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Introduction

Let K be a global field, i.e., either an algebraic number field of finite degree (abbrev.
NF), or an algebraic function field of one variable over a finite field (FF). Let ζK(s) be
the Dedekind zeta function of K, with the Laurent expansion at s = 1:

(0.1) ζK(s) = c−1(s− 1)−1 + c0 + c1(s− 1) + · · · (c−1 6= 0).

In this paper, we shall present a systematic study of the real number

(0.2) γK = c0/c−1

attached to each K, which we call the Euler-Kronecker constant (or invariant) of K.
When K = Q (the rational number field), it is nothing but the Euler-Mascheroni constant

γQ = lim
n→∞

(
1 +

1

2
+ · · ·+ 1

n
− log n

)
= 0.57721566 · · · ,

and when K is imaginary quadratic, the well-known Kronecker limit formula expresses
γK in terms of special values of the Dedekind η function. This constant γK appears here
and there in several articles in analytic number theory, but as far as the author knows, it
has not played a main role nor has it been studied so systematically. We shall consider
γK more as an invariant of K.

Before explaining our motivation for systematic study, let us briefly look at the FF-
case. When K is the function field of a curve X over a finite field Fq with genus g, so
that ζK(s) is a rational function of u = q−s of the form

(0.3) ζK(s) =

∏g
ν=1(1− πνu)(1− π̄νu)

(1− u)(1− qu)
, πν π̄ν = q (1 ≤ ν ≤ g),

then γK is closely related to the harmonic mean of g positive real numbers

(0.4) (1− πν)(1− π̄ν) (1 ≤ ν ≤ g),
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in contrast to the facts that their arithmetic (resp. geometric) means are related to the
number of Fq-rational points of X (resp. its Jacobian JX). More explicitly,

γK

log q
= (q − 1)

g∑
ν=1

1

(1− πν)(1− π̄ν)
− (g − 1)− q + 1

2(q − 1)
(0.5)

=
∞∑

m=1

(
qm + 1−Nm

qm

)
+ 1− q + 1

2(q − 1)
,

where Nm denotes the number of Fqm-rational points of X (see §1.4). The first expression
shows that γK is a rational multiple of log q, while the second shows that when X has
many Fqm-rational points for small m (esp. m = 1), γK tends to be negative.

Our first basic observation is that, including the NF-case, γK can sometimes be ”con-
spicuously negative”, and that this occurs when K has ”many primes with small norms”.
In the FF-case, there are known interesting towers of curves over Fq with many rational
points, and we ask how negative γK can be, in general and for such a tower. In the
NF-case, there is no notion of rational points, but those K having many primes with
small norms would be equally interesting for applications (to coding theory, etc.). More-
over, the related problems often have their own arithmetic significance (e.g. the fields
Kp described below). We wish to know how negative γK can be also in the NF-case.
A careful comparison of the two cases is very interesting. Thus we are led to studying
γK in both cases under a unified treatment, basically assuming the generalized Riemann
hypothesis (GRH) in the NF-case. We shall give a method for systematic computation of
γK , give some general upper and lower bounds, and study three special cases more closely,
including that of curves with many rational points, for comparisons and applications.

In Part 1, after basic preliminaries, we shall give some explicit estimations of γK , and
also discuss possibilities of improvements when we specialize to smaller families of K (see
§1.6). Among them, Theorem 1 gives a general upper bound for γK . The main term of
this upper bound is

(0.6)

{
2 log log

√
|d| (NF, under GRH)

2 log((g − 1) log q) + log q (FF ),

d = dK being the discriminant. The lower bound is, as we shall see, necessarily much
weaker. First, the main term of our general lower bound (Proposition 3) reads as

(0.7)

{ − log
√
|d| (NF, unconditionally)

−(g − 1) log q (FF ).

Secondly, when we fix q, the latter will be improved to be

(0.8) − 1√
q + 1

(g − 1) log q (FF )
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(Theorem 2). In other words,

(0.9) C(q) := lim inf
γK

(gK − 1) log q
≥ − 1√

q + 1
.

This is based on a result of Tsfasman [Ts1], and is somewhat stronger than what we
can prove only by using the Drinfeld-Vladut asymptotic bound [D-V] for N1 . We shall
moreover see that the equality holds in (0.9) when q is a square (see below). In the
NF-case, our attention will be focused on the absolute constant

(0.10) C = lim inf
γK

log
√
|dK |

.

Clearly, (0.7) gives C ≥ −1 (unconditionally), but quite recently, Tsfasman proved, as a
beautiful application of [T-V], that

(0.11) C ≥ −0.26049... (under GRH)

([Ts2] in this Volume). The estimation of C(q) or C from above is related to finding a
sequence of K having many primes with small norms. As for C(q), see below. As for C,
the author obtained C ≤ −0.1635 (under GRH; see §1.6), but [Ts2] contains a sharper
unconditional estimation. At any rate, in each of the FF- and the NF-case, we see that
the general (negative) lower bound for γK cannot be so close to 0 as the (positive) upper
bound.

Thirdly, when the degree N of K over Q resp. Fq(t) is fixed (N > 1), or grows slowly
enough, (0.7) will be improved to be

(0.12)




−2(N − 1) log

(
log
√
|d|

(N−1)

)
(NF, under GRH),

−2(N − 1) log
(

(g−1) log q
N−1

)
(FF )

(Theorem 3), which is nearly as strong as the upper bound, and exactly so (with opposite
signs) when N = 2. Granville-Stark [G-S] (§3.1) gave an equivalent statement when
N = 2 (NF-case) , and our Theorem 3 was inspired by this work. The bound (0.12) is
quite sharp. In fact, some families of K having many primes with small norms insist that
(0.12) cannot be replaced by its quotient even by log log N . To be precise, it cannot be
replaced by its quotient by any such f(N) (NF) (resp. fq(N) for a fixed q > 2 (FF)) as
satisfying f(N) →∞ (resp. fq(N) →∞).

§1.7 is for supplementary remarks related to computations of γK .

In Part 2, we shall study some special cases. First, let q be any fixed prime power.
Then, as an application of a result in [E-], we obtain

(0.13) C(q) ≤ −c0
log q

q − 1

3



(§2.1), where c0 is a certain positive absolute constant. Then we treat the case where K
is the function field over Fq of a Shimura curve, with q a square, and gK À q (§2.1). In
this case, as a reflection of the fact that such a curve has so many Fq -rational points, we
can prove

(0.14) γK ≤ − 1√
q + 1

(gK − 1) log q + ε.

Therefore, combining this with (0.9), we obtain

(0.15) C(q) = − 1√
q + 1

(q : a square).

Secondly, when K is imaginary quadratic, we combine our upper bound for γK with
the Kronecker limit formula, to give a lower bound for its class number hK ;

(0.16)
hK log |dK |√

|dK |
>

π

3
− ε,

with an explicit description of the ε-part (under GRH)(Theorem 5 §2.2). As asymptotic
formula , this is weaker than Littlewood’s [Li] and almost equivalent with Granville-Stark’s
[G-S] (both conditional) formulas; its merit is explicitness.

Thirdly, we consider the case where K = Kp is the ”first layer” of the cyclotomic
Zp-extension over Q (§2.3). It is the unique cyclic extension over Q of degree p contained
in the field of p2-th roots of unity. By classfield theory, a prime ` decomposes completely
in Kp if and only if

(0.17) ` p−1 ≡ 1 (mod p2).

We shall apply our estimations of γK to this case K = Kp (Theorem 6 and its Corollaries).
Among them, Corollary 1 gives information on small `’s satisfying (0.17) for a fixed large
p, while Corollary 3 relates the question on the existence of ”many” p satisfying (0.17)
for a fixed ` to that on lim inf(γKp/p). (Incidentally, lim(γKp/ log

√
dKp) = lim(γKp/(p−

1) log p) = 0 under GRH.) From Table 2.3A, see how the existence of a very small `
satisfying (0.17) pushes the value of γKp drastically towards left on the negative real axis.
For example, (0.17) is satisfied for ` = 2 and p = 1093, and accordingly, γK1093 is so
negative as about -747, while for several neighboring primes p, the absolute values of γKp

are at most 10. Finally in §2.4 ∼ 2.5, we shall give some application to the ”field index”
of Kp.

Our main tool is ”the explicit formula” for the prime counting function

(0.18) ΦK(x) =
1

x− 1

∑

N(P )k≤x

(
x

N(P )k
− 1

)
log N(P ) (x > 1),
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where (P, k) runs over the pairs of (non-archimedean) primes P of K and positive integers
k such that N(P )k ≤ x (§2.2 ∼ 2.3). This function ΦK(x) is quite close to log x when x
is large, and the connection with our constant γK is

lim
x→∞

(log x− ΦK(x)) = γK + 1 (NF, unconditionally),(0.19)

lim
x∈qZ
x→∞

(
log x− ΦK(x)

)
= γK +

q + 1

2(q − 1)
log q (FF ).(0.20)

It is a simple combination of two well-known prime counting functions, but two charac-
teristic features of ΦK(x) are : (i) it is continuous, and (ii) the oscillating term in the
explicit formula for ΦK(x) has the form

(0.21) − 1

2(x− 1)
lim

T→∞

∑

|ρ|<T

(xρ − 1)(x1−ρ − 1)

ρ(1− ρ)
,

where ρ runs over the non-trivial zeros of ζK(s), which, under GRH, is very easy to
evaluate. In fact, then it is sandwiched in-between two multiples, by ((

√
x+1)/(

√
x−1))±1,

of the negative real constant

(0.22) − 1

2

∑
ρ

1

ρ(1− ρ)
.

And −γK is a translate of (0.22) by a more elementary constant associated to K. This is
why (under GRH in the NF-case) we can obtain results always with explicit error terms,
and only by simple elementary arguments. Usually, one uses the ”truncated explicit
formula” where the summation over ρ is restricted to |ρ| < T and instead contains an
error term R(x, T ) which is not easy to evaluate systematically.

We add here three more observations.
(i) In some sense, the quantity on the RHS of (0.19)(0.20) may be more canonical than

γK as an invariant of K. Note that (0.20) with q = 1 ”corresponds to” (0.19), and that
(0.5) will be simplified if we use the RHS of (0.20) instead of γK itself (see §1.4).

(ii) One can of course generalize the definition of γK to the case of L-functions, al-
though then they will not usually be real numbers. Multiplicative relations among the
L-functions give rise to additive relations among these constants. In particular, when
H runs over the subgroups of a given finite group G, any linear relation among those
characters of G induced from the trivial character of H gives rise to the corresponding
linear relation among the γK , where K runs over the intermediate extensions of a given
G-extension.

