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Abstract. This article gives an exposition of the theory of arithmetic
motivic measure, as developed by J. Denef and F. Loeser.

1. Preliminary Concepts

There is much that is odd about motivic measure if it is judged by measure
theory in the sense of twentieth century analysis. It does not fit neatly with
the tradition of measure in the style of Hausdorff, Haar, and Lebesgue.
It is best to view motivic measure as something new and different, and to
recognize that when it comes to motivic measure, the term ‘measure’ is used
loosely.

Motivic integration has been developing at a break-neck pace, ever since
Kontsevich gave the first lecture on the topic in 1995. This article gives an
exposition of the theory of arithmetic motivic measure, as developed by J.
Denef and F. Loeser.

Motivic measure will be easier to understand, once two of its peculiarities
are explained. The first peculiarity is that the measure is not real-valued.
Rather, it takes values in a scissor group. An introductory section on scissor
groups for polygons will recall the basic facts about these groups. The
second peculiarity is that rather than a boolean algebra of measurable sets,
we work directly with the underlying boolean formulas that define the sets.
The reasons for working directly with boolean formulas will be described in
a second introductory section.

After these two introductory remarks, we will describe ‘motivic counting’
in Section 2. Motivic counting is to ordinary counting what motivic measure
is to ordinary measure. Motivic counting will lead into motivic measure.

1.1. Scissor Groups for polygons. Motivic volume is defined by a process
that is similar to the scissor-group construction of the area of polygons in
the plane. To draw out the similarities, let us recall the construction. It
determines the area of polygons without taking limits.

Any polygon in the plane can be cut into finitely many triangles that
can be reassembled into a rectangle of unit width. Figure 1 illustrates three
steps (2, 3, and 4) of the general algorithm. The algorithm consists of 5
elementary transformations. (1) Triangulate the polygon. (2) Transform
triangles into rectangles. (3) Fold long rectangles in half. (4) Rescale each
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rectangle to give it an edge of unit width. (5) Stack all the unit width
rectangles end to end. The length of the unit width rectangle is the area.

Figure 1. Triangles transform into unit width rectangles
by scissor and congruence relations. Later, we will transform
ring formulas into algebraic varieties by scissor and congru-
ence relations.

An abelian group encodes these cut and paste operations. Let F be the
free abelian group on the set of polygons in the plane.

We impose two families of relations:
Scissor relations. If P is a polygon that can be cut into polygons P1 and
P2, then

[P ] = [P1] + [P2]

Congruence relations. If P and P ′ are congruent polygons then

[P ] = [P ′].

The scissor group Spoly of polygons is defined as the free abelian group
subject to these two families of relations. In some sense, this entire article
is an exploration of scissor and congruence relations in diverse contexts. By
and by, we will construct several closely related scissor groups Spoly, Scount,
Sring, Scover, and Smot, each constructed as a free abelian group modulo
scissor and congruence relations.



WHAT IS MOTIVIC MEASURE? 3

Theorem 1.1. The polygon scissor group Spoly of polygons is isomorphic
to the additive group of real numbers R. Under this isomorphism, the real
number attached to the class [P ] of a polygon is its area.

Proof. A group homomorphism from Spoly to R sends each class [P ] to its
area. It is onto, because there are polygons of every positive real area, and
negations of polygons of every negative real area. By scissor and congruence
relations, every element of the scissor group is represented by the difference
of two unit width rectangles. To be in the kernel, the two rectangles must
have the same area; but then they are congruent, and their difference is the
zero element of Spoly. Thus, the homomorphism is also one-to-one. ¤

The area function on the set {P} of polygons thus factors through Spoly.

(1) {P} → Spoly → R
P 7→ [P ] 7→ area(P )

We might ponder which of these two maps (P 7→ [P ] or [P ] 7→ area(P ))
captures the greater part of the area-taking process. Motivic measure com-
mits to a position on this issue: the first stage (P 7→ [P ]) is identified as the
area-taking process and the second stage [P ] 7→ area(P ) is a specialization
of the area. In this case, specialization is an isomorphism. Our approach to
measure in this article is decidedly unsophisticated: taking the measure of
something consists in mapping that thing into its scissor group, P 7→ [P ].

1.2. The measure of a formula. Traditionally, we take the measure of a
set X = {X | φ(x)} (say a subset of a locally compact space), but we do not
take the measure of the formula φ defining a set. With motivic measure, we
take the measure of the formula directly. Concretely, the formula

(2) ‘x2 + y2 = 1’

defines the circle

(3) {(x, y) | x2 + y2 = 1}.
With motivic measure, we take the measure of the equation of the circle
(Equation 2) rather than the measure of the circle itself (Equation 3). At-
tention shifts from sets to formulas.

What purpose does it serve to measure formulas rather than the under-
lying set? As algebraic geometers are eager to remark, each formula defines
an infinite collection of sets. For instance, for each finite field Fq, we can
take the set of Fq points on the circle:

(4) {(x, y) ∈ F2
q | x2 + y2 = 1}.

We will see that the motivic measure of the formula is a universal measure
in the sense that the value it attaches to the formula does not commit
us to any particular field. And yet if we are supplied with a particular
field, it will be possible to recover the traditional measure of a set from the
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motivic measure of its defining formula. In this sense, motivic measure is to
traditional measures what an algebraic variety is to its set of solutions.

