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Abstract. We define Harbater-Mumford subvarieties, which are special kinds of closed subva-
rieties of Hurwitz moduli spaces obtained by fixing some of the branch points. We show that,
for many finite groups, finding geometrically irreducible HM-subvarieties defined over Q is
always possible. This provides information on the arithmetic of Hurwitz spaces and applies in
particular to the regular inverse Galois problem with (almost all) fixed branch points. Profinite
versions of our results can also be stated, providing new tools to study the geometry of modular
towers and the regular inverse Galois problem for profinite groups.

Mathematics Subject Classification (2000): 12F12, 14G32, 20E45, 14H30, 20E22

Introduction

The regular inverse Galois problem over some field k, (RIGP/k), essentially re-
duces to finding k-rational points on Hurwitz moduli spaces of covers [FV91]. In
this context, two main methods can be distinguished: on the one hand, genus 0
methods [M89] which may provide in special situations Q or Qab-rational points
on usually low-dimensional Hurwitz spaces and, on the other hand, large field
methods [DF94], [D95], [Des95]1, which combine irreducibility Conway and
Parker type results [FV91], realization results over local fields [H03], [DF94] and
the local-global principle for varieties [Mo89], [P96] to provide Q�2-rational
points. Our main theorem (theorem 2.3) conjoins these two aspects: it is, as
Conway and Parker’s theorem, a global structure result about high-dimensional
Hurwitz spaces but, as genus 0 methods, it deals with low-dimensional closed
subvarieties (of those high-dimensional Hurwitz spaces) obtained by specializing
most of the branch points. In §2.1, we give a more precise account on the history
behind our main theorem.

A. Cadoret
Université de Lille 1, Mathématiques, 59655 Villeneuve d’Ascq Cedex, France
e-mail: cadoret@math.jussieu.fr

1 See also works of Pop et al who have developed a parallel approach based on common
principles but not using Hurwitz spaces [P96], [H03], [V99].

2 Given a global field Q and a finite set � of places of Q, we always denote by Q� the
maximal algebraic extension of Q (in a fixed separable closure of Q) which is totally split at
each place v ∈ �. In the special case Q = Q and � only consists of the prime at infinity, we
use the notation Qtr for Q� ; Qtr is the field of totally real algebraic numbers.
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The starting point are special components of Hurwitz moduli spaces of covers
introduced by M. Fried [F95] - the Harbater-Mumford components (cf. §2.2). We
consider the closed subvarieties - we call HM-subvarieties - of these HM-com-
ponents obtained by specializing most of the branch points; our main result is a
general criterion to ensure they are geometrically irreducible. If for instance the
monodromy group G of the studied covers is any group satisfying the assump-
tions of theorem 1 below, our criterion produces infinitely many Hurwitz spaces
carrying geometrically irreducible HM-curves, defined over the same field as the
whole Hurwitz space, and lying in the sublocus corresponding to covers with all
their branch points but one fixed. In general, “all their branch points but one”
should be replaced by “all their branch points but r(G)” for some integer r(G)
depending only on the finite group G in question.

One motivation for this work was to gain more information about the branch
point divisor of covers defined over large fields. Indeed, when applying the local-
global principle to solve for instance (RIGP/Qtr ), this information is entirely lost.
Showing that any finite group G can be regularly realized over Qtr with a Q-
rational branch point divisor would be a significant step towards the (RIGP/Q):
as explained in [D92], the monodromy of such a cover and its conjugates obeys
strong group-theoretical constraints. Also, showing all the groupsGn of a projec-
tive system (Gn+1 � Gn)n≥0 can be regularly realized over a large field k with
the same branch point divisor t is a missing step to investigate the (RIGP/k) for
profinite groups; this is the underlying idea of works like [DDes04]. Our result
enables us to handle the derived problem - we denote by (RIGP/t2 ⊂ t) - where
the subset t2 ⊂ t is fixed and its complement, t1 is allowed to vary (the cardinality
|t1| of t1 corresponding to the dimension of the HM-subvarieties we consider).
We are particularly interested in the case when t2 is defined over Q and |t1| is as
small as possible. The first and most difficult step, which is to ensure the HM-sub-
varieties are geometrically irreducible, is given by our criterion. The second one
consists in showing these HM-subvarieties can be built in such a way they carry
real or p-adic points; this requires a careful use of recent results from [DE03]
about the existence of p-adic points on HM-components. We can then apply the
usual local-global machinery to obtain results like

Theorem 1. Let G be a finite group containing two conjugacy classes A,B such
that G =< A >=< B > and G =< a, b > for any a ∈ A, b ∈ B. Let o(A)

denote the order of the elements inA and write kA := Q(e
2πi
o(A) ). Then, for any finite

set � of non archimedean places of kA of residue characteristic not dividing |G|
there exists a Q-rational divisor t� and G-covers f defined over k�A with group
G and branch point divisor tf = tf,1 + t� where |tf,1| = 1.

As another application, we obtain new regular realizations of some prodihedral
groups over Qtr (cf. also [C04a]).
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Moreover, our irreducibility criterion behaves well with Frattini extensions.
This allows us to investigate the arithmetic of Fried’s modular towers [F95] (sec-
tion 4.1.2) and tackle the related (RIGP/t2 ⊂ t) for profinite groups like the
universal p-Frattini cover pG̃ of a finite p-perfect group G (for some prime p
dividing |G|). For instance, with the notation and hypotheses of theorem 1 but
assuming in addition that G is p-perfect and A, B are p′-conjugacy classes, one
obtains this structure result

Theorem 2. There exist modular towers (Hn+1 → Hn)n≥0 associated with G
such that for any finite set � of non archimedean places of k of residue char-
acteristic not dividing |G| there exists a Q-rational divisor t� and a projective
system (Cn+1,� → Cn,�)k≥0 of geometrically irreducible HM-curves defined over
k satisfying:

(i) Cn,� ⊂ Hn parametrizes G-covers fn with group n
pG̃ and branch point

divisor tfn = tfn,1 + t� where |tfn,1| = 1, n ≥ 0.
(ii) lim←− Cn,�(kP )noob �= ∅, P ∈ �.

(iii) Cn,�(k�)noob �= ∅, n ≥ 0.

Here npG̃ denotes the nth characteristic quotient of pG̃ (cf. §4.1.2) and the “noob”
labelling (for no obstruction) means we consider the sets of k-rational points cor-
responding to G-covers defined over k and not only with field of moduli k (cf.
§1.1).

This shows a strong arithmetical property is kept along some modular tow-
ers. It is a positive result which emphasizes the difficulty of Fried’s conjectures
about the disappearance of rational points over a number field on a modular tower
beyond a certain level [D04], [F95].

The paper is organized as follows. In section 1 we recall necessary definitions
and basic results, section 2 is devoted to the statements and examples, section 3
to the proofs. In section 4, we give applications of our results such as theorem 1
and theorem 2.

I wish to thank P. Dèbes for encouraging me to write this paper and the care-
ful re-reading he made of it. I also want to thank the referee for his constructive
suggestions.

1. Preliminaries

This section is devoted to recalling the necessary definitions and some basic facts
about Hurwitz spaces.

Given a morphism V → W of algebraic varieties andW0 ↪→ W a subvariety,
we will often denote the fiber product V ×W W0 by VW0 . Also, given a finite group
G and an integer r ≥ 1 we will denote the set of all the r-tuples C = (C1, ..., Cr)

of non trivial conjugacy classes ofG by Cr (G); we will sometimes write l(C) := r
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for the length of such a tuple C ∈ Cr (G). And for any conjugacy class C, we will
write o(C) for the order of any element inC. Finally, given a tuple t′ = (t1, ..., tr )
and two integers 1 ≤ i < j ≤ r , we will write t′i,j := (ti, ..., tj ).

1.1. G-covers and Hurwitz spaces

Recall a G-cover with group G is a pair (f, α) where f : X → P1 is a Galois
cover with group G and α : Aut(f )→ G is a group isomorphism. In the follow-
ing, we will always drop the notation α though it remains part of the data. One
can attach to each G-cover of P1

C
the three following invariants: the monodro-

my group G, the branch point set t = {t1, ..., tr} ⊂ P1(C) and for each t ∈ t
the associated inertia canonical conjugacy class Ct . To summarize this, we will
sometimes say the considered G-cover has invariants G, (Ct)t∈t, t. Adopting the
topological point of view, let us recall what these invariants correspond to: given
t = {t1, ..., tr}, introduce a topological bouquet γ of P1(C)\t, that is an r-tuple
of homotopy classes of loops γ1, ..., γr based at some point t0 /∈ t such that (1)
γ1, ..., γr generate the topological fundamental group π top

1 (P1(C)\t, t0) with the
single relation γ1...γr = 1 and (2) γi is a loop revolving once, counterclockwise,
about ti , i = 1, ..., r . Now, considering a G-cover f : X→ P1

C
, the monodromy

action defines a permutation representation π top
1 (P1(C)\t, t0) → Per(f −1(t0)).

The image group G of this representation is the monodromy group (we also say
the Galois group) of f and the conjugacy class Cti of the image of γi in G is the
inertia canonical class corresponding to ti , i = 1, ..., r .

For any integer r ≥ 3 let U r ⊂ (P1
C
)r be the subset of (P1

C
)r consisting of

all r-tuples t′ = (t1, ..., tr ) ∈ (P1
C
)r such that ti �= tj for 1 ≤ i �= j ≤ r , let

Ur = U r/Sr be the quotient space of U r by the natural action of the symmetric
group Sr and σr : Ur → U r/Sr the canonical projection. Given a finite group G
let ψr,G : Hr,G → Ur be the coarse moduli space (fine assuming Z(G) = {1})
for the category of G-covers of P1

C
with groupG and r branch points, where ψr,G

is the map which to a given isomorphism class of G-covers associates its branch
point set. For any r-tuple C = (C1, ..., Cr) ∈ Cr (G) let Hr,G(C) be the corre-
sponding Hurwitz space [FV91], that is the union of irreducible components of
Hr,G parametrizing the isomorphism classes of G-covers with invariantsG, C, t.
A point h = (h, (t1, ..., tr )) of the fiber product Hr,G(C)×Ur U r then corresponds
to a G-cover given with an ordering of its branch points, which allows us to define
a monodromy map:

M : Hr,G(C)×Ur U r → {C1, . . . , Cr}r
(h, (t1, . . . , tr ))→ (Ct1, . . . , Ctr )

This map, being continuous, is constant on each connected component of Hr,G(C)
×Ur U r . So,M−1(C) is a union of connected components of Hr,G(C)×Ur U r ; we
will denote this variety by H′r,G(C). We have a commutative diagram:
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H′r,G(C) �
� ��

ψ ′r,G ���������������
Hr,G(C)×Ur U r �r ��

��
�

Hr,G(C)

ψr,G

��
U r

σr �� Ur
We will freely use the general theory of Hurwitz spaces (see for instance

[FV91] and [V99]), and only recall here the description of the fibers of ψr,G
and ψ ′r,G in terms of Nielsen classes ni(C) and straight Nielsen classes sni(C)
respectively, where:

ni(C) =




(g1, . . . , gr) ∈ Gr

∣
∣
∣
∣
∣
∣

(1)G =< g1, . . . , gr >

(2)g1 · · · gr = 1
(3)gi ∈ Cσ(i), i = 1, . . . , r for some σ ∈ Sr






and sni(C) is the set defined as ni(C), but replacing (3) by

(3)′gi ∈ Cif ori = 1, ..., r.

We use the notation ni(C) and sni(C) for the corresponding quotient sets modulo
the componentwise action of the inner automorphism group, Inn(G).

Given t ∈ Ur , it is classical that (ψr,G)−1(t) is in bijection with ni(C). Fur-
thermore, if we choose an ordering of the branch points t′ = (t1, ..., tr ) in t,
then sni(C) is in bijection with (ψ ′r,G)

−1(t′). The correspondence is given by the
monodromy action and depends on the choice of a topological bouquet γ for
P1(C)\t; we denote it by BCDγ (for B(ranch) (C)ycle (D)escription).

For later use, we also recall that two finite cyclotomic field extensions of Q -

which we denote by QC and Q′C - are associated to C. Precisely, QC = Q
�C and

Q′C = Q
�′

C where�C and�′C are the closed subgroups of finite index of the abso-
lute Galois group 	Q defined by �C = {σ ∈ 	Q|Cχ(σ) = C up to permutation}
and�′C = {σ ∈ 	Q|Cχ(σ) = C} (here, χ : 	Q→ Ẑ is the cyclotomic character).
Resulting from the branch cycle argument [V99, lemma 2.8], QC is the field of
definition of Hr,G(C) and Q′C, the one of H′r,G(C). When QC = Q, we say that
C is a rational union of conjugacy classes and, when Q′C = Q, that C is a tuple
of rational conjugacy classes.

Finally, since Hurwitz spaces are only coarse moduli spaces in general, we will
write Hr,G(C)(k)noob for the set of all the k-rational points in the non obstruction
locus that is, corresponding to G-covers defined over k.