(iii) When K is either the cyclotomic field Q(µm) or its maximal real subfield Q(µm)+,
it seems fairly likely that γK is always positive!. The author has computed γK in both cases
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up to m = 600, and Mahoro Shimura more recently checked the first case K = Q(µm)
for m as far as up to 8000, and we have found no counterexamples. On the other hand,
their difference, ”the relative” γK , seems to take both signs ”almost equally”.

Studies of γK for various families of global fields K including these cases will be
left to future publications. Some open problems and numerical data can be found in
my article in the (informal) ”Proceedings of the 2004 Workshop on Cryptography and
Related Mathematics”, Chuo University. The 2003-Worshop Proceedings contains a short
summary of the present paper.

Part 1 The ”explicit formula” for ΦK(x), and estimations of γK

1.1. The function ΦK(x)

Let K be a global field. We denote by P any (non-archimedean) prime divisor of K,
and by N(P ) its norm. As mentioned in the Introduction, we shall consider the prime
counting function

(1.1.1) ΦK(x) =
1

x− 1

∑

N(P )k≤x

(
x

N(P )k
− 1

)
log N(P ) (x > 1).

Here, (P, k) runs over all pairs with k ≥ 1 and N(P )k ≤ x (or what amounts to the
same effect, N(P )k < x). Call a point on the real axis critical if it is of the form N(P )k.
Then ΦK(x) remains to be 0 until the first critical point, then monotone increasing, and
is everywhere continuous. In fact, at each critical point ΦK(x) acquires new summands
but their values are 0 at this point, so the visible increase at each critical point is that of
the slope. The slope of ΦK(x) between two adjacent critical points a < b is c(x − 1)−2,
where

c =
∑

N(P )k≤a

(
1− 1

N(P )k

)
log N(P ) > 0.

So, the slope near x is close to


 ∑

N(P )k<x

log N(P )


 x−2 ∼ x−1. Thus, ΦK(x) is an arithmetic

approximation of log x. If the field K has many primes P with small N(P ), then ΦK(x)
increases faster than log x, at least for some while. The difference log x − ΦK(x) ”at
infinity” is closely related to γK , as we shall see later.
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1.2. The explicit formula for ΦK(x)

From Weil’s general explicit formula [W1],[W2], we obtain, as will be indicated in §1.3,
the following formula for ΦK(x);

(1.2.1) ΦK(x) = log x + (αK + βK) + `K(x) + rK(x) (x > 1).

Here,

(1.2.2)
αK = 1

2
log |d| (NF )

= (g − 1) log q (FF ),

(d = dK : the discriminant, g = gK : the genus, Fq: the exact constant field),

(1.2.3)
βK = −{

r1

2
(γ + log 4π) + r2(γ + log 2π)

}
(NF )

= 0 (FF ),

(r1, r2: the number of real, imaginary places of K, respectively, γ = γQ: the Euler-
Mascheroni constant = 0.57721566 · · · ),

(1.2.4)
`K(x) = r1

2

(
log x+1

x−1
+ 2

x−1
log x+1

2

)
+ r2

(
log x

x−1
+ 1

x−1
log x

)
(NF )

= φ(q, x) (FF ),

where φ(q, x) is a certain continuous function of x parametrized by q, satisfying

(1.2.5)
0 ≤ φ(q, x) < log q

φ(q, x) = 0 ←→ x = qm with some m ∈ N

(see below). Finally,

(1.2.6) rK(x) = − 1

2(x− 1)

∑
ρ

(xρ − 1)(x1−ρ − 1)

ρ(1− ρ)
,

where ρ runs over all non-trivial zeros of ζK(s), counted with multiplicities, and

(1.2.7)
∑

ρ

= lim
T→∞

∑

|ρ|<T

.

By the functional equation for ζK(s), if ρ is a non-trivial zero of ζK(s) then so is 1 − ρ,
with the same multiplicity.
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In the FF-case, when x = qm (m ∈ N),

(1.2.8)





ΦK(x)/ log q = 1
qm−1

∑
kdegP≤m

(
qm−kdegP − 1

)
degP,

log x/ log q = m,
αK/ log q = g − 1,
βK/ log q = `K(x)/ log q = 0,

rK(x)/ log q = −
(

q−1
qm−1

) g∑
ν=1

(πm
ν −1)(π̄m

ν −1)
(πν−1)(π̄ν−1)

,

where

(1.2.9) ζK(s) =

∏g
ν=1(1− πνu)(1− π̄νu)

(1− u)(1− qu)
, u = q−s, πν π̄ν = q (1 ≤ ν ≤ g).

(To derive the last formula for rK(qm)/ log q from the definition (1.2.6) of rK(x), take any α ∈ C×
and q > 1, and substitute ez = α−1qs in the partial fraction expansion formula

(1.2.10) (ez − 1)−1 + 1/2 = lim
T→∞

T∑

n=−T

(z − 2πin)−1,

which gives

(1.2.11)
log q

α−1qs − 1
+

log q

2
= lim

T→∞

∑

qρ=α
|ρ|≤T

(s− ρ)−1.

Now let q = αᾱ, s = 0 and take the real part of (1.2.11) to obtain

(1.2.12)
q − 1

(α− 1)(ᾱ− 1)
log q = lim

T→∞

∑

qρ=α
|ρ|≤T

(
1
ρ

+
1
ρ̄

)
.

The desired formula follows immediately from this.)

Note that each reciprocal zero πν (resp. π̄ν) of ζK(s) in u = q−s corresponds to
infinitely many zeros in s, which are translations of one of them by 2πin/ log q (n ∈ Z).
It also has poles at all translations of 0, 1 by 2πin/ log q (n ∈ Z). The function φ(q, x)
arises from the poles θ 6= 0, 1;

(1.2.13) φ(q, x) =
1

2(x− 1)

∑

poles θ 6=0,1

(xθ − 1)(x1−θ − 1)

θ(1− θ)
,

where

(1.2.14)
∑

θ

= lim
T→∞

∑

|θ|<T

.
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Since either qθ = 1 or q1−θ = 1, it is clear that φ(q, x) = 0 when x = qm (m ∈ N). In a
finite form,

(1.2.15) φ(q, x) = log

(
qm

x

)
− (qm−1 − 1)(qm − x)

(x− 1)(qm − qm−1)
log q

for qm−1 ≤ x ≤ qm (m ∈ Z,m ≥ 1, x 6= 1). This follows immediately from the following

Proposition 1 (i). The functions `K(x) and rK(x) are continuous.

(ii). (FF) (x−1)(`K(x)+log x) and (x−1)rK(x) are linear on each interval qm−1 ≤
x ≤ qm (m ≥ 1).

Proof (NF) `K(x) is continuous by definition. Since ΦK(x) and `K(x) are both contin-
uous, rK(x) is also continuous by (1.2.1).

(FF) In this case, `K(x) = φ(q, x) is a function of x determined only by q. By (1.2.1)
applied to the case g = 0, we have

(1.2.16) φ(q, x) = ΦFq(t)(x)− log x + log q ;

hence φ(q, x) is continuous. Now, when qm−1 ≤ x ≤ qm,

(1.2.17) (x− 1)ΦK(x) =
∑

N(P )k≤qm−1

(
x

N(P )k
− 1

)
log N(P )

is linear. Hence by (1.2.16), (x−1)(φ(q, x)+log x) is also linear on this interval. Moreover,
the function

(x− 1)rK(x) = (x− 1)ΦK(x)− (x− 1) (φ(q, x) + log x)− (x− 1)(αK + βK)

is also linear in the same interval. 2

Remarks (i) In the NF-case, βK and `K(x) both come from the archimedean places.
Among them, βK is the value at s = 1 of the logarithmic derivative of the ”standard Γ-
factor” of ζK(s) (see §1.3 below), and `K(x) comes from the trivial zeros of ζK(s). Thus,
`K(s) for the (FF) and the (NF) cases have quite different origins · · · poles 6= 0, 1, vs.
trivial zeros. We have given them the same name here only to save notation.

(ii) In the NF-case, βK + `K(x) is the term coming from the archimedean places, and
our separation into βK and `K(x) can also be characterized by

lim
x→∞

`K(x) = 0

(cf. Lemma 2 below (§1.5)).
(iii) We note also that

`K(x) ≥ 0 (x > 1)

in both cases (cf. Lemma 2, §1.5).

9



1.3. The explicit formula for ΦK(x) (continued)

The above explicit formula (1.2.1) for ΦK(x), at least in the NF-case, is a special case
of Weil’s general explicit formula. To be precise, use t for x of [W1], keeping x for our x,
and put

F (t) =





1
x−1

(xe−t/2 − et/2) · · · 0 < t < log x,
1
2

· · · t = 0,

0 · · · otherwise,

in the formula (11) of [W1]. Then we obtain (1.2.1) by straightforward computations.
The FF-case is not fully treated in [W1] (nor in [W2] except when t is an integral multiple
of log q), but this case is easier.

In this §1.3, we shall give a brief account of some basic materials for, and a sketch
of,the proof of (1.2.1) valid in both cases, which, hopefully is enough for the readers to
convince themselves of the validity also in the FF-case, and to see why the term φ(q, x)
should appear. The formula (1.3.11) obtained in this process will anyway be needed later.
The advanced readers can skip this section.

The explicit formula itself, and its connection with γK , both follow from the partial
fraction decomposition of the logarithmic derivative of ζK(s). Put

(1.3.1) ZK(s) = − ζ
′
K(s)

ζK(s)
.

Then from the Euler product expansion

(1.3.2) ζK(s) =
∏
P

(
1−N(P )−s

)−1 (
Re(s) > 1

)

of ζK(s) follows the Dirichlet series expansion

ZK(s) =
∑

P,k≥1

log N(P )

N(P )ks

(
Re(s) > 1

)
(1.3.3)

for ZK(s). In terms of ZK(s), the Euler-Kronecker constant γK has the expression

(1.3.4) γK = − lim
s→1

(
ZK(s)− 1

s− 1

)
.

This ZK(s) has the following partial fraction expansion (”Stark’s lemma”);

(1.3.5) ZK(s) =
1

s
+

1

s− 1
−

∑
ρ

1

s− ρ
+ αK + βK + ξK(s),
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with

(1.3.6)

ξK(s) = r1

2

(
g( s

2
)− g(1

2
)
)

+ r2

(
g(s)− g(1)

)

= −r1

(
1−s

s
+

∞∑
n=1

( 1
s+2n

− 1
1+2n

)
)− r2

(
1−s

s
+

∞∑
n=1

( 1
s+n

− 1
1+n

)
)

(NF )

=
∑

θ 6=0,1

1
s−θ

(FF ),

where ρ runs over the non-trivial zeros of ζK(s), θ runs over all poles 6= 0, 1 of ζK(s)
(FF-case),

(1.3.7)
∑

ρ

= lim
T→∞

∑

|ρ|<T

,
∑

θ

= lim
T→∞

∑

|θ|<T

,

and

(1.3.8) g(s) =
Γ′(s)
Γ(s)

.

