
FRATTINI EXTENSIONS AND CLASS FIELD THEORY

TH. WEIGEL

Abstract. A. Brumer has shown that every profinite group of strict cohomo-
logical p-dimension 2 possesses a class field theory - the tautological class field
theory. In particular, this result also applies to the universal p-Frattini exten-
sion G̃p of a finite group G. We use this fact in order to establish a class field

theory for every p-Frattini extension π : G̃ → G (Thm.A). The role of the class
field module will be played by the p-Frattini module. The universal norms of
this class field theory will carry important information about the p-Frattini
extension π : G̃ → G. A detailled analysis will lead to a characterization of
finite groups G which have a p-Frattini extension π : G̃ → G in which G̃ is a
weakly-orientable p-Poincaré duality group of dimension 2 (Thm.B).

In section §5 we characterize the p-Frattini extensions πA1 : Sl2(Zp) →
Sl2(Fp), p �= 2, 3, 5, by some kind of localization technique. This answers a
question posed by M.D.Fried and M.Jarden (Thm.C). It is quite likely that
such an approach might also be successful for the characterization of the p-
Frattini extensions πD : XD(Zp) → X(Fp), where XD is the simple simply-
connected split Z-Chevalley group scheme with Dynkin diagram D.

1. Introduction

Let G be a finite group and let p be a prime number. An extension of G by a
pro-p group A

(1.1) 1 −→ A
ι−→ G̃

π−→ G −→ 1

is called a p-Frattini extension, if im(ι) is contained in the Frattini subgroup of G̃.
The study of p-Frattini extensions of finite groups has a long history. W.Gaschütz
(cf. [8]) showed that every finite group G has a universal elementary p-abelian
Frattini extension π/p : G̃/p → G which kernel is - considered as (left) Fp[G]-module
- isomorphic to Ω2(G, Fp), where Ωk(G, ) = Ω−k(G, ) denotes the kth-Heller
translate in the category G modp of finitely generated (left) Fp[G]-modules. Based
on this result J.Cossey, L.G.Kovács and O.H.Kegel [3] showed the existence of a
universal p-Frattini cover πp : G̃p → G. As the universal p-Frattini cover coincides
with the minimal projective cover (cf. [6, Prop.20.33]), K.Gruenberg’s theorem [7]
implies that G̃p is of cohomological p-dimension less or equal to 1, i.e, cdp(G̃p) ≤ 1.
In particular, ker(πp) is a finitely generated free pro-p group (cf. [12, §I.4.2, Cor.2]).

If p divides the order of G, the profinite group G̃p is of strict cohomological p-
dimension 2. For these groups A.Brumer [2] showed the existence of a tautological
class field theory. The goal of this paper is to use this tautological class field theory
for the group G̃p in order to obtain new result on p-Frattini extensions.

The most efficient way to establish a class field theory is to use the theory
of cohomological Mackey-Functors. A. Dress introduced this notion in [4]. The
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exposition given by P.Webb in [15] will be particularly useful for our purpose, and
therefore we will follow it closely as far as possible.

The following theorem can be seen as a “structure theorem for p-Frattini ex-
tensions”, which combines W.Gaschütz theorem with the fact that the inflation
mapping H1(π, S) is bijective for a p-Frattini extension π as in (1.1) and an irre-
ducible (left) Fp[G]-module S [16, Prop.3.1]. Its proof can be found in section 3.3
(cf. Thm.3.1, Cor.3.2).

Theorem A. Let G be a finite group, let p be a prime number and let π : G̃ → G be
a p-Frattini extension. Let F(G̃) be the set of all open normal subgroups of G̃ being
contained in ker(π). Then there exists a p-class field theory (C, γ) for (G̃,F), i.e.,

(i) C is a cohomological F(G̃)-Mackey functor of type H0 (this is a short form
to say that it has Galois descent),

(ii) CU = Ω2(G̃/U, Zp) for all U ∈ F(G̃),
(iii) γ : C → Abp is a surjective morphism of cohomological F(G̃)-Mackey func-

tors, where Abp denotes the cohomological F(G̃)-Mackey functor of maxi-
mal p-abelian quotients (cf. §3.1),

(iv) for all U, V ∈ F(G̃), V ≤ U , γ induces an isomorphism

(1.2) CU/im(NC
V,U ) � (U/V )ab

p ,

(v) let U, V, W ∈ F(G̃), V, W ≤ U , such that U/V and U/W are abelian p-
groups. Then im(NC

V,U ) = im(NC
W,U ) implies V = W .