1.2. The covers �r,G and � ′r,G

From now on, we will always assume r ≥ 4. We first recall useful results about
Hurwitz braid groups and then give a description of the covers �r,G and � ′r,G in
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terms of group actions. Fix t = {1, ..., r} ∈ Ur (C) and t′ = (1, ..., r) ∈ U r (C)

and for k = 1, ..., r − 1 define the simple arcs fk,i : [0, 1]→ P1(C), i = 1, 2 by

�

�

�

�
� k + 1�k

fk,1

fk,2

>

<

and write qk: [0, 1] → U r (C)

t → (1, ..., k − 1, fk,1(t), fk,2(t), k + 2, ..., r)
for the

usual topological braid. Let Hr be the abstract group given by the presentation
with generators Q1, ...,Qr−1 and defining relations

(1) QiQi+1Qi = Qi+1QiQi+1 for i = 1, . . . , r − 2
(2) QiQj = QjQi for i, j = 1, . . . , r − 1 with |j − i| > 1
(3) Q1Q2 · · ·Qr−1Qr−1 · · ·Q2Q1 = 1

and SHr the kernel of the morphism Hr → Sr , Qi → (i, i + 1). Set

Ai,j = Q−1
j−1 · · ·Q−1

i+1Q
−2
i Qi+1 · · ·Qj−1

= Qi · · ·Qj−2Q
−2
j−1Q

−1
j−2 · · ·Q−1

i

}

, 1 ≤ i < j ≤ r

(we will also often use the notation ai,j = A−1
i,j , 1 ≤ i < j ≤ r) and denote by

�k,r the subgroup of SHr generated by {Ai,j }1≤i≤k,i<j≤r , k = 1, ..., r − 1. The
following result will play an important part in the proof of theorem 2.3. It is a
direct corollary of [Bi74, lemma 1.8.2], which gives a presentation of SHr with
generators Ai,j , 1 ≤ i < j ≤ r and defining relations.

Theorem 1.1. The groups �k,r are normal in SHr , k = 1, ..., r − 1.

The next theorem gives the link between the abstract groups Hr , SHr and the
topological fundamental groups π top

1 (Ur (C), t), π top
1 (U r (C), t′). More precisely,

it states that

Theorem 1.2. (Artin (1925), Fadell and Van Buskirk (1962)) The group homo-
morphisms

ur : Hr → π
top
1 (Ur (C), t)

Qi → [(σr)∗(qi)]
and

vr : SHr → π
top
1 (U r (C), t′)

Ai,j → [qi · · · qj−2q
−2
j−1q

−1
j−2 · · · q−1

i ]

are isomorphisms.

Let us use this result to show that�k,r � π top
1 (U r

t′k+1,r
(C), t′1,k), k = 1, ..., r−1.

For this, consider the homotopy sequence of the fibration with connected fibers

pk+1,r : U r (C) → U r−k(C)
(t1, . . . , tr )→ (tk+1, . . . , tr )

which gives rise to the short exact sequence of topological fundamental groups
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1→ π
top
1 (U r

t′k+1,r
, t′1,k)→ π

top
1 (U r , t′)

(pk+1,r )∗→ π
top
1 (U r−k, t′k+1,r )→ 1

It follows from the definition of the topological braids (qi)1≤i≤r−1 that vr(�k,r) <

ker((pk+1,r )∗). The group homomorphism ηk,r : SHr → SHr−k defined by
ηk,r (Ai,j ) = Ai−k,j−k if k < i < j ≤ r and ηk,r (Ai,j ) = 1 else is well de-
fined and we get the commutative diagram with exact rows

1 �� �k,r
��

vr |�k,r
��

SHr
ηk,r ��

vr

��

SHr−k ��

vr−k
��

1

1 �� π
top
1 (U r

t′k+1,r
, t′1,k) �� π

top
1 (U r , t′)

(pk+1,r )∗
�� π

top
1 (U r−k, t′k+1,r )

�� 1

But, according to theorem 1.2, the two last vertical arrows vr, vr−k are isomor-
phisms and, by the five lemma so is the first one, vr |�k,r .

For any t ∈ Ur (C), for any t0 ∈ P1(C) \ t, any ordering t′ of t defines gen-
erators Q1, ...,Qr−1 of π top

1 (Ur (C), t) � Hr [FV91] §1.3 as above. With these
generators, the cover �r,G : Hr,G(C) → Ur corresponds to the action of Hr on
the fiber (�r,G)−1(t) � ni(C) given by

Qi.g = (g1, ..., gi−1, g
gi
i+1, gi, gi+2, ..., gr), i = 1, ..., r − 1

Likewise, the cover � ′r,G : H′r,G(C)→ U r corresponds to the action of SHr
on the fiber (ψ ′r,G)

−1(t) � sni(C) induced by the one ofHr on ni(C) [FV91] §1.4.
Fix now an (r − k)-tuple t′k+1,r = (tk+1, ..., tr ) ∈ U r−k(C) and consider the

following cartesian square

H′r,G(C)t′k+1,r
��

�(� ′r,G)t′
k+1,r

��

H′r,G(C)
� ′r,G

��U r
t′k+1,r

�� U r

By Grauert-Remmert’s Theorem (for k = 1, Riemann’s Existence Theorem) the
etale cover (� ′r,G)t′k+1,r

: H′r,G(C)t′k+1,r
→ U r

t′k+1,r
extends to a branched cover

(�
′
r,G)t′k+1,r

: H′r,G(C)t′k+1,r
→ U k associated with the action of �k,r induced by

the one of SHr on sni(C). When k = 1, we obtain a branched cover (�
′
r,G)t′2,r :

H′r,G(C)t′2,r → P1
C

with branch points t2, ..., tr and branch cycle description the

images of (A1,i)2≤i≤r under the permutation action of SHr on sni(C).
Resulting from the branch cycle argument [V99, lemma 2.8], (H′r,G)t′k+1,r

is
defined over the field Q′C(t

′
k+1,r ) and its image�r(H′r,G(C)t′k+1,r

) in the symmetri-
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sed Hurwitz space Hr,G(C) is defined over a subfield Q(C, t′k+1,r ) of Q′C(t
′
k+1,r )

which can be explicitly computed taking into account the rationality property
of (C, t′k+1,r ) (for instance, if C is a tuple of rational conjugacy classes then
Q(C, t′k+1,r ) = Q(tk+1,r ). Similar fields can be defined for any field Q of chara-
cteristic 0.

2. HM-subvarieties

2.1. History behind the main theorem

This paper originates in [FV91, Proposition 1] (usually referred to as Conway and
Parker’s theorem). For any centerless finite group G, there exists an infinite (so,
in particular, non empty) family HG := (HG,i)i∈I of geometrically irreducible
varieties defined over Q such that there exists a regular realization of G over Q

if and only if HG,i(Q) �= ∅, for some i ∈ I . The RIGP thus becomes a purely
diophantine problem. The practical value of this statement starts with asking how
explicit this family of varieties is and whether it points to where such Q-rational
points might be located. The branch cycle argument shows there exists a partition
I = ∐

C IC of the index set I where C runs over all the finite rational unions
of non trivial conjugacy classes of G. For such C, the set IC is finite - possibly
empty - and the family (HG,i)i∈IC consists of all the geometrically irreducible
components of Hr,G(C) which are defined over Q (where r is the length of C).

What, more precisely, [FV91, Proposition 1] does is to exhibit an “almost”
explicit infinite subfamily H1

G := (HG,i)i∈I1 ⊂ HG. The varieties lying in H1
G

are full Hurwitz spaces HG(C) for all the finite rational unions of conjugacy
classes containing ≥ c(G) copies of each non trivial conjugacy class of G. The
constant c(G) only depends on G but we have no explicit lower bound for it -
whence the “almost”. In [F95, Th. 3.21 and Cor. 3.23], another explicit infinite
subfamily H2

G := (HG,i)i∈I2 ⊂ HG is identified. The varieties lying in H2
G are

the so-called Harbater-Mumford components which are geometrically irreducible.
We give more details on this in §2.2 below.

The ultimate goal for regular realizations ofG over Q would be to ensure that
some of the HG,i carry Q-rational points (that is, 0-dimensional geometrically
irreducible subvarieties defined over Q). From this point of view, the main result
of our paper can be regarded as an intermediate step. We show that HG,i carries
low-dimensional geometrically irreducible subvarieties HG,i,t defined over Q for
infinitely many i ∈ I2. The subvarieties HG,i,t are those obtained by fixing all the
branch points except the r(G) first ones and so, they are of dimension r(G). The
constant r(G) only depends onG and is explicitly computable. In many cases we
show that r(G) = 1, hence obtaining geometrically irreducible Q-curves on HG,i

for infinitely many i ∈ I2.
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2.2. HM-components of Hurwitz spaces

We recall here the definition and main properties of H(arbater)-M(umford) com-
ponents of Hurwitz spaces, which have been introduced by M. Fried [F95] and
then studied by P. Dèbes and M. Emsalem [DE03]. To do this, we need the notion
of H(arbater)-M(umford) type for covers of P1. Given a finite group G, an inte-
ger s ≥ 2 and a symmetric 2s-tuple C of non trivial conjugacy classes of G,
that is consisting of s pairs (Ci, C

−1
i ), any 2s-tuple in ni(C) of the form g =

[g1, ..., gs] := (g1, g
−1
1 , ..., gs, g

−1
s ) is called a Harbater-Mumford representa-

tive; we denote the set of all these 2s-tuples by hm(C). A G-cover f : X → P1
C

with invariants G,C, t is said to be of Harbater-Mumford type (a HM-G-cover
for short) if there exists a topological bouquet γ for P1(C) \ t and an 2s-tuple

g ∈ hm(C) such that BCDγ (f ) = g. A HM-component of the Hurwitz space
H2s,G(C) is the component of some HM-cover. Equivalently, it is a component
that corresponds to the orbit of some HM representative under the action of the
Hurwitz braid group H2s . The following theorem is proved in [F95], with the
assumption Z(G) = {1}, and in [DE03] without this assumption; a main tool of
these proofs is Wewer’s compactification of Hurwitz spaces [W98].

Theorem 2.1. The union HM(C) of all the HM-components of the Hurwitz space
H2s,G(C) is defined over QC. Likewise, the union HM′(C) of all the HM-compo-
nents of the Hurwitz space H′2s,G(C) is defined over Q′C.

Using Fried’s terminology, say an r-tuple C of non trivial conjugacy classes ofG
is g-complete if for any gi ∈ Ci , i = 1, ..., r , we have G =< g1, ..., gr > and an
2s-tuple C consisting of s pairs (Ci, C

−1
i ) of non trivial conjugacy classes ofG is

HM-g-complete if, when removing a pair (Ci, C
−1
i ), the remaining (2s−2)-tuple

is g-complete. Being HM-g-complete is a condition that ensures there is a single
HM-component in H′2s,G(C), as proved in [F95, Th. 3.21]. In particular, if C is
both a rational union of non trivial conjugacy classes of G and HM-g-complete,
then the HM-component HM(C) of H2s,G(C) is a geometrically irreducible vari-
ety defined over Q. Likewise, if C is both a tuple of non trivial rational conjugacy
classes ofG and HM-g-complete, then the HM-component HM′(C) of H′2s,G(C)
is a geometrically irreducible variety defined over Q.

2.3. Definition

Given a finite group G and an integer R � 4, the closed subvarieties of Hr,G,
H′r,G obtained by specializing some of the branch points are of particularly interest
when considering the regular inverse Galois problem. We will deal with special
kinds of such subvarieties - we call HM-subvarieties. More precisely, given a
symmetric 2s-tuple C = (C1, C

−1
1 , ..., Cs, C

−1
s ) of non trivial conjugacy clas-

ses of G, for any t′k+1,2s ∈ U2s−k(Q), with 1 ≤ k ≤ 2s − 1 we will say that
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HM′(C)t′k+1,2s
is the HM-subvariety associated with the data (G,C, t′k+1,2s) and

that HM(C)t′k+1,2s
:= �2s(HM′(C)t′k+1,2s

) (which is a subset of the fiber of �2s,G

above the set of all τ ∈ U2s(Q) such that tk+1,2s ⊂ τ ) is the symmetrised HM-sub-
variety associated with the data (G,C, t′k+1,2s). Finding HM-subvarieties which
are geometrically irreducible and defined over Q with k small is the aim of this
paper.

Starting from a symmetric 2s-tuple C = (C1, C
−1
1 , ..., Cs, C

−1
s ) such that there

is one single HM-component in H′2s,G(C) - or, equivalently, such that all the HM
representatives fall in one single SH2s-orbitOHM(C) - and given 1 ≤ k ≤ 2s−1,
for any t′k+1,2s ∈ U2s−k(Q), the number of geometrically irreducible components
of HM′(C)t′k+1,2s

corresponds to the number of orbits ofOHM(C)/�k,2s . Consider
the associated symmetrised HM-subvariety, HM(C)t′k+1,2s

. An obvious necessary
condition to get one of its geometrically irreducible component defined over Q is
that HM(C)t′k+1,2s

be itself defined over Q. This is the rationality condition given
by the branch cycle argument [V99, Lemma 2.8]:





−C is a rational union of conjugacy classes.

−(Ck+1, . . . ,C2s) is a rational union of conjugacy classes and

tk+1,2s ∈ U2s−k(Q).
− For any σ ∈ 	Q,Cχ(σ)

α(σ )(i) = Ci , with k + 1 ≤ i ≤ 2s where χ : 	Q→ Ẑ

is the cyclotomic character and α : GQ→S2s−k is the natural representation

induced by the action of 	Q on t′k+1,2s .

Consider the case k = 1 and assume the rationality condition above holds for
t′2,2s ∈ U2s−1(Q). Let OHM

1 (C) ∈ OHM(C)/�1,2s be the orbit of some HM-rep-
resentative under�1,2s . The starting point of our work was problem B.2 of [F95]
which asks for a sufficient condition to ensure

(C1) all the HM representatives fall in OHM
1 (C)

Our main theorem (theorem 2.3) gives such a sufficient condition ((H1) for m =
1). There is, however, a subtlety. Indeed, the following can happen (cf. comment
1 after theorem 2.3)

(S) OHM(C)/�1,2s may consist of several orbits yet one contains all the

HM-representatives.

or, equivalently, HM′(C)t′2,2s may have several geometrically irreducible compo-
nents yet one contains all the points corresponding to HM-representatives. It does
not necessarily follow this geometrically irreducible component is defined over
Q as in the proof of theorem 2.1. On the contrary, lemma 2.2 below states that, if
(S) occurs, then for generic choices of t′2,2s ∈ U2s−1(Q) none of the geometrically
irreducible components of HM′(C)t′2,2s is defined over Q.
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That is why we need a stronger condition than (H1). This is condition (H2)
in theorem 2.1. For m = 1, it ensures that HM′(C)t′2,2s remains geometrically
irreducible. This is equivalent to the transitivity condition

(C1) �1,2s acts transitively on OHM(C).

and automatically implies that HM′(C)t′2,2s is defined over Q provided t′2,2s ∈
U2s−1(Q).