2. Counting measures and Finite Fields

Counting is the fountainhead of all measure. The measure of a finite set is
its cardinality. At the risk of belaboring the point, in preparation for what
is to come, let us recast ordinary counting. The scissor relation for disjoint
finite sets is

[X ∪ Y ] = [X] + [Y ].
More generally, if we allow the sets to intersect, it is

(5) [X ∪ Y ] = [X] + [Y ]− [X ∩ Y ].

The congruence relation asserts that

[X] = [X ′].

whenever there is a bijection between X and X ′. The scissor group Scount

is the quotient of the free abelian group on finite sets satisfying the scissor
and congruence relations. It is is isomorphic to Z. The cardinality #X of a
finite set X factors through the scissor group

X 7→ [X] 7→ #[X] ∈ Z.

Of course, if our only purpose were to count elements in finite sets, this
construction is overkill. The first motivic measure that we present is an
analogue of this approach to counting. We call it the motivic counting
measure. The scissor relation will be similar to Equation 5.

2.1. Ring formulas. Traditional measure calls for a full discussion of the
class of measurable sets. Since we work with formulas rather than sets, our
approach calls for a full discussion of the class of formulas to be measured.

We allow all syntactically correct formulas built from a countable collec-
tion of variables xi, parentheses, and the symbols

(6) ∀, ∃, ∨, ∧, ¬, 0, 1, (+), (−), (∗), (=)

More precisely, we allow all formulas in the first-order language of rings. A
formula that has been constructed from these symbols will be called a ring
formula. We avail ourselves of the usual mathematical abbreviations and
renamings of variables. We write 3 for 1 + (1 + 1), xn for x ∗ x ∗ x · · · ∗ x (n
times), xy for x ∗ y, a + b + c for a + (b + c), and so forth.

With usual abbreviations,

‘∀x y z. x3 + y3 = z3’

is a ring formula, because its syntax is correct. But

‘))∀+ ∀ = 2∀((’
and

‘ ∧ ∨ ∧ ∨ ∧ ’
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are not ring formulas.

2.2. The scissor group of ring formulas. We imitate the construction of
the scissor groups Spoly and Scount to build the scissor group of ring formulas.

Take the free abelian group on the set of ring formulas.
We impose two families of relations. The scissor relation takes the form

established in Equation 5 for unions.
Scissor relations. If φ1 ∨ φ2 is a disjunction of two formulas, then

(7) [φ1 ∨ φ2] = [φ1] + [φ2]− [φ1 ∧ φ2].

To describe the congruence relation, we must decide what it should mean
for two ring formulas to be congruent. By way of analogy, in the case of
polygons, two are congruent if there is a bijection between the two sets that
is induced by an isometry. Our first guess at the congruence relation for
ring formulas is that two ring formulas are congruent if there is a bijection
between the sets of solutions for each finite field Fq. (We limit ourselves to
finite fields because we are attempting to imitate the counting measure of
finite sets.) However, there are two modifications that we must make to this
first guess to arrive at a workable relation.

The first modification is to use pseudo-finite fields rather than finite fields.
A pseudo-finite field is an infinite perfect field such that every absolutely
irreducible variety over the field has a rational point and such that there is
a unique field extension of each finite degree (inside a fixed algebraic closure
of the field). The defining properties of a pseudo-finite field are properties
possessed by finite fields (except the part about being infinite). Moreover,
logicians have found that the behavior of pseudo-finite fields is essentially no
different from the generic behavior of finite fields, but they avoid the hassles
that appear in positive characteristic. For those seeing pseudo-finite fields
for the first time, it would not be a severe distortion of the facts to ignore
the ‘pseudo’ and to work instead with finite fields.

The second modification is to require the bijection between the solutions
to come from a ring formula that is independent of the underlying field. We
are now ready to state the congruence relations.
Congruence relations.

[φ] = [φ′]
if there exists a ring formula ψ such that for every pseudo-finite field K
of characteristic zero, the interpretation of ψ gives a bijection between the
tuples in K satisfying φ and the tuples in K satisfying φ′.

Example 2.1. The congruence relation gives

[‘∃x. x2 + bx + c = 0’] = [‘∃X. X2 = B2 − 4C’]

The formula ψ realizing the congruence and the bijection at the level of
points is

‘(b = B) ∧ (c = C)’.
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That is, in every pseudo-finite field of characteristic zero, a monic quadratic
polynomial has a root if and only if its discriminant is a square.

Definition 2.2. The scissor group Sring of ring formulas is defined as the
free abelian group subject to the scissor and congruence relations.

2.2.1. Counting measure.

Definition 2.3. The counting measure of a ring formula φ is its class [φ] in
the scissor group of ring formulas.

2.2.2. Fubini and Products. There is a trivial sort of Fubini theorem for
finite sets: the cardinality of a Cartesian product of two sets is the product
of the cardinalities of the two sets. To make sense of a Fubini theorem for
ring formulas, it is necessary to introduce products to the scissor groups;
that is, we need a scissor ring. This is easy to arrange. If φ1(x1, . . . , xn) is
a formula with free variables x1, . . . , xn and φ2(y1, . . . , ym) is a formula with
free variables y1, . . . , ym, and if the free variables of φ1 are distinct from the
free variables of φ2, then we declare the product to be

φ1(x1, . . . , xn) ∧ φ2(y1, . . . , ym).