The class field theory (C, γ) has also two further properties one would usu-
ally require from a class field theory: (vi) There exists a canonical class c ∈
nat2(X(Zp),C), (vii) H1(G̃/V,CV ) = H1(U/V,CV ) = 0 for all U, V ∈ F(G̃),
V ≤ U (cf. Rem.3.3). However, this will not be of importance for our purpose.

The kernel of γ will be called the universal norms (of C). Its analysis will finally
enable us to characterize finite groups G possessing a p-Frattini cover π : G̃ → G
in which G̃ is a weakly-orientable profinite p-Poincaré duality group of dimension
2 (cf. Cor.4.6). Here we call a profinite p-Poincaré duality group G̃ of dimension d

weakly-orientable, if Hd(G̃, Fp[[G̃]]) � Fp is the trivial module.

Theorem B. Let G be a finite group, and let p be a prime number. Then the
following are equivalent:

(i) There exist a p-Frattini extension π : G̃ → G, where G̃ is a profinite weakly-
orientable p-Poincaré duality group of dimension 2.

(ii) There exists an injective map

(1.3) α : Ω1(G, Fp) −→ Ω2(G, Fp)

which is not an isomorphism.

Remark 1.1. Theorem B raises the following two questions: (1) For which finite
groups G and prime numbers p does there exist an injective but not surjective
map α : Ω1(G, Fp) −→ Ω2(G, Fp)? (2) Provided such a mapping exists, how many
isomorphism types of p-Frattini covers π : G̃ → G exist, where G̃ is a weakly-
orientable p-Poincaré duality group of dimension 2?

Unfortunately, we cannot say anything about the second question. Explicit
computations using the work of K.Erdmann [5] show that for q ≡ 3 mod 4, such
a mapping α exists for G : = PSl2(q) and p = 2 (cf. [16], [17]). However, it seems
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a very difficult problem to characterize or classify the tuples (G, p) for which such
a mapping exists.

Let Sp(G) denote the set of isomorphism types of irreducible (left) Fp[G]-mo-
dules, and let Δ ⊆ Sp(G) be a subset of Sp(G). For short we call a p-Frattini
extension π : G̃ → G a Δ-Frattini extension, if the isomorphism type of every G-
composition factor of ker(π) is contained in Δ. From the existence of the universal
p-Frattini extension one deduces easily the existence of a universal Δ-Frattini ex-
tension πΔ : G̃Δ → G (cf. §5.2). Obviously, G̃Sp(G) coincides with G̃p, and G̃∅
coincides with G itself. For our purpose it will be useful that the universal Δ-
Frattini extension can be charcterized by vanishing of second degree cohomology in
a similar way as it is known for the universal p-Frattini extension (cf. Prop.5.1).

It is well-known that for p �= 3, the extension

(1.4) πA1 : Sl2(Zp) −→ Sl2(Fp)

is indeed a p-Frattini extension (cf. [18]). However, it remained an open problem
to characterize the extension πA1 among all p-Frattini extension (cf. [6, Problem
20.40]).

For p �= 2, 3, M.Lazard’s theorem implies that Sl2(Zp) is an orientable p-Poincaré
duality group of dimension 3 (cf. [13]). From this fact we will deduces the following
characterization:

Theorem C. Let p be a prime different from 2, 3 and 5. Let Mk, k = 0, . . . , p−1,
denote the simple Fp[Sl2(Fp)]-module of weight k and Fp-dimension k + 1. Then
for every subset Δ ⊂ Sp(Sl2(Fp)) satisfying

(i) [M2] ∈ Δ,
(ii) [Mp−3] �∈ Δ,

the universal Δ-Frattini extension πΔ of Sl2(Fp) coincides with πA1 , i.e., one has
an isomorphism

(1.5) φ : S̃l2(Fp)Δ −→ Sl2(Zp)

satisfying πA1 ◦ φ = πΔ.