Lemma 2.2. Assume (S) occurs then, for generic choices of t′2,2s ∈ U2s−1(Q)

the group 	Q acts transitively on the geometrically irreducible components of
HM′(C)t′2,2s .

Proof. Indeed, consider a birational equation H(t1, ..., t2s, Y ) = 0 of HM′(C).
Then H(t1, ..., t2s, Y ) ∈ Q[t1, ..., t2s, Y ] is absolutely irreducible. Let H(t1, ...,
t2s, Y ) =

∏
1≤i≤r Fi(t1, Y ) be the factorization of H(t1, ..., t2s, Y ) into a product

of irreducible factors in Q(t2, ..., t2s)[t1, Y ].Assume r ≥ 2 that is,H(t1, ..., t2s, Y )
splits and let z be a primitive element of the field generated over Q(t2, ..., t2s)by the
coefficients of the (Fi)1≤i≤r . The finite Galois extension Q(t2, ..., t2s, z)/Q(t2, ...,

t2s) is not trivial and we denote by h(t2, ..., t2s, Z) ∈ Q[t2, ..., t2s, Z] the irreduc-
ible polynomial of z (up to multiplication by an element of Q[t2, ..., t2s]) over
Q(t2, ..., t2s). By the Bertini-Noether theorem, there exists a Zariski closed subset
F of the hypersurface V (h) defined by h(t2, ..., t2s, Z) = 0 such that for any
(t02 , ..., t

0
2s, z

0) ∈ V (h)(Q) \ F , the polynomials (Fi(t02 , ..., t
0
2s, z

0, t1, Y ))1≤i≤r
remain irreducible in Q[t1, Y ]. Setting W := (V (h)(Q) ∩ Q2s−1 × Q) \ F ,
Hilbert irreducibility theorem states there exists a Zariski dense subset U of W
such that for any (t02 , ..., t

0
2s, z

0) ∈ U , Q(z0)/Q is a Galois extension with group
Gal(Q(z0)|Q) = Gal(Q(t2, ..., t2s, z)|Q(t2, ..., t2s)). In particular, 	Q acts tran-
sitively on the (Fi(t02 , ..., t

0
2s, z

0, t1, Y ))1≤i≤r the same way as 	Q(t2,...,t2s ) does on
the (Fi)1≤i≤r . 
�

2.4. Irreducible HM-subvarieties defined over Q

2.4.1. Statements and comments Given a groupG, for any tuple a = (a1, ..., am)

∈ Gm and any subgroup H of G, we will write

< aH >:=< {ah1
1 , ..., a

hm
m }h1,...,hm∈H >

Given a tuple A = (A1, ..., Am) of subsets of G, the symbol a ∈ A means
we consider a tuple of elements a = (a1, ..., am) with ai ∈ Ai , i = 1, ..., m.
Finally, given a tuple A = (A1, ..., Am) of conjugacy classes of G, we write
[A] = (A1, A

−1
1 , ..., Am,A

−1
m ) and [A]r for the tuple obtained by repeating r

times [A].
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Theorem 2.3. (Main Theorem) Let G be a finite group containing two tuples
A = (A1, ..., Am), B = (B1, ..., Bn) of non trivial conjugacy classes and con-
sider the following hypotheses:

(H1)






(H1.0) T here exists a ∈ A such thatG =< a,B > .

(H1.1) < a<b> > acts transitively onBi,

f or all a ∈ A,b ∈ B, i = 1, . . . , n.

(H1.2) < a<B>
i > acts transitively onAi,

f or all ai = (a1, . . . , ai−1) ∈ A1 × · · · × Ai−1, i = 2, . . . , m.

(H2) T here exists bi ∈ Bi, bj ∈ Bj such that bibj = bjbi, 1 ≤ i �= j ≤ n.
For any integer s ≥ 1 write Cs := ([A], [B]s). Then we have the following

→ (C1) IfA,B satisfy (H1) then f or s large enough, (C1) holds : all the
HM-representatives f all in one single �2m−1,2(m+sn)-orbit
OHM

2m−1(Cs)

→ (C2) If, in addition B satisfy (H2) then (C2) holds : �2m−1,2(m+sn) acts
transitively on the SH2(m+sn)-orbit OHM(Cs).

The arrows in→(C1) and→(C2) are meant to distinguish the full statements
from their conclusion parts.

Comments

1. Here is an example of (S) (that is (C1) holds but not (C2)). Consider the
direct product G := S3 × Q8 of the symmetric group of order 6 by the
quaternion group Q8. Denote by C(ν) the conjugacy class of ν-cycles in S3,
ν = 2, 3 and by Ci , Cj , Ck the conjugacy classes of i, j , k in Q8. Also set
C1 := [C(2) × {1}, C(3) × {1}], C2 := [{1} × Ci, {1} × Cj ], C = (C1,C2).
Then, one easily checks that sni(C1) and sni(C2) consists of two elements,
say g1,1, g1,2 and g2,1, g2,2 respectively and so, sni(C) = sni(C1) × sni(C2).
Furthermore, sni(Ca) only contains one HM-representative - say ga,1, a = 1, 2
so g := (g1,1, g2,1) is the only HM-representative contained in sni(C). As a
result, showing (S) amounts to showing that the�1,8-orbit of g is strictly con-
tained in its SH8-orbit. To show this, choose explicit representatives for the
ga,b, a, b = 1, 2. For instance: g1,1 = (τ, τ, c, c−1), g1,2 = (τ, τc, c, c)where
τ = (1, 2) and c = (1, 2, 3) and g2,1 = (i,−i, j,−j), g2,2 = (i, i, j, j). On
the one hand, one has SH8 · g = sni(C) (A1,3 · g1,1 = g1,2, A6,7 · g2,1 = g2,2)
and, on the other hand, one has SH8 · g = {g, (g1,2, g2,1)} (any conjugate of τ
in G acts trivially on the elements of Q8).
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2. We can now give an explicit value for the constant r(G) of the introduction.
For s ≥ 1 large enough and for any t′ := t′2m,2(m+sn) ∈ U2sn+1(Q), both
HM′(Cs)t′ and HM(Cs)t′ are geometrically irreducible of dimension 2m− 1.
In particular, when m = 1, we obtain HM-curves and condition (H1.2) is
empty. The constant r(G) mentioned in the introduction can be defined by as
the smallest integer r = 2m − 1 such that there exists A, B satisfying (H1),
(H2) with |A| = m.
Compared with [F95, theorem 3.1], theorem 2.3 usually provides lower dimen-
sional geometrically irreducible varieties. For instance, with G = M11 and
A = (8A), B = (11A) (cf. example (2) below), the former provides an 8-
dimensional variety whereas the latter provides a curve.
Also observe that the tuple Cs = ([A], [B]s) built in theorem 2.3 is far from
being unique. For instance, any tuple of the form (Cs, Bi1, B

−1
i1
, ..., Bit , B

−1
it
),

1 ≤ i1, ..., it ≤ n, t ≥ 0 also works.
3. Instead of (H1.1) and (H1.2) one can consider the stronger - but easier to check

- conditions





(H1.1+) < a<b> >= G, for all a ∈ A,b ∈ B.
(H1.2+) < a<B>

i >= G, for all ai = (a1, . . . , ai−1) ∈ A1 × · · · × Ai−1,

i = 2, . . . , m.

These lead to the following practical corollary.

Corollary 2.4. LetG be a finite group containing two tuples A = (A1, ..., Am)

∈ Cm(G) and B = (B1, ..., Bn) ∈ Cn(G) such that

(i) G =< A1 >=< B > .

(ii) (A,B) ∈ Cm+n(G) is g-complete.
(iii) T here exists bi∈Bi, bj ∈ Bj such that bibj = bjbi, 1 ≤ i �= j ≤ n.

Then, for s large enough, writing Cs := ([A], [B]s), there is a unique
SH2(m+sn)-HM-orbit OHM(Cs) and �2m−1,2(m+sn) acts transitively on it.

Proof. For any a ∈ A, b ∈ B, < a<b> > is normal in < a,b >. But by
(ii) < a,b >= G thus, < a<b> > is normal in G and, in particular, con-
tains < A1 >= G (by (i)), which implies (H1.1+). As for (H1.2+), since
< a<B>

i > is normal in < B >= G (by (i)) it contains < A1 >= G (by (i)),
which implies (H1.2+). 
�

The hypotheses of corollary 2.4 are fulfilled automatically when G is simple
and (A,B) g-complete (cf. example (2)). They also are preserved by Frattini
extensions (cf. proposition 2.7). However compared with theorem 2.3, corol-
lary 2.4 is often too restrictive (cf. examples (1) and (3))
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2.4.2. Examples The purpose of this section is to give examples of groups sat-
isfying (H1.1), (H1.2) and (H2) (condition (H1.0) is here to ensure hm(C) is
not empty and it will always be fulfilled in our examples - where either the tuple
(A,B) is g-complete or the stronger condition (H1.1+) holds). We are particularly
interested in minimizing m that is, obtaining HM-subvarieties of low dimension.

(1) Symmetric and alternating groups: Consider the symmetric group Sp where
p ≥ 5 is a prime number, A = (C(p)) and B = (C(2)) where C(i) denotes the
conjugacy class of i-cycles in G, i = 2, ..., p. For any a ∈ C(p), b ∈ C(2),
< a<b> >�< a, b >. But < a, b > is a transitive group of prime degree p,
so it is primitive [Wi84, Th.8.3] and, since it contains a 2-cycle, it is Sp [Wi84,
Th.13.3]. As a consequence< a<b> >= Ap, which acts transitively on the 2-
cycles class. Likewise, consider the alternating groupG := Ap where p ≥ 5
is a prime number, A = (C(p)) and B = (C(3)). For any a ∈ C(p), b ∈ C(3),
< a<b> >�< a, b >. But < a, b > is a transitive group of prime degree p,
so it is primitive and, since it contains a 3-cycle, it is Ap [Wi84, Th. 13.3]. So
conditions (H1) and (H2) hold.

(2) Non abelian finite simple groups: Suppose G is a non abelian finite simple
group. With the notation of corollary 2.4, observe that since G is simple
hypothesis (i) is automatically fulfilled since the groups < A1 >, < B > are
normal. So we are only left to check hypotheses (ii) and (iii). Taking n = 1,
(iii) is automatically fulfilled too. So, for a simple group G we always have
c(G) ≤ 2l(G) − 3 where l(G) denotes the minimal length of a g-complete
tuple (A1, ..., Am,B) of non trivial conjugacy classes of G.

Example 2.5. Here are examples of simple groups containing g-complete 2-
tuples of conjugacy classes.
- According to the Atlas, the Mathieu group M11 has 10 conjugacy classes:
1A, 2A, 3A, 4A, 5A, 6A, 8A, B**, 11A, B** and its maximal subgroups have
order 720, 660, 144, 120, 48. Since none of these orders is divisible by both
8 and 11, (8A, 11A) is a g-complete 2-tuple for M11. So, M11 satisfies (H1)
with A = (8A), B = (11A).

- The argument above, using the maximal subgroups given by theAtlas, works
for instance with m = 1 and
M23 with A = 7A and B = 11A, (443520, 40320, 20160, 7920, 5760, 253).
Sz(8) with A = 5A and B = 7A, (448, 52, 20, 14).
J2 with A = 5A and B = 7A, (6048, 2160, 1920, 1152, 720, 600, 336, 300,
60).
J3 with A = 5A and B = 17A, (8160, 3420, 2880, 2448, 2160, 1944, 1920,
1152).
LywithA = 37A andB = 67A, (5859.106, 5388768.103, 465.105, 299168.102,
9.106, 3849120, 699840, 1474, 666).
etc.
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- Consider the projective special linear groups L2(p) where p ≡ 3 [mod4],
p ≥ 7 is a prime number. The following theorem of Dickson [Di]: Let
p ≥ 5 a prime number, then the order of the maximal subgroups of the
projective special linear group L2(p) belongs to {p(p−1)

2 , p− 1, p+ 1, 60} if

p ≡ ±1 [mod10] and to {p(p−1)
2 , p − 1, p + 1, 24, 12} else shows the tuple

(2A,pA) is g-complete.

(3) Families of p-groups: All the assertions in the following can be found in
[S86], Chap. 2 §2 or Chap. 4 §4.

(3-1) p = 2: Then G is one of the following groups:

- Dihedral group of order 2r : D2r= < x, y|x2r−1 = y2 = 1, yxy = x−1 >.
- Special dihedral group of order 2r : S2r =< x, y|x2r−1 = y2 = 1, yxy =
x−1+2r−2

>.
- Generalized quaternion group of order 2r :Q2r= < x, y|x2r−1=y2, y−1xy =
x−1 >.
and, taking A = CGy , B = CGx , using the relations, one immediately checks
that for each a ∈ A we have B = {x, axa−1}, so condition (H1.1) is fulfilled
and, since m = n = 1, conditions (H1.2) and (H2) are empty.

(3-2) p > 2: We use the following lemma.