This induces a well-defined product1 on the scissor group

(8) [φ1(x)][φ2(y)] = [φ1(x) ∧ φ2(y)].

Under this product, the scissor group becomes a ring. Equation 8 asserts
that counting measure satisfies a rather trivial Fubini theorem for ring for-
mulas – at least for ring formulas without any shared free variables.

2.2.3. The universal nature of the counting measure. The counting measure
[φ] of a ring formula φ is designed to be the universal counting measure for
ring formulas. For every finite field Fq, there is a special counting measure
on ring formulas:

(9) φ 7→ #q(φ) = #{(x1, . . . , xn) ∈ Fn
q | φFq(x1, . . . , xn)}.

It gives the number of solutions to the ring formula over a particular finite
field. In contrast, the general counting measure of a ring formula takes
values in a scissor ring whose construction bundles all pseudo-finite fields
together.

We can be precise about the way in which the counting measure bundles
the counting measures #q(φ). Each formula φ gives a function q 7→ #q(φ),
an integer-valued function on the set of prime powers. Let F be the ring
of all integer-valued functions on the set {pr} of prime powers. Declare two
functions equivalent, if they take the same value at pr for all r and for all
but finitely many p. Write F/ ∼ for the quotient of F under this equivalence
relation.

1We have a moving lemma: the congruence relation in the scissor group can be used to
relabel the free variables of a formula, so that free variables of the two factors are always
distinct.
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Theorem 2.4. There exists a ring homomorphism N from the scissor ring
Sring to F/ ∼ that respects counting: #∗(φ) = N([φ]).

In other words, with only a finite amount of ambiguity, the counting
measure specializes to counting solutions to ring formulas over finite fields.
To say that N is a ring homomorphism is to say that it is compatible with
products and Fubini. Unlike the earlier isomorphisms for polygons Spoly

∼= R
and finite sets Scount

∼= Z, here we make no claim of isomorphism between
the scissor group Sring and the target ring F/ ∼.

The proof of the theorem relies on ultraproducts, a standard tool in logic.

2.3. Improving the scissor ring. The shortcoming of the scissor ring
Sring is that is too much about it has been left inexplicit. In our discussion
of the area of planar polygons, we found a handy set of generators (unit
width rectangles). Our current aim is to find a handy set of generators of
a somewhat modified scissor ring Smot. The idea is to take a ring formula,
and through a process of “quantifier elimination” arrive at an equivalent ring
formula that does not involve any quantifiers (that is, the symbols ∀, ∃ will be
eliminated). Quantifier elimination is a subject that was under development
long before motivic integration arrived on the scene. Background on M.
Fried and others’ work on quantifier elimination can be found in [8] and [9],
as well as in an appendix to this article by M. Fried.

A formula without quantifiers belongs less to the realm of logic than to
the realm of algebraic geometry. A suggestive example of a quantifier-free
formula is

(f1 = 0) ∧ (f2 = 0) ∧ · · · ∧ (fn = 0).
That is, the zero set of an affine variety. In fact, we will find that the
improved scissor ring is defined as a quotient of the free abelian group on
the set of varieties over Q. The details of this construction will reveal what
is so motivic about motivic measure.

2.4. A scissor ring for coverings. Each ring homomorphism f : Sring →
R defines a specialization of the counting measure

φ 7→ [φ] → f [φ] ∈ R.

The ring F/ ∼ is one of many possible specializations R.
Another specialization of Sring comes from n-sheeted covers:

Definition 2.5. We say that one formula φ(x) is an n-sheeted cover of an-
other formula φ′(x′) if there exists a ring formula ψ(x, x′) such that for every
pseudo-finite field of characteristic zero, ψ gives an n to 1 correspondence
between the solutions x of φ(x) and the solutions x′ of φ(x′).

Example 2.6. Let φ(x) be the formula ‘x 6= 0’ and let φ′(y) be the formula

‘∃ z. (z2 = y) ∧ (y 6= 0)’.

The formula ψ(x, y) given by

‘x2 = y’,
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presents φ as a 2-sheeted cover of φ′.

The congruence condition for Sring asserts that if φ is a 1-sheeted cover of
φ′, then they give the same class in Sring. A broader congruence condition
can be given as follows.
Congruence (Covers). If φ is an n-sheeted cover of φ′ for some n, then

[φ] = n[φ′].

We may form a new scissor ring Scover with this broader congruence
condition and the old scissor relation. We have a canonical surjection
Sring → Scover.

2.5. The scissor group of motives. Generators. Let VarQ be the cat-
egory of varieties over the field of rational numbers Q. We take the free
abelian group generated by the objects of VarQ.

An example of a element of the free abelian group is [A1], the genera-
tor attached to the affine line. This particular generator will be of special
importance in the constructions that follow. We write L = [A1] for this
element and for its image in various scissor groups. (The ‘L’ is for Lefschetz,
as in Lefschetz motive.)

