 2 be arbitrary. The previous paragraph suggests

Definition 3.28. Let d = deg(n). A cusp of B(n) is a connected component of
Bc

d(n).

We give one example, which shows that the simplicial structure of the cusps for
n ≥ 3 is more complicated than one would naively expect in analogy with n = 2.
A similar example for n = 3 is discussed in [7, p. 64].

Let n = (T ). Let m = #Υ(T ), and let g1, g2, . . . , gm be the elements of Υ(T ) =
GLn(Fq). Take a disjoint union of m copies of W indexed by gi’s: Wg1 , . . . ,Wgm .
To obtain B(T ) one glues Wgi ’s as follows. Let v be a vertex of W. We glue Wgi

and Wgj at v if and only if gi and gj have the same image in G(Fq)/Γv.
Let S be the set of simplices in W having 0 as a vertex. As in the proof of

Proposition 3.17, let v2 = d2(0), . . . , vn = dn(0). Let σ = {0, vj1 , . . . , vji} be an
i-simplex in S. Let Fσ be the subcomplex of W with

Ver(Fσ) = {ds1
j1
· · · dsi

ji
(0) | s1, . . . , si ≥ 0}.

Lemma 3.29. Wg and Wh in B(T ) are glued along Fσ if and only if they are glued
along σ.
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Proof. First of all, as we mentioned (Remark 3.16), B(T ) is a simplicial complex,
so Wg and Wh in B(T ) are glued along a simplex if and only if they are glued at
the vertices of that simplex. Therefore, we need to show that if Wg and Wh are
glued at 0, vj1 , . . . , vji then they are glued at any v ∈ Ver(Fσ).

As is easy to check, if g and h have the same image in G(Fq)/Γv′ and G(Fq)/Γv′′

then they have the same image also in G(Fq)/(Γv′ ∩ Γv′′). It is also easy to check
that for any v 6= 0 ∈ Ver(Fσ), Γv contains Γvj1

∩ · · · ∩ Γvji
. Combined, these two

facts imply the claim. ¤

Using the previous lemma, we conclude that in B(T ) we have [G(Fq) : B(Fq)]
distinct copies of W. Each such W is glued along σ = {0, vj1 , . . . , vji} to [Γσ :
B(Fq)] other W’s. (Note that Γσ is a standard parabolic subgroup in G(Fq).) In
particular, all W’s are glued at 0.

Lemma 3.30. If n ≥ 3 then Bc
k(T ) is connected for any k ≥ 0.

Proof. To prove the lemma, we start by describing the structure of B(T ) in terms
of flags. Fix a basis E = {e1, . . . , en} of V as in §3.6. The lattice in V corresponding
to 0 is EO∞ . Let V = EO∞/p∞EO∞ ∼= ⊕n

i=1 Fqei, and let Vm =
⊕m

i=1 Fqei. Let
F be the maximal flag

F : 0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn−1 ⊂ Vn = V.

Modulo p∞, the vertex 0 corresponds to V , vm corresponds to Vm−1, 2 ≤ m ≤ n,
and the flag of lattices in V for the i-simplex σ = {0, vj1 , . . . , vji} maps to the flag

Fσ : 0 ⊂ Vj1−1 ⊂ · · · ⊂ Vji−1 ⊂ V.

The map Wg → gF gives a one-to-one correspondence between the W’s in B(T )
and the maximal flags in V (note that the stabilizer of F in G(Fq) is exactly B(Fq)).
Under this correspondence, Wg is glued to Wh at vi if and only if

gF{0,vi} = hF{0,vi}.

Indeed, gF{0,vi} = hF{0,vi} is equivalent to

h−1g ∈ StabG(Fq)(F{0,vi}) = Γvi ,

and this is equivalent to g and h having the same image in G(Fq)/Γvi . On the
other hand, if Wg andWh are glued at vi, then by Lemma 3.29 they are glued along
F{0,vi}, which is an infinite half-line.

