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Let p be a prime. It is a fundamental problem to classify the absolute Galois groups
GF of fields F containing a primitive pth root of unity xp. In this paper we present several
constraints on such GF , using restrictions on the cohomology of index p normal subgroups
from [LMS]. In section 1 we classify all maximal p-elementary abelian-by-order p quotients
of these GF . In the case p > 2, each such quotient contains a unique closed index p elemen-
tary abelian subgroup. This seems to be the first case in which one can completely classify
nontrivial quotients of absolute Galois groups by characteristic subgroups of normal sub-
groups. In section 2 we derive analogues of theorems of Artin-Schreier and Becker for order
p elements of certain small quotients of GF . Finally, in section 3 we construct a new family
of pro-p-groups which are not absolute Galois groups over any field F .

As a consequence of our results, we prove the following limitations on relator shapes
of pro-p absolute Galois groups. For elements s and t of a group G, let 0½s; t� ¼ t,
1½s; t� ¼ sts�1t�1, and n½s; t� ¼ ½s; n�1½s; t�� for nf 2. Similarly, for subsets G1 and G2 of
G, let n½G1;G2� denote the closed subgroup generated by all elements of the form n½g1; g2� for
gi A Gi.

Theorem A.1. Let p be an odd prime, G a pro-p-group with maximal closed subgroup

D, and s A GnD.

(1) Suppose that for some t A D and some 2e ee p� 2

e½s; t� B p�1½s;D�FðDÞ and eþ1½s; t� A FðDÞ:

Then G is not an absolute Galois group.
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Moreover, if G contains a normal subgroup LHD such that G=LFZ=p2Z, we may

take 1e ee p� 2.

(2) Suppose that for some t1; t2 A D,

½s; ti� B p�1½s;D�FðDÞ; 2½s; ti� A FðDÞ; i ¼ 1; 2;

h½s; t1�iFðDÞ3h½s; t2�iFðDÞ:

Then G is not an absolute Galois group.

(3) Suppose that

s p A 2½s;D�FðDÞ:

Then G is not an absolute Galois group.

Here FðDÞ ¼ Dp½D;D� denotes the Frattini subgroup of D.

Furthermore, pro-p-groups with single relations similar to those of Demuškin groups
for odd primes cannot be absolute Galois groups.

Corollary. Let p be an odd prime and G a pro-p-group minimally generated by

fs1; s2gW fsigi AI subject to a single relation

s
q
1 � f ½s1; s2� �

Q
ði; jÞ AJ

½si; sj� �
Q

k AK
½s p

1 ; sk�

for some 2e f e p� 1, q A NW f0g with q ¼ 0 modðp2Þ, a finite ordered set of pairs

JHI�I, and a finite ordered subset K of I. Then G is not an absolute Galois group.

The results in [LMS] may be used to establish further new results on possible
V -groups of fields and metabelian quotients of absolute Galois pro-p-groups. (For the def-
inition of the V -group VF of a field F , see section 2.) Moreover, some of the results here
hold in a greater generality than their formulations here. For instance, the examples here of
pro-p non-absolute Galois groups are also examples of groups which are not maximal pro-
p-quotients of absolute Galois groups, by [LMS], §6. Furthermore, pro-p-groups which are
not absolute Galois groups are not p-Sylow subgroups of absolute Galois groups. We plan
a systematic study of these concerns in [BMS].

We observe that because this paper is concerned only with degree 1 and degree 2
cohomology, the results cited from [LMS] rely only on the Merkurjev-Suslin Theorem
[MeSu], Theorem 11.5, and not the full Bloch-Kato Conjecture. Furthermore, we note
that while this paper is self-contained, an extended version is available [BLMS].

1. T-groups

A T-group is a nontrivial pro-p-group T with a maximal closed subgroup N that is
abelian of exponent dividing p. Then N is a normal subgroup, and the factor group T=N
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acts naturally on N: choose a lift t A T and act via n 7! tnt�1. Given any profinite group
G with a closed normal subgroup D of index p, the factor group G=Dp½D;D� is a T-group.
Now suppose that E=F is a cyclic field extension of degree p. We define the T-group of E=F
to be TE=F :¼ GF=G

p
E ½GE ;GE �. In this section we classify those T-groups realizable as TE=F

for fields F either with charF ¼ p or xp A F .

We develop a complete set of invariants ti, i ¼ 1; 2; . . . ; p, and u of T-groups as
follows. For a pro-p-group G, denote by ZðGÞ its center, ZðGÞ½p� the elements of ZðGÞ of
order dividing p, GðnÞ the nth group in the p-central series of G, and GðnÞ the nth group in
the central series of G. For a T-group T we define

t1 ¼ dimFp H
1 ZðTÞ½p�

ZðTÞXTð2Þ
; Fp

� �
;

ti ¼ dimFp H
1 ZðTÞXTðiÞ

ZðTÞXTðiþ1Þ
; Fp

� �
; 2e ie p;

u ¼ maxfi : 1e ie p;T p HTðiÞg:

Proposition A.1. For arbitrary cardinalities ti, i ¼ 1; 2; . . . ; p, and u with 1e ue p,
the following are equivalent:

(1) The ti and u are invariants of some T-group.

(2) (a) If u < p then tu f 1, and

(b) if u ¼ p and ti ¼ 0 for all 2e ie p, then t1 f 1.

Moreover, T-groups are uniquely determined up to isomorphism by these invariants.

Theorem A.2. For p an odd prime, the following are equivalent:

(1) T is a T-group with invariants ti and u satisfying

(a) u A f1; 2g,

(b) t2 ¼ u� 1, and

(c) ti ¼ 0 for 3e i < p.

(2) T FTE=F for some cyclic extension E of degree p of a field F such that either

charF ¼ p or xp A F.

Now suppose p ¼ 2. Then each T-group is isomorphic to TE=F for some cyclic extension

E=F of degree 2.

Let G be a cyclic group of order p and Mi, i ¼ 1; 2; . . . ; p, denote the unique cyclic
FpG-module of dimension i. Since the FpG-modules we consider will be multiplicative
groups, we usually write the action of G exponentially. For a set I, let MI

i denote the
product of jIj copies of Mi endowed with the product topology. We use the word duality
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exclusively to refer to Pontrjagin duality, between compact and discrete abelian groups and
more generally between compact and discrete FpG-modules. We denote the dual of G by
G4.

Lemma A.1. Suppose T is a T-group with invariants ti, i ¼ 1; 2; . . . ; p and u, and N is

a maximal closed subgroup of T that is abelian of exponent dividing p. Let s A TnN and set

s to be the image of s in G :¼ T=N. Then N is a topological FpG-module and we have:

(1) For any FpG-submodule M of N and if 0, i½T ;M� ¼ Mðs�1Þ i .