There are two types of relations: scissor relations and congruence rela-
tions. Our scissor relation will be rather crude, but justifiably so, since the
Zariski topology is a coarse topology that limits the possibilities for a scissor
relation. The only cutting that will be permitted is that of partitioning a
variety into a closed subvariety and its complement.
Scissor Relation. If Z is a closed subvariety of X, then

[X] = [Z] + [X \ Z].

The congruence relation is more involved than the scissor relation. If we
make a direct translation of the congruence relation for the scissor group of
ring formulas, we might guess that the congruence condition between two
varieties X and Y should be the existence of a correspondence Ψ between X
and Y that induces a bijection between X(K) and Y (K) for every pseudo-
finite field of characteristic zero. This first guess is suggestive: the congru-
ence relation should involve an algebraic correspondence. This suggestion
lands us deep in the territory of motives. Here is the precise definition of
the congruence relation.
Congruence Relation.

[X] = [Y ]
whenever X and Y are nonsingular projective varieties that give the same
virtual Chow motive. We will uncoil this definition a bit below. All that
is ‘motivic’ about motivic measure stems from this particular congruence
relation.
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Definition 2.7. The quotient of the free abelian group by the scissor and
congruence relations is the motivic scissor ring K. (The letter ‘K’ is the
standard notation for a Grothendieck group, which for our purposes is just
another name for a scissor group.) The localized version K[L−1]⊗Q will be
called the localized motivic scissor ring and denoted Smot. (It will become
clear in Section 3.6.3 why it is useful to invert L.)

It is time to uncoil the definition of this congruence relation. There is a
category of Chow motives. To describe this category, we assume familiarity
with the Chow groups Ai(X) of a variety X. They are groups of cycles
of a given codimension i modulo the subgroup of cycles that are rationally
equivalent to 0. A detailed treatment of cycles, rational equivalence, and
Chow groups can be found in [11]. Other good treatments of Chow motives
can be found in [19] and [12].

An object in the category of Chow motives is a triple (X, p, m) where X
is a smooth projective variety of dimension d, p is an element in the Chow
ring Ad(X ×X) that is a projector (p2 = p), and m in an integer. The set
of morphisms from (X, p, m) to (X, p′,m′) is defined to be the set

p′Ad+n−m(X × Y )p.

Varieties that are not isomorphic as varieties can very well become isomor-
phic when viewed as Chow motives. For example, isogenous elliptic curves
are isomorphic as Chow motives.

There is a canonical morphism from the Grothendieck ring of the category
VarQ to the Grothendieck ring of the category of Chow motives. We let K
be the image of this morphism. To say that two varieties are equal as virtual
Chow motives is to say that they have the same class in K.

2.6. The motivic counting measure. The following theorem follows from
a deep investigation of Chow motives, and the theory of quantifier elimina-
tion for pseudo-finite fields.

Theorem 2.8. There exists a unique ring homomorphism Scover → Smot

that satisfies the following property (Zero Sets).

Zero Sets. If φ is a ring formula that is given by the conjunction of poly-
nomial equations, then [φ] is sent to the affine variety defined by those
polynomial equations.

There are ring homomorphisms Scount → Scover → Smot. We use the
notation φ 7→ [φ] for the class of φ in any of these rings, depending on the
context.

Definition 2.9. The composite map φ 7→ [φ] ∈ Smot will be called the
motivic counting measure of the formula φ.

The motivic counting measure of a ring formula is thus represented by a
rational linear combination of varieties over Q. I like to think of the motivic
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counting measure as counting the number of solutions of the ring formula
over finite fields in a way that does not depend on the finite field. Instead
of giving the answer as a particular number, it gives the answer in terms of
a formal combination of varieties having the same number of solutions over
a finite field. Here is the precise statement.

Theorem 2.10. Let φ be a ring formula, and let
∑

ai[Xi] be a represen-
tative of the motivic counting measure [φ] as a formal linear combination
of varieties. Choose a model of each Xi over Z. For all r and for all but
finitely many primes p, the number of solutions of φ in Fpr is equal to

∑
ai#Xi(Fpr).

Example 2.11. As an example, let us calculate the motivic counting mea-
sure of the ‘set’ of nonzero cubes. The formula is given by

φ(x) : ‘∃y. (y3 = x) ∧ (x 6= 0)’.

The scissor relation can be used to break φ into two disjoint pieces φ =
φ1 ∨ φ2: the part φ1 on which −3 is a square and the part φ2 on which it
is not. Let M be the class in Smot corresponding to the zero-dimensional
variety x2 + 3 = 0. The class M has two solutions or no solutions according
as −3 is a square or not. When −3 is a square, the cube roots of unity lie
in the field, so that the nonzero points on the affine line give a 3-fold cover
of φ1 (under y 7→ y3). Thus, φ1 has measure(

L− 1
3

)
M
2

.

On the other hand, if −3 is not a square, each non-zero element of a pseudo-
finite field of characteristic zero is a cube, so that φ2 has measure

(L− 1)
(

1− M
2

)
.

The sum of these two terms is the measure of φ in Smot.

3. Locally Compact Fields and Haar Measures

This section makes the transition from finite fields to locally compact
fields and from counting measures to additive Haar measures.

In Section 2, we developed a universal counting measure for ring formula.
It may be viewed as counting solutions to the ring formula over a finite field
in a way that does not depend on the finite field.