(Note that g(1) = −γQ, g(1
2
) = −γQ − log 4.)

( In the NF-case, (1.3.5) is Stark’s lemma [St](9) itself. The FF-case follows directly from the rational
expression

(1.3.9) ζK(s) =
∏

α∈A

(1− αq−s)λα (A : a finite subset of C×, λα = ±1)

of ζK(s) ;

ZK(s) =
−d log ζK(s)

ds
=

∑

α∈A

λα
log q

1− α−1qs
(1.3.10)

=
∑

α∈A

λα


 log q

2
−

∑

qβ=α

1
s− β


 (by(1.2.11))

= (g − 1) log q −
∑

ρ

1
s− ρ

+




1
s

+
1

s− 1
+

∑

θ 6=0,1
poles

1
s− θ


 .)

Now by combining (1.3.4) with (1.3.5), we obtain easily

(1.3.11)

γK =
∑
ρ

1
ρ
− αK − βK − cK

= 1
2

∑
ρ

1
ρ(1−ρ)

− αK − βK − cK ,

where αK , βK are as defined by (1.2.2),(1.2.3) respectively, and

(1.3.12)
cK = 1 (NF ),

= cq = q+1
2(q−1)

log q (FF ).
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The last formula for cK in the FF-case follows directly from (1.2.11) for s = α = 1,
because ξK(1) + 1 =

∑

qθ=1,q
θ 6=1

(1− θ)−1 =
∑

qθ=1

(1− θ)−1.

Remark If we define cq for each q ∈ R, q > 1 by (1.3.12), then cq > 1 and limq→1 cq = 1.
This matches with the well-known belief that ”the constant field of a number field should
be F1”.

The explicit formula (1.2.1) follows from the evaluation of the integral

(1.3.13) Φ
(µ)
K (x) =

1

2πi

∫ c+i∞

c−i∞

xs−µ

s− µ
ZK(s)ds (c À 0)

for µ = 0 and 1 in two ways, based on the classical formula

1

2πi

∫ c+i∞

c−i∞

ys

s
ds =





0 · · · 0 < y < 1,
1/2 · · · y = 1,
1 · · · 1 < y.

The Dirichlet series expansion (1.3.3) of ZK(s) gives the connection

(1.3.14) xΦ
(1)
K (x)− Φ

(0)
K (x) = (x− 1)ΦK(x),

while the partial fraction decomposition (1.3.5) of ZK(s) gives, via standard residue cal-
culations,

(1.3.15) xΦ
(1)
K (x)− Φ

(0)
K (x) = (x− 1){log x + (αK + βK) + `K(x) + rK(x)}.

The terms log x, `K(x) and rK(x) inside { } , correspond to

1

s
+

1

s− 1
, ξK(s), and −

∑
ρ

1

s− ρ

in (1.3.5), respectively.

Remarks (i) A word about the constant βK (NF-case). If

(1.3.16) ΓR(s) = π−
s
2 Γ

(s

2

)
, resp. ΓC(s) = (2π)−sΓ(s)
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denote the standard Γ-factors at the real (resp. imaginary) places, so that

(1.3.17) ΛK(s) = ΓR(s)r1ΓC(s)r2ζK(s)

satisfies the functional equation

(1.3.18) ΛK(s) =
(√

|dK |
)1−2s

ΛK(1− s),

then one has

(1.3.19)
(

d log ΓR(s)
ds

)

s=1

= −1
2
(γQ + log 4π),

(1.3.20)
(

d log ΓC(s)
ds

)

s=1

= −(γQ + log 2π).

Therefore,

(1.3.21) lim
s→1

((
d log ΛK(s)

ds

)
+

1
s− 1

)
= γK + βK .

Thus, βK is the ”archimedean counterpart” of γK .

(ii) Incidentally, the functional equation in the function field case for ΛK(s) = ζK(s) is

(1.3.22) ΛK(s) = (qg−1)1−2sΛK(1− s),

and the comparison of (1.3.18) and (1.3.22) leads to our common recognition that the FF-analogue of
1
2 log |d| should be (g− 1) log q. In both cases, the constant term in the partial fraction decomposition of
ZK(s) is determined from the functional equation.

1.4. Some elementary formulas related to γK

We shall give a few more remarks related to the quantity

(1.4.1) γK =
∑

ρ

1

ρ
− αK − βK − cK .

When αK is large, each of
∑

ρ ρ−1 and αK + βK is usually much larger than the absolute
value of γK . (Only for some special families of K, they have the same order of magnitude;
see §1.6.) So, γK is a finer object for study than

∑
ρ ρ−1.

In the FF-case, in terms of the reciprocal roots πν , π̄ν (1 ≤ ν ≤ g) of ζK(s) in u = q−s,
we have (as is obvious by (1.2.12))

(1.4.2)
∑

ρ

1

ρ
= (q − 1)

g∑
ν=1

1

(πν − 1)(π̄ν − 1)
log q;

13



hence

γK =
{

(q − 1)

g∑
ν=1

1

(πν − 1)(π̄ν − 1)
− (g − 1)

}
log q − cq(1.4.3)

=

g∑
ν=1

(
1

πν − 1
+

1

π̄ν − 1

)
log q + (log q − cq)

=
∞∑

m=1

g∑
ν=1

(πm
ν + π̄m

ν )q−m log q + (log q − cq)

=
∞∑

m=1

(qm + 1−Nm)q−m log q + (log q − cq).

Consider the arithmetic, geometric, and harmonic means of g positive real numbers

(1.4.4) (πν − 1)(π̄ν − 1) (1 ≤ ν ≤ g).

Then if X denotes the proper smooth curve over Fq corresponding to K, and J its Jaco-
bian, the above three means of (1.4.4) are given respectively by

a.m. =
1

g
#X(Fq) +

(
1− 1

g

)
(q + 1)

≤

g.m. = (#J
(
Fq)

)1/g
(1.4.5)

≤

h.m. =
g(q − 1) log q

γK + αK + cq

.

The three properties #X(Fq) large, #J(Fq) large, and −γK large, are different but
correlated, and are in a sense in the same direction. (The denominator of h.m. is

∑
ρ ρ−1 >

0.)
By the Riemann hypothesis for curves, we have

(
√

q − 1)2 ≤ (πν − 1)(π̄ν − 1) ≤ (
√

q + 1)2;

hence, by (1.4.3), we obtain immediately

(1.4.6)

( −2g√
q + 1

+ 1

)
log q ≤ γK + cq ≤

(
2g√
q − 1

+ 1

)
log q.

Later, we shall obtain much better bounds (§1.6). In particular, when g is fixed and
q →∞ (e.g. the constant field extensions), we have the limit formula

(1.4.7) lim
q→∞

γK

log q
=

1

2
.
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When g = 0, γK is given by the equality

(1.4.8) γK + cq = log q.

(See Remark (i) below).

Remarks (i) We defined γK as a natural generalization of the Euler-Mascheroni constant
γQ. But, in a sense, the quantity γK +cK may be more canonical, as some of the preceding
formulas indicate! The quantities obtained by (further) adding βK (NF) or − log q (FF)
can sometimes be better.

(ii) In the FF-case, if we use other poles of ζK(s), instead of s = 1, to define γK

similarly, then what we obtain is still γK if the pole is congruent to 1 modulo 2πi/ log q,
and is −αK − γK if the pole is 0 mod (2πi/ log q).

In the NF-case, the order of zero at s = 0 of ζK(s) is r1 + r2 − 1, and

(1.4.9) γK = −γ′K − log |dK |+ [K : Q](γQ + log(2π)),

where γ′K is the coefficient of sr1+r2 divided by that of sr1+r2−1 in the Taylor expansion of
ζK(s) at s = 0.

1.5. Estimations of rK(x) and `K(x)

Now we return to the explicit formula (1.2.1). By (1.3.11), one may rewrite it as

(1.5.1)

log x− ΦK(x) = −(αK + βK)− rK(x)− `K(x)
= γK + cK − (rK(x) +

∑
ρ

ρ−1)− `K(x)

= γK + cK −
(
rK(x) + 1

2

∑
ρ

1
ρ(1−ρ)

)
− `K(x).

We are going to estimate the non-constant terms on the right side of (1.5.1). In most of
what follows, we shall assume GRH (which is satisfied in the FF-case).

Main Lemma ((FF); and (NF) under (GRH)) For any x > 1 we have

(1.5.2)

√
x− 1√
x + 1

(
1

2

∑
ρ

1

ρ(1− ρ)

)
≤ −rK(x) ≤

√
x + 1√
x− 1

(
1

2

∑
ρ

1

ρ(1− ρ)

)
.

Proof Since

(1.5.3) −rK(x) =
1

2

∑
ρ

{
(xρ − 1)(x1−ρ − 1)

(x− 1)
· 1

ρ(1− ρ)

}

and ρ = 1
2

+ iγ (γ ∈ R), it follows that ρ(1− ρ) = 1
4

+ γ2 > 0, and that

(1.5.4) (xρ − 1)(x1−ρ − 1) = x + 1− 2
√

x cos(γ log x)

lies in-between (
√

x− 1)2 and (
√

x + 1)2; whence our inequalities. 2
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The graphs of the three functions of x appearing in (1.5.2) in the Main lemma, for the
cases K = Q, Q(

√
481), are as shown in Figures 1.5A1, A2.

(As (1.5.3) indicates, each ρ with small |γ| contributes to a ”high wave calm on the surface”, whereas
a larger |γ|, to a lower ”ripple”. The effect of the first few ρ is not particularly large, but sometimes
determines the main shape of the graph (for x not too large). Thus, these graphs seem to indicate that
the smallest |γ| for Q(

√
481) would be much smaller than that of K = Q (i.e., 14.1347...).)

20000 40000 60000 80000 100000

0.0229

0.0231

0.0232

0.0233

Figure 1.5A1: K = Q

20000 40000 60000 80000 100000

0.795

0.805

0.81

0.815

0.82

0.825

Figure 1.5A2: K = Q(
√

481)

By this lemma and (1.3.11) we obtain

(1.5.5)
−2√
x + 1

(γK + αK + βK + cK) ≤ −rK(x)− 1

2

∑
ρ

1

ρ(1− ρ)
≤ 2√

x− 1
(γK + αK + βK + cK),

and hence by (1.5.1)

(1.5.6)√
x−1√
x+1

(γK + cK)− 2√
x+1

(αK + βK)− `K(x) ≤ log x− ΦK(x)

≤
√

x+1√
x−1

(γK + cK) + 2√
x−1

(αK + βK)− `K(x)

(under GRH).

