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ALGEBRAIC VARIETIES OVER PAC FIELDS

JÁNOS KOLLÁR

A field is called PAC (pseudo algebraically closed) if every geometrically integral
k-variety has a k-point. (A k-variety X is called geometrically integral if Xk̄ is
irreducible and reduced where k̄ is an algebraic closure of k. This notion is also
frequently called “absolutely irreducible”.) These fields were introduced and studied
in [Ax68]; see [FJ05] for an exhaustive and up to date treatment.

The aim of this paper is to settle questions 2 and 3 of the list of Open Problems
in [FJ05, Sec.32.2] about algebraic varieties over PAC fields.

Theorem 1. For a field k the following are equivalent:

(1) k is PAC.
(2) every absolutely irreducible homogeneous polynomial f(x, y, z) ∈ k[x, y, z]

has a nontrivial zero in k3.
(3) every geometrically integral plane curve C ⊂ P2

k has infinitely many k-
points.

Theorem 2. Let k be a PAC field, k̄ an algebraic closure and v a nontrivial valua-
tion of k̄. Let X be a geometrically integral k-variety. Then X(k) is dense in X(k̄)
in the v-adic topology.

It is clear that (1.1) implies (1.2). The equivalence of (1.1) and (1.3) is known
(cf. [FJ05, Sec.11.2]). Thus we need to show that if k is not PAC then there is a
geometrically integral plane curve C ⊂ P2 such that C(k) = ∅. This is done in
Section 1.

The proof of Theorem 2 relies on a trick of Prestel (cf. [FJ05, 11.5.3]), which was
used to show that P1(k) is v-adically dense in P1(k̄). The general case is proved in
Section 2.

1. A characterization of PAC fields

We prove Theorem 1 in 6 steps.

Step 1. Finite fields.
If k is finite then (1.2) never holds. This is shown in [FJ05, 11.2.9]. For instance,

xq−1 + yq−1 + zq−1 = 0 has no solutions in Fq whenever q > 3. So in the sequel we
assume that k is an infinite field and there is a geometrically integral k-variety X
such that X(k) = ∅.

Step 2. Reduction to a nonsingular projective curve.
This is known (cf. [Fre73]) but here is another short argument.
Let X be a geometrically integral k variety X such that X(k) = ∅. We may

assume that X is affine. A general hypersurface section is a geometrically integral
curve B such that B(k) = ∅. Let B̄ ⊃ B denote a projective model. The problem
is that B̄ \ B may contain k-points.

The k-points of B̄ × B̄ are all contained in the finite set (B̄ \B)× (B̄ \B), thus
a general hypersurface section C1 ⊂ B̄ × B̄ is a geometrically integral projective
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2 JÁNOS KOLLÁR

curve such that C1(k) = ∅. We can replace C1 with its normalization C → C1 to
get a nonsingular projective curve without k-points.

Step 3. Projecting to the plane.
If k is perfect then C is smooth. Embed C into some projective space Pn and

project generically to P2. By a classical result (cf. [Har77, IV.3.10]), the general
projection is a plane curve with only nodes as singularities.

If k is not perfect then C is nonsingular, but Ck̄ may be singular, so it is more
complicated to state the precise result. I thank M. Jarden for pointing out that I
originally overlooked this. (I follow the terminology of [Har77, p.177], according to
which “nonsingular” means that the local rings are regular and “smooth” means
that the module of differentials has the same dimension as the variety. If k is
perfect, the two notions coincide.)

Choose a very ample line bundle L on C such that

h0(Ck̄ , L(−p1 − p2 − p3)) = h0(Ck̄ , L) − 3 for every pi ∈ Ck̄,

and embed C ↪→ Pn using the global sections of L. This condition implies that no
3 points of C are contained in a line and that no tangent line at a smooth point has
another intersection point with C. Let π : C → C ′ ⊂ P2 be a general projection.