Lemma 2.6. Let G be a finite group with Frattini subgroup �(G). Assume
the quotient G/�(G) is abelian, then, for any x1, ..., xd ∈ G such that
G/�(G) =⊕d

i=1 < xi >, the tuple C := (CGx1
, ..., CGxd ) is g-complete.

Proof. Indeed, for any g1, ..., gd ∈ G, since G/�(G) is abelian, one has
x
gi
i = xi , i = 1, ..., r so G =< x

g1
1 , ..., x

gd
d ,�(G) > which, by the charac-

terization of the Frattini subgroup, implies G =< x
g1
1 , ..., x

gd
d >. 
�

A finite p-group G has the property that G/�(G) is an elementary abelian
p-group. Assume furthermore that �(G) = Z(G) and G/�(G) =< x >

⊕ < y >. Then any g ∈ G can be written in a unique way g = xugyvgφg =
yvgxugψg with φg, ψg ∈ Z(G) and all the elements in A := CGy are of the
form yφ, φ ∈ Z(G). So, for any a ∈ A, we have B = CGx = {aixa−i}i≥0

and, consequently, < a >⊂< a<b> > for any b ∈ B. This shows (H1.1) is
fulfilled and, once again, since m = n = 1, conditions (H1.2) and (H2) are
empty. The following groups satisfy these hypotheses:
- M(pr) =< x, y|xpr−1 = yp = 1, y−1xy = x1+pr−2

>.
- Any non abelian group of order p3. Recall that such a group is isomorphic
to D8 or Q8 if p = 2 or to M(p3) or E(p3) if p > 2, where

E(p3) < x, y|xp = yp = [x, y]p = 1, [x, y] ∈ Z(E(p3)) >
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(4) Frattini extensions: The next result is about Frattini extensions; it is related to
modular towers §4.1.2 and will be proved in 3.2. It will give us information
about regular realizations of finite unsplit extensions of a given finite group
G, which is a difficult matter, even when the groupG is known to be regularly
realized (this is the theory of embedding problems, [MMa99], Chap.V)

Proposition 2.7. (Frattini covers) Let G be a finite group satisfying (H1.0),
(H1.1+),(H1.2+) with A = (A1, ..., Am), B = (B1, ..., Bn). Then, for s large
enough, ([A], [B]s) satisfies (C1) and

→ (C3) Given a f inite F rattini coverG̃→ G, (C3) holds, that is :
f or any tuples Ã, B̃ aboveA, B, the tuple ([Ã], [B̃]s) satisf ies
(C1).

We have the following additional conclusions:

→ (C4) If the Bi, i = 1, . . . , n are p′-conjugacy classes f or a given
prime number p and G,A,B satisfy (H2) then, given a f inite
F rattini cover G̃→ G with p-group kernel, (C4) holds, that is :
there exists tuples Ã, B̃ of conjugacy classes of G̃ above A and B
such that the tuple ([Ã], [B̃]s) satisf ies (C1) and (C2).

→ (C5) If n = 1 then, given a f inite F rattini cover G̃→ G, (C5) holds,
that is : f or any tuples Ã, B̃ above A,B, the tuple ([Ã], [B̃]s)
satisf ies (C1) and(C2).

3. Group theoretical proofs

This section is devoted to the proofs of theorems 2.3 and proposition 2.7. They
rely on the following technical lemma, the proof of which is postponed to section
3.3:

Lemma 3.1. Suppose given a finite group G and a symmetric 2s-tuple C =
[C1, ..., Cs] ∈ C2s(G).

(1) For any 1 ≤ k ≤ s there exists uk ∈ �1,2s such that for any HM representative
g = [g1, ..., gs] ∈ hm(C)

uk · g = [g1, ..., g
g1
k , ..., gs]

(2) For any 2 ≤ k ≤ s and for any i = (i1, ..., ir ) with 2 ≤ i1 < i2 < ... <

ir ≤ k − 1 there exists vi,k ∈ �1,2s such that for any HM representative
g = [g1, ..., gs] ∈ hm(C)

vi,k · g = [g1, ..., g
g
gir

...gi1
1
k , ..., gs]
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(3) For any 2 ≤ k ≤ s, for any i = (i1, ..., ir ) with k + 1 ≤ i1 < i2 < ... <

ir ≤ s − 1 there exists wk,i ∈ �1,2s such that for any HM representative
g = [g1, ..., gs] ∈ hm(C)

wk,i · g = [g1, ..., g
g
gir

...gi1
1
k , ..., gs]

The underlying idea of lemma 3.1 (and of the whole proof) is that, the larger
the tuple [C2, ..., Cs] is, the larger the groups generated by the g

gir ...gi1
1 with i =

(i1, ..., ir ) as in (2) and (3) of lemma 3.1 are; our purpose is to show that under
the assumptions of theorem 2.3 these groups are large enough to act transitively
on the conjugacy classes C2, ..., Cs .

3.1. Proof of theorem 2.3

In the following, we say σ = (σ (1), ..., σ (ν)) is an ordered ν-tuple in a sub-
set � ⊂ N if σ(k) ∈ �, k = 1, ..., ν and σ(1) < σ(2) < ... < σ(ν). Given
such an ordered ν-tuple σ , we write σ + l for the translated ordered ν-tuple
(σ (1)+ l, ..., σ (ν)+ l).

3.1.1. Case m = 1 Let G be a finite group and A, B = (B1, ..., Bn) be n + 1
non trivial conjugacy classes of G.

(1) Given b = (b1, ..., bn) ∈ B, write< b >= {β1, ..., βs}; each βj can be writ-
ten as a product of say s(j) terms of the form bσk,j := bσk,j (1) · · · bσk,j (νk,j )
where σk,j = (σk,j (1), ..., σk,j (νk,j )) is an ordered tuple in {1, ..., n}, k =
1, ..., s(j), j = 1, ..., s. Setting N(b) = max{s(j)}1≤j≤s , the set

{bσ1 · · ·bσs } σ ordered tuple in {1,...,n}
s≤N(b)

contains < b >, that is, is equal to < b >. And, since by definition
< a<b> > is the subgroup generated by {ab}b∈<b>, one deduces from the
above that

< a<b> >=< {abσ1 ···bσs } σ ordered tuple in {1,...,n}
s≤N(b)

>

(2) Write Ni = |Bi |, i = 1, ..., n and N0 = max{N(b)}b∈B and set N =
N1 · · ·NnN0. Then, for any (bi,1, ..., bi,n)1≤i≤N ∈ BN there is at least one
b = (b1, ..., bn) ∈ B which is repeated N0 times among the (bi,1, ..., bi,n),
i = 1, ..., N and since N(b) ≤ N0, step (1) yields:

Lemma 3.2. There exists N := N(B) ≥ 1 depending only on B such that for any
(ui)1≤i≤nN := (bi,1, ..., bi,n)1≤i≤N ∈ BN there exists b ∈ B satisfying

< a<b> >=< {auσ(ν)···uσ(1)}σ ordered tuple in {1,...,nN} >, for each a ∈ A
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We now show that, for x ≥ N(B) + 1, the tuple Cx = ([A], [B]2x) will satisfy
(C1) provided A, B satisfy (H1) and (C2) provided B also satisfies (H2).
(H1)⇒ (C1): For any 1 ≤ k ≤ 4nx one can always find in [B]2x eitherN(B)+1
copies of [B] before k (if 2nx ≤ k ≤ 4nx) or N(B)+ 1 copies of [B] after k ( if
0 ≤ k ≤ 2nx). Let g = [a, h1, ..., h2nx] ∈ hm(Cx) be a HM-representative and
g ∈ G. We are to show that, for any 1 ≤ k ≤ 4nx, g and [a, h1, ..., h

g

k , ..., h2nx]
fall in the same orbit under �1,4nx+2. Suppose for instance 2nx ≤ k ≤ 4nx, that
is there are at least N(B)+ 1 copies of [B] before k and so, according to lemma
3.2, there is at least one n-tuple b = (b1, ..., bn) ∈ B such that < a<b> > is gen-
erated by the set {ahσ(ν)···hσ(1)}σ ordered tuple in {1,...,nx−1}. But since < a<b> > acts
transitively on the conjugacy class of hk, we can assume that g ∈< a<b> >

and, consequently, that g can be written as a product x1 · · · xs of s terms of the
form xk = ahσk(νk)···hσk(1) , where σk = (σk(1), ..., σk(νk)) is an ordered tuple in
{1, ..., nx − 1}, k = 1, ..., s. So, we are left to do the following s operations

g→ [a, h1, . . . , h
xs
k , . . . , h2nx]

→ [a, h1, . . . , h
xs−1xs
k , . . . , h2nx]

. . .

→ [a, h1, . . . , h
x1···xs−1xs
k , . . . , h2nx]

But, according to part (2) of lemma 3.1, these can be handled by applying suc-
cessively vσs+1,k+1, vσs−1+1,k+1 etc., k = 1, ..., s. If 1 ≤ k ≤ 2nx, use part (3) of
lemma 3.1 instead of part (2).
(H1) & (H2)⇒ (C2): From now on, we denote by C the tuple Cx built above
and set s = 2nx + 1. We assume furthermore (H2) is fulfilled that is, there exists
bi ∈ Bi , bj ∈ Bj such that bibj = bjbi , 1 ≤ i �= j ≤ n. We have shown that
all the HM-representatives fall in one single orbit OHM

1 (C) ∈ sni(C)/�1,2s so in
one single orbit OHM

2 (C) ∈ sni(C)/�2,2s as well. In the first place, we prove the
�2,2s HM-orbit OHM

2 (C) has the same length as the SH2s HM-one OHM(C), that
is, they coincide. In the second place we show that OHM

2 (C) = OHM
1 (C).

Condition (H2) implies SH2s leaves OHM
2 (C) globally invariant. Indeed, since

�2,2s is normal in SH2s , SH2s permutes the orbits of sni(C)/�2,2s . But, for any
HM-representative g = [g1, ..., gs] ∈ hm(C), straightforward computations give






a2i,2j · g = ([g1, . . . , gi−1], gi, (g
−1
i )

g−1
i gj , [gi+1, . . . , gj−1],

g
g−1
i

j , g−1
j , [gj+1, . . . , g2nx+1]), 2 ≤ i < j ≤ s

a2i,2j+1 · g = ([g1, . . . , gi−1], gi, (g
−1
i )

g−1
i g−1

j , [gi+1, . . . , gj−1], gj ,

(g−1
j )

g−1
j g−1

i , [gj+1, . . . , g2nx+1]), 2 ≤ i ≤ j ≤ s − 1

a2i−1,2j · g = ([g1, . . . , gi−1], g
gj
i , g

−1
i , [gi+1, . . . , gj−1], ggij , g

−1
j ,

[gj+1, . . . , g2nx+1]), 2 ≤ i ≤ j ≤ s
a2i−1,2j+1 · g = ([g1, . . . , gi−1], g

g−1
j

i , g−1
i , [gi+1, . . . , gj−1], gj ,

(g−1
j )

g−1
j gi , [gj+1, . . . , g2nx+1]), 2 ≤ i < j − 1 ≤ s − 2
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Consequently, any HM-representative g = [g1, ..., gs] ∈ hm(C)withgigj = gjgi
- such a HM representative always exists according to (H2) and the way C was
built - is fixed by ai,j that is, ai,j ·OHM

2 (C) = OHM
2 (C), 3 ≤ i < j ≤ 2s. And,

since OHM
2 (C) is a �2,2s orbit, we obviously have ai,j · OHM

2 (C) = OHM
2 (C),

i = 1, 2 < j ≤ 2s. Consequently

SH2s ·OHM
2 (C) = OHM

2 (C)

⊃ SH2s · hm(C) = OHM(C)

We now show that OHM
1 (C) = OHM

2 (C). As above, �1,2s being normal in
�2,2s entails that�2,2s permutes the orbits of sni(C)/�1,2s . Thus, it is enough to
show that for any i = 3, ..., 2s there exists g ∈ hm(C) with a2,i · g ∈ OHM

1 (C).
But, for any HM-representative g = [g1, ..., gs] ∈ hm(C) straightforward com-
putations give





a−1
2,2i+1 · g = (g1, (g

−1
1 )gi , [g2, . . . , gi−1], gi, (g

−1
i )

g1, [gi+1, . . . , gs])

= (gg
−1
i

1 , g−1
1 , [g

g−1
i

2 , . . . , g
g−1
i

i−1], gi, (g
−1
i )

g−1
i g1, [g

g−1
i

i+1, . . . , g
g−1
i
s ])

a−1
2,2i · g = (g1, (g

−1
1 )g

−1
i [g2, . . . , gi−1], g

g−1
i g1

i , g−1
i , [gi+1, . . . , gs])

= (ggi1 , g
−1
1 [ggi2 , . . . , g

gi
i−1], gg1

i , g
−1
i , [ggii+1, . . . , g

gi
s ])

and, by the proof of (H1)⇒ (C2), there exists ui,g, vi,g ∈ �1,2s such that
{

ui,g · g = [g1, g
g−1
i

2 , . . . , g
g−1
i

i−1, gi, g
g−1
i

i+1, . . . , g
g−1
i

2nx+1]
vi,g · g = [g1, g

gi
2 , . . . , g

gi
i−1, gi, g

gi
i+1, . . . , g

gi
2nx+1]

One then checks that
{
a1,2iui,g · g = a−1

2,2i+1 · g
a1,2i−1vi,g · g = a−1

2,2i · g
which yields the expected result observing that a1,2iui,g, a1,2i−1vi,g ∈ �1,2s .


�

3.1.2. Case m ≥ 2 Keeping the same notation as above the 2s-tuple we are
going to consider will be once again of the form Cx = ([A], [B]2x) with x large
enough. The following lemma is a straightforward generalization of lemma 3.2.