Now we claim that for any W ′ and W ′′ in B(T ) there are W1 and W2 such that
each W ′ ∩W1, W1 ∩W2, W2 ∩W ′′ contains an infinite half-line. This implies the
lemma, since Wc

k is connected. Let

F ′ : 0 ⊂ V ′
1 ⊂ · · · ⊂ V ′

n−1 ⊂ V and F ′′ : 0 ⊂ V ′′
1 ⊂ · · · ⊂ V ′′

n−1 ⊂ V

be the maximal flags corresponding to W ′ and W ′′, respectively. From what was
said in the previous paragraph, if V ′

1 = V ′′
1 then W ′ ∩W ′′ already contains a half-

line. Now suppose V ′
1 6= V ′′

1 . Let F1 and F2 be some maximal flags which start
as

F1 : 0 ⊂ V ′
1 ⊂ V ′

1 + V ′′
1 ⊂ · · · and F2 : 0 ⊂ V ′′

1 ⊂ V ′
1 + V ′′

1 ⊂ · · ·
Take W1 and W2 to be the W’s corresponding to F1 and F2, respectively. ¤
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Remark 3.31. When n = 2 the statement of the lemma is false. In fact B(T )
consists of (q+1) infinite half-lines, all joined at their origins, so Bc

k(T ) is a disjoint
union of (q + 1) infinite half-lines once k ≥ 1.

We conclude that B(T ) has one cusp which, as a simplicial complex, consists of
[G(Fq) : B(Fq)] copies of Wc

1 glued together in a rather complicated manner.

4. Drinfeld modular varieties

In this section we recall the definition of Drinfeld modules and Drinfeld modular
schemes, and then compare the number of Fqn-rational points on Drinfeld modular
varieties over FT

∼= Fq to their `-adic Betti numbers.

4.1. Rational points. Let S be a scheme over A. Denote by γ the canonical
ring homomorphism γ : A → H0(S,OS). Fix some n ∈ Z>0. A pair D = (G, ϕ)
consisting of an Fq-vector space scheme G over S and an Fq-algebra homomorphism

ϕ : A → EndS(G),
a 7→ ϕa

from A into the ring of Fq-linear S-endomorphisms of G is called a Drinfeld module
of rank n over S if the following conditions are satisfied:

(1) the group scheme G is Zariski-locally isomorphic to the additive group
scheme Ga,S over S;

(2) for each non-zero a ∈ A, ϕa is finite flat of degree |a|n∞;
(3) the induced action on the tangent space at the identity is via the structure

map γ.
The characteristic of D is the image of S in Spec(A) under γ∗ : S → Spec(A).

Example 4.1. When S is a spectrum of a field K, the definition of a Drinfeld module
over S can be reformulated as follows. Let K{τ} be the non-commutative ring of
polynomials in τ with coefficients in K, and the commutation rule τα = αqτ for
all α ∈ K. Let γ : A → K be the structure homomorphism. A Drinfeld module D
over K of rank n is an Fq-linear ring homomorphism ϕ : A → K{τ}, such that

ϕT = γ(T ) + α1τ + · · ·+ αnτn,

where α1, . . . , αn ∈ K and αn 6= 0.

For n ∈ A, the finite flat group scheme ker(ϕn) over S is called the n-torsion
subgroup of D. The group ϕn is an A-module via ϕ. If n is disjoint from the
characteristic of D, then ϕn is locally constant with value (A/n)n for the étale
topology on S.

Definition 4.2. Assume n is disjoint from the characteristic of D. A level n-
structure on D is an isomorphism of schemes of (A/n)-modules over S

λ : (A/n)n
S −→ ϕn,

where (A/n)n
S is the constant scheme of (A/n)-modules over S with value (A/n)n.