Lemma 3. Let k be an infinite field and C ⊂ Pn a nonsingular curve such that no
3 points of C are contained in a line and no tangent line at a smooth point of C
intersects C in any other point. Let π : C → C ′ ⊂ P2 be a general projection and
Q ⊂ C ′

k̄
the set of points with at least 2 preimages (over k̄). Then

(1) Q is finite,
(2) for every smooth point q ∈ C ′ \ Q, k(π−1(q)) = k(q),
(3) for every nonsmooth point q ∈ C ′ \ Q, k(π−1(q)) = k iff k(q) = k, and
(4) for every q ∈ Q, its preimage π−1(q) consists of 2 smooth points q1, q2 such

that k(qi)/k(q) is separable and of degree ≤ 2.

Proof. The center of the projection is a general linear space Mn−3 ⊂ Pn. We
show how a general choice of M assures the above properties.

The secant lines fill out a 3–dimensional subset, and the general M intersects
only finitely many secant lines, proving (1).

The tangent lines at smooth points of Ck̄ fill out a surface, so M can be taken
to be disjoint from it. Thus π is unramified at all smooth points of C which implies
(2).

There are finitely many singular points ci ∈ Ck̄ (no such points if k is perfect).
Let Li be the smallest linear subspace defined over k such that ci ∈ Li. Since
C is nonsingular, ci is not a k-point thus dim Li ≥ 1. Then π(ci) is a k-point iff
π(Li) is a k-point iff M ∩ Li has codimension 1 in Li. For M general, M ∩ Li has
codimension 3 in Li, proving (3).

Given p1, p2, p3 ∈ Ck̄, their linear span is a plane P . Thus π(p1) = π(p2) =
π(p3) only if dim(P ∩ M) ≥ 1. For each P , the latter condition is satisfied by a
codimension 4 subset of all Mn−3. The triplets (p1, p2, p3) are parametrized by
C3, so all together we get a codimension 1 subset of all Mn−3 where ≥ 3 points
have the same image. This shows that every point in Q has at most 2 preimages.
Secant lines of C which pass through at least one singular points of Ck̄ fill out a
2–dimensional subset, and the general M is disjoint from it. Thus every point in
Q has smooth preimages.
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We already saw that π is unramified at all smooth points of C, thus k(qi)/k(q) is
separable for every q ∈ Q. Since there are at most 2 preimages, deg k(qi)/k(q) ≤ 2.
This completes (4). �

Step 4. Quadratically closed fields.
Assume that k does not have any degree 2 separable field extensions and let

π : C → C ′ be a projection as in Lemma 3. We claim that C ′(k) = ∅.
Indeed, we know that C ′(k) ⊂ Q by Lemma 3 (2) and (3). If q ∈ C ′(k)∩Q with

preimages q1, q2 ⊂ Ck̄ then deg k(qi)/k(q) = deg k(qi)/k ≤ 2 by Lemma 3 (4), thus
k(qi) = k by our assumption. This contradicts C(k) = ∅.

If k does have a degree 2 separable field extension, then the projected curve
C ′ may well have k-points at its nodes. We next use the existence of a degree 2
separable field extension to first get a plane curve birational to C with a unique
k-point and then to get rid of that single k-point using a non–birational map.

Step 5. Reduction to a plane curve with a unique k-point.
More generally, we prove the following lemma.

Lemma 4. Let k be an infinite field which has a degree 2 separable field extension.
Let C ⊂ P

2 be a plane curve with only finitely many k points. Then there is a
birational map Φ : P2

99K P2 which transforms C into C ′ := Φ∗C ⊂ P2 such that
C ′ has at most one k-point.

The proof uses some explicit birational maps of P2 which we review first.

Definition 5 (Cremona transformations). The standard Cremona transformation
of P2 with base points at the “coordinate vertices” (0 : 0 : 1), (0 : 1 : 0), (1 : 0 : 0)
is given by

φ : (x : y : z) 7→ (yz : zx : xy).

It is best to think of φ as the map given by the 3–dimensional vector space of
quadrics that vanish at the three coordinate vertices.

Note that φ is an involution and it gives an automorphism of P2 \ (xyz = 0).
Let C ⊂ P2 be a plane curve not contained in (xyz = 0) and φ∗C ⊂ P2 the

closure of its image. Assume that none of the coordinate vertices is in C. Then
C → φ∗C is a morphism and φ∗C is obtained from C as follows:

(1) φ∗C ∩
(

P2 \ (xyz = 0)
)

is isomorphic to C ∩
(

P2 \ (xyz = 0)
)

,
(2) C ∩ (x = 0) is mapped to (1 : 0 : 0), C ∩ (y = 0) is mapped to (0 : 1 : 0),

and C ∩ (z = 0) is mapped to (0 : 0 : 1).