Lemma 3.3. LetG be a finite group and consider two tuples A = (A1, ..., Am) ∈
Cm(G), B = (B1, ..., Bn) ∈ Cn(G). There exists N := N(B) ≥ 1 depending only
on B such that for any (ui)1≤i≤nN := (bi,1, ..., bi,n)1≤i≤N ∈ BN there exists b ∈ B
satisfying

< a<b> >=< {auσ(ν)···uσ(1)i } 1≤i≤m
σ ordered tuple in {1,...,nN}

>, for each a ∈ A
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(H1)⇒ (C1):As in section 3.1.1, if x ≥ N+1, condition (H1.1) ensures two HM-
representatives of the form [a1, ..., am, h1, ..., h2nx] and [a1, ..., am, h

g1
1 , ..., h

g2nx
2nx ]

fall in the same orbit under �2m−1,4nx+2m. To prove it, just observe the method
used to construct the elements uk, vi,k, wk,i of�1,2s in lemma 3.1 gives similarly
elements uik, v

i
i,k, w

i
k,i of �2i−1,2s such that






uik · g = [g1, . . . , g
gi
k , . . . , gs], 1 ≤ i < k ≤ s

vii1<...<ir ,k · g = [g1, . . . , g
g
gir

...gi1
i

k , . . . , gs],

i = (i1, . . . , ir ) with i < i1 < i2 < . . . < ir < k

wik,i1<...<ir · g = [g1, . . . , g
g
gir

...gi1
i

k , . . . , gs],

i = (i1, . . . , ir ) with i < k < i1 < i2 < . . . < ir

Now, let 2 ≤ i ≤ m and g ∈ G. We are left to show g = [a1, ..., am, h1, ..., h2nx]
and [a1, ..., a

g

i , ..., am, h
g1
1 , ..., h

g2nx
2nx ] fall in the same orbit under �2m−1,4nx+2m.

First note that there exists a constantM ≥ 1 such that any element of < B > can
be written as the product of at mostM elements of ∪1≤i≤nBi . Up to increasing the
number x of copies of B0, we assume 2x ≥ M . Since< a<B>

i > acts transitively
on the conjugacy class of ai , we can assume that g ∈< a<B>

i > and consequently

that g can be written as the product x1 · · · xs of s terms of the form xk = abk,νk ···bk,1ik
,

where ik ∈ {1, ..., i−1}, bk,j ∈ ∪1≤i≤nBi , j = 1, ..., νk and νk ≤ M , k = 1, ..., s.
So, this time, we have to carry out the following s operations

g→ [a1, . . . , a
xs
i , . . . , am, h1, . . . , h2nx]

→ [a1, . . . , a
xs−1xs
i , . . . , am, h1, . . . , h2nx]

. . .

→ [a1, . . . , a
x1···xs−1xs
i , . . . , am, h1, . . . , h2nx]

Since 2x ≥ M , one can always find (h′1, ..., h
′
2nx) ∈ B2x and s ordered tuples

σk = (σk(1), ..., σk(νk)) in {1, ..., 2nx}, k = 1, ..., s such that bk,i = h′σk(i),
i = 1, ..., νk, k = 1, ..., s. But, as already noticed, [a1, ..., am, h1, ..., h2nx] and
[a1, ..., am, h

′
1, ..., h

′
2nx] fall in the same orbit of�2m−1,4nx+2m. Then apply succes-

sively the elementswisσs+m,i ,w
is−1
σs−1+m,i etc., k = 1, ..., r to [a1, ..., am, h

′
1, ..., h

′
2nx]

in order to obtain [a1, ..., a
g

i , ..., am, h
′
1, ..., h

′
2nx]. To conclude, use once again

that [a1, ..., a
g

i , ..., am, h
′
1, ..., h

′
2nx] and [a1, ..., a

g

i , ..., am, h1, ..., h2nx] fall in the
same orbit of �2m−1,4nx+2m.
(H1) & (H2)⇒ (C2): This part of the proof remains unchanged since (H2) en-
sures SH4nx+2m leaves OHM

2m−1(Cx) globally invariant.
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3.2. Proof of proposition 2.7

We retain the notation of 3.1.1, 3.1.2 and of proposition 2.7. Consider the integer
N := N(B) ≥ 1 defined in lemma 3.3. Then, according to (H11.+), for any
(ũi)1≤i≤nN := (b̃i,1, ..., b̃i,n)1≤i≤N ∈ B̃N there exists b̃ ∈ B̃ satisfying

G =< {s(ãũσ(ν)···ũσ (1)i )} 1≤i≤m
σ ordered tuple in {1,...,nN}

>, for each ã ∈ Ã

But, s : G̃→ G being a Frattini cover, this entails

G̃ =< {ãũσ (ν)···ũσ (1)i } 1≤i≤m
σ ordered tuple in {1,...,nN}

>, for each ã ∈ Ã

So we can always take N = N(B) = N(B̃). Now, recall that in (H1)⇒ (C1) &
(C2) we have also imposed that 2x ≥ M . The Frattini property shows M does
not have to be increased when passing from G to G̃. Indeed, (H1.2+) means that

G =< {s(ãβ̃1···β̃l
k )} 1≤k≤i−1

β̃j ∈∪1≤i≤nB̃i , l≤M
> for each ãi ∈ Ã1 × · · · × Ã1, i = 2, ..., m.

which entails that

G̃ =< {ãβ̃1···β̃l
k )} 1≤k≤i−1

β̃j ∈∪1≤i≤nB̃i , l≤M
> for each ãi ∈ Ã1 × · · · × Ã1, i = 2, ..., m.

This and section 3.1.2 show the 4nx + 2m-tuple C̃ one gets replacing Ai by Ãi ,
i = 1, ..., n and Bi by B̃i , i = 1, ..., m satisfies (C1). As for the second part of
proposition 2.7, we are left to show B̃ can be chosen in such a way that the com-
mutativity conditions (H2) are still fulfilled. For this, choose bi ∈ Bi and apply
Schur-Zassenhauss lemma to the short exact sequence

1→ ker(s)→ s−1(< bi >)
s→< bi >→ 1

which splits uniquely up to conjugation, defining thus a single conjugacy class B̃i
aboveBi the elements of which have the same order as those ofBi , i = 1, ..., n. Let
us show the n-tuple B̃ = (B̃1, ..., B̃n) works. For any 1 ≤ i �= j ≤ n let bi ∈ Bi ,
bj ∈ Bj such that bibj = bjbi so, in particular < bi, bj >�< bi > × < bj >.
Once again Schur-Zassenhauss lemma implies the short exact sequence

1→ ker(s)→ s−1(< bi, bj >)
s→< bi, bj >→ 1

splits uniquely up to conjugation and, in particular that, for any section σ of s we
have σ(bi)σ (bj ) = σ(bj )σ (bi) with σ(bi) ∈ B̃i , σ(bj ) ∈ B̃j . This proves (1)
and (2) is straightforward since n = 1.

3.3. Proof of lemma 3.1

We proceed in two steps:
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3.3.1. First step For i = 1, ..., 2s, set

Bi1,2s =
{
Q

2α1+1
1 Q

2α2+1
2 ...Q

2αi−1+1
i−1 Q

2γi
i Q

2βi−1+1
i−1 ...Q

2β2+1
2 Q

2β1+1
1

}

α1,...,αi−1∈Z
β1,...,βi−1∈Z
γi∈Z−{0}

and B1,2s := ⋃2s
i=1 Bi1,2s . Then B1,2s is contained in �1,2s . Indeed, each of the

Bi1,2s , i = 1, ..., 2s is. For i = 1, this is obvious. For 2 ≤ i ≤ 2s, this results from
the following equality: for any α1, ..., αi−1 ∈ Z, β1, ..., βi−1 ∈ Z, γi ∈ Z− {0}
a
α2
1,2a

α3
1,3...a

αi−1
1,i−1a

γi
1,ia

βi−1+1
1,i−1 ...a

β3+1
1,3 a

β2+1
1,2 = Q2α1+1

1 Q
2α2+1
2 ...Q

2αi−1+1
i−1 Q

2γi
i Q

2βi−1+1
i−1

...Q
2β2+1
2 Q

2β1+1
1

one can check computing “from the center”, i.e.:

a
γi
1,ia

βi−1+1
1,i−1 = Q1 . . .Qi−1Q

2γi
i Q

2βi−1+2−1
i−1 Q−1

i−2 . . .Q
−1
1

a
αi−1
1,i−1(a

γi
1,ia

βi−1+1
1,i−1 ) = aαi−1

1,i−1Q1 . . .Qi−1Q
2γi
i Q

2βi−1+1
i−1 Q−1

i−2 . . .Q
−1
1

= Q1 . . .Qi−2Q
2αi−1+1
i−1 Q

2γi
i Q

2βi−1+1
i−1

Q−1
i−2 . . .Q

−1
1

(a
αi−1
1,i−1(a

γi
1,ia

βi−1+1
1,i−1 ))a

βi−2+1
1,i−2 = Q1 . . .Qi−2Q

2αi−1+1
i−1 Q

2γi
i Q

2βi−1+1
i−1

Q−1
i−2 . . .Q

−1
1 a

βi−2+1
1,i−2

= Q1 . . .Qi−2Q
2αi−1+1
i−1 Q

2γi
i Q

2βi−1+1
i−1 Q

2βi−2+2−1
i−2

Q−1
i−3 . . .Q

−1
1

etc. . . .

3.3.2. Second step We use now elements of B1,2s to build uk, vi,k et wk,i .
Set αk := Q2k−2Q

2
2k−1Q2k−2, k = 2, ..., s and note that

αk.(h1, ..., h2k−3, g, gk, g
−1
k , h2k+1, ..., h2s)

= (h1, ..., h2k−3, g, g
g

k , (g
g

k )
−1, h2k+1, ..., h2s)

(1) Construction of uk:
Set βk := Q2k−3...Q1, k = 2, ..., s, then, for any g = [g1, ..., gs] ∈ hm(C),
-β2 · g = (g−1

1 , g1, [g2, ..., gs]).
-β3 · g = (g−1

1 , g
g1
2 , (g

g1
2 )
−1, g1, [g3, ..., gs]).

-By induction, observing that βk+1 = Q2k−1Q2k−2βk, k ≥ 1, conclude that

βk · g = (g−1
1 , [gg1

2 , ..., g
g1
k−1], g1, [gk, ..., gs])

So, setting uk = β−1
k αkβk ∈ B1,2s , one gets :

uk · g = β−1
k · (αk · (g−1

1 , [gg1
2 , . . . , g

g1
k−1], g1, [gk, . . . , gs])

= β−1
k · (g−1

1 , [gg1
2 , . . . , g

g1
k−1], g1, [gg1

k , . . . , gs])
= β−1

k · (βk · [g1, g2, . . . , gk−1, g
g1
k , gk+1, . . . , g2s])

= [g1, g2, . . . , gk−1, g
g1
k , gk+1, . . . , g2s]
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In the following, given i = (i1, ..., ir ) with 1 < i1 < ... < ir ≤ s and

g = [g1, ..., gs] ∈ hm(C), we will write γ (i, j) = ggij ···gi11 , j = 1, ..., r .
(2) Construction of vi,k:
In this section, given i = (i1, ..., ir ) with 1 < i1 < ... < ir ≤ s and g =
[g1, ..., gs] ∈ hm(C), we will write gi,0 = [gg1

2 , ..., g
g1
i1−1] and gi,j = [gγ (i,j)ij+1 , ...,

g
γ (i,j)

ij+1−1], j = 1, ..., r .

For any 1 ≤ i < j ≤ s, write γi<j := Q−1
2j−1Q2j−2 · · ·Q2i , which acts this way:

γi<j .(h1, . . . , h2i−1, g, [gi+1, . . . , gj ], h2j+1, . . . , h2s)

= (h1, . . . , h2i−1, [ggi+1, . . . , g
g

j−1], ggj , g
−1
j , g

gj , h2j+1, . . . , h2s)

and for any i = (i1, ..., ir ) with 1 < i1 < ... < ir ≤ s set γ (1)i := γir−1<ir ◦ · · · ◦
γi1<i2 ◦ γ1<i1 ◦Q1. Then, for any g = [g1, ..., gs] ∈ hm(C):
- For any 1 < i1 ≤ s, γ (1)(i1)

· g = γ1<i1 · g = (g−1
1 , [gg1

2 , ..., g
g1
i1−1], gg1

i1
, g−1

i1
, g

gi1
1 ,

[gi1+1, ..., gs]).
- By induction, observing that γ (1)(i,ir+1)

= γir<ir+1γ
(1)
i , i = (i1, ..., ir ) with 1 <

i1 < ... < ir < s, ir < ir+1 < s, r ≥ 1, conclude that

γ
(1)
i · g = (g−1

1 , gi,0, g
g1
i1
, g−1

i1
, gi,1, ..., g

γ (i,r−2)
ir−1

, g−1
ir−1
, gi,r−1, g

γ (i,r−1)
ir

, g−1
ir
,

γ (i, r), [gir+1, ..., gs])

Finally, given i = (i1, ..., ir ), k with 1 < i1 < ... < ir < k ≤ s write γ (2)i,k :=
Q2k−3...Q2ir .γ

(1)
i and compute

γ
(2)
i,k · g = (g−1

1 , gi,0, g
g1
i1
, g−1

i1
, gi,1, ..., gi,r−1, g

g(i,r−1)
ir

, g−1
ir
, [gg(i,r)

ir+1 , ..., g
g(i,r)
k−1 ], g

(i, r), [gk, ..., gs])