As for `K(x), we have

Lemma 2 (i). (NF-case) `K(x) is monotone decreasing,

lim
x→1

`K(x) = +∞, lim
x→∞

`K(x) = 0,

and

0 < `K(x) < [K : Q]
( log x + 1

x− 1

)
(x > 1).
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(ii). (FF-case) `K(x) = 0 if and only if x = qm (m ∈ N); for other x, `K(x) always
remains within the open interval (0, log q), but does not tend to 0 as x →∞.

Proof (i)(NF-case). In this case,

(1.5.7)





`K(x) = r1

2
F1(x) + r2F2(x), with

F1(x) = log x+1
x−1

+ 2
x−1

log x+1
2

,

F2(x) = log x
x−1

+ 1
x−1

log x.

First, since F ′
1(x) = −2(x − 1)−2 log((x + 1)/2) < 0, F1(x) is monotone decreasing.

Secondly, since F2(x) = F1(2x−1), F2(x) is also monotone decreasing and F2(x) < F1(x).
Thirdly, since log

(
x+1
x−1

)
< 2(x− 1)−1 and log

(
x+1

2

)
< log x, we obtain

(1.5.8) F1(x) < 2(log x + 1)(x− 1)−1,

and it is clear that F2(x) > 0. The desired inequalities follow immediately from these.
The assertions for the limits at x → 1, ∞ of `K(x) are also obvious. (The following
inequality will be used later (§2.4) ;

(1.5.9)
1

2
(x− 1)F1(x) = log(x + 1) + log

[
1

2

(
1 +

2

x− 1

)x−1
2

]
≥ log(x + 1) (x ≥ 3).)

(ii)(FF-case). We already know that φ(q, x) = 0 if x = qm (m ∈ N). So, put x = qm−1+y,
with m ≥ 1, 0 < y < 1. Then by (1.2.15),

φ(q, x) =

(
1− y − (qm−1 − 1)(q − qy)

(qm−1+y − 1)(q − 1)

)
log q(1.5.10)

=

(
(qm − 1)(qy − 1)

(qm−1+y − 1)(q − 1)
− y

)
log q.

It is easy to see that if we fix y, then this is monotone decreasing as a function of m, and
tends uniformly to

(1.5.11) sq(y) =

(
1− q−y

1− q−1
− y

)
log q (> 0)

as m →∞. Therefore,

(1.5.12) 0 <
1− q−y

1− q−1
− y <

φ(q, x)

log q
≤ 1− y < 1,

which proves all the assertions stated in Lemma 2 (ii). 2
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Remark Note that sq(0) = sq(1) = 0, sq(y) > 0 for 0 < y < 1. The maximal value of sq(y) for
0 < y < 1 is

(1.5.13)
log q

1− q−1
− (log log q − log(1− q−1) + 1),

which is attained at

(1.5.14) y =
log log q − log(1− q−1)

log q
.

The graphs of F1(x) > F2(x) will be shown in Figure 1.5B1, and that of φ(q, qz) for
q = 5, in Figure 1.5B2. The horizontal line in the latter gives the value of (1.5.13) for
q = 5.
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Figure 1.5B1:
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0.5

0.6

Figure 1.5B2:

1.6. Estimations related to γK

From (1.5.6) we obtain immediately:

Proposition 2 (Under (GRH) in the (NF) case) For any x > 1 we have

(i) γK ≤
√

x + 1√
x− 1

(
log x− ΦK(x) + `K(x)

)
+

2√
x− 1

(αK + βK)− cK ,

(ii) γK ≥
√

x− 1√
x + 1

(
log x− ΦK(x) + `K(x)

)− 2√
x + 1

(αK + βK)− cK .

Since by (1.5.6) the difference between the upper and the lower bounds tends to 0 as
x → ∞, this gives a method for computing the constant γK (under GRH) to as much
accuracy as one desires. Although the convergence is slow, one can usually determine the
approximate size of γK (e.g. its sign) even by hand calculations.
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Figure 1.6A1: K = Q(
√

481)
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Figure 1.6A2: K = Q(cos 2π
9

)

Figures 1.6A1, 1.6A2 show two examples for the graphs of the upper and the lower
bounds given by Proposition 2 (denoted respectively as uppK(x), lowK(x)). The horizon-
tal lines indicate the expected values of γK .

Examples(by computer). Let K = Q(
√−1), and take x = 50, 000. Then the upper

and the lower bounds for γK given by Proposition 2 (i)(ii) are 0.8239498, 0.8221413,
respectively. The value of γK computed by using the Kronecker formula (cf. §2.2) is
0.82282525. Incidentally, in this case, the value of log x−ΦK(x)− 1 is 0.82280515 which
is close to the actual value, and lies in between the above upper and lower bounds. But
in general, log x−ΦK(x)−1 need not lie in between the two bounds of Proposition 2 (see
Remark (ii) below).

For other imaginary quadratic fields, 0 < γK < 1 holds for |dK | ≤ 43, but γK < 0 for
dK = −47,−56, · · · . For example,

−0.072 < γQ(
√−47) < −0.053.

For real quadratic fields, 0 < γK < 2 for dK < 100, but

−0.181 < γQ(
√

481) < −0.167.

These are, of course, under (GRH).
Some other examples will be given in §1.7 and §2.3.

We shall give some applications. First, by letting x →∞ in (1.5.6) we obtain

Corollary 1

(1.6.1) γK = lim
x→∞

(log x− ΦK(x)− 1) (NF),
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(1.6.2) γK = lim
m→∞
m∈N

(log(qm)− ΦK(qm)− cq) (FF).

A formula equivalent to (1.6.1) can be found also in a recent preprint [HIKW](Th. B).

Remarks (i) For (1.6.1), GRH is unnecessary. In fact, by using a standard zero-free region for ζK(s),
one can show, unconditionally, that

(1.6.3) lim
x→∞

{
rK(x) +

1
2

∑
ρ

1
ρ(1− ρ)

}
= 0,

from which (1.6.1) follows directly by (1.5.1) and Lemma 2. The proof of (1.6.3) runs as follows. As is
well-known (cf. e.g. [L-O] lemma 8.1), there exists a positive constant c (depending on K) such that if
ρ = β + iγ is a non-trivial zero of ζK(s) with |γ| sufficiently large, then

(1.6.4) β < 1− c(log |γ|)−1.

We claim that

(1.6.5) lim
x→∞

(∑
ρ

xβ−1

γ2

)
= 0,

where ρ runs over all imaginary zeros of ζK(s). To show this, since β < 1, we may exclude finitely many
ρ’s and assume that (1.6.4) is satisfied. Then, for x > 1,

∑
ρ

xβ−1

γ2
<

∑
ρ

x−c(log |γ|)−1

γ2
=

∑

log |γ|<T

+
∑

log |γ|≥T

,

where we choose T =
√

log x. Then

∑

log |γ|<T

≤

 ∑

log |γ|<T

1
γ2


 x−cT−1 ≤

(∑
ρ

1
γ2

)
exp(−c

√
log x) → 0,

and ∑

log |γ|≥T

≤
∑

log |γ|≥√log x

1
γ2

→ 0,

whence (1.6.5). But since

(1.6.6) rK(x) +
1
2

∑
ρ

1
ρ(1− ρ)

=
1
2

∑
ρ

1
ρ(1− ρ)

(
xρ + x1−ρ − 2

x− 1

)
,

and each term tends to 0 as x →∞, by (1.6.5), we obtain

lim
x→∞

∣∣∣∣rK(x) +
1
2

∑
ρ

1
ρ(1− ρ)

∣∣∣∣ ≤ lim
x→∞

∑
ρ,

γ 6=0

1
γ2

xβ

x− 1
= 0. 2
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(ii) Some readers may be interested in the comparison between AK(x) := log x−ΦK(x)− 1 and the two
bounds uppK(x), lowK(x) of Proposition 2. From (1.2.1) we obtain easily

√
x− 1
2

(uppK(x)−AK(x)) = −rK(x) +
√

x− 1
2

`K(x),
√

x + 1
2

(AK(x)− lowK(x)) = −rK(x)−
√

x + 1
2

`K(x),

and we moreover have −rK(x) > 0 under GRH. Therefore, AK(x) < uppK(x) always holds under GRH.
But AK(x) > lowK(x) need not hold in general ; a counterexample being given by K = Q(

√−1), x =
(say) 1800.

[Examples of graphs of AK(x) = log x− ΦK(x)− 1]
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Figure 1.6B1: K = Q(
√

481)
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Figure 1.6B2: K = Q(cos 2π
9

)

[Upper bounds] The second application of Proposition 2 is to the problem of finding
a reasonably good general upper bound for γK in terms of more elementary invariants of
K. It can be obtained from Proposition 2(i) by the substitution of a suitable value of x.
Since we do not know a priori the local behavior of ΦK(x), except that ΦK(x) ≥ 0, what
we do is try to minimize

(1.6.7)

√
x + 1√
x− 1

(log x + `K(x)) +
2√

x− 1
(αK + βK)− cK .

We leave the discussion of this delicate question until a little later (after the proof of
Theorem 1), and first see what we can obtain by choosing the value x0 of x which minimizes

log x +
2αK√

x
,

i.e., x0 = α2
K . We then obtain
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Theorem 1 (Under (GRH) in the (NF)-case)

(1.6.8)
γK <

(
αK+1
αK−1

) (
2 log αK + a− ΦK(α2

K)
)

≤
(

αK+1
αK−1

)
(2 log αK + a),

provided that

(1.6.9)
g > 2, or g = 2 and q > 2 (FF )
n > 2, or n = 2 and |dK | > 8 (NF ).

Here, a = 1 and n = [K : Q] (NF), a = 1 + log q (FF).

Proof The right hand side of Proposition 2(i) for x = α2
K can be rewritten as

(1.6.10)

{
αK+1
αK−1

(2 log αK − ΦK(α2
K) + 1) + 1

αK−1
((αK + 1)`K(α2

K) + 2βK) (NF ),
αK+1
αK−1

(2 log αK − ΦK(α2
K) + 1 + φ(q, α2

K)) + (1− cq) (FF ).

In the FF-case, (1.6.9) implies αK > 1. And since φ(q, α2
K) < log q and 1− cq < 0, we are

done. In the NF-case, we have the following inequalities;

(1.6.11)



f1(x) := (x + 1)
{

log
(

x2+1
x2−1

)
+ 2

x2−1
log

(
x2+1

2

)}
− 2(γQ + log 4π) < 0 for x > 1.16,

f2(x) := (x + 1)
{

log
(

x2

x2−1

)
+ 1

x2−1
log(x2)

}
− 2(γQ + log 2π) < 0 for x > 1.16.