Similarly, if P1, P2, P3 are 3 non collinear points in P2 then there is a 3–dimensional
vector space of quadrics that vanish at P1, P2, P3. By choosing a basis Q1, Q2, Q3

we get a Cremona transformation

φ(P,Q) : (x : y : z) 7→ (Q1(x, y, z) : Q2(x, y, z) : Q3(x, y, z)).

For us it is especially useful to consider the case when P1, P2 are conjugate over
k and P3 is a k-point. In this case the vector space of quadrics that vanish at
P1, P2, P3 is defined over k and φ(P,Q) is also defined over k.

To get a concrete example, let q(x, y) be a k-irreducible, separable, degree 2,
homogeneous polynomial with roots P1, P2 ∈ P

1 and consider the Cremona trans-
formation

φq : (x : y : z) 7→ (xz : yz : q(x, y)).
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Its base points are P3 = (0 : 0 : 1) and P1, P2 ∈ P1 where we think of P1 as the line
at infinity (z = 0) ⊂ P2.

The line (z = 0) is mapped to (0 : 0 : 1) and the conjugate pair of lines (q(x, y) =
0) to the conjugate pair of points (q(x, y) = z = 0).

Now we return to the proof of (4). Assume that C(k) has at least 2 points
Q1, Q2. By assumption, there is a k-irreducible, separable, degree 2, homogeneous
polynomial q(x, y). Since k is infinite, there is a coordinate system on P2 such that

(1) (0 : 0 : 1) 6∈ C,
(2) the points (z = q(x, y) = 0) are not on C, and
(3) Q1, Q2 are on the line at infinity (z = 0).

Apply the Cremona transformation φq . It is an isomorphism outside (zq(x, y) =
0), so no new k-points are created there.

None of the three base points are on C, so the only new points of C ′ := (φq)∗(C)
are the three base points. Two of these, corresponding to the two conjugate linear
factors of q(x, y), are conjugate over k. The third one, (0 : 0 : 1), is in k.

Thus C(k) → C ′(k) is surjective and the two points Q1, Q2 ∈ C(k) have the
same image, thus |C(k)| > |C ′(k)|. Repeating this procedure, we eventually end
up with a unique k point on the birational transform of C. �

Step 6. Removing the unique k-point by a degree 2 cover.
Again we prove a more general result.

Lemma 6. Let k be an infinite field which has a degree 2 separable field extension.
Let C ⊂ P2 be a geometrically integral plane curve with exactly one k point. Then
there is a degree 2 map g : P2

99K P2 such that C ′′ := g−1(C) ⊂ P2 is geometrically
integral, closed and C ′′(k) = ∅.

The plan is to write down a quadric surface Q ⊂ P3 and two projections π :
Q → P2 and ρ : Q 99K P2. Here π is a projection from a k-point outside Q.
Thus π : Q → P2 is everywhere defined and it has degree 2. We arrange that
C ′ := π−1(C) is a geometrically integral curve without k points. On the other
hand, ρ : Q 99K P2 is a projection from a k-point on Q, hence birational and not
everywhere defined. Again we arrange that C ′′ := ρ(C ′) still has no k-points. Thus
g := π ◦ ρ−1 is the required degree 2 map.

The characteristic 2 case behaves somewhat differently, thus we leave it to the
end. We start with a simple general position result.

Lemma 7. Let k be an infinite field, chark 6= 2 and C ⊂ A2
k a geometrically reduced

plane curve. Then there is a hyperbola (ax + by)(cx + dy) = e, with a, b, c, d, e ∈ k
which intersects every irreducible component of C transversally in at least one point.

Proof. Pick a smooth point P ∈ C different from the origin. First we show that
there is a hyperbola over k̄ which intersects C transversally at P . This implies that
the assertion of the lemma holds for a Zariski open set of all hyperbolas. Since k is
infinite there is also such a hyperbola defined over k.