So, setting

vi,k = (γ (2)i,k )
−1αkγ

(2)
i,k ∈ B1,2s

for any g = [g1, ..., gs] ∈ hm(C) one gets:

vi,k · g = (γ (2)i,k )
−1γ

(2)
i,k · [g1, . . . , gk−1, g

g
gir

...gi1
1
k , gk+1, . . . , gs]

= [g1, . . . , gk−1, g
g
gir

...gi1
1
k , gk+1, . . . , gs]

(3) Construction of wk,i:
In this section, given i = (i1, ..., ir ) with 1 < i1 < ... < ir ≤ s and g =
[g1, ..., gs] ∈ hm(C), we will write gi,0 == [gγ (i,r)

−1

2 , ..., g
γ (i,r)−1

i1−1 ] and gi,j =
[gγ (i,r)

−1

ij+1 , ..., g
γ (i,r)−1

ij+1−1 ], j = 1, ..., r .
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For any 2 ≤ i < j ≤ s, write δi<j := Q−1
2j−3 · · ·Q−1

2i−1Q2i−2, which acts this
way:

Si<j · (hi, . . . , hzi−3, g, [gi, . . . , gj−1], h2j+1, . . . , h2s)

= (hi, . . . , h2i−3, gi
g, gi−1, [gi+1, . . . , gj−1], ggi, h2j+1, . . . , h2s)

and for any i = (i1, ..., ir ) with 1 < i1 < ... < ir ≤ s set δ(1)i := δir<ir+1 ◦
δir−1<ir ◦ · · · ◦ δi1<i2 ◦ δ1<i1 ◦Q1. Then, for any g = [g1, ..., gs] ∈ hm(C):

δ
(1)
i · g = (g−1

1 , [g2, . . . , gi1−1], gg1
i1
, g−1

i1
, [gi1+1, . . . , gi2−1], . . . ,

g
γ (i,r−2)
ir−1

, g−1
ir−1
, [gir−1+1, . . . , gir−1],

g
γ (i,r−1)
ir

, g−1
ir
, γ (i, r − 1), [gir+1, . . . , gs])

Next, set δ(2)i := Q−1
1 · · ·Q−1

2ir−1 · δ(1)i ∈ B2s and compute

δ
(2)
i · g = (γ (i, r), (g−1

1 )γ (i,r)
−1
, gi,0, (g

g1
i1
)γ (i,r)

−1
, (g−1

i1
)γ (i,r)

−1
, gi,1, . . . ,

(g
γ (i,r−2)
ir−1

)γ (i,r)
−1
, (g−1

ir−1
)γ (i,r)

−1
,

gi,r−1, (g
γ (i,r−1)
ir

)γ (i,r)
−1
, (g−1

ir
)γ (i,r)

−1
, [gir+1, . . . , gs])

Finally, given i = (i1, ..., ir ), k with 1 < k < i1 < ... < ir ≤ s write δ(3)k,i :=
eiαir ek,ir where






ei = Q1 · · ·Q2i1−3Q
−1
2i1−2Q2i1−1 · · ·Q2ir−1−3

Q−1
2ir−1−2Q2ir−1−1 · · ·Q2ir−3

ek,ir = Q2ir−3 · · ·Q2kQ
−1
2k−1Q

−1
2k−2Q2k−3 · · ·Q1

then, δ(3)k,i ∈ B2s , which entails w0
k,i := δ

(3)
k,i · δ(2)i ∈ �1,2s and for any g =

[g1, ..., gs] ∈ hm(C) one gets

w0
k,i · g = [g1, ..., gk−1, g

(g−1
1 )

gir
···gi1

k , gk+1, ..., gs]

As a result, wk,i = (w0
k,i)
|<g1>|−1 ∈ �1,2s works. Note that, this is the only step

in the proof of lemma 3.1 where we use the assumptionG is finite. Actually, parts
(1) and (2) of lemma 3.1 remain true without this assumption and part (3) only
requires g1 to be of finite order.
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4. The regular inverse Galois problem with fixed branch points

4.1. General strategy

4.1.1. For a finite group We would like now to apply theorem 2.3 to the regular
inverse Galois problem with fixed branch points. Consider a field Q of charac-
teristic 0, a finite group G, a symmetric 2s-tuple C = [C1, ..., Cs] ∈ C2s(G) and
suppose that (C1) and (C2) from theorem 2.3 are satisfied that is, there exists
1 ≤ l ≤ 2s such that all the HM representatives of sni(C) fall in one single
SH2s-orbitOHM(C) and�l,2s acts transitively on this orbit. Then, HM′(C) (resp.
HM(C)) is a geometrically irreducible variety defined over Q′C (resp. over QC)
and for any t′l+1,2s ∈ U2s−l+1(Q), the HM-subvariety HM′(C)t′l+1,2s

(resp. the
symmetrised HM-subvariety HM(C)t′l+1,2s

) is a smooth geometrically irreduc-
ible variety of dimension l defined over the finite extension Q′C(t

′
l+1,2s)/Q (resp.

the finite extension Q(C, t′l+1,2s)/Q). So the problem is reduced to studying the
rational points of a smooth geometrically irreducible variety V of dimension l
defined over a finite extension k0/Q.

This situation is particularly adapted to the Local-global principle [Mo89],
[GPR97]. Let Q be a global field and � a nonempty finite set of places. Denote
by Q�/Q the maximal extension of Q in a separable closure Qs/Q which is
totally split at each v ∈ �. The local-global principle for varieties states that,
for any smooth geometrically irreducible Q�-variety V , if V (Qv) �= ∅ for each
embedding Q� ↪→ Qv and each v ∈ � then V (Q�) �= ∅. This applies in par-
ticular to Q = Q and � = {p}, where p is a prime number (resp. ∞) that is,
Qp = Qp, Q� = Qtp (resp. Q∞ = R, Q� = Qtr ).

So, using the modular interpretation of Hurwitz spaces we can state, for in-
stance:

Proposition 4.1. Fix a finite group G, a symmetric 2s-tuple C = [C1, ..., Cs] ∈
C2s(G) and an integer 1 ≤ l ≤ 2s. Let Q be a global field and � a nonempty
finite set of places. Assume

(Trans) All the HM representatives f all in one single SH2s

-orbitOHM(C) and �l,2s acts transitively on this orbit.

(LocReal) T here exists a tuple t′�,l+1,2s ∈ U2s−l(Q) such that
Q(C, t′�,l+1,2s) ⊂ Q and, f or each v ∈ �, there exists a
HM G-cover f def ined over Qv with invariants G,

C(t′f , t′�,l+1,2s) (where tf ∈ Ul(Qv) depends on f ).

Then there exists a HM G-cover f defined over Q� with invariants G,C and
branch points (t′f , t′�,l+1,2s) (where tf ∈ Ul(Q�) depends on f ).

Proof. In terms of Hurwitz spaces, condition (Trans) implies that HM(C) is a geo-
metrically irreducible variety defined overQ and that for any t′l+1,2s ∈ U2s−l(Q),
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HM(C)t′l+1,2s
remains geometrically irreducible. Furthermore, according to condi-

tion (LocReal), there exists t′�,l+1,2s ∈ U2s−l(Q) such that HM(C)t′�,l+1,2s
(Qv)

noob

�= ∅, v ∈ � with Q(C, t′�,l+1,2s) ⊂ Q. So, since HM(C)t′�,l+1,2s
is smooth, geo-

metrically irreducible and defined over Q, the local-global principle entails that
HM(C)t′�,l+1,2s

(Q�) �= ∅, which is the expected conclusion when, for instance,
Z(G) = {1}. Else, the local-global principle should be applied to the global
descent variety DHM

t′�,l+1,2s
[DDoMo04] associated with HM(C)t′�,l+1,2s

instead of

HM(C)t′�,l+1,2s
itself. Indeed, one hasDHM

t′�,l+1,2s
(Qv) �= ∅, v ∈ �. SinceDHM

t′�,l+1,2s
is

smooth geometrically irreducible and defined over Q, the local-global principle
yields DHM

t′�,l+1,2s
(Q�) �= ∅ or, equivalently, HM(C)t′�,l+1,2s

(Q�)noob �= ∅. 
�

Remark 4.2. Existentially closed extension analog. Recall a field Q is said to be
existentially closed in a regular extension �/Q if for any smooth geometrically
irreducible Q-variety V , V (�) �= ∅ entails V (Q) �= ∅. For instance a large
fieldQ is existentially closed inQ((X))/Q [P96]. Thus, an analog of proposition
4.1 can be stated for this situation, more precisely: Let Q be a field existentially
closed in a regular extension �/Q. Fix a finite group G, a symmetric 2s-tuple
C = [C1, . . . , Cs] ∈ C2s(G) and an integer 1 ≤ l ≤ 2s. Assume (Trans) and

(LocReal) T here exists aHM G-cover def ined over k with
invariants G,C and branch points t′ ∈ U2s(Q) such that

Q(C, t′l+1,2s) ⊂ Q.
Then there exists a HM G-cover f defined over k0 with invariantsG,C and branch
points (t′f , t′l+1,2s) (where tf ∈ Ul(Q) depends on f ).

4.1.2. For a projective system of finite groups The above strategy can also be
developed for a complete projective system of finite groups (Gk+1 � Gk)k≥0.
Indeed, assume there exists a projective system (Ck = [Ck,1, ..., Ck,s])k≥0 of
symmetric tuples Ck ∈ C2sk (Gk) and an integer 1 ≤ l ≤ 2s0 such that (C1) and
(C2) from theorem 2.3 are satisfied at each level k ≥ 0. Then (HM′(Ck+1) →
HM′(Ck))k≥0 (resp. (HM(Ck+1) → HM(Ck))k≥0) is a tower of geometrically
irreducible varieties defined over ∪k≥0Q

′
Ck

(resp. over Q) such that for any pro-

jective system of branch points (t′k)k≥0 ∈ lim←− U2sk−l(Q) the corresponding tower

(HM′(Ck+1)t′k+1
→ HM′(Ck)t′k )k≥0 (resp. symmetrised tower (HM(Ck+1)t′k+1

→
HM(Ck)t′k )k≥0) is a tower of geometrically irreducible l-dimensional varieties de-
fined over∪k≥0Q

′
Ck
(t′k) (resp.∪k≥0Q(Ck, t′k)). Theorem 4.1 of [DE03] states that,

given a complete projective system of finite groups (Gk+1 � Gk)k≥0, (Ck)k≥0

can always be built in such a way that (C1) is fulfilled for any k ≥ 0 and that, for
any henselian field H of characteristic 0 with residue characteristic either p = 0
or p > 0 not dividing any of the |Gk|, k ≥ 0 and containing all the prime-to-p
roots of 1, lim←− HM(Ck)(H)

noob �= ∅. We would like to obtain the same kind of
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results replacing the towers of HM-components by towers of HM-subvarieties in
order to apply the profinite version of proposition 4.1.

We will deal with modular towers [F95] and some towers of Hurwitz spaces
associated with modular towers we call associated central towers. The end of this
section is devoted to describing the construction of these objects which are the
main motivation for proposition 2.7.

a/ Modular towers: Fix a finite group G and a prime number p dividing |G|.
Consider then the universal p-Frattini cover of G, pφ̃ : pG̃ → G (cf. [F95],
part II). Since ker(pφ̃) is a free pro-p group, its Frattini series, defined inductively
by ker0 = ker(pφ̃), ker1 = kerp

0[ker0, ker0], . . . , keri = kerp
i−1[kern, kern], . . . ,

is a fundamental system of neighbourhoods of 1. This provides a complete pro-
jective system of finite groups (k+1

p G̃ �k
p G̃)k≥0 with k

pG̃ := pG̃/kerk, k ≥ 0

such that pG̃ = lim←−
k
pG̃. Furthermore, for any k ≥ 0 and any p’-conjugacy

class Ck of kpG̃, there exists a unique conjugacy class Ck+1 of k+1
p G̃ above Ck

with o(Ck+1) = o(Ck) [F95, lemma 3.7]. As a result, if G is p-perfect (that is
generated by elements of prime-to-p order), any tuple of p’-conjugacy classes
C0 = (C0,1, . . . , C0,r ) ∈ Cr (G) with hm([C0]) �= ∅ defines a unique projective
system (Ck = (Ck,1, . . . , Ck,r ))k≥0 such that for all k ≥ 0, o(Ck,i) = o(Ck,0),
i = 1, . . . , r , hm([Ck]) �= ∅ (Frattini property) and Ck has the same rationality
properties as C0

3. The corresponding projective system of HM-varieties

(HM′([Ck+1])→ HM′([Ck]))k≥0

is called the HM-modular tower associated with the data (G, [C0], p). As usual,
(HM([Ck+1]) → HM([Ck]))k≥0 will be called the symmetrised HM-modular
tower associated with the data (G, [C0], p).

b/ Associated central towers: To a given HM-modular tower, one can associate
a family of Hurwitz towers we call associated central towers. For this, recall the
classical following results about universal central extensions:

– If G is perfect (that is, G = [G,G]) then, by Schur’s theorem, the universal
central extension Ĝ � G of G exists; furthermore, it is finite, Frattini and its
kernel is the Schur Multiplier M(G) of G.

3 Indeed, for any k ≥ 1, [kpG̃ : G] = prk so, for any q ≥ 1, q is prime to |kpG̃| if and

only if q is prime to |G|. As a result, for any q ≥ 1 prime to |kpG̃| and for any 1 ≤ j ≤ r ,
C
q

k,j is the only conjugacy class above Cqj with elements of the same order as those of Cqj . In
particular, for any q ≥ 1 prime to |G|, if σq ∈ Sr satisfies Cq = (Cσq(1), . . . , Cσq (r)) then
Cq

k = (Ck,σq (1), . . . , Ck,σq (s)).
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– If G is q-perfect for some prime q dividing |G| then the universal central q-
extension q̂G � G ofG exists; furthermore, it is finite, Frattini and its kernel
is the q-part M(G)q of the Schur Multiplier M(G) of G (cf. [BF02], §3.6).