(2) For if 2, TðiÞ ¼ Nðs�1Þ i�1

.

(3) There exist sets Ii, i ¼ 1; 2; . . . ; p, such that N decomposes into indecomposable

FpG-modules as N ¼ MI1

1 �MI2

2 � � � � �M
Ip
p , endowed with the product topology. More-

over, for if 2, ti ¼ jIij, and

t1 ¼
1þ jI1j; T is abelian of exponent p;

jI1j; otherwise:

�

(4) T p ¼ hs pi � TðpÞ.

(5) If u < p then u is the minimal v with 1e ve p� 1 such that there is a commuta-

tive diagram of pro-p-groups

1 ���! N ���! T ���! G ���! 1???y
???y

???y
???y

???y¼

1 ���! Mv ���! H ���! G ���! 1

ð1Þ

with a lift of s in H of order p2. If u ¼ p then no such diagram exists for 1e ve p� 1.

Proof. (1) Suppose that t A T is arbitrary, and write t ¼ ns i for n A N and
i A NW f0g. The action of T factors through G. Hence ½t;M� ¼ Mðs i�1Þ and so
½T ;M� ¼ Mðs�1Þ. The result follows by induction. (Moreover, we observe that if p does
not divide i, then ½t;M� ¼ ½M; t� ¼ ½T ;M� ¼ ½M;T �.)

(2) Observe that ½T ;T � ¼ ½T ;N�. Then use (1).

(3) Because FpG is an Artinian principal ideal ring, every FpG-module U decomposes
into a direct sum of cyclic FpG-modules. Every cyclic FpG-module is indecomposable and
self-dual. Applying these results to U ¼ N4 and using duality (see [RZ], Lemma 2.9.4 and
Theorem 2.9.6), we obtain the decomposition.

Using (2) together with MG
j ¼ M

ðs�1Þ j�1

j for all 1e je p, we calculate

ZðTÞXN ¼ ðM1ÞIi � ðMðs�1Þ
2 ÞI2 � � � � � ðMðs�1Þp�1

p ÞIp ;

ZðTÞXTðiÞ ¼ ðMðs�1Þ i�1

i ÞIi � � � � � ðMðs�1Þp�1

p ÞIp ; 2e ie p;
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and

ZðTÞXTðiÞ ¼ f1g for i > p:

We deduce that ti ¼ jIij, 2e ie p.

For the case i ¼ 1, suppose first that T is abelian of exponent p. Then
ZðTÞ ¼ ZðTÞ½p� ¼ T and Tð2Þ ¼ f1g. By (2), Nðs�1Þ ¼ f1g, whence jIij ¼ 0 for if 2.
Therefore t1 ¼ 1þ jI1j. Next suppose that T is nonabelian. Then ZðTÞHN. We ob-
tain ZðTÞ½p� ¼ ZðTÞXN and so t1 ¼ dimFp H

1
��
ZðTÞXN

���
ZðTÞXTð2Þ

�
; Fp

�
¼ jI1j.

Finally, assume that T is abelian and not of exponent p. Then N ¼ ZðTÞ½p� and
t1 ¼ dimFp H

1ðN; FpÞ ¼ jI1j.

(4) For d A N we have ðdsÞ2 ¼ ½s; d�d2s2 and, by induction,

ðdsÞ i ¼ ½s; ½s; . . . ; ½s|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
i�1 times

; d� � � ���
i
ið Þ � � � ½s; ½s; d��

i
3ð Þ½s; d�

i
2ð Þd is i:

Then ðNsÞp ¼ ðs pÞ � p�1½s;N�, which by (1) and (2) may be written s p � TðpÞ. Replacing s
with sv for ðv; pÞ ¼ 1, we conclude T p ¼ hs pi � TðpÞ.

(5) Suppose that for some v < u there is a commutative diagram (1) with a lift of s
in H of order p2. Then T !! H factors through T=Nðs�1Þ v . But by (2), Tðvþ1Þ ¼ Nðs�1Þ v and
by definition of u, we have T pHTðuÞ HTðvþ1Þ. Hence every lift of s into T=Nðs�1Þ v is of
order p, and the same holds for H. We conclude that no commutative diagram as above
with s lifting to an element of order p2 exists for v < u.

Now suppose that u < p and consider s p. By (4), T p ¼ hs pi � TðpÞ, and TðpÞHTðuþ1Þ.
We have T p HTðuÞ and T p STðuþ1Þ and so s p A TðuÞnTðuþ1Þ. Now s p A N. By (2), since

TðuÞ ¼ Nðs�1Þu�1

for uf 2, we deduce s p A Nðs�1Þu�1nNðs�1Þu . From ½s; s p� ¼ 1 we ob-
tain s p A NG. Therefore s p A ðNG XNðs�1Þu�1ÞnðNG XNðs�1ÞuÞ. We claim that there exists
an FpG-submodule Mu of N such that MG

u ¼ hs pi and N ¼ Mu � ~NN for some FpG-
submodule ~NN of N. Assume a factorization of N into cyclic FpG-submodules as in (3).
Consider w A N such that wðs�1Þu�1 ¼ s p and all components of w lie in factors of dimen-
sion at least u. For at least one factor Mu, projMu

w generates Mu as an FpG-module. Write
N ¼ Mu � ~NN. We obtain the commutative diagram

1 ���! N ���! T ���! G ���! 1???y
???y

???y
???y

???y¼

1 ���! Mu ���! T= ~NN ���! G ���! 1

in which a lift of s is of order p2. r

The following lemma follows easily from the definitions.

Lemma A.2. Let T be a T-group with invariants ti, i ¼ 1; 2; . . . ; p, and u.

(1) T is abelian if and only if ti ¼ 0 for all 2e ie p.
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(2) T is of exponent p if and only if u ¼ p and tu ¼ 0.

(3) If u < p then tu f 1.

(4) If ti ¼ 0 for all 2e ie p, then t1 f 1.

Proof of Proposition A.1. By Lemma A.2(3,4), (1) implies (2). Now suppose we are
given cardinalities ti, i ¼ 1; 2; . . . ; p, and u satisfying conditions (2).