We can assume that P = (1, 0). Then we can normalize the equation to (x +
by)(x + dy) = 1. Its gradient at (1, 0) is (2, b + d). Since char k 6= 2, we can make
(2, b + d) transversal to the gradient of C at (1, 0). �

Let us now prove Lemma 6 in the char k 6= 2 case. By Lemma 7 we can choose
coordinates (x : y : z) in P

2 such that the following hold
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(1) (0 : 0 : 1) is the unique k-point of C, and
(2) the hyperbola H := (xy = z2), intersects C transversally in at least one

point.

By assumption there is an a ∈ k which is not a square. Consider the smooth
quadric

Q := (xy = z2 − at2) ⊂ P
3

and let π : Q → P2(x : y : z) be the coordinate projection. Note that the ramifica-
tion locus of π is the hyperbola H .

The preimage of (0 : 0 : 1) is given by the solutions of at2 = 1, hence it is a
conjugate pair of points. Therefore C ′(k) = ∅ where C ′ := π−1(C).

The projection C ′ → C is a double cover, ramifying at most at the points in
H ∩ C. Thus either C ′ is geometrically integral, or, over k̄, it is the union of
two copies of C mapping isomorphically onto C. Since H is transversal to C in
at least one point, C ′ → C has at least one simple ramification point, thus C ′ is
geometrically integral.

Note further that q := (1 : 0 : 0 : 0) ∈ Q and the two lines through q are given
by (y = z2 − at2 = 0), hence they are conjugate over k.

Let us now project the quadric Q from the point q to get ρ : Q 99K P
2(y :

z : t). ρ is everywhere defined on C ′ since q is not on C ′ (since C ′(k) = ∅).
Set C ′′ := ρ(C ′) ⊂ P2. Note that ρ is an isomorphism away from the two lines
(y = z2 − at2 = 0) and these lines are mapped to a conjugate pair of points. In
particular, C ′′(k) = ∅. We can take g := π ◦ ρ−1. This completes the proof when
chark 6= 2.

Only minor modifications are needed in the char k = 2 case. Choose coordinates
(x : y : z) in P2 such that the following hold

(1) the line L := (z = 0), intersects C transversally in at least one point, and
(2) (0 : 0 : 1) is the unique k-point of C.

By assumption there is a k-irreducible polynomial z2 + tz + at2. Consider the
quadric

Q := (xy = z2 + tz + at2) ⊂ P
3

and let π : Q → P2 be the coordinate projection. Set C ′ := π−1(C) and note that
the ramification locus of π is the line L.

The rest of the proof works as before. �

Remark 8. Lemmas 4 and 6 also hold if k has a degree 2 inseparable field extension.
In this case we have degenerate Cremona transformations where two of the base
points coincide. The geometric language needs to be modified but the algebraic
side remains unchanged.

Our proof of Theorem 1 starts with a curve C such that C(k) = ∅ and finds
a double cover of C which is birational to a plane curve without k-points. It is,
however, possible that C itself is birational to a plane curve without k-points.

Question 9. Let k be a field and C a projective curve over k such that C(k) = ∅.
Is C birational to a plane curve C ′ ⊂ P2 such that C ′(k) = ∅?

Poonen remarked that a generic projection from a sufficiently high degree em-
bedding C ↪→ P3 should be such if k is Hilbertian.

The general case, however, seems to have a different flavor. Consider, for in-
stance, the case when k = R and let C ⊂ P

n be a real curve such that C(R) = ∅.
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If P, P̄ ∈ C is a conjugate point pair, the line L connecting them is real. Thus if
we project from a center intersecting L, the image of C has a real singular point.
Moreover, this real singular point is usually stable under small perturbations of the
projection. Thus we get real singular points for a (Euclidean) open subset of all
projections. I don’t know the answer to (9) for real curves.

On the other hand, it may also be of interest to find for an integral, projective
curve C over an infinite field k a birational morphism φ : C → C ′ ⊂ P2 such that
φ(k) : C(k) → C ′(k) is a bijection.

Such a φ could exist even if k is algebraically closed, since C ′ may have only
unibranch singularities. While I do not know any smooth counter examples, there
are singular curves for which no such morphism exists.