Theorem 4.3 (Drinfeld). Let Mn(n) be the functor which to each A[n−1]-scheme
S associates the set of isomorphism classes (D, λ)S of Drinfeld A-modules D of
rank n over S with level n-structure λ. If n has at least two distinct prime divisors
then Mn(n) is representable by a smooth affine A[n−1]-scheme Mn(n) of relative
dimension (n− 1).
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Proof. See [4, §5] or [18, Ch. 1]. ¤

The group G(A/n) acts on the right of Mn(n). In terms of the moduli problem
the action of g ∈ G(A/n) is given by

g : (D, λ) 7→ (D, λ ◦ g).

If n = p is a prime, then Mn(p) has in general only a coarse moduli scheme.
This coarse moduli scheme will be denoted by Mn(p). It can be obtained as
follows. Let m be a polynomial with at least two distinct prime divisors. The
group G(A/m) is a normal subgroup of G(A/pm) (it is the kernel of the mod m
reduction map G(A/mp) → G(A/p)). Hence G(A/m) acts on Mn(mp). Define
Mn(p) := Mn(mp)/G(A/m); cf. [18, Lem. 1.4.2]. If p 6= A then Mn(p) is smooth;
see [18, Thm. 1.5.1]. On the contrary, Mn(1) is not smooth if n ≥ 3 (its compact-
ification is the weigthed projective space PA(q − 1, q2 − 1, . . . , qn − 1)).

From now on we assume that n 6= A and n ≥ 2.

Theorem 4.4. There is an A[n−1]-morphism

wn : Mn(n) → M1(n),

which is G(A/n)-equivariant, in the sense that for g ∈ G(A/n)

wn ◦ g = det(g) ◦ wn.

Proof. See [24, Thm. 4.1] and [25]. The morphism wn is induced by an analogue
of the Weil pairing for Drinfeld modules. ¤

Let Fn be the function field of M1(n). From Class Field Theory it is known that
Fn is the maximal abelian extension of F with conductor n which is completely
split at ∞, moreover Gal(Fn/F ) ∼= (A/n)×/F×q ; see [4, Thm. 1] and [17].

Corollary 4.5. The fibres of wn : Mn(n) → M1(n) are smooth and geometrically
irreducible.

Proof. From Theorem 4.4 and the above paragraph it is clear that wn is surjec-
tive, and moreover, M1(n) has [(A/n)× : F×q ] geometrically connected components.
The theory of rigid-analytic uniformization implies that Mn(n), n ≥ 2, also has
[(A/n)× : F×q ] geometrically irreducible components, each (as an analytic variety)
isomorphic to Ωn/Γ(n); see [4, §6]. (Here Ωn is Drinfeld’s symmetric space.) The
claim follows since wn commutes with base change to any A[n−1]-field; see [24, Lem.
4.2]. ¤

Recall from Definition 1.1 that a prime p ¢ A is admissible if x 7→ xn is an
automorphism of F×p /F×q .

Lemma 4.6. There are infinitely many admissible primes.

Proof. Let d := deg(p). We need to show that there are infinitely many d such that
Nd := (qd − 1)/(q− 1) is coprime to n. Let ` be a prime divisor of n. If ` = p then
Nd is not divisible by ` for any d 6= 0. From now on assume ` 6= p. If q ≡ 1 (mod `),
then Nd is divisible by ` if and only if d ≡ 0 (mod `). If q 6≡ 1 (mod `), then Nd

is divisible by ` if and only if qd ≡ 1 (mod `). This last congruence holds only if
(d, `− 1) 6= 1.

Let `1, . . . , `s be the prime divisors of n which divide (q − 1). Let p1, . . . , pr be
the prime divisors of n which do not divide (q − 1) and are not not equal to p.
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From the previous paragraph, we conclude that any p which has degree coprime to
`1 · · · `s · (p1 − 1) · · · (pr − 1) is admissible. ¤

Let Z(A/n) ¢ G(A/n) be the subgroup of scalar matrices. Assume n is coprime
to T . Let Mn

T (n) := Mn(n)⊗A[n−1] FT , and

Xn := (Mn
T (n))/Z(A/n).

Proposition 4.7. Assume p is an admissible prime not equal to T . Then Xp is
a smooth, absolutely irreducible (n− 1)-dimensional affine variety defined over Fq,
which is a form of one of the components of Mn

T (p).