Counting measures are a rather simple and uninteresting type of measure.
In this section, we construct a universal (motivic) measure with ties to locally
compact fields. This new measure may be viewed as the volume expressed in
a way that does not depend on the locally compact field. To carry out the
construction, we must work with a different collection of formulas (called
DVR formulas) that are better adapted to locally compact fields. ‘DVR’ is
an acronym for discrete valuation ring.
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3.1. Examples of rings. To make the transition from finite fields to locally
compact fields, we wish to replace ring formulas with formulas in a language
that has a rich assortment of locally compact structures.

Example 3.1. Let C[[t]] be the ring of formal power series with complex
coefficients. A typical element of this ring has the form

x =
∞∑

i=k

ait
i

(with no constraints on the convergence of the series). Pick the initial index
k so that ak 6= 0 (if x 6= 0).

The valuation of x is defined to be the integer k:

val(x) = k.

The angular component of x is defined to be the complex number ak.

ac(x) = ak ∈ C×.

(In the special case x = 0, we set val(0) = ∞ and ac(0) = 0.)

The name angular component is not meant to suggest any precise con-
nection to angles. The name is based on a loose analogy with the polar
coordinate representation of a complex number: just as the angular com-
ponent θ of a nonzero complex number reiθ distinguishes among complex
numbers of the same magnitude (or valuation) r, so the angular component
of a formal power series helps to distinguish among formal power series of a
given valuation k.

There are many other rings with similar functions, ac and val. For ex-
ample, we can change the coefficient ring of the formal power series from C
to any other field k to obtain k[[t]]. Or we can take the field of fractions of
k[[t]], which is the field of formal Laurent series with coefficients in k:

k((t)) = {
∞∑

−N

ait
i | ai ∈ K}.

For each prime p, there are valuation and angular component functions
defined on the field of rational numbers. If x is a nonzero rational number,
pick integers a, b, c, N so that

x = apN +
bpN+1

c
,

where c is not divisible by p, and a ∈ {1, . . . , p− 1}. The integers a and N
are uniquely determined by this condition. Define the valuation of x to be
valp(x) = N ∈ Z and the angular component of x to be image of a modulo
p in Fp.

Example 3.2. If p = 2 and x = 17/8, then

17/8 = 1.2−3 + 2, val2(17/8) = −3, ac(17/8) = 1 ∈ F2.
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Other examples, can be obtained from this one by completion. For each
p,

d(x, y) = (1/2)valp(x−y)

is a metric on the set of rational numbers. The completion is a locally
compact field, called the field of p-adic numbers Qp. The valuation valp and
angular component function ac functions extend to the completion.

3.2. The DVR language. We have seen by example that there are many
rings with functions val and ac. In each case, there are three separate rings
that come into play: the domain of the functions val and ac, the range of the
function val (which we augment with a special symbol {∞} for the valuation
of 0), and the range of the function ac. We call these rings the valued ring,
the value group, and the residue field, respectively.

We formalize this relationship as a language in first-order logic with func-
tion symbols val and ac. We allow ourselves to build syntactically well-
formed expressions with variables, parentheses, quantifiers, the function
symbols val and ac, the usual ring operations (0, 1, (+), (−), (∗), (=)) on
the valued ring and residue field, and the usual group operations and in-
equalities on the value group (0, (+), (≤)). These formulas will use variables
of three different types xi for the value ring, mi for the value group, and ξi

for the residue field. Quantifiers ∀, ∃ can be used to bind all three sorts of
variables.

The construction of first-order languages is commonplace in logic, but
even without any background in logic, it is not hard to guess whether a
formula is syntactically correct. We allow standard mathematical abbrevia-
tions similar to those introduced above for ring formulas.

‘∀y. (∃x. x2 = y) =⇒ (∃m. 2m = val(y)).’

is syntactically correct. But

‘∀f. ∀x. ∀y.f(y, ac(y))’

is not well-formed, because quantifiers are not allowed over higher-order
relations f in a first-order language. Also,

‘∀x ξ. (0 ≤ x) ∨ (ac(x) = ξ)’

is not well-formed, because of a type error; the variable symbol x appears
once as an integer 0 ≤ x and again as variable in the valued field ac(x).

A syntactically correct formula is called a DVR formula. The aim of
motivic measure is to compute the “volume” of a DVR formula in a universal
way; that is, in a way that does not depend on the underlying locally compact
field.

3.3. Assumptions on the ring. The various examples that we have men-
tioned are all structures for the DVR language: rings of formal power series
k[[t]], fields of formal Laurent series k((t)). For each prime p, (Q, ac, valp) is
a structure for the language, as well as its completion (Qp, ac, valp).
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We will temporarily restrict the set of examples to structures (K, k, ac, val)
that satisfy the following conditions.

• K is a valued field of characteristic zero, with valuation function
val : K → Z ∪ {∞} and angular component functions ac : K → k.

• The residue field k has characteristic zero.
• K is henselian. (We review the definition below.)

Examples that satisfy these conditions include the fields k((t)), where k has
characteristic zero. The analogy that will guides us is that these fields stand
in the same relation to locally compact DVR fields, as pseudo-finite fields
do to finite fields.