Example 10. (1) By a result of [Ton05], if a rational curve C ′ ⊂ P2 has only
unibranch singularities, then the total number of singular points is at most 8. Take
k = C and let C ⊂ PN be a rational curve with at least 9 cusps. Then every
projection must have some non–unibranch singularities.

(2) Okounkov suggested that that there are counter examples over R coming from
graph theory. For instance, the complete bipartite graph K4,4 on 4+4 vertices can
not be embedded into RP2. Following any Euler path, K4,4 can be realized by the
real points of a rational curve C with 8 nodes. Thus any projection C → C ′ ⊂ P2

has new real singular points.

2. Density of k-points

Definition 11. The convention we use is that a valuation of a field K is a map
v : K → Γ ∪∞, where (Γ, <) is an ordered group, satisfying the properties

(1) v(ab) = v(a) + v(b),
(2) v(a + b) ≥ min{v(a), v(b)}, and
(3) v(a) = ∞ iff a = 0.

With this convention, a, b ∈ K should be thought of as near each other if v(a− b) is
large. A valuation determines a topology on Kn whose basis is given by the “balls
of radius γ”:

Bγ(a1, . . . , an) := {(x1, . . . , xn) : v(xi − ai) > γ ∀i}.

This induces a topology on the K-points of any affine variety, and this is indepen-
dent of the embedding chosen. Thus we get a well defined topology on X(K) where
X is any K-variety.

The continuous dependence of the roots of a monic polynomial on the coefficients
implies the following result that we need later:

Lemma 12. Let K be an algebraically closed field with a valuation v and F : D →
B a nonconstant morphism between integral curves. Let W ⊂ B be any subset.
Then

F−1
(

W
)

= F−1(W ),

where denotes closure in the v-adic topology. �

Plan of the proof of Theorem 2. Consider the special case when X = C is a plane
curve with equation g(x, y) = 0 and we want to prove that a point (0, b) ∈ C(k̄) is
in the closure of C(k).
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Following a trick of Prestel (cf. [FJ05, 11.5.3]), consider the surface in 4-space

T := (g(x1, y1) = g(x2, y2) = 0)

and the family of curves on T :

Ba := T ∩ (x1x2 = a2).

It can happen that every Ba is reducible (for instance, when g = x−y2), but this is
not hard to avoid. Thus assume that Ba is geometrically integral for some a with
v(a) large. Then the system of equations

g(x1, y1) = g(x2, y2) = x1x2 − a2 = 0

has a solution in k and either v(x1) ≥ v(a) or v(x2) ≥ v(a). In either case,
g(x, y) = 0 has a solution in k such that v(x) ≥ v(a).

This implies that at least one of the solutions of g(0, y) = 0 is in the closure of
C(k). Thus if we can choose C → A1

x to be Galois, then every solution of g(0, y) = 0
is in the closure of C(k) and we are done.

13 (Proof of Theorem 2). Every point of X(k̄) is contained in a geometrically
integral curve C ⊂ X and it is enough to prove that C(k) is dense in C(k̄). We can
replace C by a projective model, also denoted by C.

Step 1. Reduction to the Galois case.
The above discussion suggests that we should replace C with its Galois closure

D → C → A1
x. The main theorem on the “stability of fields” (cf. [FJ05, 18.9.3])

says that for every geometrically integral curve C (over any field) one can always
choose C → P

1 such that its Galois closure D → C → P
1 is also geometrically

integral. We need our map C → P1 to satisfy certain additional properties which
are easy to establish in the PAC case.

For any point p ∈ C(k̄) there is an effective Cartier divisor P ⊂ C such that
p ∈ Supp P . Since k is PAC, C(k) is infinite. Thus there is a t > 0 and distinct

points qi ∈ C(k) such that OC(
∑t

i=0 qi −P ) is very ample. In particular, there is a
rational function f on C with simple poles at q1, . . . , qt and vanishing on P . This
gives a morphism f : C → P1 such that

(1) p ∈ f−1(0 : 1),
(2) f is smooth above (1 : 0), and
(3) f−1(1 : 0) = {q1, . . . , qt} is a union of t different k-points.

Let F : D → P1 denote the normalization of P1 in the Galois closure of k(C)/k(P1).
By the next Lemma, D is geometrically integral.