They hold because f1(x), f2(x) are both monotone decreasing for x > 1, and their values
at 1.16 are both negative (being -0.08762..., -0.03882...,respectively). Therefore,

(1.6.12) (αK + 1)`K(α2
K) + 2βK < 0 for αK > 1.16.

But even the Minkowski lower bound for |dK | shows that αK > 1.16 holds for n > 2 and
for n = 2 with |dK | > 10.2 (which is actually the same as |dK | > 8). 2

[Discussions on minimizing (1.6.7)] Write x = t2 (t > 1), and put

(1.6.13) s = sK = αK + βK .

Then (1.6.7) can be expressed as

(1.6.14) g(t) = g1(t) + g2(t),

with

(1.6.15) g1(t) :=
2

t− 1
((t + 1) log t + s)− cK ,
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g2(t) : =
t + 1

t− 1

{r1

2
F1(t

2) + r2F2(t
2)

}
(> 0) (NF )(1.6.16)

=
t + 1

t− 1
φ(q, t2) (≥ 0) (FF )

(cf.(1.5.7)). These are continuous functions of t > 1 parametrized by s(∈ R) ; r1, r2 ≥ 0,
r1 + r2 > 0 (NF), or q (FF). We shall exclude the trivial case of genus 0 (FF). Then g(t)
always achieves its minimal value at some θ (1 < θ < ∞), because it is continuous and
tends to +∞ at both ends, i.e., t → 1 and t →∞.

[NF-case] In this case, θ is unique, as (t− 1)2g′(t) is monotone increasing. Indeed,

(1.6.17) (t− 1)2g′1(t) = 2(t− 2 log t− t−1 − s)

is monotone increasing, and so are the r1- and the r2-components of (t− 1)2g′2(t). When
s > 1, θ is close to

(1.6.18) s + 2

(
1 +

r1 + r2

s

)
log s.

We have included the (r1 +r2)s
−1 term, because when sK →∞, the quantity (r1 +r2)s

−1
K ,

though bounded (by a standard unconditional lower bound for |dK |), does not tend to 0.

[FF-case] The local differential structure of g(t) is, in a sense, opposite to the NF-
case. The graph of g(t) looks like a bouncing ball, bouncing at each integral power of

√
q,

first coming down a slope and then going up another forever. (The slopes correspond to
the graph of g1(t).) Indeed, (t−1)2g′(t) is a negative constant −2g log q (g: the genus) on
1 < t2 < q, and is monotone decreasing on every open interval qm−1 < t2 < qm (m > 1).
(The derivative of (t− 1)2g′(t) on this interval is −2a(t− 1)−2, where

a = (qm−1 − 1)(qm − 1)(qm − qm−1)−1 log q. )

Therefore, g′′(t) < 0 wherever g′(t) = 0. Therefore, g(t) can acquire its minimal value only

at the bouncing points t ∈ (√
q
)Z

. Note that φ(q, t2) = 0 at bouncing points. Moreover,
by (1.6.17), we conclude that θ must be one of the (at most two) integral powers of

√
q

which are adjacent to the unique root of the equation

(1.6.19) t− 2 log t− t−1 = s.

Thus, again, θ is close to
s + 2 log s

as long as s is large compared with q. If, on the other extreme,

(1.6.20) g <
1

log q

(√
q − 1√

q

)
,
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so that the root of (1.6.19) is smaller than
√

q, then θ is always equal to
√

q, and this
gives rise only to the trivial general upper bound (1.4.6) for γK .

Each of Figures 1.6C1, 1.6C2 gives the graphs of two functions

g(t) ≥ g1(t)

when K = Q(
√−5003) (Figure 1.6C1), and q = 2, g = 5 for t2 = qy (the horizontal axis

is for y) (Figure 1.6C2).
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Thus, the best possible approximation of θ would depend on the specific family of K
and purpose of applications. For example, the βK-part of sK in the NF-case should not
be neglected if (r1 + r2)s

−1
K is not small. But here, we are satisfied with having given

a basic result expressed simply in terms of αK only, together with some indications for
possible improvements. We note that choices of other θ can improve only minor terms in
Theorem 1, unless we restrict ourselves to some special families of K. Further studies of
the upperbounds of γK for various families of K will be left to future publications.

The author has yet no idea about the minimal possible size of ΦK(θ2) for each given
r1, r2 and given approximate range of s. This is of course related to the question how
sharp an upper bound our method can possibly give.

[Lower bounds] A general, unconditional (and trivial) lower bound is:

Proposition 3
γK > −αK − βK − cK .

This follows immediately from

(1.6.21) γK + αK + βK + cK =
∑

ρ

1

ρ
=

1

2

∑
ρ

(
1

ρ
+

1

ρ̄

)
> 0.
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(Under (GRH), one can deduce this also from Proposition 2 (ii) by letting x → 1.)

We note that the absolute value of the negative lower bound given above is much
larger than that of the upper bound given in Theorem 1. For example, in the NF-case,
the former is ∼ 1

2
log |d| while the latter is ∼ 2 log log |d|. This is not just because we have

not assumed GRH for the above lower bound as we did for the upper bound. Indeed, in
the FF-case, γK can be of the order of

(1.6.22)
(
− 1√

q + 1
+ ε

)
(gK − 1) log q

for Shimura curves over Fq (q: a square, gK →∞); see §2.1. But we can show

Theorem 2 (FF) Fix q. Then

(1.6.23) lim inf
γK

(gK − 1) log q
≥ − 1√

q + 1
.

Proof This is obtained by using Corollary 1 of Tsfasman [Ts1]. (If we combine the
inequality h.m ≤ a.m in (1.4.5) with the Drinfeld-Vladut asymptotic upper bound [D-V]
for N1, then what we obtain is a somewhat weaker statement, where the denominator√

q + 1 on the RHS of (1.6.23) is replaced by
√

q .)
First, let us recall the basic materials from [Ts1] that will be needed. By a curve over

Fq, we shall always mean a complete, smooth, geometrically irreducible algebraic curve
over Fq. For a curve C over Fq, let g = g(C) denote the genus, and Bm = Bm(C) denote
the number of prime divisors (i.e., scheme theoretic closed points) of C with degree m
over Fq. Thus,

Nm(C) =
∑

d|m
dBd(C)

is the number of Fqm-rational points of C. If {Cα} is a family of curves over Fq (q: fixed)
with growing genus such that

βm = lim
α

Bm(Cα)

g(Cα)

exists for all m ≥ 1, we call the family {Cα} asymptotically exact. Each sequence of
curves over Fq with growing genus contains a subsequence which is asymptotically exact
([Ts1]p.182). Moreover, for any asymptotically exact family of curves over Fq, one has

(1.6.24)
∞∑

m=1

mβm

qm/2 − 1
≤ 1

(Corollary 1 in [Ts1]).
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Now, to prove Theorem 2, let us write γ(C) = γK , where K is the function field of C.
Put

λ = lim inf
γ(C)

(g(C)− 1) log q
= lim inf

γ(C)

g(C) log q
.

Then there exists a family of curves C over Fq with g(C) →∞ such that

lim
C

γ(C)

g(C) log q
= λ,

and we may assume that this family is asymptotically exact. Let C run over such a family.
Then, by (1.4.3),

(1.6.25)
γ(C)

g(C) log q
=

∞∑
m=1

qm + 1−Nm(C)

qmg(C)
+

1

g(C)

(
1− cq

log q

)
.

Since the summand on the right-hand side of (1.6.25) has absolute value at most equal to
2q−m/2, the sum is uniformly convergent w.r.t. C. We thus obtain

λ =
∞∑

m=1

lim
C

(
qm + 1−Nm(C)

qmg(C)

)
(1.6.26)

= −
∞∑

m=1

q−m


∑

d|m
dβd


 = −

∞∑

d=1

dβd

qd − 1

≥ − 1√
q + 1

( ∞∑

d=1

dβd

qd/2 − 1

)
≥ − 1√

q + 1

by (1.6.24),as desired. 2

Remark The above proof shows also that the equality λ = − 1√
q+1

holds if and only if

β1 =
√

q − 1 holds, i.e., if and only if the Drinfeld-Vladut asymptotic upper bound for
N1(C)
g(C)

is attained by this family.

In §2.1, we shall show that when q is a square, then the equality holds for (1.6.23) (see
(2.1.11)).

It is also a very interesting problem to find out the precise value of the quantity

(1.6.27) C = lim inf
γK

αK

in the NF-case. As for this, what the author obtained are :
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(i) By Proposition 3(§1.6), we have

(1.6.28) C ≥ −1 (unconditionally).

(ii) If there exists an infinite unramified Galois extension M/k over a number field k
in which some prime ideals p1, · · · pm of k decompose completely, then, under (GRH), we
can show easily that

(1.6.29) C ≤ − 1

αk

(
m∑

i=1

log N(pi)

N(pi)− 1

)
,

by applying Theorem 1 (the first inequality in (1.6.8)) to finite intermediate extensions of
M/k. For example, one may choose the examples given in Cor 9.3 ∼ 9.5 of [T-V], among
which (Cor 9.5 is an old example due to the present author, but) Cor 9.4 gives the best
result. In this case,

k = Q(
√

d), d = −d1 × 73× 79,

where d1 is the product of all prime numbers q with 13 ≤ q ≤ 61. It has an infinite 2-
classfield tower in which ten primes above 2,3,5,7,11 split completely. By taking p1, · · · pm

to be these ten primes of k, we obtain by (1.6.29),

(1.6.30) C ≤ −0.16352 · · · (under GRH).

Now, after the present article was submitted to this Volume, Tsfasman has kindly
informed me that he can prove better results, namely,

(1.6.31) −0.26049 · · · ≤ C ≤ −0.17849 · · ·

(the LHS inequality under GRH), by using [T-V] for the LHS inequality, and an uncondi-
tional (1.6.29) ([Ts2] Theorem 5) with a better classfield tower, for the RHS inequality (see
[Ts2]). The LHS inequality was surprising to the author who had considered it plausible
that C = −1/2 (the value obtained by putting q = 1 on the RHS of (1.6.23)).

On the other hand,

(1.6.32) lim sup
γK

αK

= 0 (under GRH)

by Theorems 1, and 3 below (for, say, N = 2).

When the degree of K over Q (NF), or over a rational subfield of K (FF), is relatively
small, there is a much better lower bound for γK , as follows.
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Theorem 3 Put k = Q (NF), = Fq(t) (FF), and let K be an extension of k of degree
N > 1. Put

(1.6.33) α∗K = αK/(N − 1) =
log
√
|d|

N−1
(NF ),

= (g−1) log q
N−1

(FF ),

and assume α∗K > 1. Then

(1.6.34)

α∗K+1

α∗K−1
(γK + cK) > −2(N − 1)(log α∗K + 1) (NF, under GRH)

> −2(N − 1)(log α∗K +
α∗K

α∗K−1
) (FF ).