3.4. Henselian field. There is only one plausible definition for a henselian
field: A field is henselian if the field satisfies Hensel’s lemma.

Hensel’s lemma gives checkable conditions on a polynomial that insure
that it has a root in a given neighborhood. Hensel’s lemma occupies same
ground in the realm of DVR rings that the intermediate value theorem
occupies in the realm of real numbers. (The intermediate value theorem
also gives checkable conditions on a polynomial that insure that it has a real
root in a given neighborhood.)

Our experience with motivic counting measures has alerted us to the im-
portance of quantifier elimination, that is, the process of replacing a formula
with quantifiers ∀, ∃ with an equivalent formula that does not contain quan-
tifiers. The simplest case of quantifier elimination is the determination of
when there exists a root of a polynomial. Without a criterion for the ex-
istence of roots to polynomials, quantifier elimination would be impossible.
For the pseudo-finite fields, this is handled through the defining property
of pseudo-finite fields that “every absolutely irreducible variety has a root.”
For real fields, quantifier elimination is based on the intermediate value
theorem. For henselian fields, quantifier elimination is based on Hensel’s
lemma.

Lemma 3.3. (Hensel’s lemma) For every monic polynomial f ∈ K[x],
whose coefficients have non-negative valuation, and for every x such that

val(f(x)) > 0

and
val(f ′(x)) = 0,

there exists y ∈ K such that f(y) = 0 and val(y − x) > 0.

This is stated as a lemma, but we view it as a condition on the field
K and its valuation. It can be proved that the fields k((t)) and Qp are
henselian by showing that under the hypotheses of Hensel’s lemma, Newton’s
approximations to the roots

x0 = x
xn+1 = xn − f(xn)/f ′(xn)

converge to a root.
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3.5. Quantifier elimination.

Theorem 3.4. (Pas [17]) Let K be a field satisfying the other conditions
enumerated in 3.3 with residue field k . Let φ be a DVR formula. Then
there is another formula φ′ without quantifiers of the valued field sort such
that

∀(x, ξ, m) ∈ Kn × km × (Z ∪ {∞})r. φK(x, ξ,m) = φ′ K(x, ξ, m).

Moreover, the formula φ′ can be chosen to be independent of the structure
K.

3.6. Outer measure of a DVR formula. As a first step toward con-
structing the measure of a DVR formula, we will define an outer measure of
a formula. To motivate this construction, it might be helpful first to describe
an analogous construction in Euclidean space.

3.6.1. An outer measure in Euclidean space. Fix a positive integer m. Tile
Euclidean space with cubes of width 1/2m whose vertices are centered at
points a with coordinates ai ∈ Z/2m.

According to the Calculus 101 approach to volume, we can approximate
the volume of a set by counting the number of cubes that it meets. Let A
be a bounded set in Rn. Let Cm(A) be the set of cubes in this tiling that
meet A. In our naive approach to measure, let us define the outer measure
of A at level m in dimension n to be

(10)
#Cm(A)

2mn
,

that is the number of cubes divided by the scaling factor 2mn. (If doing so
did not involve logical circularity, we would identify 1/2mn with the volume
of cube and the entire expression as the volume of the set Cm(A) of cubes.)

Figure 2. Volumes of DVR formulas can be approximated
in Calculus 101 fashion by counting centers of cubes that
meet a given formula, scaled according to the size of the
cubes.

The outer motivic measure of a DVR formula will be formed in an entirely
analogous way. Of course, we will need to decide what to use for cubes, how
to count the number of cubes that “meet” a given formula, and what scaling
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factor to use. Once we make these decisions, the formula for outer measure
will take precisely the same form as Equation 10.

In the planar case, we gave a construction of area of polygons as taking
values in a scissor group Spoly. The outer approximation of any bounded
planar set A by squares gives a value in the scissor group of polygons. Here
too, if our outer approximation to a DVR formula is with a ring formula,
then the value of the outer measure of the DVR formula will be in a scissor
ring Smot.

Given all our preliminaries, it almost goes without saying that the number
of cubes appearing in the numerator of Equation 10 will be replaced with
the motivic counting measure of a ring formula.

3.6.2. Cubes. What is a cube? Well, it is a product of equal width intervals.
In DVR formulas, a cube centered at a of “width” m is again a product of
intervals:

{(x1, . . . , xn) ∈ Kn | val(xi − ai) ≥ m, for i = 1, . . . , n}.
If K = k[[t]], then the interval around a formal power series a is the set
of all formal power series with the same leading terms. Shaking (wagging)
the tails of the power series fills out the interval. In other words, we can
make precise the idea of covering a DVR formula with cubes by replacing
each solution to the DVR formula with a bigger set where the tails of the
solutions are allowed to vary.

Let us make this precise. We have truncation map

k[[t]] → k[[t]]/(tm) ' km

∑∞
0 ait

i 7→ ∑m−1
0 ait

i 7→ (a0, . . . , am−1).

In the opposite direction, given b ∈ Km, there is a polynomial with those
coefficients

p(b, t) =
m−1∑

0

bit
i ∈ k[[t]]

Definition 3.5. Let φ be a DVR formula with free variables (x1, . . . , xn)
and no free variables of other sorts. An outer ring formula φm approximation
to φ (at level m) is a ring formula in nm free variables uij such that over
every field k:

{u ∈ knm | φm(u)} =
{u ∈ knm | ∃a1, . . . , an. φ(a1, . . . , an) ∧ val(ai − p(uij , t)) ≥ m}.