We keep the above notation, assuming furthermore that G is q-perfect for some
prime q �= p dividing |G|. Denote by q̂ the functor “universal q-central

extension” and consider the projective system (
̂q(k+1
p G̃) � q̂ (kpG̃))k≥0. For each

k ≥ 0 let Ak be the set of all symmetric 2r-tuples of conjugacy classes of q̂ (kpG̃)
above [Ck]. Then (Ak+1 → Ak)k≥0 is a projective system of non empty finite
sets, so its projective limit is non empty. In other words, there exists a projec-
tive system (q̂[Ck])k≥0 of symmetric g-complete 2r-tuples of conjugacy classes
above ([Ck])k≥0. Such a system defines a tower of Hurwitz spaces covering the
HM-modular tower associated with the data (G, [C], p) we call an associated
q-central tower. It cannot be defined uniquely in general except if C0,1, . . . , C0,r

(and thus, Ck,1, . . . , Ck,r , k ≥ 0) are also q’-conjugacy classes, in which case, by
Schur-Zassenhauss, the associated q-central tower can be defined uniquely with,
furthermore, the property that q̂[Ck] has the same rationality property as [Ck],
k ≥ 0 and, consequently that the associated q-central tower is defined over the
same field as the original modular tower. In general, if the original modular tower
is defined over k ⊂ Q, an associated q-central tower is defined over a subfield

of k(e
2πi

e(M(G))q ) where e(M(G))q denotes the q-part of the exponent of the Schur
multiplierM(G) ofG. Indeed, one has e(M(kpG̃)| e(kpG̃) with e(kpG̃) = prke(G)
thus e(M(kpG̃))q = e(M(G))q .

If G is perfect, one can carry out the same construction with the functor
“universal central extension”, ̂, but the resulting associated central towers are
not necessarily defined over a finite extension of k since {e(M(kpG̃))}k≥0 is not
necessarily bounded.

Theorem 2.3 and proposition 2.3 give group-theoretical conditions to ensure
the transitivity condition (Trans) holds. Sections 4.2 and 4.3 are devoted to prove
the local realization condition (LocReal) for fields like R, Qp. As a result we
can give explicit forms of proposition 4.1 and its profinite analog: theorems
4.4 and 4.5. Theorems 1 and 2 from the introduction are special cases of these
results.

4.2. (RIGP/t2 ⊂ t) over Q�

4.2.1. G-covers over a complete field of characteristic 0 We start with a pre-
liminary paragraph about the regular realization of finite groups over complete
fields satisfying some additional technical conditions that we will need for our
construction.
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Let k be a complete discrete valued field of characteristic 0 and of residue char-
acteristicp.The main tools to deal with G-covers over k are formal geometry [H87]
or rigid geometry [L95], [P94]. Given a symmetric 2s-tuple C = [C1, , ..., Cs] ∈
C2s(G), these methods provide a construction of G-covers defined over Qp with
invariants G, C, t ∈ U2s(Q). However, it is not obvious these G-covers are HM
G-covers - and, in general, they are not. For a prime p not dividing |G|, some
technical assumptions on the branch points - conditions (*) and (**) below - are
necessary to ensure they are [DE03] and for primes p dividing |G|, the prob-
lem remains open (because of the possible bad reduction of Hurwitz spaces for
these primes). Suppose given t = {x1, y1, ..., xs, ys} ∈ U2s(k) and consider the
conditions

(∗) xi, yi lie in the same coset, i = 1, . . . , s and x1, . . . , xs
lie in pairwise distinct cosets.

(∗∗) |xi − yi | < |xi − xj ||p|
1

p−1 , 1 ≤ i �= j ≤ s
(with the convention |p| 1

p−1 = 1ifp = 0).

where a, b ∈ k lie in the same coset means that either |a|, |b| ≤ 1 and |a−b| < 1
or |a|, |b| > 1. We will sometimes write ζn := e

2πi
n , n ≥ 2 in the following.

Our purpose here is to build HM G-covers defined over k, with a totally k-
rational fiber above some unramified k-rational point and with a Q-rational branch
point divisor or - at least - a k0-rational branch point divisor where k0/Q is an
explicitly computable cyclotomic finite extension. If we impose for instance that
(x1, ..., xt ) ∈ U t (Q) then the second part of condition (*) can’t be satisfied if
t > p + 1. This difficulty can be overcome by adjoining roots of 1 to k; we
explain precisely how below (Lemma 4.3).

The statement and proof of lemma 4.3 being rather technical, we first explain
how we are going to proceed. As usual, the method consists in glueing cyclic
G-covers in an appropriate way. We are going to use the rigid glueing procedure.
Given four integers n1, n2 ≥ 2 and m1, m2 ≥ 1, for i = 1, 2 list the elements
of (Z/nmii Z)� as εui,j , where ε = ±1, j = 1, . . . , φ(nmii )/2 and φ is the Euler
function. Consider then the two cyclic G-covers fi : Xi → P1

Q
with group <

gi >= Z/niZ, inertia canonical invariant ({gεui,ji }, {g−εui,ji })
j=1,... ,φ(n

mi
i )/2, ε=±1

and branch points ti
′=(xεi,j :=ai+ζ

εui,j

n
mi
i

, yεi,j :=ai+a+ζ
−εui,j
n
mi
i

)
j=1,... ,φ(n

mi
i )/2, ε=±1),

i = 1, 2 where a ∈ Q is chosen in such a way that |a| < min{1, |p| 1
p−1 } and

a1, a2 ∈ Q are translation terms we will specify below. Each of these two G-
covers is defined over Q with a Q-rational unramified point the fiber of which
is totally Q-rational [Des95] and is a HM G-cover. But to assert the G-cover
obtained by glueing f1 ×Q k and f2 ×Q k will still be a HM G-cover, we have
to check that (t1′, t2′) satisfy conditions (*) and (**) as well. This will occur for
instance if |a1|, |a2|, |a1−a2| < 1 provided nm1

1 �= nm2
2 . So we just have to choose
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m1,m2 ≥ 1, a1, a2 ∈ Q this way. Given any integer m ≥ 1, we will denote by
Ratm the rationalization operator which to each conjugacy class C of a finite
group G associates the rational union of conjugacy classes

Ratm(C) := (Cεui , C−εui )i=1,... ,φ(o(C)m)/2, ε=±1

where {±ui}1≤i≤φ(o(C)m)/2 = (Z/o(C)mZ)�. Likewise, given any tuple m =
(m1, . . . , mt) ∈ N \ {0}, let Ratm be the rationalization operator which to any
tuple C = (C1, . . . , Ct ) ∈ Ct (G) associates the tuple

Ratm(C) := (Ratm1(C1), . . . ,Ratmt (Ct)).

We now state lemma 4.3 and give its proof, which is just a slight adjustement
of the method described above.

Lemma 4.3. Let G be a finite group and C = (C1, ..., Ct ) ∈ Ct (G) such that
there exists gi ∈ Ci , i = 1, ..., t with G =< g1, ..., gt >. Assume that p � | |G|,
k contains all the o(C1)th roots of 1. Choose m = (m2, ..., mt) ∈ N \ {0} such
that o(Ci)mi �= o(Cj )mj , 2 ≤ i �= j ≤ t and write r := l(Ratm(C2, ..., Ct )). Then
there exists a branch point tuple t′ ∈ U r+2(Q) satisfying conditions (*), (**) and
t′1,2 ∈ U2(Q), t3,r+2 ∈ Ur (Q). And, for any such branch point tuple, there exist
HM G-covers defined over k with invariants G, ([C1],Ratm(C2, ..., Ct )), t′.

Proof. Write oi := o(Ci) and choose gi ∈ Ci , i = 1, . . . , t such that G =<
g1, . . . , gt >. Then for any a1, b1 ∈ Q, the G-cover f1 : X1 → P1

Q
with group

< g1 >, inertia canonical invariant ({g1}, {g−1
1 }) and associated branch points

(x1 := a1, y1 := b1) is defined over Q(ζo1) and has a Q(ζo1)-rational unramified
point the fiber of which is totally Q(ζo1)-rational. For each 2 ≤ i ≤ t , write

Ratmi (Ci) = ((Cui,ji , C
−ui,j
i )ε=±1)j=1,... ,φ(o

mi
i )/2

Then, for any ai, bi ∈ Q, any G-cover fi : Xi → P1
Q

with group< gi >, iner-

tia canonical invariant ({gui,ji }, {g
−ui,j
i })ε=±1)1≤j≤φ(omii )/2 and associated branch

points ((xεi,j = ai + ζ
εui,j

o
mi
i

, yεi,j = bi + ζ
−εui,j
o
mi
i

)ε=±1)1≤j≤φ(omii )/2 is defined over Q

and has a Q-rational unramified point the fiber of which is totally Q-rational.
Choose furthermore (ai)1≤i≤t ∈ Qt in such a way that |ai | < 1 and |ai −
aj | < 1, 1 ≤ i �= j ≤ t and, given a ∈ Q such that |a| <min{1, |p| 1

p−1 }
set bi := ai + a, i = 1, ..., t . With N := ∏

2≤i≤t o
mi
i , by assumption p � |N

and, from this, one easily checks condition (*) and (**) are both fulfilled by
t′ := ((x1, y1), ((x

ε
i,j , y

ε
i,j )j=1,...,φ(o

mi
i )/2)t0+1≤i≤t, ε=±1). Condition (**) allows us

to glue together - via rigid geometry - the G-covers f1×Q(ζo1 )
k and (fi×Q k)2≤i≤t

to get a G-coverf : X→ P1
k defined over kwith groupG, inertia canonical invari-

ant ([C1],Ratm(C2, ..., Ct )) and branch points t′. Condition (*) combined with
[DE03, proposition 2.3, theorem 1.4], shows that the G-cover f : X → P1

k is
actually a HM-cover. 
�
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4.2.2. Results To avoid rationality problems, we only deal, in this section, with
fields containing enough roots of 1 and HM-curves. The following statements and
proofs can be adjusted for fields without roots of 1 and to HM-subvarieties of
arbitrary dimensions. We refer to §4.4.2.3. of [C04b] for details about this matter.

Theorem 4.4. Let G be a finite group containing n + 1 conjugacy classes A,
B = (B1, . . . , Bn) such that A = (A), B satisfy (H1) and (H2) from theorem 2.3.
Set kA := Q(ζo(A)) and write

Cs := ([A],Ratm(Bs)) rs := l(Cs)

where m = (m1, . . . , mns) ∈ N \ {0}ns is any tuple such that o(Bi)mi+kn �=
o(Bj )

mj+ln , (i, k) �= (j, l), 0 ≤ i, j ≤ n, 1 ≤ k, l ≤ s − 1. Then, for s
large enough, HM′(Cs) is a geometrically irreducible variety and, for any t′ ∈
U rs−1(Q) the HM-curve HM′(Cs)t′ remains geometrically irreducible. Further-
more, for any finite set � of (non archimedean) places of kA of residue charac-
teristic not dividing |G|, there exists t′� ∈ U rs−1(Q) with t� ∈ Urs−1(Q) and such
that the corresponding symmetrised HM-curve HM(Cs)t′� is defined over kA with
the property that

HM(Cs)t′� (k
�
A )

noob �= ∅
Proof. According to theorem 2.3, for s large enough Cs satisfies condition (Trans)
of proposition 4.1 (since ([A], [B]s) already does) so we are only left to check con-
dition (LocReal). Writing � ∩Q = {p1, . . . , pr}, re-use the notation of lemma
4.3 and take for instance ai = (p1 · · ·pr)i , i = 1, . . . , ns + 1, a := (p1 · · ·pr)n
with n >max{ 1

pi−1 }1≤i≤r . These satisfy the conditions |ai |p < 1, |ai − aj |p < 1

and |a|p < |p|
1

p−1 for all p ∈ �, 1 ≤ i �= j ≤ ns + 1. Set
{
x1 := a1

y1 := a1 + a
and t′1 := (x1, y1)

{
xεi+kn,j := ai+kn,j + ζ εui+kn,jo(Bi)

mi

yεi+kn,j := ai+kn,j + a + ζ−εui+kn,jo(Bi)
mi

for ε = ±1, j = 1, . . . , φ(o(Bi)mi+kn)/2, 1 ≤ i ≤ n, 1 ≤ k ≤ s − 1 and

t′k+1 := ((xεi+kn,j , yεi+kn,j )ε=±1) j=1,... ,φ(o(Bi )
mi+kn)/2

i=1,... ,n

, for 1 ≤ k ≤ s − 1.

Then, writing t′� := (t′1, (t′k+1)1≤k≤s−1) conclude thanks to lemma 4.3 that for each
v ∈ �, there exists a HM-G-cover defined over (kA)v with invariants G, Cs , t′

with t′2,rs = t′� that is, HM(Cs)t′� ((kA)v)
noob �= ∅. By the branch cycle argument,

HM(Cs)t′� is defined over kA. Thus, as in the proof of proposition 4.1 applying the
local-global principle to the global descent variety yields the announced result. 
�
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In terms of G-covers, theorem 4.4 means that for s large enough there exist
HM-G-covers f defined over k�A , with invariantsG, Cs , tf where tf can be writ-
ten tf = {t1,f } + t� with t� ∈ Urs−1(Q). For instance, take for G any group of
section 2.4.2 (1), (2), (3).