Proof. By Corollary 4.5 the fibres of Mn
T (p) → M1(p) ⊗ FT are smooth and geo-

metrically irreducible. Hence by Theorem 4.4 and [24, Lem. 4.2], the fibres of
Xp → (M1(p) ⊗ FT )/ det(Z(Fp)) are absolutely irreducible. On the other hand,
since p is an admissible prime, det(Z(Fp)) surjects onto (A/p)×/F×q . Therefore,
(M1(p)⊗ FT )/ det(Z(Fp)) = FT

∼= Fq. The claim of the proposition follows. ¤

Let K be any A-field, and ϕ be a rank-n Drinfeld module over K. Let L be a
field extension of K. Denote by EndL(ϕ) the centralizer of A

∼=−→ ϕ(A) in L{τ}.
More concretely, EndL(ϕ) consists of all u ∈ L{τ} such that u · ϕa = ϕa · u for
all a ∈ A. Let AutL(ϕ) := EndL(ϕ)×. If ϕ has rank n then, as is easy to check,
AutL(ϕ) is a subgroup F×qs of F×qn , for some s dividing n. We denote EndK(ϕ) by
End(ϕ), and similarly for AutK(ϕ). It is known that End(ϕ) is a free A-module of
rank less than or equal to n2; see [4, §2].

Fix some prime p, and assume K is a finite extension of Fp. Then K has
cardinality qm for some m. Let Frp = τm : x 7→ xqm

be the associated (arithmetic)
Frobenius morphism. It is clear that Frp ∈ EndK(ϕ).

Proposition 4.8. The following conditions are equivalent:
(1) [End(ϕ)⊗A F : F ] = n2;
(2) End(ϕ) is a maximal order in the central division algebra over F of di-

mension n2, which is ramified exactly at p and ∞ with invariants 1/n and
−1/n, respectively;

(3) Some power of Frp lies in ϕ(A);
(4) ker(ϕp) is connected.

Proof. See [9, §4] and [5]. ¤

Drinfeld modules that satisfy the conditions of the proposition are called super-
singular. There are only finitely many such modules in characteristic p.

Example 4.9. Consider the Drinfeld module ϕ̃ over FT , given by

ϕ̃T = τn.

Since ϕ̃T is purely inseparable, ϕ̃ is super-singular of rank n. In fact, this is the
only super-singular module in characteristic T (up to an isomorphism), as follows
from [8, Thm. 1]. In this case, FrT = τ and Frn

T ∈ ϕ̃(A). It is easy to see that
Aut(ϕ̃) ∼= F×qn . Hence Fqn{τ} ⊂ End(ϕ̃). Since Fqn{τ} is of rank n2 over A, we
conclude from Proposition 4.8 that

End(ϕ̃) = Fqn{τ}.
It is clear that the center of End(ϕ̃) is Fq{τn} – the submodule generated by A.
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Proposition 4.10. Let p be an admissible prime. Then

#Xp(Fqn) ≥ [Γ : Γ(p)]
qn − 1

.

Proof. The proof is a modification of the proof of Proposition II.2.19 in [19]. Con-
sider the finite flat covering π : Mn

T (p) → Mn
T (1). Generically, its degree is #G(Fp);

cf. [18, Lem. 1.4.2]. This induces a covering

π′ : Xp → Mn
T (1).