The case u < p. Let G be a group of order p and Ii, i ¼ 1; 2; . . . ; p sets with cardi-
nalities jIij satisfying jIij ¼ ti for i3 u and 1þ jIuj ¼ tu. Set

N ¼ X �MI1

1 �MI2

2 � � � � �MIp
p ;

where X FMu and N is endowed with the product topology. Then N is a pseudocompact
FpG-module. (See [Br], page 443.) Define an action of Zp on N by letting a generator s of
Zp act via a generator of G, and form NzZp in the category of pro-p-groups. Now choose
an FpG-module generator x of X and define xi ¼ xðs�1Þ i for 0e ie u. Since ðs� 1Þ is nil-
potent of degree u on X we obtain xu�1 3 1 and xu ¼ 1. We set R to be the closed subgroup
hs pxu�1iHNzZp. Finally form G ¼ ðNzZpÞ=R and set D to be the image of Nz f1g
in G. Since DFN as pro-p-G operator groups, we identify them. By construction D is a
maximal closed subgroup of G which is abelian of exponent p. Hence G is a T-group. Since
the image of s in G has order p2, G is not of exponent p. From the decomposition of N, we
obtain by Lemma A.1(3) that the invariants ti are as desired. It remains only to show that u
is as given. By Lemma A.1(4) we have Gp ¼ hxu�1i � GðpÞ. From Lemma A.1(4) we calcu-
late that xu�1 A GðuÞ and xu�1 B Gðuþ1Þ. Hence u is as desired.

The case u ¼ p follows analogously. Let G be a group of order p and Ii sets with
cardinalities jIij satisfying jIij ¼ ti, 2e ie p; jI1j ¼ t1 if some tj 3 0, 2e je p; and
1þ jI1j ¼ t1 if all tj ¼ 0, 2e je p. Set N ¼ MI1

1 �MI2

2 � � � � �M
Ip
p , G ¼ NzG,

D ¼ Nz f1g, let s be a generator of G, and proceed as before.

Now we show that T-groups are uniquely determined up to isomorphism by the in-
variants ti and u. Let T be an arbitrary T-group with invariants ti, i ¼ 1; 2; . . . ; p, and u,
N a maximal closed subgroup of T that is abelian of exponent dividing p, and G ¼ T=N.
From Lemma A.1(3) the structure of N as an FpG-module is determined up to isomor-
phism, and T is an extension of N by G. Let s A TnN. We have s p A NG. It remains only
to determine the isomorphism class of N as an FpG-module with a distinguished factor X
such that s p A X G.

Suppose first that u ¼ p, t1 f 1, and ti ¼ 0 for all 2e ie p. From Lemma A.2(1),
T is abelian and so Tð2Þ ¼ f1g. Since u ¼ p, T has exponent p. Then T FMI1

1 � G and
t1 ¼ jI1j þ 1. Thus T is determined by the invariants. Now suppose that t1 f 1, ti ¼ 0
for all 2e ie p, and u ¼ 1. Again T is abelian. Since u3 p, T has exponent p2. Then
N ¼ X � ~NN, where s p generates an FpG-module X isomorphic to M1 and ~NNFMI 0

1 with
jI 0j þ 1 ¼ t1.

Finally suppose ti 3 0 for some i with 2e ie p. Then T is nonabelian, and
by Lemma A.1(4), T p ¼ hs pi � TðpÞ. From Lemma A.1(2) we obtain, for u < p,
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s p A ðNG XNðs�1Þu�1ÞnðNG XNðs�1ÞuÞ, while for u ¼ p, we have s p A Nðs�1Þp�1

. If u < p

then by Proposition A.1 we have tuf 1, and using the same argument as in the proof of
Lemma A.1(5), N contains a distinguished direct factor X FMu such that XG ¼ hs pi.
We deduce that N ¼ X � ~NN where ~NNFMI 0

u �
Q
i3u

MIi

i for sets Ii, i3 u, and I 0 such

that jIij ¼ ti, i3 u, and 1þ jI 0j ¼ tu. If u ¼ p, we claim that without loss of generality

we may assume that s p ¼ 1. Since s p A Nðs�1Þp�1

, let n A N such that s p ¼ nðs�1Þp�1

and set
t ¼ sn�1. Then t A TnN and tp ¼ s pðn�1Þ1þsþ���þs p�1

¼ 1. Hence T ¼ NzG. r

Lemma A.3. Suppose that G is a profinite group such that its maximal pro-p-quotient

GðpÞ is a free pro-p-group of (positive and possibly infinite) rank n, and let D be a normal

subgroup of G of index p. Then the invariants of the T-group G=Dp½D;D� are t1 ¼ 1, ti ¼ 0
for 2e i < p, tp ¼ n� 1 if n < y and tp ¼ n for n an infinite cardinal, and u ¼ 1.

Proof. Since G=Dp½D;D� ¼ GðpÞ=F
�
DðpÞ

�
, we may assume without loss that G is a

free pro-p-group. The result then follows from the analogue of the Kurosh subgroup theo-
rem in the context of pro-p-groups. r

Lemma A.4. Let S be a free pro-p-group. Then there exists a field F of characteristic

0 such that GF FS.

Proof. First let F0 be any algebraically closed field of characteristic 0 with cardinal-
ity greater than or equal to d ¼ dimFp H

1ðS; FpÞ. Set F1 :¼ F0ðtÞ. By [Do], GF1
is a free pro-

finite group, and let P denote a p-Sylow subgroup of GF1
. By [RZ], Corollary 7.7.6, P is a

free pro-p-group. Let F2 be the fixed field of P. The classes in F�
1 =F

�p
1 of the set A of linear

polynomials t� c, c A F0, are linearly independent over Fp. Choose a subset of A of cardi-
nality d, and let V be the vector subspace of F�

1 =F
�p
1 generated by the classes of the ele-

ments of A. Since ð½F2 : F1�; pÞ ¼ 1, V injects into F�
2 =F

�p
2 . Let W denote this image. Now

let F be a maximal algebraic field extension of F2 such that W injects into F�=F�p. By
maximality, the image iðWÞ of W in F�=F�p is in fact F�=F�p. The rank of GF is then
dimFp H

1ðGF ; FpÞ ¼ dimFp V ¼ d. r

Proof of Theorem A.2. The case p ¼ 2. Let u A f1; 2g, t1, and t2 be invariants of a
T-group T . By Proposition A.1, t1 f 1 if u ¼ 1, and if u ¼ 2 then either t1 f 1 or t2 f 1.