Remarks (i) Granville-Stark [G-S] (§3.1) gave an equivalent statement when [K : Q] =
2 (in fact, L′(1, χ)/L(1, χ) = γK −γQ), whose argument applies also to abelian extensions
over Q. Our Theorem was motivated by [G-S].

(ii) The bound given by Theorem 3 is sharp in the following sense. The RHS of (1.6.34)
cannot be replaced by its quotient by such an f(N) (NF) (resp. fq(N) (FF, for a fixed
q > 2)) that tends to ∞ as N → ∞. This can be proved easily by using a family of
K satisfying (1.6.29) (NF) resp. (2.1.8)(§2.1) (FF). The point is that, in each case, one
can find a subsequence of K such that αK → ∞ and that the following (finite) limits
lim α∗K > 1 and lim γK

αK
< 0 exist.

Proof This will be based on the Main lemma and the following 4 inequalities;

ΦK(x) ≤ N · Φk(x),(1.6.35)

Φk(x) < log x,(1.6.36)

`K(x) ≥ 0,(1.6.37)

each for all x > 1, and

(1.6.38) βK < −[K : Q].

Among them, (1.6.35) is trivial, (1.6.36)(FF) and (1.6.37) both follow directly from lemma
2 of §1.5., and (1.6.38) is because γ+log 2π = 2.415 · · · > 2. The inequality ΦQ(x) < log x
can be proved easily as follows. Since ΦQ(x), log x are both monotone increasing, it is
enough to show ΦQ(x) ≤ log(x − 1) for integers x = n ≥ 2 (note the shift x → x − 1 on
the right side). But by the prime factorization of n!, we have

log n! =
∑

pk≤n

[
n

pk

]
log p ≥

∑

pk≤n

(
n + 1

pk
− 1

)
log p(1.6.39)

= nΦQ(n + 1),
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hence

(1.6.40) ΦQ(n + 1) ≤ 1

n
log(n!) ≤ log n

for all n ≥ 1.
Now we proceed to the proof of Theorem 3. By (1.6.35), (1.6.36), and then by (1.4.1),

(1.5.2), (1.6.37), we obtain

N log x > ΦK(x) = log x + αK + βK + rK(x) + `K(x)

≥ log x + αK + βK −
(√

x + 1√
x− 1

)
(γK + αK + βK + cK).

Therefore,

(N − 1) log x > − 2√
x− 1

(αK + βK)−
√

x + 1√
x− 1

(γK + cK).

Putting x = (α∗K)2, we obtain

α∗K + 1

α∗K − 1
(γK + cK) > −2(N − 1) log α∗K −

2

α∗K − 1
(αK + βK).

The rest follows directly, by (1.6.38) in the NF-case. 2

Corollary 1 If N and q (in the FF-case) are fixed and α∗K →∞, then

(1.6.41)
γK > −2(N − 1 + ε) log(log |d|) (NF, under GRH)

> −2(N − 1 + ε) log
(
(g − 1) log q

)
(FF ).

1.7. Supplementary remarks related to computations of γK

An accurate computation of γK for each individual K is not the main issue of this
paper. Still, it should probably be pointed out that there are other ways of computing
γK that are better at least microscopically.

One is the classical Landau formula generalizing the well-known Euler formula for

K = Q. Let K be a number field, let ζK(s) =
∞∑

n=1

ann
−s be the Dirichlet series expansion

of ζK(s) on Re(s) > 1, and put SK(x) =
∑
n≤x

an, so that

(1.7.1) ζK(s) = s

∫ ∞

1

SK(x)x−s−1dx (Re(s) > 1).

Further, put κK = lims→1(s− 1)ζK(s) = limx→∞(SK(x)/x), and

(1.7.2) BK(x) = κ−1
K

∑
n≤x

ann
−1 − log x (x ≥ 1).
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Then the Landau formula asserts that

(1.7.3) γK = lim
x→∞

BK(x).

(Compare this with (1.6.1), and note that log(x) appears with opposite signs !)
Now, there exist positive constants ε, C and x0 ≥ 1 (all depending on K) such that

(1.7.4) |SK(x)− κKx| ≤ Cx1−ε (x ≥ x0).

So, we can change the order of integration and passage to the limit s → 1, on the RHS of
(1.7.1) with SK(x) − κKx in place of SK(x). This gives an expression of γK in terms of
the definite integral of (SK(x) − κKx)x−2dx from 1 to ∞. But since that from 1 to x is
nothing but κKBK(x)− SK(x)x−1, we obtain directly

(1.7.5) |γK −BK(x)| ≤ κ−1
K C(1 + ε−1)x−ε

(
x ≥ x0

)
.

As for (1.7.4), although certainly not the best possible bound (as the well-known case of
K = Q(

√−1) ...counting lattice points in circles...indicates), a general method (cf.e.g.[La]
VI) shows that one can take ε = [K : Q]−1 and can compute C by using geometry of num-
bers. For [K : Q] = 2, the exponent= −1/2 of x in (1.7.5) is as strong as our conditional
estimate given in §1.6. The constant C computed by following the method of loc.cit. is
generally large compared with αK , but the actual convergence seems considerably faster
than what we expect from such a bound.

The second is for the case of quadratic fields. We have to rely on the notation of §2.2
below. When K is imaginary, we have the Kronecker formula (2.2.1). When K is real,
there is also Hecke’s formula [H], which gives

(1.7.6) γK = −1

2
log(dK) + 2γQ +

1

hK

∑
C

iC .

Here, C runs over the narrow ideal classes of K, hK is the narrow class number, and iC
is defined as follows. Pick any ideal from C−1 with a Z-basis α1,α2 satisfying α1α

′
2-α

′
1α2

> 0 (α′i is the conjugate of αi), and put

(1.7.7) ω(y) =
α2y + iα′2
α1y + iα′1

(
i =

√−1, 0 < y < ∞)

(its image is a semi-circle in the complex upper half plane vertical to the real axis).Then

(1.7.8) iC = − 1

log ε

∫ ε

ε−1

log(|η(ω)|2Im(ω)1/2)dy/y,

where ε is the fundamental unit > 1 of K. (There is a small error in [H]. The formula
for m (2 lines below (4) of p.202) is actually that for 4m; the formulas in p. 203 will give
1/2 of the residue and of the constant term, if log 4 in (5) is replaced by log 2.)
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For example, when K = Q(
√

10), where ε = 3 +
√

10 and h = 2, (1.7.6) (rewritten as
the average of −1

2
log(dK) + 2γQ + iC) gives

γK =
1

2
(0.868877 + 0.402405) = 0.635641.

On the other hand, BK(105) = 0.635861, and the GRH bounds given by Proposition 2 of
§1.6 for x = 105 give 0.634696 < γK < 0.639418. Finally, AK(105) = 0.636813, for

(1.7.9) AK(x) = log(x)− ΦK(x)− 1.

Part 2 Some special families of K

2.1. Curves over Fq with many rational points

When K corresponds to such a curve, γK tends to be negative with a large absolute
value. In fact, as a direct application of Theorem 1, we obtain

Theorem 4 (FF) Fix any prime power q and ε > 0. Then

(2.1.1)
γK

(gK − 1) log q
< ε− N1(K)

(q − 1)(gK − 1)

holds as long as the exact constant field of K is Fq and the genus gK of K is sufficiently
large. Here, N1(K) is the number of Fq-rational points of the curve corresponding to K.

Proof Let αK = (gK − 1) log q > 0. Then Theorem 1 gives

(2.1.2) γK <

(
αK + 1

αK − 1

) (
2 log αK + 1 + log q − ΦK(α2

K)
)
.

Let gK be so large that αK > q, and take m ∈ N such that

(2.1.3) q2 ≤ qm ≤ α2
K < qm+1.

Then, by the definition of ΦK(x),

ΦK(α2
K) ≥ N1(K)

α2
K − 1

(
α2

K

(
1

q
+ · · ·+ 1

qm

)
−m

)
log q;
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hence

−
(

αK + 1

αK − 1

)
ΦK(α2

K) ≤ − N1(K)

(αK − 1)2

{
α2

K(1− q−m)

q − 1
−m

}
log q.

Now let gK be so large that

αK > (q − 1)

(
log αK

log q
+

1

2

)
+ 1,

hence

(2.1.4) αK >
1

2
(q − 1)(m + 1) + 1.

Then by (2.1.3), (2.1.4), we obtain α2
Kq−m + mq < (m + 1)q < 2αK + m− 1; hence

(2.1.5) α2
K(1− q−m)−m(q − 1) > (αK − 1)2.

Therefore,

(2.1.6) −
(

αK + 1

αK − 1

)
ΦK(α2

K) < −N1(K)

q − 1
log q;

hence by (2.1.2), we obtain

(2.1.7)
γK

αK

<

(
αK + 1

αK − 1

)(
2 log αK

αK

+
1 + log q

αK

)
− N1(K)

(q − 1)(gK − 1)
.

Therefore, if gK is so large that the first term on the RHS is < ε, we have

γK

αK

< ε− N1(K)

(q − 1)(gK − 1)
.

2

We shall combine this with two typical results on curves with many rational points. First,
we refer to

Theorem (Elkies-Howe-Kresch-Poonen-Wetherell-Zieve)[E-](§3.2) There exists a pos-
itive absolute constant c0 such that for any prime power q, and any g ≥ 1, there exists a
curve X over Fq with genus g such that

(2.1.8) #X(Fq) ≥ c0(log q)(g − 1).
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Combining this with Theorem 4, we obtain

Corollary 1 For any fixed prime power q, we have

(2.1.9) C(q) ≤ −c0
log q

q − 1
.

Corollary 2 Fix any prime power q. Then, for any sufficiently large g, there exists K
over Fq with genus g such that γK < 0.

Secondly, let us recall

Theorem ([I1]∼[I2], [TVZ]) When q is a square, there exist Shimura curves X over Fq

with growing genus g such that

(2.1.10) #X(Fq) ≥ (
√

q − 1)(g − 1).

Therefore, by Theorems 2 and 4, we obtain

Corollary 1 Let q be a square. Then

(2.1.11) C(q) = − 1√
q + 1

.

Corollary 2 Let q be a square, and K be the function field of a Shimura curve over
Fq corresponding to a (∞× p)-adic discrete subgroup Γ in the sense of [I1]∼[I2]. Suppose
that Γ is torsion-free, and

(2.1.12)

{ √
q > 3

g − 1 > 3(q + 1)/2(
√

q − 3).