The degree of π′, generically, is #PGLn(Fp). Let ϕ̃ be the Drinfeld module of
Example 4.9. The points corresponding to ϕ̃ are branch points for π′ with indices
Aut(ϕ̃)/F×q (a generic Drinfeld module in any characteristic has automorphism
group isomorphic to F×q ). Hence the number of such points on Xp is equal to
#PGLn(Fp)(q − 1)/(qn − 1). Observe that

#PGLn(Fp)(q − 1)
(qn − 1)

=
[Γ : Γ(p)]
(qn − 1)

,

so it suffices to show that all points on Xp corresponding to ϕ̃ are rational over Fqn .
For this, in turn, it suffices to show that any structure λ of level p on the module
ϕ̃ under the action of τn gives a structure lying over the same point in Xp as the
original structure (here the pair (ϕ̃, λ) is considered as a point of Mn

T (p)).
The action of τn on λ is via its image under the composition

End(ϕ̃) → (End(ϕ̃)⊗Ap Fp)×
∼−→ G(Fp),

where the last isomorphism follows from Proposition 4.8. Since τn lies in the center
of End(ϕ̃), its image in G(Fp) lies in Z(Fp). This implies that (ϕ̃, λ) and τn(ϕ̃, λ)
have the same image in Xp, so this point is Fqn-rational. ¤

4.2. Asymptotic bounds. Recall from the introduction the `-adic cohomology
groups with compact supports

H∗
η (n) := H∗

c (Mn
η (n)⊗F F,Q`),

where Mn
η (n) := Mn(n)⊗A[n−1] F . Similarly, for a proper prime ideal p of A[n−1],

denote Mn
p (n) := Mn(n)⊗A[n−1] Fp and H∗

p (n) := H∗
c (Mn

p (n)⊗Fp Fp,Q`).
H∗

η (n) is endowed with commuting actions of the Galois group Gal(F/F ) and a
certain Hecke algebra Tn. Since Mn

η (n) is a smooth affine scheme of pure relative
dimension (n− 1) over F , the cohomology groups Hi

η(n) are finite dimensional and
vanish for i 6∈ [n − 1, 2(n − 1)], cf. [18, §12.2]. Denote by hi

η(n) = dimQ`
Hi

η(n),
i ≥ 0, the `-adic Betti numbers of Mn

η (n) ⊗F F . Similarly, denote by hi
p(n) the

`-adic Betti numbers of Mn
p (n)⊗Fp Fp.

Proposition 4.11. Fix a proper prime ideal p ¢ A. Under the assumption (1.4),
we have

lim
deg(n)→∞

(n,p)=1

( ∑
i≥0 hi

p(n)
dimCWsp(n)

)
= n,

where the limit is over all ideals n ¢ A which are coprime to p.
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Proof. Denote by Wm
sp (n) the space of cusp forms on GLm(F∞) of level n which are

special at ∞ (in particular, Wn
sp(n) = Wsp(n) in our earlier notation). We claim

that for any (p1, . . . , ph) 6= (n) ∈ P(n)

(4.1) lim
deg(n)→∞

dimC
(
W p1

sp (n)⊗ · · · ⊗W ph
sp (n)

)

dimCWn
sp(n)

= 0.

Indeed, using Corollary 3.27, one checks that dimC(Wm
sp (n)) is O(qm2 deg(n)) for

deg(n) À 0. On the other hand, p2
1 + · · ·+ p2

h < n2 if (p1, . . . , ph) 6= (n).
To proceed further, we appeal to one of the main results in [18]. The central

goal of [18] is to describe the virtual Gal(F/F )×Tn-module H :=
∑

i≥0(−1)iHi
η(n).

(This is essentially the Langlands conjecture for cuspidal automorphic irreducible
representations of G(A) which are special at ∞.) Laumon shows [18, Thm. 12.5.1]
thatH, as a sum of irreducible Gal(F/F )×Tn-modules, is equal to a sum of cuspidal
representations of G(A) induced from the representations on W p1

sp (n)⊗· · ·⊗W ph
sp (n),

(p1, . . . , ph) ∈ P(n), tensored with the Galois representations attached to these
cuspidal representations by the Langlands correspondence (the same theorem for
n = 2 is due to Drinfeld [4]). If we assume (1.4), then Laumon’s theorem and (4.1)
imply

lim
deg(n)→∞

( ∑
i≥0 hi

η(n)
dimCWn

sp(n)

)
= n.