Lemma 14. Let C be an integral k-curve and f : C → P
1 a morphism such that

(1) f is smooth above (1 : 0), and
(2) f−1(1 : 0) = {q1, . . . , qt} is a union of t different k-points.

Let F : D → P1 denote the normalization of P1 in the Galois closure of k(C)/k(P1).
Then D is geometrically integral and F is smooth above (1 : 0)

Proof. We can also realize D as the normalization of an irreducible component
of the t-fold fiber product

f (t) : C(t) := C ×P1 C ×P1 · · · ×P1 C → P
1.

Since f is smooth above (1 : 0) and f−1(1 : 0) is a union of k-points, we see
that f (t) is smooth above (1 : 0) and (f (t))−1(1 : 0) is also a union of k-points.
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Thus every irreducible component of C(t) contains a smooth k-point hence they are
geometrically integral. �

Step 2. The auxiliary curves Ba.
Consider now the product map

F × F : D × D → P
1 × P

1,

and let (xi : yi) for i = 1, 2 be coordinates on the two copies of P1. As shown by
the next Lemma, in our case the curves Ba are almost all geometrically integral.

Lemma 15. Let D be a geometrically integral, projective k-curve and F : D → P1

a morphism which is smooth above (1 : 0). Then, for all but finitely many (s : t) ∈
P1(k), the preimage

B(s:t) := (F × F )−1(sx1x2 = ty1y2) ⊂ D × D

is a geometrically integral curve.

Proof. Note that B(s:t) is defined scheme theoretically. That is, it is the sub-
scheme of D × D defined by the equation

(sx1x2 − ty1y2) ◦ (F × F ) = 0.

Thus our assertion includes the claim that (sx1x2 − ty1y2) ◦ (F ×F ) vanishes along
B(s:t) with multiplicity 1. Since we use subschemes, the construction of B(s:t)

commutes with any field extension. (By contrast, working with the correspond-
ing variety redB(s:t) could introduce extra multiplicities under inseparable field
extensions.)

First we reduce the Lemma to the case when the base field is algebraically closed
and D is smooth.

Let k̄ ⊃ k be an algebraic closure and Dk̄ the corresponding curve. By assump-
tion, Dk̄ is integral (that is, irreducible and reduced). The construction of B(s:t)

commutes with the field extension, thus B(s:t) is geometrically integral iff (B(s:t))k̄

is integral. Therefore we may assume that k is algebraically closed.
Next, let D′ → D be the normalization and F ′ : D′ → P1 the lifting of F . Set

B′

(s:t) := (F ′ × F ′)−1(sx1x2 = ty1y2) ⊂ D′ × D′.

Since D contains a smooth open set so does D × D, thus D′ × D′ → D × D is an
isomorphism over a dense open set. Therefore, for all but finitely many (s : t), the
induced morphism B′

(s:t) → B(s:t) is an isomorphism over a dense open set, thus if

B′

(s:t) is integral then so is B(s:t) for all but finitely many (s : t). Therefore we may

also assume that D is smooth.
|sx1x2 − ty1y2| =: |H(s:t)| is an (incomplete) ample linear system on P1 × P1

with base points at ((0 : 1), (1 : 0)) and ((1 : 0), (0 : 1)). Let S → P1 × P1 be
the blow up of these base points and πS : S → P1 the induced morphism given by
|sx1x2 − ty1y2|. (Note that P1 ∼= P1, but I use the different notation to stress that
P1 is not one of the coordinate factors in S → P1 × P1.)

The curves B(s:t) form a linear system which is the pull back of an ample linear
system by F × F . Since a F × F is a finite morphism, the pull back is also ample
(cf. [Har77, III.Exrc.5.7(d)]). Therefore, by the lemma of Enriques–Severi–Zariski,
every B(s:t) is connected (cf. [Har77, III.7.9]). Thus it is enough to prove that B(s:t)

is smooth for all but finitely many (s : t) ∈ P1.
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The base points of |B(s:t)| are the preimages of ((0 : 1), (1 : 0)) and ((1 : 0), (0 :
1)) by F × F . Let T → D × D be the blow up of these base points and τ : T → S
the lifting of F × F . Further, let πT : T → P1 be the induced morphism given by
|B(s:t)|. Note that T can be singular.