Case 1: T is not of exponent 2. By Lemma A.2(2), either u ¼ 1 or t2 f 1. Let G be a
group of order 2 and N ¼ MI1

1 �MI2

2 for sets I1 and I2 satisfying jI1j ¼ t1 and jI2j ¼ t2,
and let M ¼ N4. From [MSw], Corollary 2, there exists E=F with charF 3 2
and GalðE=FÞFG such that H 1ðGE ; F2ÞFE�=E�2 FM as F2G-modules if and only if
there exist 1 A f0; 1g and cardinalities d and e such that t1 þ 1 ¼ 21þ d; t2 þ 1 ¼ e;
if 1 ¼ 0 then df 1; and if 1 ¼ 1 then ef 1. Moreover, �1 A NE=F ðE�Þ if and only if
1 ¼ 1. Finally, by [MSw], proof of Theorem 1, we may choose E=F such that GF is a
pro-2-group.

If u ¼ 1 then set 1 ¼ 1 and e ¼ t2 þ 1. Since t1f 1 we may choose df 0 such that
21þ d ¼ t1 þ 1. Then ef 1 and the conditions for E=F with GE=G

ð2Þ
E FM4FN are sat-

isfied. Since 1 ¼ 1, �1 A NE=F ðE�Þ, and by Albert’s criterion [A], E=F embeds in a cyclic
extension E 0=F of degree 4. Let GalðE=FÞ ¼ hsi. We have the commutative diagram
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1 ���! GE=G
ð2Þ
E ���! GF=G

ð2Þ
E ���! G ���! 1???y

???y
???y
???y

???y¼

1 ���! M1 ���! H ���! G ���! 1

in which s lifts to an element of order 4. By Lemma A.1(5), u ¼ 1 for TE=F .
By Lemma A.2(2), TE=F is not of exponent 2. Using Lemma A.1(3), because

GE=G
ð2Þ
E FNFMI1

1 �MI2

2 , the invariants t1 and t2 of TE=F match those of T . By Propo-
sition A.1, T FTE=F .

If u ¼ 2 then t2 f 1. We take 1 ¼ 0, d ¼ t1 þ 1f 1, and e ¼ t2 and obtain an exten-
sion E=F as before. Since 1 ¼ 0, �1 B NE=F ðE�Þ and so by [A], E=F does not embed in a
cyclic extension E 0=F of degree 4. Let GalðE=FÞ ¼ hsi. There is no commutative diagram

1 ���! GE=G
ð2Þ
E ���! GF=G

ð2Þ
E ���! G ���! 1???y

???y
???y
???y

???y¼

1 ���! M1 ���! H ���! G ���! 1

in which s lifts to an element of order 4. By Lemma A.1(5), u ¼ 2 for TE=F . Because t2 f 1,
GE=G

ð2Þ
E contains an F2G-submodule isomorphic to M2 whence TE=F is nonabelian. By

Lemma A.1(3) and the isomorphism GE=G
ð2Þ
E FNFMI1

1 �MI2

2 we deduce that the
invariants t1 and t2 of TE=F match those of T . By Proposition A.1, T FTE=F .

Case 2: T has exponent 2. By Lemma A.2(2), u ¼ 2 and t2 ¼ 0, and so t1 f 1. Let
N ¼ MI1

1 for I1 satisfying jI1j þ 1 ¼ t1. Set 1 ¼ 0, d ¼ t1 þ 1, and e ¼ t2 ¼ 0. Then df 1
and there exists E=F with charF 3 2 such that H 1ðGE ; F2ÞFM and �1 B NE=F ðE�Þ. As
before, u ¼ 2 for TE=F , and by Lemma A.1(3), t2 ¼ 0 for TE=F . By Lemma A.2(2), TE=F has
exponent 2, and by Lemma A.1(3), t1 is the correct invariant for TE=F . By Proposition A.1,
T FTE=F .

The case p > 2. First we characterize those T-groups occurring as TE=F for fields F
such that the maximal pro-p-quotient GF ðpÞ of the absolute Galois group GF is free pro-p.
Lemma A.3 tells us that for such F and an E=F of degree p, the invariants of TE=F are
t1 ¼ 1, ti ¼ 0 for 2e i < p, and u ¼ 1, and that the rank of GF ðpÞ is one more than the
invariant tp. Now suppose that T is a T-group with invariants t1 ¼ 1, ti ¼ 0 for 2e i < p,
and u ¼ 1. By Lemma A.4 there exists F such that GF is a free pro-p-group of rank tp þ 1.
Letting D be any maximal closed subgroup of GF and E ¼ FixðDÞ, Lemma A.3 and Prop-
osition A.1 give T FTE=F . Therefore the T-groups which occur as TE=F for fields F with
free maximal pro-p-quotient GF ðpÞ are precisely those for which t1 ¼ 1, ti ¼ 0 for
2e i < p, and u ¼ 1.

Now we characterize which of the remaining T-groups occur as TE=F for cyclic
field extensions E=F of degree p for F a field such that either charF ¼ p or xp A F .
By Witt’s Theorem, charF 3 p. Hence we consider only fields F with charF 3 p

and xp A F . For a cyclic extension E=F of degree p, consider the Fp GalðE=FÞ-module
ME=F :¼ H 1ðGE ; FpÞFE�=E�p, and let G be an abstract group of order p. Since the par-
ticular isomorphism GFGalðE=FÞ does not alter the isomorphism class of ME=F as an
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FpG-module, we may consider all such modules as FpG-modules. (See [MSw].) By [MSw],
Corollary 1, MFME=F as FpG-modules for suitable E=F with GFGalðE=FÞ if and only
if M ¼ MI1

1 lMI2

2 lM
Ip
p , where the cardinalities j1 ¼ jI1j, j2 ¼ jI2j, and jp ¼ jIpj sat-

isfy the following conditions: j1 þ 1 ¼ 21þ d, j2 ¼ 1� 1, and jp þ 1 ¼ e for some cardi-
nalities d, e and 1 A f0; 1g where df 1 if 1 ¼ 0 and ef 1. Moreover, 1 ¼ 1 if and only if
xp A NE=F ðE�Þ. Finally, by [MSw], proof of Theorem 1, we may choose E=F such that GF

is a pro-p-group.

We observe that the constraints on j1, j2, and jp are then j1f1 and j2 ¼ 1� 1.
Now by duality, H 1ðGE ; FpÞ4FGE=G

ð2Þ
E , and since cyclic FpG-modules are self-dual, we

may derive conditions on the topological FpG-module GE=G
ð2Þ
E occurring as maximal closed

subgroups of T-groups GF=G
ð2Þ
E , as follows. Set G ¼ GF=GE .