Then γK < 0.

Proof In Proposition 2(i), take x = q2. Then

γK ≤ q + 1

q − 1

(
2 log q − ΦK(q2)

)
+

2αK

q − 1
− cq(2.1.13)

≤ q + 1

q − 1

(
2 log q − N1(K)

q2 − 1
(q − 1) log q

)
+

2αK

q − 1
− cq.

But N1(K) ≥ (
√

q− 1)(gK − 1) when K corresponds to such a Shimura curve. Therefore,

γK

αK

≤ q + 1

q − 1

(
2

gK − 1
−
√

q − 1

q + 1

)
+

2

q − 1
− cq

αK

(2.1.14)

=
1

q − 1

{
(3−√q) +

3

2

q + 1

gK − 1

}
,

from which the desired assertion follows at once. 2
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2.2. Imaginary quadratic fields

Let K be an imaginary quadratic field with discriminant d(< 0). Then the Kronecker
limit formula, averaged over all the ideal classes of K, gives

Theorem (Kronecker)

(2.2.1) γK = −1

2
log |d|+ 2γQ − log 2 +

1

h

∑
C

tC .

Here, h = hK is the class number of K, C runs over all ideal classes of K,

(2.2.2) tC = −2 log
(
|η(ωC)|2 · Im(ωC)1/2

)
,

(2.2.3) η(τ) = q
1
24

∞∏
n=1

(1− qn), q = e2πiτ (Im(τ) > 0)

is the Dedekind η-function, and ωC is defined as follows. Pick any ideal from C−1, with
such a Z-basis [ω1, ω2] that Im(ω2/ω1) > 0. Then we put ωC = ω2/ω1. Since the function

(2.2.4) |η(τ)|2(Im(τ))
1
2

is SL2(Z)-invariant, tC is well-defined.

Remark Each tC is positive. Indeed, the maximal value M of (2.2.4) on the upper
half plane is attained at τ = 1

2
(1 +

√
3i), and

(2.2.5) M = 0.596450134 · · · , log M = −0.516759638 · · · .

Since −tC ≤ 2 log M < 0, we see that tC is always positive.

Now, one notes that the contribution of the principal ideal class C0 to the formula
(2.2.1) is extraordinarily large. Indeed

(2.2.6) tC0 ∼
1

6
π
√
|d|,

which is ”too large” compared with our upper bound ∼ log log |d| for γK under GRH.
So, this ”too outstanding a contribution of the principal class” should be ”pulled down”
by averaging over a large number of non-principal classes. We thus obtain, by combining
with Theorem 1, the following
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Theorem 5(under (GRH)). If αK = 1
2
log |dK | > 1.16. (i.e., |dK | ≥ 11), then

(2.2.7) hK >
π
6

√
|dK | − αK + b1

αK + 2 log αK + b2 + c(αK)
,

with small b1, b2, c(αK) given by

(2.2.8)





b1 = 2 log M + log 2− 4q0 = −0.34037− 4q0, q0 = e−π
√
|dK |,

b2 = 2 log M − 2γQ + log 2 + 1 = −0.49480 · · ·
c(t) = 4 log t+2

t−1
.

Proof Write

(2.2.9)





γK = 1
h

(∑
C

tC

)
− ξ,

ξ = αK − 2γQ + log 2.

Take t0 > t1 > 0 such that

(2.2.10) t0 ≤ tC0 , t1 ≤ tC (all C),

and a majorant U for γK ;

(2.2.11) γK ≤ U.

Then

(2.2.12)
t0 − t1

h
+ t1 ≤ 1

h

(∑
C

tC

)
≤ U + ξ ;

hence U + ξ − t1 is positive and

(2.2.13) h ≥ t0 − t1
U + ξ − t1

.

For t1, we choose t1 = −2 log M ; and for t0, we may choose

(2.2.14) t0 =
π
√
|dK |
6

− 4q0 − log

√
|dK |
2

(
q0 = e−π

√
|dK |

)

(see below). Finally, choose U as in Theorem 1,

(2.2.15) U =

(
αK + 1

αK − 1

)
(2 log αK + 1),
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and we obtain the Theorem by (2.2.13). Here, it remains to check that t0 given by (2.2.14)
satisfies both

(i) t0 ≤ tC0 and (ii) − 2 log M < t0.

(i) For ωC0 , we may choose (
√
|dK | i)/2, resp. (1 +

√
|dK | i)/2, according to whether

dK ≡ 0 (mod 4), resp. ≡ 1 (mod 4); hence

(2.2.16) tC0 = − log

√
|dK |
2

+
π
√
|dK |
6

− 4 log
∞∏

n=1

(1− (εq0)
n),

with ε = 1 resp. −1. But
∏∞

n=1(1− (εq0)
n) < 1 resp. < 1 + q0; hence

(2.2.17) tC0 > − log

√
|dK |
2

+
π
√
|dK |
6

−
{

0 · · · dK ≡ 0 (mod 4),

4q0 · · · dK ≡ 1 (mod 4),

which settles (i). (ii) For αK > 1.16, we have t0 > 1.2032 > 1.0335... = −2 log M . 2

Remark As the above proof shows, the term −4q0 in the formula for b1 in Theorem 5
is unnecessary when dK ≡ 0 (mod 4).

A similar result has already been obtained by Granville-Stark[G-S] (Th 1; note that
the unconditional Th 2 still contains L′(1, χ)/L(1, χ) = γK − γQ).

S.Louboutin kindly informed the author that, as an asymptotic formula, there is an
essentially stronger (and much older) result due to Littlewood [Li];

(2.2.18)
h log log |d|√

|d| >
π. exp(−γQ)

12
− o(1) (under GRH).

(As asymptotic formula, this is better than Theorem 5 when log |d|/ log log |d| ≥ 4 exp(γQ);
hence when |d| has 10 or more digits.)

2.3. The field Kp

For each odd prime p, let Kp denote the unique cyclic extension of degree p over Q
contained in the field Q(µp2) of p2-th roots of unity. It is totally real, with discriminant
d = dp = p2p−2; whence

(2.3.1) log
√

d = (p− 1) log p.
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Let ` be any prime number 6= p. Then, by classfield theory,

` decomposes completely in Kp ←→ ` p−1 ≡ 1 (mod p2).

We shall study the invariant

(2.3.2) γp = γKp

in connection with the following set of primes

(2.3.3) W (p) = {`; primes < p, ` p−1 ≡ 1 (mod p2)}.

For example, the list of non-empty W (p) with p < 100 is

W (11) = {3}, W (43) = {19}, W (59) = {53},
W (71) = {11}, W (79) = {31}, W (97) = {53}.

Among the 14 primes p with 900 < p < 1000, only 3 primes p satisfy W (p) 6= ∅
(namely, p = 907, 919, 983). The known primes p such that W (p) contains 2 (resp. 3) are
p = 1093, 3511 (resp. p = 11, 1006003).

Theorem 6 Under (GRH) for Kp, we have

(i).

γp < i
′
p{2 log(p− 1) + 2 log log p + 1} − p

( ∑

`k<p
`∈W (p)

log `

`k

)
,

(ii).
γp > −ip{2(p− 1)(log log p + 1)} − 1.

Here,

(2.3.4) i
′
p = 1 + 2

(p−1) log p−1
, ip = 1− 2

log p+1
.

The first inequality is a direct consequence of Theorem 1(§1.6). Indeed, each ` ∈ W (p)
has p distinct primes of Kp above `, so if we write αp = αKp = (p − 1) log p, then (since
α2

p − p ≥ (αp − 1)2 for p ≥ 3) we have

(2.3.5)
αp + 1

αp − 1
ΦK(α2

p) ≥ p
∑

`k<p
`∈W (p)

α2
p − `k

(αp − 1)2

log `

`k
≥ p

∑

`k<p
`∈W (p)

log `

`k
.

The second inequality is a special case of Theorem 3. Note that α∗K = log p.
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Remark One may replace the sum ∑

`k<p
`∈W (p)

log `

`k

in Theorem 6(i) and the following Corollaries 1, 2, by a somewhat larger sum

∑

`,k

log `

`k
,

where the primes ` satisfy `p−1 ≡ 1 (mod p2) and k satisfies `k < 2αp− 1 (instead of `k < p). The latter
sum is also interesting, but in order not to blur the present focus, we just give it as a remark instead of
incorporating it in Theorem 6.

Combining (i) and (ii) of Theorem 6, we obtain immediately:

Corollary 1 (under (GRH)) For any ε > 0, there is an effectively computable bound
Nε such that if p > Nε then

(2.3.6)
∑

`k<p
`∈W (p)

log `

`k
< 2 log log p + 2 + ε.

Since
∑

`k<x(log `)/`k ∼ log x, this is in accordance with a result of Lenstra [Le](Th 3)
which asserts (unconditionally!) that there exists some prime ` /∈ W (p) with ` < 4(log p)2.

Remark Lenstra also gives an asymptotic bound

(4e−2 + ε)(log p)2.

The accordance would have been perfect, if the second term on the right side of (2.3.6)
had been log 4− 2 instead of 2. But we have not been able to make this replacement.

Corollary 2 (under (GRH))

(i).

lim
( γp

(p− 1) log p

)
= 0.

(ii).

lim sup
(γp

p

)
≤ lim sup

(γp

p
+

∑

`k<p
`∈W (p)

log `

`k

)
≤ 0.

(iii).

−2 ≤ lim inf
( γp

p log log p

)
.
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By Theorem 6 (i), if W (p) contains small primes `, then γp tends to be negative. For
example, γ3, γ5, γ7 are positive, but γ11 is negative, reflecting W (11) 3 3. Also, γ1093 is
”very negative”, reflecting W (1093) 3 2 (see Table (2.3A)). It is an interesting problem
to investigate asymptotic behaviors of γp, γp/p, etc. In particular, the determination of
the value of

lim inf
γp

p
(≤ 0)

will have the following implications.

Corollary 3 (under (GRH))

(i). If lim inf γp

p
= 0, then, for each prime `, there exist at most finitely many primes

p that satisfy
`p−1 ≡ 1 (mod p2).

(ii). If, for each prime `, all but finitely many primes p satisfy

`p−1 ≡ 1 (mod p2),

then lim inf γp

p
= −∞.

Proof (i) If for some ` there exist infinitely many p such that `p−1 ≡ 1 (mod p2),
then by Theorem 6(i),

lim inf
γp

p
≤ − log `

`− 1
< 0.

(ii) Under this assumption, by Theorem 6(i),

lim inf
γp

p
≤ −

∑

`

log `

`− 1
= −∞.