Now, for any i the Gal(F/F )-module Hi
η is unramified away from supp(n)∪{∞},

and moreover, for each proper ideal p of A[n−1] there is a Gal(Fp/Fp)-equivariant
isomorphism Hi

η
∼= Hi

p. Besides some theorems from SGA, the proof of this fact uses
Pink’s construction of toroidal compactifications of Mn(n); see (12.2.2.1), (12.2.2.2)
and (12.2.7) in [18]. We conclude that

∑
i≥0 hi

η(n) =
∑

i≥0 hi
p(n), and the theorem

follows. ¤
Remark 4.12. The statement (1.4) would follow if one could understand not just H
as a Gal(F/F )× Tn-module, but the individual cohomology groups Hi

η(n) as such
modules. For example, it is likely that the Galois representations which correspond
to Wn

sp(n) occur only in Hn−1
η (n) and hn−1

η (n) ∼ n dimCWn
sp(n).

Let Frobp = Fr−1
p ∈ Gal(Fp/Fp) be the geometric Frobenius element. If p 6∈

supp(n) then Frobp defines an automorphism of Hi
c,p(n). Assume Hi

c,p(n) 6= 0.
Denote the eigenvalues of Frobp acting on this finite dimensional Q`-vector space
by αi,1, αi,2, . . . , αi,s (here s = hi

p(n)).

Proposition 4.13. Fix a proper prime ideal p ¢ A and k ∈ Z≥0. Under the
assumption (1.4), we have

lim
deg(n)→∞

(n,p)=1




∑
i≥0

∑hi
p(n)

j=1 |αk
i,j |∑

i≥0 hi
p(n)


 = qdeg(p)k

(n−1)
2 .

Proof. Let
∑

sp |αk
i,j | be the sum over the eigenvalues αi,j corresponding to Wn

sp(n)
under the Langlands conjecture; see Theorem 12.4.1, Theorem 12.5.1, and Corollary
12.4.9 in [18]. By the Ramanujan-Petersson conjecture [18, Thm.12.4.1]

∑
sp

|αk
i,j | = qdeg(p)k

(n−1)
2 n dimC(Wsp(n)).
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On the other hand, by Deligne’s theorem [3, Thm. 3.3.1] all |αk
i,j | are bounded by

qdeg(p)k(n−1), which is independent of n. Hence, our claim follows from Proposition
4.11. ¤

Theorem 4.14. Let p 6= T be an admissible prime. Let Xp be the smooth, geomet-
rically irreducible affine variety over Fq which we constructed in §4.1.

1
n

n−1∏

j=1

(qj − 1) ≤ lim inf
deg(p)→∞

(
#Xp(Fqn)∑

i≥0 hi(Xp)

)
,

lim sup
deg(p)→∞

(
#Xp(Fqn)∑

i≥0 hi(Xp)

)
≤ q

n(n−1)
2 .

Proof. Mn
T (p)⊗Fq

Fq is a disjoint union of [(A/p)× : F×q ] copies of Xp⊗Fq
Fq. Hence

(4.2)
∑

i≥0

hi
T (n) = [(A/p)× : F×q ]

∑

i≥0

hi(Xp).

This equality, combined with Corollary 3.27 and Proposition 4.11, implies

lim
deg(p)→∞

(∑
i≥0 hi(Xp)
[Γ : Γ(p)]

)
=

n

(qn − 1) · · · (q − 1)
.

Now the lower bound in the theorem follows from Proposition 4.10.
Next, recall that by the Grothendieck-Lefschetz trace formula

#Xp(Fqn) =
∑

i≥0

(−1)iTr(Frobn
T | Hi

c(Xp ⊗Fq Fq,Q`))

=
1

[(A/p)× : F×q ]

∑

i≥0

(−1)i

hi
T (p)∑

j=1

αn
i,j .

Hence

#Xp(Fqn) ≤ 1
[(A/p)× : F×q ]

∑

i≥0

hi
T (p)∑

j=1

|αn
i,j |,

and the upper bound in the theorem follows from Proposition 4.13 and (4.2). ¤
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