This set is the set of centers of cubes that contain a solution to φ.

Theorem 3.6. Outer ring formula approximations exist for every DVR
formula φ at every level m.

The proof of this theorem uses quantifier elimination results to eliminate
the quantifiers that bind variables ranging over the valued field. It uses
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results of Presburger on quantifier elimination to eliminate the quantifiers
that range over the additive group of integers. The quantifiers that bind
variables in the residue field remain as quantifiers in the ring formula φm.

3.6.3. Scaling Factors. How is the scaling factor chosen in Equation 10 for
Euclidean outer measures? The scaling factor 1/2nm is the unique constant
that has the property that if the set A is itself a union of properly aligned
cubes (of width m′), then the outer measure of A is independent of m for
all m ≥ m′.

To find the scaling factor for DVR formulas, we work a simple example
in which the DVR formula is itself a union of cubes of width m′ (that is, its
set of solutions is stable under perturbation of the power series tails).

Example 3.7. Let φ(x1, . . . , xn) = T, a formula that is true for all values
of the free variables xi. In this case the outer ring formula approximation
is exact. Substitute polynomials p(ui·, t) for each xi and expand in terms of
mn distinct free variables uij to get

φm(uij) = T

for all input values uij . The number of solutions of φm over a finite field
Fq is qnm. If we take the motivic counting measure of φm, we find that the
variety that counts the points of φm over any finite field is the affine space
of dimension nm:

#Anm(Fq) = qnm.

The class of φm in K[L−1]⊗Q is

[Anm] = [A1]nm = Lnm.

From this one example, we see that the scaling factor for DVR formulas
must be 1/Lnm.

Definition 3.8. Let φ be a DVR formula. Let the outer measure of φ at
level m be given by

[φm]
Lnm

∈ K[L−1]⊗Q = Smot.

This formula is analogous to Formula 10 for the Euclidean outer measure
at level m. The numerator counts the number of centers of cubes that
contain a solution to the DVR formula.

Definition 3.9. Let the motivic measure (or motivic volume) of φ be given
by

lim
m→∞[φm]L−nm,

whenever that limit exists. (The limit must be taken in a completion of
Smot.)
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3.7. The universal nature of motivic measure. Just as the motivic
counting measure counts solutions to ring formulas over finite fields in a
field independent way, so the motivic measure takes the volume of a DVR
formula over locally compact fields in a field independent way.2

There is a good theory of measure on locally compact fields. This is the
Haar measure, which is translation invariant. Given a DVR formula φ and
a locally compact structure K with ring of integers OK , we can take the
volume of the set of solutions to the DVR formula

(11) vol({x ∈ On
K | φK(x)}, dx).

The measure dx can be given a canonical normalization by requiring that it
assigns volume 1 to the full set On

K .
We are now ready to state the main result on motivic measure. Like all

the other principal results in this article, the result is due to J. Denef and
F. Loeser.

Theorem 3.10. The motivic volume of φ is universal in the following sense.
Let

∑
ai[Xi]L−Ni be any representative of the motivic volume of φ as a

convergent formal sum of varieties over Q. Pick models for the varieties over
Z. After discarding finitely many primes, for any locally compact structure
of the DVR language, the K-volume of the formula is given by a convergent
sum (in R) ∑

ai#X(Fq)q−Ni ,

where Fq is the residue field of K.

This wonderful result states that the Haar measures on all locally compact
fields have an deep underlying unity. The volumes of sets can be expressed
geometrically in a way that is independent of the underlying field.

Moreover, there are effective procedures to calculate the varieties Xi and
the coefficients ai, Ni that represent the outer motivic volume at level m. If
the outer ring formula approximations φm converge at some finite level m
to the DVR formula φ, then we obtain effective procedures to calculate the
motivic volume of the formula.

4. Applications and Conclusions

What good is motivic measure? Here are a few examples.

4.1. Invariants of ring formulas. The group Smot is generated by vari-
eties VarQ. Many geometrical invariants of varieties (such as Euler charac-
teristics and Hodge polynomials) can be reformulated as invariants of the
ring Smot. This gives a novel way to attach invariants to every ring formula
φ: take a geometric invariant of [φ] ∈ Smot. In particular, ring formulas have

2It is impossible for the structure K both to be locally compact and to have a residue
field k of characteristic zero, as required by Condition 3.3. The residue field of a locally
compact field is always finite. In these final paragraphs, we allow the residue field to have
positive characteristic.
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Euler characteristics and Hodge polynomials! For example, the formula for
the nonzero squares in a field

‘∃y. (y2 = x) ∧ (x 6= 0)’

has Euler characteristic zero.

4.2. Geometry of varieties. There is a motivic change-of-variables for-
mula that is similar to the standard change of variables formula in calculus.
Using this formula, it is sometimes possible to show that two birationally
equivalent varieties have the same motivic volume. This has deep implica-
tions for the geometry of the two varieties. In particular, the motivic volume
determines the Hodge polynomial of the varieties.