2

Table 2.3A shows the approximate values of γp for p < 110, and for several primes around
p = 1093, 3511 (the two known p such that W (p) contains 2) , under GRH. Let `p

(resp. up) denote the lower (resp. upper) bound for γp given by Proposition 2 (§1.6) for
x = x0 = 5× 104, and put

γ′p =
1

2
(`p + up),

γ′′p = log x0 − ΦKp(x0)− 1,

εp =
1

2
(up − `p),

so that (under GRH) γp should lie in-between γ′p ± εp, and γ′′p should also be close to γp.
Note how “conspicuously negative” the values of γ′p, γ′′p are when W (p) contains small

primes!
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Table 2.3A:

p γ′′p γ′p εp

3 1.76673 1.76741 0.00270354
5 1.6981 1.69927 0.0122214
7 1.84553 1.84723 0.032591
11 −1.43302 −1.43032 0.0577191
13 0.468641 0.472016 0.107757
17 3.5781 3.58283 0.210134
19 4.53435 4.53974 0.25948
23 4.47064 4.47731 0.346256
29 2.32308 2.33163 0.46998
31 4.61964 4.62896 0.540857
37 5.6061 5.6175 0.70755
41 4.2761 4.28883 0.805977
43 −0.929757 −0.916538 0.81594
47 −2.6783 −2.66375 0.91587
53 6.05396 6.071 1.17309
59 0.428977 0.447956 1.30809
61 4.62301 4.64288 1.40864
67 6.03706 6.05918 1.6139
71 −12.8724 −12.8496 1.57591
73 5.99832 6.02267 1.81104
79 −3.85765 −3.83146 1.92486
83 1.21387 1.24177 2.10718
89 7.51911 7.54953 2.37227
97 −5.02725 −4.99428 2.54395
101 2.75934 2.79415 2.75782
103 −2.22423 −2.18885 2.7859
107 5.75378 5.79103 3.00361
109 5.59505 5.63306 3.07587

1069 −4.10435 −3.63507 51.7394
1087 −5.5176 −5.03975 52.7617
1091 −3.11201 −2.63214 53.0135
1093 −748.191 −747.74 46.4644
1097 3.54759 4.03061 53.4188
1103 7.84455 8.33062 53.8033
1109 −0.666736 −0.178118 54.0736

3499 9.81761 11.521 206.78
3511 −2423.07 −2421.45 185.836
3517 7.66195 9.37476 207.986
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2.4. The field index of Kp

We shall give some applications to the field index of Kp in the sense of [G]. In general,
let K be a number field and OK be the ring of integers of K. For each ξ ∈ OK , consider
the discriminant D(ξ) = I(ξ)2 · dK of ξ. Thus, I(ξ) = (OK : Z[ξ]). The greatest common
divisor IK of I(ξ) is called the field index of K. Clearly, IK = 1 if OK is generated by a
single element. When K = Kp, write IK = Ip. Then

`|Ip ←→ ` ∈ W (p) = {`; primes < p, ` p−1 ≡ 1 (mod p2)}.
This is obvious by the Dirichlet pigeon hole principle (p pigeons are the conjugates of ξ,
and ` holes are the residues classes modulo a fixed prime factor of `) and the Chinese
remainder theorem. In particular, Ip > 1 if and only if W (p) 6= ∅. The exponent of
` ∈ W (p) in Ip can be expressed explicitly as

(2.4.1) ord`Ip =
∑

`k<p

C(p, `k),

where C(m,n) denotes the following combinatorial number.
Consider finite sets M,N of orders m,n, respectively, with m > n. For each map

f : M → N , let nf be the number of unordered pairs (µ, µ′) of distinct elements of
M such that f(µ) = f(µ′). Define C(m,n) = Minf (nf )(> 0). Clearly, nf attains the
minimal value C(m,n) if and only if the maximal difference among #f−1(µ) (µ ∈ N)
is at most 1. (So, if we write M = {1, 2, · · · ,m}, the mod `k map fk : M → Z/`k

satisfies nfk
= C(m, `k) for all k such that `k < m. This explains the remaining key point

underlying the equality (2.4.1).) Explicitly,

(2.4.2) C(m,n) =
[m

n

]
(m− 1

2
n− 1

2

[m

n

]
n).

We have

(2.4.3)
m

2n
(m− n) ≤ C(m,n) ≤ m

2n
(m− n) +

n

8
.

(In fact, the left and the right sides of (2.4.3) are given respectively by

C(m,n)− 1

2n
k(n− k), C(m,n) +

1

8n
(n− 2k)2,

where k is defined by m = [m
n
]n + k (0 ≤ k < n).) Since

(2.4.4)

log Ip =
∑

`∈W (p)

ord`(Ip) log `

=
∑

`∈W (p)

`k<p

C(p, `k) log `,
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we see that log Ip is fairly close to, and is bounded from below, by

(2.4.5)
p

2

∑

`∈W (p)

`k<p

( p

`k
− 1

)
log ` =

1

2
(p− 1)ΦKp(p).

This was the initial motivation for our study of ΦK(x). Combining with our previous
bounds for γp, we obtain some estimations of log Ip, as follows.

Proposition 4 (under (GRH))

(i). For each ε > 0, if p ≥ Nε, then

log Ip < (1 + ε)p2 log log p.

(ii). If γp < −2
√

p log p, then W (p) 6= ∅, and

log Ip >
1

2
(γQ + log 4π)p

√
p.

Sketch of proof (i) By (2.4.3) (2.4.4), we have

log Ip ≤ p− 1
2

ΦKp
(p) +

1
8

∑

`∈W (p)

`k<p

`k log `(2.4.6)

<
p− 1

2
ΦKp(p) +

p

8


 ∑

`k<p

log `


 .

By using the explicit formula for ΦKp(p), together with the upper bound

(2.4.7) rKp(p) ≤ −
√

p− 1√
p + 1

(αKp + βKp + γp + 1)

(Main lemma and (1.3.11)), we obtain

(2.4.8) log Ip < −p− 1
2

γp + O(p2).

Therefore, by Theorem 6(ii), we obtain

(2.4.9)
log Ip

p2 log log p
< 1 + o(1).

(ii) We have

(2.4.10) log Ip ≥ p− 1
2

ΦKp(p).

By using the explicit formula for ΦKp
(p), the lower bound for rKp

(p) ((1.5.2)(1.4.1)), and the inequality
`Kp

(p) > log p (by (1.5.9)), we obtain

(2.4.11) ΦKp(p) > −2
√

p log p +
√

p(γQ + log 4π)−
√

p + 1√
p− 1

(γp + 1),

from which the desired inequality follows directly. 2
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2.5. The field index of Kp (continued)

Finally, we shall show that the above conditional upper bound (Proposition 4(i)) for
log Ip is essentially stronger than what one can obtain by the ”easier” method, i.e., by
using the index of a standard generator of Kp. Put

(2.5.1)





∆p =
{

δ ∈ (Z/p2)×; δ p−1 = 1
}

,

ηp =
∑

δ∈∆p

ζδ,

where ζ = exp(2π
√−1/p2). Then Kp = Q(ηp), and the ring of integers Op is spanned

over Z by 1 and the conjugates of ηp. (The trace of ηp is 0). As Ip divides I(ηp), any
estimation of the latter from above gives rise to that of the former. Recall that

(2.5.2) D(ηp) = I(ηp)
2p2p−2.

By Lemma 3 below, we obtain

(2.5.3) D(ηp) < pp · (p− 1)p−1 · · · · · 22 · 11.

This gives

(2.5.4)
log D(ηp) <

p∑
i=1

i(log i)

< 1
2
p2 log p− 1

4
p2 + p log p + 1− 2 log 2,

and hence

Proposition 5 (unconditional)

(2.5.5) log Ip <

(
1

4
+ ε

)
p2 log p.

Note the difference ”log log vs.log” , between Proposition 4(i) and Proposition 5.

Remarks (i) Mahoro Shimura has shown by numerical computations that the upper
bound for log D(ηp) provided by (2.5.3) is quite close to the actual values (the ratio of
their log is 0.98 · · · for p + 400).

(ii) Each prime factor ` of I(ηp) must satisfy ` p−1 ≡ 1 (mod p2), but not necessarily
` < p. Shimura has also shown that I(ηp) is often divisible by much larger primes `. This
phenomenon appears already at p = 11, where I11 = 317 but I(η11) = 322 × 457, and
continues on.
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We conclude this section by stating the lemma in question. Take n(≥ 2) real numbers
x1, . . . , xn, and put

(2.5.6)

{
nS = x1 + · · ·+ xn,
nT = x2

1 + · · ·+ x2
n.

Then S2 ≤ T , with the equality only if x1 = · · · = xn. Now fix S, T ∈ R satisfying S2 < T ,
and let x1, . . . , xn vary under the restrictions (2.5.6). Consider the maximal value of the
discriminant

(2.5.7) D =
∏

1≤i<j≤n

(xi − xj)
2

under (2.5.6).

Lemma 3 (Schur) The maximal value of D is attained at the unique n-ple (x0
1, · · · , x0

n) ∈
Rn determined as follows. Put

(2.5.8) f(x) =
n∏

i=1

(x− x0
i ).

Then this monic polynomial of degree n is determined uniquely by the differential equation

(2.5.9) f ′′(x) + (a− bx)f ′(x) + nbf(x) = 0,

where

(2.5.10) b =
n− 1

T − S2
, a = bS.

The maximal value of D is given by

(2.5.11) D =
nn(n− 1)n−1 · · · 2211

b
1
2
n(n−1)

.

Remark This ”another Schur’s lemma” was kindly pointed out to me by J-P.Serre. We
may assume S = 0 by translation,and then the maximal value problem will be the same
whether we impose S = 0 or do not fix S (see [Sc] §2).

Now let us take n = p and {xi} to be the conjugates of ηp. Then S = 0, T = p − 1,
hence a = 0, b = 1. Our Corollary follows. Comparison of exponents of p shows that the
two sides of (2.5.3) can never be equal.
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2.6. Concluding remarks

This paper consists mostly of inequalities, functional and numerical, under the Gen-
eralized Riemann Hypothesis in the number field case. Computational data, including
graphical ones related to ΦK(x), log x, γK and the upper and the lower bounds given by
Proposition 2, impressively fit with the conditional results.

However, a more interesting problem related to γK is its total behavior when we
consider a natural family of K, for example, a family of curves over Fp arising from a two
dimensional scheme over Z or Fp. We hope to be able to report on this, too, in the near
future.
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Vol 3, p249-264).

Department of Mathematics, Graduate School of Science and Engineering
Chuo University, Kasuga 1-13-27, Bunkyo-ku, Tokyo 112-8551, Japan

(email: ihara@math.chuo-u.ac.jp, ihara@kurims.kyoto-u.ac.jp)

46