Our aim is to prove that only finitely many fibers of πT are singular. Equivalently,
πT has at least one smooth fiber. Let Z ⊂ T be the set of points p ∈ T such that
π−1

T (πT (p)) is singular at p. Since πT is flat, Z ⊂ T is closed by [Gro65, IV.6.8.7].

For a given (s : t), we analyze the singularities of the fiber T(s:t) := π−1
T (s : t) by

comparing them to the singularities of the fiber S(s:t) := π−1
S (s : t).

The following diagram summarizes the notation.

D × D
F×F

yyss
s
s
s
s
s
s
s
s

Too

τ

{{ww
w
w
w
w
w
w
w
w

πT
// P1

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

P1 × P1 Soo πS
// P1

B(s:t)

zztt
t
t
t
t
t
t
t

OO

T(s:t)oo

{{xx
x
x
x
x
x
x

OO

// (s:t)

y
y
y
y
y
y
y
y

y
y
y
y
y
y
y
y

OO

H(s:t)

OO

S(s:t)oo //

OO

(s:t)

OO

There are two distinct ways that a point p ∈ T(s:t) can be singular: either
τ(p) ∈ S(s:t) is a singular point, or τ : T → S is not smooth at p.

Correspondingly, let Z1 ⊂ T be the set of points p ∈ T such that π−1
S (πT (p)) is

singular at τ(p) and Z2 ⊂ T be the set of points p ∈ T such that τ is not smooth at
p. Then Z ⊂ Z1 ∪ Z2 and Z1 ⊂ Z, but usually Z2 is not contained in Z. It is easy
to describe Z1 completely. The linear system |sx1x2 − ty1y2| has only two singular
members corresponding to (x1x2 = 0) and (y1y2 = 0), hence

Z1 = τ−1{((0 : 1), (0 : 1)), ((1 : 0), (1 : 0))}.

Since τ has finite fibers, Z1 is finite.
Let us consider B(0:1) which is the preimage of (y1y2 = 0) by F × F . Thus it is

a union

B(0:1) = D × F−1(1 : 0) ∪ F−1(1 : 0) × D,

and the two components intersect at the points F−1(1 : 0)×F−1(1 : 0) where B(0:1)

has ordinary nodes.
Thus we see that τ(Z ∩ B(0:1)) = ((1 : 0), (1 : 0)) and Z ∩ B(0:1) is disjoint from

Z2 since τ is smooth above ((1 : 0), (1 : 0)). Our goal is to prove that πT (Z) is
finite. Since Z1 is finite, it suffices to prove that πT (Z ∩ Z2) is finite. To this end
observe that πT is proper, so πT (Z ∩Z2) is closed. Thus, πT (Z ∩Z2) is either finite
or all of P1. The latter possibility is excluded, because (0 : 1) /∈ πT (Z ∩ Z2). �

Step 3. End of the proof.
We are back to the case when k is arbitrary. For a ∈ k, let Ba ⊂ D × D denote

the affine curve B(1:a2) \ (y1y2 = 0). We change to affine coordinates Xi = xi/yi on

(P1 × P
1) \ (y1y2 = 0), then the equation of Ba is X1X2 = a2.
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Since k is PAC, for all but finitely many a ∈ k there is a k-point

(q1, q2) ∈ Ba(k) ⊂ D(k) × D(k).

Since F (q1)F (q2) = a2, we conclude that either v(F (q1)) > v(a) or v(F (q2)) > v(a).
In any case we have proved that for all but finitely many a ∈ k there is a point
q ∈ D(k) such that v(F (q)) > v(a). By [FJ05, 11.5.2], for any γ ∈ Γ there are
infinitely many a ∈ k such that v(a) > γ. Thus for every γ ∈ Γ there is a q ∈ D(k)
such that v(F (q)) > γ. That is, (0 : 1) ∈ P

1 is in the v-adic closure of F (D(k)).
Since F : D → P1 is Galois, F−1(F (D(k))) = D(k). Thus, by Lemma 12,

p ∈ F−1(0 : 1) is in the v-adic closure of F−1(F (D(k))) = D(k). �
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