First we relate 1 and the invariant u. We claim that for any T-group GF=G
ð2Þ
E ,

we have ue 2. Write E ¼ Fð
ffiffiffi
a

pp Þ for some a A F�. Let ½e� A E�=E�p denote the class
of e A E�. Then X ¼ h½

ffiffiffi
a

pp �; ½xp�i is a cyclic FpG-submodule of M and is isomorphic to
Mi for some i A f1; 2g. By equivariant Kummer theory (see [W]), L ¼ Eð

ffiffiffi
a

p2p
; xp2Þ is a

Galois extension of F . Moreover, GF=GL is a homomorphic image of GF=G
ð2Þ
E , since

L=E is an elementary abelian extension. Then L=Fðxp2Þ is Galois with group Z=p2Z,
and for any s A GFnGE , the restriction sL A GalðL=FÞ restricts to a generator. Hence

13 s p A GalðL=EÞ, and therefore 13 s p A GE=G
ð2Þ
E . We have a commutative diagram

1 ���! GE=G
ð2Þ
E ���! GF=G

ð2Þ
E ���! G ���! 1???y

???y
???y
???y

???y¼

1 ���! Mi ���! GF=GL ���! G ���! 1

ð2Þ

and so by Lemma A.1(5) we deduce that ue ie 2.

Now we claim that 1 ¼ 1 if and only if u ¼ 1. We have that 1 ¼ 1 if and only
if xp A NE=F ðE�Þ. By [A], 1 ¼ 1 if and only if E=F embeds in a cyclic extension of F

of degree p2, if and only if there exists a closed normal subgroup ~NNHGE such that

GF= ~NNFZ=p2Z. Any such closed normal subgroup must contain G
ð2Þ
E . Hence we deduce

that 1 ¼ 1 if and only if there exists a commutative diagram (2) with i ¼ 1 in which non-
trivial elements of G lift to elements of order p2. By Lemma A.1(5), 1 ¼ 1 if and only if
u ¼ 1.

We have therefore shown that ue 2 and u ¼ 2� 1. Translating the remaining con-
ditions on j1 and j2, we see that j1f 2� u and j2 ¼ u� 1. Now by Lemma A.1(3), t2 ¼ j2,
ti ¼ 0 for 3e ie p� 1, and tp ¼ jp. Moreover, t1 ¼ j1 if T is not abelian of exponent
p. By Lemma A.2(2), T is of exponent p if and only if u ¼ p. But we have shown that
ue 2 < p, whence T is not of exponent p and we have t1 ¼ j1. By Proposition A.1, if
u ¼ 1 then t1 f 1, and since t2 ¼ u� 1 the conditions for applying [MSw], Corollary 1 are
valid. Hence a T-group TE=F with prescribed invariants subject to condition (1) exists. r

Proof of Theorem A.1. Suppose G is a pro-p-group with maximal closed subgroup

D, and let T ¼ G=Dð2Þ, N ¼ D=Dð2Þ and G ¼ G=D. Write s and t for the images of s and t,
respectively.
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(1) Since D surjects onto N we have that s B N, t A N, e½s; t� B p�1½s;N�, and
eþ1½s; t� ¼ 1. By Lemma A.1(2,3) we have 13 e½s; t� A Tðeþ1ÞnTðp�1Þ. We deduce from
eþ1½s; t� ¼ 1 that e½s; t� A ZðTÞ. We obtain that some invariant ti 3 0 for 3e i < p. Now
if G ¼ GF for some F , then setting E ¼ FixðDÞ we obtain T ¼ TE=F , contradicting Theo-
rem A.2. Now assume additionally that there exists a closed normal subgroup LHD of G
such that G=LFZ=p2Z and e ¼ 1. Let ~ss denote the image of s in T . We have a commu-
tative diagram (1) with v ¼ 1 and an image of ~ss in H of order p2. By Lemma A.1(5), u ¼ 1
for T is equal to 1. As before some ti 3 0, 2e i < p. Again by Theorem A.2 we are done.

(2) We proceed as before, obtaining two elements ½s; ti�, i ¼ 1; 2, which generate dis-
tinct subgroups of ZðTÞXTð2Þ with trivial intersection with TðpÞ. We deduce that the sum
of ti, 2e i < p, is at least two, and we apply Theorem A.2.

(3) We obtain s B N, t A N, and sp A 2½s;N�. By Lemma A.1(2,3) we have sp HTð3Þ,
and from Lemma A.1(4) we deduce that T pHTð3Þ. Hence uf 3, and we apply Theorem
A.2. r

Proof of Corollary to Theorem A.1. Let D be the closed subgroup of G generated
as a normal subgroup by s

p
1 , s2, and si for i A I, and let L be the closed subgroup of G

generated as a normal subgroup by s
p2

1 , s2, and si for i A I. Set also T ¼ G=Dð2Þ. Examin-
ing the quotient of G obtained by trivializing s2 and each si, i A I, we see that D is maxi-
mal and G=LFZ=p2Z. Now let e ¼ f � 1. By passing from G to T using bars for denoting
images of elements of G in T , we see that e½s1; s2� B p�1½s1;D� in T . On the other hand,
eþ1½s1; s2� ¼ f ½s1; s2� ¼ 1 in T . By Theorem A.1(1), G is not an absolute Galois group. r

It is a natural question to ask whether the maximal closed subgroup N in the defini-
tion of T-group is unique. Let H denote the Heisenberg group of order p3 if p > 2 and the
dihedral group of order 8 if p ¼ 2. It is not di‰cult to show that if T is a T-group with a
maximal closed subgroup N which is abelian of exponent dividing p, then unless T is either
itself abelian of exponent p of order greater than p, or isomorphic to the direct product of
H and (possibly zero) copies of Z=pZ, then N is unique in T . (From Pontrjagin duality we
know that an abelian pro-p-group of exponent p is a topological product of cyclic groups of
order p.) In particular, in these cases N is a characteristic subgroup of T . Since the excep-
tional T-groups have invariant u ¼ p, we have by Theorem A.2 that for p > 2, each TE=F

has a unique index p elementary abelian subgroup.

2. Analogues of theorems of Artin-Schreier and Becker

Recall that by Artin-Schreier there are no elements of order p in the absolute Galois
groups of a field F , unless p ¼ 2 and F is formally real. Becker proved that the same holds
for maximal pro-p-quotients of absolute Galois groups [Be]. In this section we show that
in certain small quotients of absolute Galois groups, there are no non-central elements of
order p unless p ¼ 2 and the base field F is formally real.

Let p be a prime and F a field with xp A F . We define the following fields associated
to F :

� F ð2Þ: the compositum of all cyclic extensions of F of degree p.
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� F ð3Þ: the compositum of all cyclic extensions of F ð2Þ of degree p which are Galois
over F .

� F ð2Þð2Þ: the compositum of all cyclic extensions of F ð2Þ of degree p.