This approach was followed by Kontsevich, who used a change-of-variables
calculation to show that birationally equivalent projective Calabi-Yau man-
ifolds have the same Hodge numbers [13]. Applications to orbifolds appear
in [16].

4.3. Computation of p-adic integrals. Many integrals over p-adic fields
are notoriously difficult to calculate. Motivic measure exposes the underly-
ing similarities between volumes on different p-adic fields. It gives a deci-
sion procedure to calculate p-adic integrals (at least when the data defining
the integral can be expressed as DVR formulas that can be reproduced at
some finite level m). In particular, this means that a computer can be
programmed to compute a large class of p-adic integrals.

4.4. Generating Functions. Motivic counting gives a way of counting
that is independent of the finite field. Let

Zp(t) =
∞∑

i=0

a
(p)
i ti

be a generating function, where the constants a
(p)
i are obtained by counting

solutions to a formula in some p-dependent way. (Each generating function
depends on a single prime p.) Motivic measure can often give a way of
forming a p-independent series

Zmot(t) =
∞∑

i=0

[ai]ti

taking values in S*[[t]] and specializing for almost all p to the p-dependent
series Zp(t). The motivic series collects the behavior of the various series
Zp(t) into a single series.

Denef and Loeser have studied motivic versions of Hasse-Weil series, Igusa
series, and Serre series. They have used the general motivic series to prove
that various properties of these series are independent of the prime p. See
[5].
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4.5. Concluding Remarks. This article is an exposition of a particular
version of motivic integration, called arithmetic motivic integration. Proofs
of results stated in this article can be found in [6] and [4]. Motivic integra-
tion has been developing at a break-neck pace, ever since Kontsevich gave
the first lecture on the topic in 1995. The version of motivic integration
developed in the late nineties goes by the name of geometric motivic inte-
gration. Geometric motivic integration is a coarser theory, but is sufficient
for many applications. Good introductions are [1] and [15]. Some articles
on geometric motivic integration include [3] and [7]. Another version of
motivic integration has been developed by J. Sebag for formal schemes [18].
See also [14]. Cluckers and Loeser are in the final stages of preparation of an
ultimate version of motivic integration that subsumes both geometric and
arithmetic motivic integration [2].

We began this article by stating that motivic measure does not fit neatly
into the tradition of Hausdorff, Haar, and Lebesgue. However, a major result
states that the motivic measure specializes to the additive Haar measure on
locally compact fields (Theorem 3.10). Thus, the motivic measure is perhaps
not so peculiar after all. In fact, in many respects it is strikingly similar
to the additive Haar measure on locally compact fields. It has been my
experience when I calculate motivic volumes to lose track – mid-calculation
– of which measure is being used.

Appendix: Historical Remarks on Galois Stratification

by Michael Fried

François Loeser was one of the (three, including myself and Gross) for-
eigners who gave talks at Yasutaka Ihara’s sixtieth Birthday Conference
several years ago in Tokyo. I was totally unaware of the relation between
Denef and Loeser’s work and mine, until he gave that talk. My story starts
with my 1976 Annals paper [8].

This featured Galois stratification: a dissection of Diophantine statements
to produce uniform computations for rational points running over primes. It
also worked over all extensions of a finite field and through p-adic integration
over all p-adic completions. My followup paper [10] (written in 1978 from
lectures I gave at Yale), measured the bad primes on general statements. I
detected bad primes through failure of the Euler factor for that prime to fit
the uniform variation of Euler factors.

Galois stratification takes up considerable space in the papers of Denef
and Loeser, for the simple reason that quantifier elimination is the tool that
allows the conclusions you taut in Section 2.3.

General diophantine statement to me included such problems as came
from Artin’s conjecture: Failure of a hypersurface of degree d in projective
d2 space to have a p-adic point. You can see the territory was that defined
by Ax and Kochen. (I went with Ax to Stony Brook, instead of going with
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a tenure offer to University of Chicago.) You also see it is a more precise
problem than considered by the motivic counting of points on varieties over
finite fields. That considers only varieties with coefficients in Q (blindly
throwing out any knowledge a finite set of bad primes). There weren’t any
motives when I did my paper, only the category of Galois stratifications that
I invented.

Loeser’s first words – I’ve seen him since, but never had talked to him
before – to me, at the train station back to our hotel in Tokyo were: ”How
come nobody knows about this?” He was holding up the Fried-Jarden book
opened to Chap. 25. That was friendly and generous to me. Also, deserved!
It is the only gesture in my direction made by anyone in the last 25 years
toward me on the topic.

I’ve made little noise about the neglect of my early papers. It came from
an antagonism toward the “school” from which I came. Nevertheless, it
killed my career effectively for 12 years, until John Thompson asked me to
renovate my Inverse Galois Problem ideas.

The technical heart of Denef and Loeser’s results are Galois stratification,
in the original form conceived in my Annals paper. Their goals were versions
of mine in [10].

Did I have the idea of using an abstract gadget (Galois stratification)
to “measure” the truth of statements over arithmetic rings. Yes, I did in
the early seventies! Did I acknowledge the motivic approach, as soon as
I heard of it (many years later; especially the Denef-Loeser idea of Hodge
invariants)? Yes! Did my approach, technique and persistence influence the
topic? Yes! Do I now have any influence over the subject? Not Clear!
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