Combining proposition 2.7 and the constructions of section 4.1.2 yields the
following profinite version of theorem 4.4

Theorem 4.5. LetG be a finite group and p a prime number dividing |G|. Assume
G contains n+ 1 p’-conjugacy classes A, B = (B1, . . . , Bn) such that A = (A),
B satisfy (H1.1+), (H1.2+) and (H2) from proposition 2.7 (for instance, assume
G, A, B satisfy conditions (i), (ii) and (iii) of corollary 2.4). Set kA := Q(ζo(A))

and write

Cs := ([A],Ratm(Bs)) rs := l(Cs)

where m = (m1, . . . , mns) ∈ N \ {0}ns is such that o(Bi)mi+kn �= o(Bj )
mj+ln ,

(i, k) �= (j, l), 0 ≤ i, j ≤ n, 1 ≤ k, l ≤ s − 1. Then, for s large enough, the HM-
modular tower (HM′(Ck+1,s)→ HM′(Ck,s))k≥0 is a tower of geometrically irre-
ducible varieties and, for any t′ ∈ U rs−1(Q), (HM′(Ck+1,s)t′ → HM′(Ck,s)t′)k≥0

is a tower of HM-curves which are still geometrically irreducible. Furthermore,
for any finite set � of (non archimedean) places of kA of residue characteris-
tic not dividing |G|, there exists t′� ∈ U rs−1(Q) with t� ∈ Urs−1(Q) and such
that the corresponding tower of symmetrised HM-curves (HM′(Ck+1,s)t′� →
HM′(Ck,s)t′� )k≥0 is defined over kA with the property that

lim←− HM′(Ck,s)t′� ((kA)v)
noob �= ∅, v ∈ �

and

HM′(Ck,s)t′� (k
�
A )

noob �= ∅, k ≥ 0.

This conclusion still holds (with the same s and t′�) for any associated q-central
tower (for primes q �= p dividing |G| and such that G is q perfect) replacing
e(G) by e(G)e(G)q .

Proof. According to proposition 2.7, for s large enough and for all k ≥ 0, Ck,s

(resp. q̂Ck,s) satisfies (C1), (C2) that is, HM(Ck,s)t′� (resp. HM(q̂Ck,s)t′� ) is a geo-

metrically irreducible HM-curve. Consider the t′ ∈ U rs (Q), t′� ∈ U rs−1(Q) built
in the proof of theorem 4.4. Then, for any v ∈ �, HM(Ck,s)t′ ((kA)v)

noob �= ∅
(resp. HM(q̂Ck,s)t′((kA)v)

noob �= ∅) and, these sets being finite, their inverse limit
is non-empty. The second part of the conclusion is obtained, once again, using the
local-global principle and the global descent varieties. 
�

In terms of G-covers, theorem 4.5 means that for s large enough and for all
k ≥ 0 there exist HM-G-covers fk defined over k�A , with invariants kpG̃, Ck,s , tfk
where tfk can be written tfk = {t1,fk } + t� with t� ∈ Urs−1(Q).
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Example 4.6. Let us consider for instance M11 (cf. section 2.4.2 (2)). Take A =
(8A), B = (11A) and, with the notation of theorem 4.5, let (Hk+1,s → Hk,s)k≥0 be
the HM-modular tower associated with the data (M11,Cs, 3) and write Ck,s,� :=
(Hk,s)t′� , k ≥ 0 for the resulting symmetrised HM-curves. Since 5 does not di-

vide 8, 11, by Schur-Zassenhauss, there exists a unique conjugacy class 5̂(8A)k
(resp. ̂5(11A)k) lifting (8A)k (resp. (11A)k) in 5̂ k

pG̃ with o(5̂(8A)k) = 8 (resp.

o( ̂5(11A)k) = 11).This defines uniquely an associated 5-central tower (5̂Hk+1,s →
5̂Hk,s)k≥0 defined over the same field k := Q(i

√
2) as (Hk+1,s → Hk,s)k≥0; write

5̂Ck,s,� := (5̂Hk,s)t′� , k ≥ 0 for the resulting curves. The following commutative
diagram defined over k summarizes the situation

5̂Ck,s,� � � ��

�����������

��

5̂Hk+1,s

�����������

��

Ck+1,s,�

��

� � �� Hk+1,s

��

5̂Ck,s,� � � ��

�����������
5̂Hk,s

�����������

Ck,s,� � � �� Hk,s

Theorem 4.5 then means that the non obstruction locus of the left side of this
diagram carries (double) projective systems of kP -points for each P ∈ � and that
Ck,s,�(k�)noob �= ∅, 5̂Ck,s,�(k�)noob �= ∅, k ≥ 0.

4.3. (RIGP/t2 ⊂ t) over Qtr

4.3.1. G-covers defined over R We first recall succinctly the description of G-
covers defined over R with prescribed invariants given in [DF94]. We will use it
in the next paragraph.

Let t′ ∈ U r (Q) be an r-tuple consisting of r = r1 + 2r2 branch points in
configuration (r1, r2), that is with

– r1 real branch points t1, . . . , tr1 .
– r2 complex conjugate pairs {zi, zi} ⊂ P1(C)\P1(R) with zi = tr1+i−1, zi =
tr1+i , i = 1, . . . , r2.

Assume furthermore that t1 < ... < tr1 and Re(z1) < ... < Re(zr2). Then there
exists a standard ordered topological bouquet γ = (γ1, ..., γr) for P1(C) \ t such
that complex conjugation c ∈ 	R acts by

- cγi = (γ−1
i )(γ1···γi−1), i = 1, ..., r1

- cγr1+2i−1 = (γ−1
r1+2i )

(γ1···γr1 ), i = 1, ..., r2
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Let G be a finite group and C = (C1, ..., Cr) ∈ Cr (G). Define the subset
sniR(C; r1, r2) of sni(C) consisting of those (g1, ..., gr) in sni(C) satisfying the
additional condition:

(4) there exists an involution g0 ∈ G such that

– g
g0
i = (g−1

i )
(g1···gi−1), i = 1, . . . , r1

– g
g0
r1+2i−1 = (g−1

r1+2i )
(g1···gr1 ), i = 1, . . . , r2

Write sni
R
(C; r1, r2) for the corresponding quotient set modulo the component-

wise action of Inn(G). Similarly, define snimod,R(C; r1, r2) and sni
mod,R

(C; r1, r2)
without requiring g0 to be an involution. Then, BCDγ defines an identification

(� ′r,G)
−1(t′) � sni(C) such that sni

R
(C; r1, r2) corresponds to those G-covers

in sni(C) which are defined over R and sni
mod,R

(C; r1, r2) to those with field of
moduli contained in R.

4.3.2. Statements and applications We will use here a variant Rat of the ratio-
nalization operator Rat1 introduced in paragraph 4.2.1. Namely, Rat(C) := (Cu1,

C−u1, ..., Cur , C−ur ) if {Cu}u∈(Z/o(C)Z)� = {C±ui }i=1,...,r

Theorem 4.7. Let G be a finite group containing two tuples A = (A1, ..., Am),
B = (B1, ..., Bn) satisfying (H1) and (H2). Write Cs := (Rat(A),Rat(B)s) and
r :=∑m

k=1 |Rat(Ak)|, rs := s∑n
k=1 |Rat(Bk)|. Then, for s large enough, HM(Cs)

is a geometrically irreducible Q-variety and there exists t′
R
∈ U rs−r (Q) with

a Q-rational associated divisor tR ∈ Urs−r (Q) and such that the symmetrised
HM-subvariety HM(Cs)t′

R
is a geometrically irreducible r-dimensional Q-vari-

ety with,

HM(Cs)t′
R
(Qtr )noob �= ∅

Proof. As in the proof of theorem 4.4, we are only to show HM(Cs)t′
R
(R)noob �= ∅.

For this, apply the following procedure (with the notation of section 4.2.1): given
a non trivial conjugacy class C

(1) – If o(C) = 2, associate to C the tuple t′C := (√−1,−√−1).
– If o(C) > 2, associate to C the tuple t′C := (ζ

u1
o(C), ζ

−u1
o(C), . . . , ζ

uφ(o(C))/2
o(C) ,

ζ
−uφ(o(C))/2
o(C) ).

(2) Set t′ := (t′1,r , t′r+1,rs ) with

{
t′1,r = (t′Ai + 4(i − 1))i=1,... ,m,

t′r+1,rs = ((t′Bi + 4(i − 1))i=1,... ,n + 4(m+ jn))j=0,... ,s−1.

Then, t′ ∈ U rs (Q) is in configuration (0, rs/2) and since ∅ �= hm(Cs) ⊂
sniR(Cs; 0, rs/2), we obtain HM(Cs)t′(R)

noob �= ∅. Set t′
R

:= t′r+1,rs , which sat-
isfies t′

R
∈ Urs−r (Q). Then, by the branch cycle argument, HM(Cs)t′

R
is defined
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over Q and conclude applying the local-global principle to the associated global
descent variety as in the proof of proposition 4.1. 
�

As in section 4.2.2, one can state a profinite version of theorem 4.7 for mod-
ular towers and associated q-central towers; we leave this to the reader and give
another application of our method to the profinite regular inverse Galois problem
over Qtr (see also [C04a]).

Let (sk+1 : Gk+1 � Gk) be a complete projective system of finite groups
and (Dk = (Dk,1, . . . , Dk,r ))k≥0 a projective system of tuples Dk ∈ Cr (Gk).
Write G := lim←− Gk and D := lim←−Dk. Also assume there exist r1, r2 ≥ 0 with

r = r1 + 2r2 such that the following holds

(∗) For all m ≥ 1 such that (m, e(G)) = 1, we have

s−1
k+1(sni

R
(Dk; r1, r2)) ⊂ sni

R
(Dk+1; r1, r2)

Lemma 4.8. Assume there exists a G-cover f0 defined over Qtr with invariants
G0, D0, t′ such that σ t′ is in configuration (r1, r2), for all σ ∈ 	Q. Also assume
that Z(G) is a direct factor of G4. Then there exists a regular realization of G
defined over Qtr with invariants D, t′.

Proof. Let p0 ∈ Hr,G0(D0)t(Q
tr )noob and (fk)k≥0 be a projective system of G-

covers defined over Q corresponding to a projective system of points (pk)k≥0 ∈
lim←− Hr,Gk (Dk)t above p0. For any σ ∈ 	Q, by the branch cycle argument,

σ (pk)k≥0 ∈ lim←− Hr,Gk (D
χ(σ)

k )t. Furthermore, since f0 is defined over Qtr , σ f0

is defined over R with branch points σ t′ in configuration (r1, r2) so, its branch

cycle description lies in sni
R
(D0; r1, r2). The branch cycle description of σ fk

lies in sni(Dk) above the one of σ f0 so, according to (*), in sni
R
(Dk; r1, r2).

As a result, σ fk is defined over R. Now, let D(fk) be the descent variety of fk
[DDoMo04]; it is a smooth geometrically irreducible R-variety such that for any
σ ∈ 	σ

Q
D(fk)(R) = D(σ (fk)(R) �= ∅. Apply then the local-global principle to

show D(fk)(Q
tr ) �= ∅; that is, fk is defined over Qtr . Finally, the hypothesis

about Z(G) assures the Qtr -model of the (fk)k≥0 can be chosen in a compatible
way cf. §5.3.1 of [C04b]. 
�
Example 4.9. LetD2a∞ := lim←− D2ak be the prodihedral group of order 2a∞ where

D2ak :=< u, v| uak = v2 = 1, vuv = u−1 >

For any k ≥ 1, letAk,i be the conjugacy class of ui inD2ak , i = 1, ..., [(ak+1)/2]
andBk be the conjugacy class of v inD2ak . Then check that for any 1 ≤ i1, ..., it ≤

4 This hypothesis can be relaxed cf. §5.3.1 of [C04b]. If it is removed and if sni
R
(Dk; r1, r2)

is replaced by sni
mod,R

(Dk; r1, r2), k ≥ 0 then one obtains profinite Galois extensions of Q(T )

with invariants G, D, t′ and field of moduli contained in Qtr .
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[ak + 1)/2] condition (*) is fulfilled with Dk := ([Bk], [Ak,i1, ..., Ak,it ]), k ≥ 1
(cf [C04b]). To prove the existence of f1 as in the lemma, we re-use the idea (and
the notation!) of the proof of theorem 4.7 as follows: observe that A := (B1),
B := (A1,1) satisfy (H1) and (H2) so, noticing that the tuple Cs of theorem
4.7 is of the form D0 = ([B0], [A0,i1, ..., A0,it ]) above, for s large enough and
for any t′3,rs ∈ U rs−1(Q), HM(Cs)t′3,rs

is a geometrically irreducible curve. Let

t′3,rs ∈ U rs−2(Q) built as in the proof of theorem 4.7 then, since B is rational
(o(B) = 2), HM(Cs)(0,t′3,rs )

is defined over Q. According to section 4.3.1, we

obtain HM(Cs)(0,t′3,rs )
(R)noob �= ∅ so, applying once again the local-global prin-

ciple to the global descent variety, HM(Cs)(0,t′3,rs )
(Qtr )noob �= ∅ and, if f0 is a

G-cover corresponding to a point p1 ∈ HM(Cs)(0,t′3,rs )
(Qtr )noob, its branch point

divisor is of the form (t1, 0, t′2,rs ) that is in configuration (2, rs/2−1) and satisfying
the hypothesis of lemma 4.8. Conclude, by applying this lemma, that there exists
regular realization ofD2a∞ over Qtr with invariants lim←− ([Bk], [Au1

k,1, ..., A
uφ(a)/2
k,1 ]),

(t1, 0, t′3,rs ).
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[DE03] Dèbes, P., Emsalem, M.: Harbater-Mumford Components and Towers of Moduli
Spaces. J. Inst. Math. Jussieu, to appear.
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