Then we set WF ¼ GalðF ð3Þ=FÞ and VF ¼ GalðF ð2Þð2Þ=FÞ. Observe that for a cyclic exten-
sion E=F of degree p, TE=F ¼ GalðEð2Þ=FÞ.

Theorem A.3. Let p be prime and F a field with xp A F. The following are equivalent:

(1) There exists s A VFnFðVF Þ of order p.

(2) There exists s A WFnFðWF Þ of order p.

(3) There exists s A VFnFðVF Þ such that for each cyclic E=F of degree p its image

sE=F A TE=F has order at most p.

(4) p ¼ 2 and F is formally real.

If these conditions hold, the elements whose square roots are fixed by s form an order-

ing of F.

Proof of Theorem A.3. (1) ) (2) and (1) ) (3). Observe first that F ð3Þ HF ð2Þð2Þ.
Hence we have a natural surjection VF !! WF . Assume that s A VFnFðVF Þ has order p.
Then its image in WFnFðWF Þ also has order p. Moreover, for any cyclic extension E=F
of degree p, the image sE=F of s in TE=F has order at most p, as follows. Since Eð2Þ is con-

tained in F ð2Þð2Þ we see that s p

E=F ¼ 1 in TE=F .

(2) ) (4). Suppose that s A WFnFðWF Þ has order p. As in the proof of Theorem
A.2, let a A F�nF�p be arbitrary such that Fð

ffiffiffi
a

pp ÞSFðxp2Þ. Set Ka :¼ Fð
ffiffiffi
a

pp
; xp2ÞHF ð2Þ.

Then ½Ka : Fðxp2Þ� ¼ p and La :¼ Fð
ffiffiffi
a

p2p
; xp2Þ is a cyclic extension of degree p2 of Fðxp2Þ.

Moreover, La=F is a Galois extension of F and La HF ð3Þ since GalðLa=FÞ is a central ex-
tension of degreee p of GalðKa=FÞ. Now if sð

ffiffiffi
a

pp Þ3
ffiffiffi
a

pp
then s has order p2 in WF . Hence

s fixes all
ffiffiffi
a

pp
for a A F� with F 3Fð

ffiffiffi
a

pp ÞSFðxp2Þ. Since s B FðWF Þ, there must exist
a cyclic extension EHF ð2Þ of F which is not fixed by s. We deduce that xp2 B F and so
E ¼ Fðxp2Þ. If p is odd then L :¼ Fðxp3Þ is a cyclic extension of F of degree p2 and s re-
stricts to a generator of GalðL=FÞFZ=p2Z, again a contradiction, whence p ¼ 2. Now let
s A WFnFðWF Þ be an element of order 2. By [MSp1], proof of Theorem 2.7, the elements of
F whose square roots are fixed by s form an ordering of F . Hence (2) ) (4).

(4) ) (1). Suppose that (4) holds. By [Be], Satz 3, there exists an ordering of F whose
square roots are fixed by some element s of order 2 in GF ð2Þ. Then the restriction of s to

F ð2Þð2Þ is the required element s A VFnFðVF Þ of order 2. Hence (4) ) (1).

(3) ) (2). Let s A VFnFðVF Þ such that for each cyclic extension E=F of degree p the
image sE=F of s in TE=F has order at most p. Let E ¼ Fð

ffiffiffi
a

pp Þ such that s acts nontrivially

on
ffiffiffi
a

pp
and La ¼ Fð

ffiffiffi
a

p2p
; xp2Þ. As above, since the restriction of sE=F to La HEð2Þ is not

of order p2, we deduce that p ¼ 2 and
ffiffiffiffiffiffiffi
�1

p
B F . Hence F is not quadratically closed. If

F is real closed then there exists precisely one extension E=F of degree 2, namely F ð2Þ,
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and F ð2Þ ¼ F ð3Þ ¼ F ð2Þð2Þ, whenceWF ¼ TE=F ¼ VF . Otherwise, F ð3Þ is a compositum of ex-
tensions L=F such that GalðL=FÞ is either a cyclic group of order 4 or a dihedral group of
order 8. (See [MSp2], Corollary 2.18.) On the other hand, each such L lies in Eð2Þ for a suit-
able quadratic extension E=F : each L may be obtained as a Galois closure of Eð ffiffiffi

g
p Þ for

some ½E : F � ¼ 2 and g A E�. Therefore the restrictions sL=F of s to the extensions L=F
have ordere 2, and so the restriction of sF ð3Þ=F of s to F ð3Þ=F has order 2. Hence (3) ) (2).

r

3. Pro-p-groups that are not absolute Galois groups

Theorem A.4. Let p > 3 be prime. There exists a pro-p-Zp operator group W such

that no group of the form G :¼
�
ðW ? SÞzZp

�
=E, where S is any pro-p-group with

trivial Zp-action, and E is any normal closed subgroup of ðW ? SÞzZp such that

EH
�
ðW ? SÞz pZp

�ð3Þ
, is an absolute Galois group.

Here ? denotes the free product in the category of pro-p-groups. (Recall that RðnÞ de-
notes the nth term of the p-descending series of a pro-p-group R; see section 1.)

The W of the theorem is that of the following proposition. Recall that for a pro-p-
group G, the decomposable subgroup of H 2ðG; FpÞ is defined to be the subgroup generated
by cup products of elements of H 1ðG; FpÞ: H 2ðG; FpÞdec ¼ H 1ðG; FpÞ:H 1ðG; FpÞ. We say that
H 2ðG; FpÞ is decomposable if H 2ðG; FpÞ ¼ H 2ðG; FpÞdec.

Proposition A.2. Let p > 3 be prime and C be a cyclic group of order p. There exists

a torsion-free pro-p-C operator group W such that as FpC-modules, H 1ðW; FpÞFMp and

H 2ðW; FpÞ ¼ H 2ðW; FpÞdecFMp�1 l
ðp� 3Þ

2
Mp.

Here we use Mi to denote the unique cyclic FpC-module of dimension i, and we write
the action of FpC multiplicatively.

Proof. Let D ¼ hg j gp ¼ 1i be a cyclic group of order p, and let ZpD be the p-adic
group ring, written multiplicatively as G, where the element gi of G corresponds to the
element gi of ZpD. We interpret the su‰xes mod p. Now let C ¼ hs j s p ¼ 1i be
another group of order p, acting on G via sðgiÞ ¼ gi�1. In this way G and H 1ðG;ZpÞ are
free ZpC-modules, and H 1ðG;ZpÞ has a topological generating set y0; y1; . . . ; yp�1 dual to
g0; g1; . . . ; gp�1. Observe that sðyiÞ ¼ yiþ1. Next let H ¼ Zp be a trivial ZpC-module with
generator h, and let z A H 1ðH;ZpÞ be dual to h. We define a nonsplit central extension W
of H by G as follows. The group H 2ðG;HÞ ¼

V2
H 1ðG;HÞ is a free ZpC-module of rank

pðp� 1Þ=2 with free generators y0yj for 1e je ðp� 1Þ=2. Consider the element

y :¼ ð1þ sþ � � � þ s p�1Þy0y1 ¼ y0y1 þ y1y2 þ � � � þ yp�1y0:

Let W be the central extension of H by G corresponding to y A H 2ðG;HÞ.

The group W is a torsion-free nilpotent pro-p-group of Hirsch length pþ 1. The stan-
dard correspondence of group extensions with H 2 gives us that for suitable representatives
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gi A W with images gi A G, we have the relations ½gi; gj� ¼ h for j ¼ i þ 1; ½gi; gj� ¼ 1 for
j3 i þ 1 and i3 j þ 1; and ½gi; h� ¼ 1 for all i. The action of C on G may be extended to
W by sðgiÞ ¼ gi�1, 0e i < p, and sðhÞ ¼ h.

The E2 page of the spectral sequence Hs
�
G;HtðH; FpÞ

�
) HsþtðW; FpÞ is generated

by anticommuting elements yi A E1;0
2 and z A E0;1

2 , and we have d 0;1
2 ðzÞ ¼ y, where y is the

reduction mod p of y. Observe that d 0;1
2 is injective on E0;1 ¼ H 1ðH; FpÞ. By the five-term

exact sequence, H 1ðW; FpÞFH 1ðG; FpÞ as FpC-modules and so H 1ðW; FpÞFMp.

Now consider H 2ðW; FpÞ. We claim first that d 1;1
2 is injective. It is enough to show

that d 1;1
2 ðx:zÞ ¼ 0 implies that x ¼ 0 for x A H 1ðG; FpÞ. Write x ¼

Pp�1

i¼0

ciyi, ci A Fp. Since

p > 3, the set of elements yi:yiþ2:yiþ3, 0e i < p, is Fp-independent and may be expanded
to an Fp-basis of E

3;0
2 ¼ H 3ðG; FpÞ consisting of products yi:yj:yk, 0e i < j < ke p� 1.

Consider the coe‰cient bi of yi:yiþ2:yiþ3 in an expansion of d 1;1
2 ðx:zÞ. Since p > 3, the only

consecutive pair of indices in yi:yiþ2:yiþ3 is fi þ 2; i þ 3g. Hence bi ¼ ci. If all bi ¼ 0, then
each ci ¼ 0 and therefore d 1;1

2 is injective. Now since d 1;1
2 is injective, E1;1

3 ¼ E1;1
y ¼ 0,

and because E0;2
2 ¼ 0 we have E0;2

y ¼ 0. Next observe that y ¼ ðs� 1Þp�1
y0:y1 and

so y A H 2ðG; FpÞC . Since E2;0 ¼ H 2ðG; FpÞ is the direct sum of free FpC-modules
Mð0; iÞFMp on generators y0:yi, 1e ie ðp� 1Þ=2, we deduce that

E2;0
y ¼ E2;0

3 ¼
�
Mð0; 1Þ=Mð0; 1ÞC

�
l

ðp� 3Þ
2

Mð0; iÞ:

Thus H 2ðW; FpÞFMp�1 l
ðp� 3Þ

2
Mp. Finally, since H 1ðW; FpÞFH 1ðG; FpÞ and

H 2ðW; FpÞ is a quotient of E2;0
2 ¼ H 2ðG; FpÞ ¼

V2
H 1ðG; FpÞ, H 2ðW; FpÞ is decomposable as

well. r

Given a free pro-p-group V and a pro-p-group D, we say that a surjection V !! D is a
minimal presentation of D if inf : H 1ðD; FpÞ ! H 1ðV ; FpÞ is an isomorphism.

Proposition A.3. Let D be a pro-p-group, V a free pro-p-group, and

1 ! R ! V ! D ! 1 a minimal presentation of D. Then we have natural maps

(1) H 2ðD; FpÞF
�
R=ðRp½R;V �Þ

�4
,

(2) H 2ðD; FpÞdec F
�
R=ðRXV ð3ÞÞ

�4
.

Proof. Set D½2� :¼ D=Dð2Þ and V ½3� :¼ V=V ð3Þ. Because the presentation is minimal,
D½2� FV=V ð2Þ. We then have the following commutative diagram:

1 ���! R ���! V ���! D ���! 1???y
???y

???y
1 ���! V ð2Þ

V ð3Þ ���! V ½3� ���! D½2� ���! 1:
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Passing to the natural maps induced by the Hochschild-Serre-Lyndon spectral sequence
with coe‰cients in Fp, we obtain the commutative diagram

H 1ðD½2�Þ ���!inf
H 1ðV ½3�Þ ���!res

H 1 V ð2Þ

V ð3Þ

� �D½2�

���!tra
H 2ðD½2�Þ ���! � � �???y

???y
???y

???y
H 1ðDÞ ���!inf

H 1ðVÞ ���!res
H 1ðRÞD ���!tra

H 2ðDÞ ���! 0:

Since the extension 1 ! V ð2Þ=V ð3Þ ! V ½3� ! Dð2Þ ! 1 is central,

H 1ðV ð2Þ=V ð3Þ; FpÞD
½2�
¼ H 1ðV ð2Þ=V ð3Þ; FpÞ:

Additionally using the fact that the inflation map on the first cohomology group in each
row of the previous diagram is an isomorphism, we may extract the following commutative
square, with the rightmost transgression map an isomorphism:

H 1 V ð2Þ

V ð3Þ ; Fp

� �
���! H 1ðR; FpÞD???ytra F

???ytra

H 2ðD½2�; FpÞ ���! H 2ðD; FpÞ:

Since H 1ðR; FpÞD F ðR=Rp½R;V �Þ4, we have (1).

The leftmost transgression map, however, is also an isomorphism by [Ho], 1.1 and
proof. Now consider the natural map R=Rp½R;V � ! V ð2Þ=V ð3Þ of abelian topological
groups of exponent p. The image of the natural map H 1ðV ð2Þ=V ð3Þ; FpÞ ! H 1ðR; FpÞD is
H 1ðRV ð3Þ=V ð3Þ; FpÞ. We then factor the horizontal maps of the commutative square into
homomorphisms followed by injections:

H 1 V ð2Þ

V ð3Þ ; Fp

� �
���! H 1 RV ð3Þ

V ð3Þ ; Fp

� �
H��! H 1ðR; FpÞD

F

???ytra F

???ytra

H 2ðD½2�; FpÞ ���! H 2ðD; FpÞdec H��! H 2ðD; FpÞ:

We obtain isomorphisms

H 1
�
R=ðRXV ð3ÞÞ; Fp

�
FH 1ðRV ð3Þ=V ð3Þ; FpÞFH 2ðD; FpÞdec:

Hence H 2ðD; FpÞdecF
�
R=ðRXV ð3ÞÞ

�4
, and we have proved (2). r

Proposition A.4. Let G and H be pro-p-groups with maximal closed subgroups D and

N, respectively, and a : G ! H a surjection with aðDÞ ¼ N and ker aHDð3Þ. Write G for

G=DFH=N. Then as FpG-modules, H 2ðD; FpÞdecFH 2ðN; FpÞdec.
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Proof. We prove that H 2ðD; FpÞdec FH 2ðN; FpÞdec under a natural isomorphism,
and it will follow that the isomorphism is FpG-equivariant. Let y : V ! D be a minimal
presentation of D with kernel R. We may choose a section W HV ð3Þ of ker a under the

surjection y. We obtain a minimal presentation of N ¼ aðDÞ: 1 ! RW ! V !c N ! 1,
where c ¼ a � y. By Proposition A.3(2),

H 2ðD; FpÞdec F ðRV ð3Þ=V ð3ÞÞ4F ðRWV ð3Þ=V ð3ÞÞ4FH 2ðN; FpÞdec. r

Lemma A.5. Let p be prime and G a nonfree pro-p-group which is the absolute Galois

group of a field F. Then charF 3 p and xp A F.

Proof. Since G is not free, then by Witt’s Theorem, charF 3 p. Since�
½FðxpÞ : F �; p

�
¼ 1, xp A F . r

Proposition A.5. Let p > 3 be prime. Suppose that G is a pro-p-group and D is a max-

imal closed subgroup of G. If the FpðG=DÞ-module H 2ðD; FpÞdec contains a cyclic summand of

dimension i with 3e i < p, then G is not an absolute Galois group. Moreover, if G contains a

normal closed subgroup LHD with G=LFZ=p2, then we may take 2e i < p in the same

statement.

Proof. Suppose that G ¼ GF for some field F . Then D ¼ GE for some E=F of
degree p. Since H 2ðD; FpÞ3 0, GE is not a free pro-p-group and therefore neither is GF

[S], Corollary 3, §I.4.2. Lemma A.5 gives charF 3 p and xp A F . By [MeSu], Theorem

11.5, H 2ðD; FpÞ is decomposable. Therefore by [LMS], Theorem 1, H 2ðD; FpÞdec contains
no cyclic FpðG=DÞ-summand of dimension i with 3e i < p, a contradiction. Moreover, if
LHN is a normal closed subgroup and G=LFZ=p2Z, then by [A], xp A NE=F ðEÞ. Letting
E ¼ Fð

ffiffiffi
a

pp Þ for some a A F�, we obtain in H 2ðG; FpÞ that ðaÞ:ðxpÞ ¼ 0. By [LMS], Theorem
1, H 2ðD; FpÞdec contains no cyclic FpðG=DÞ-summand of dimension 2, again a contradic-
tion. r

Corollary A.5. Let p > 3 be prime. Suppose that G and H are pro-p-groups with

respective maximal subgroups D and N, and a : G ! H a surjection with aðDÞ ¼ N and

ker aHDð3Þ. Write G for G=DFH=N. If either H 2ðD; FpÞdec or H 2ðN; FpÞdec contains a cy-

clic FpG-summand of dimension i with 3e i < p, then neither D nor H is an absolute Galois

group.

Moreover, suppose additionally that H contains a normal closed subgroup LHN with

H=LFZ=p2Z. Then if either H 2ðD; FpÞdec or H 2ðN; FpÞdec contains a cyclic FpG-summand

of dimension 2, then H is not an absolute Galois group.

Proof. By Proposition A.4 we have that H 2ðD; FpÞdec FH 2ðN; FpÞdec as FpG-
modules. The remainder follows from Proposition A.5. r

Proof of Theorem A.4. Let W be the group of Proposition A.2. Observe that
D :¼

�
ðW ? SÞ � pZp

�
=E is a maximal closed subgroup of G of index p. Let G ¼ G=D and

note that the actions of G and C on D are identical. By Corollary A.5 it is enough to show
that H 2ðD; FpÞdec for E ¼ 1 contains a cyclic FpG-summand Mi with 3e i < p. Assume
then that E ¼ 1. By [NSW], Theorem 4.1.4, we have

15Benson, Lemire, Miná č, and Swallow, Detecting pro-p-groups

(AutoPDF V7 31/5/07 09:08) WDG Tmath J-1708 CRELLE, PMU: H(A) 16/05/2007 pp. 1–17 1708_5537 (p. 15)



H 1ðD; FpÞFH 1ðW; FpÞlH 1ðS; FpÞlH 1ðpZp; FpÞ

and H 2ðD; FpÞFH 2ðW; FpÞlH 2ðS; FpÞlH 1ðW; FpÞlH 1ðS; FpÞ. By Proposition A.2,
H 2ðW; FpÞ is decomposable and so H 2ðW; FpÞ is a direct summand of H 2ðD; FpÞdec.
From Proposition A.2, we obtain that H 2ðW; FpÞ contains an FpG-summand Mi with
3e ie p� 1. r

Remark. The proof excludes the groups G from the class of absolute Galois groups
by using the n ¼ 2 case of [LMS], Theorem 1. However, neither a direct application of the
n ¼ 1 case nor Theorem A.2 excludes the groups G. Observe also that the fact that WzZp

is not an absolute Galois group could be deduced from the main results in [Koe], using dif-
ferent methods. However, the fact that each

�
ðW� SÞzZp

�
=E is not an absolute Galois

group does not follow from [Koe].
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[BMS] D. Benson, J. Mináč, and J. Swallow, p-Sylow subgroups of absolute Galois groups, in preparation.

[Br] A. Brumer, Pseudocompact algebras, profinite groups and class formations, J. Algebra 4 (1966), 442–

470.

[Do] A. Douady, Détermination d’un groupe de Galois, C. R. Acad. Sci. Paris 258 (1964), 5305–5308.

[Ho] K. Hoechsmann, Zum Einbettungsproblem, J. reine angew. Math. 229 (1968), 81–106.

[Koe] J. Koenigsmann, Solvable absolute Galois groups are metabelian, Invent. Math. 144 (2001), no. 1, 1–22.
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