For a given Dynkin diagram D let XD be the simple simply-connected Z-Che-
valley group scheme associated to D. It has been proved in [18] that apart from
finitely many (more or less explicitly known) values of (D, p),

(1.6) πD : XD(Zp) −→ XD(Fp)

is a p-Frattini extension. Therefore, one wonders whether one can character-
ize XD(Zp) in a similar fashion as Sl2(Zp) answering the problem raised in [6,
Prob.20.40] in a wider context:

Question 1.2. Assume that p is large with respect to the Coxeter number of D.
Let LD(Fp) denote the Fp-Chevalley Lie algebra associated to D considered as (left)
Fp[XD(Fp)]-module and put ΔD : = {[LD(Fp)]}. Are πD and πΔD

isomorphic p-
Frattini covers?

Remark 1.3. Proposition 5.1 shows that Question 1.2 is equivalent to the question
whether

(1.7) H2(XD(Zp),LD(Fp)) = 0.
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2. Cohomological Mackey functors

2.1. Profinite modules of profinite groups. Let p be a prime number, and let
Ĝ be a profinite group. The completed Zp-group algebra of Ĝ is given by

(2.1) Zp[[Ĝ]] : = lim←−U
Zp[Ĝ/U ],

where the inverse system is running over all open normal subgroups of Ĝ. By Ĝprfp

we denote the abelian category the objects of which are abelian pro-p groups with
continuous left Ĝ-action. The morphisms from M to N , M, N ∈ ob(Ĝprfp), are
defined to be the continuous morphisms of profinite groups commuting with the
action of Ĝ. The abelian group of morphisms from M to N will be denoted by
HomĜ(M, N). This category can be identified with the full subcategory of the
category of topological left Zp[[Ĝ]]-modules, the objects of which are also abelian
pro-p groups. It is well-known that Ĝprfp has enough projectives, and in particular
minimal projective covers. If Ĝ is the trivial group, then Ĝprfp coincides with the
category of abelian pro-p groups, which we will denote by prfp.

By Ĝprf/p we denote the abelian category the objects of which are profinite
Fp-vector spaces with continuous left Ĝ-action. It is a full subcategory of Ĝprfp,
and objects can be considered as topological modules for the completed Fp-group
algebra

(2.2) Fp[[Ĝ]] : = lim←−U
Fp[Ĝ/U ].

For further details the reader may wish to consult [2], [11] or [13].

2.2. Cohomological Mackey functors. There are several equivalent ways to de-
fine a cohomological Mackey functor. Here we will follow more or less the approach
chosen by P.Webb (cf. [15, §2]).

Let Ĝ be a profinite group and let N be a set of open normal subgroups of Ĝ. For
short we call N a normal Mackey system, if N is closed with respect to products
and intersections, and if

⋂
U∈N U = 1.

Let N be a normal Mackey system of the profinite group Ĝ. A cohomological N -
Mackey functor X with coefficients in prfp is a collection (XU )U∈N of Ĝ-modules
XU ∈ ob(Ĝ/Uprfp), together with two series of mappings iXU,V and NX

V,U for U, V ∈
N , V ≤ U , where

iXU,V ∈ HomĜ/V (XU ,XV ),

NX
V,U ∈ HomĜ/V (XV ,XU ),

(2.3)

and which satisfy the following relations:

iXU,U = NX
U,U = idXU

for all U ∈ N ,(2.4)

iXU,W = iXV,W ◦ iXU,V for all U, V, W ∈ N , U ≤ V ≤ W ,(2.5)

NX
W,U = NX

V,U ◦ NX
W,V for all U, V, W ∈ N , U ≤ V ≤ W ,(2.6)

iXUV,V ◦ NX
U,UV = NX

U∩V,V ◦ iXU,U∩V for all U, V ∈ N ,(2.7)

iXU,V ◦ NX
V,U =

∑
x∈U/V

x for all U, V ∈ N , U ≤ V ,(2.8)

NX
V,U ◦ iXU,V = |U : V |.idXU

for all U, V ∈ N , U ≤ V ,(2.9)
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The notation we have chosen is closer related to number theory than the one intro-
duced in [15]. One can easily verify that the role of IU

V in [15] is played by NX
V,U , and

iXU,V plays the role of RU
V . Our axioms (2.3) and (2.4)-(2.6) are obviously equivalent

to the axioms (0)-(5) in [15, §2]. The axioms (2.7) and (2.8) are reformulating ax-
iom (6) in [15], as we assumed that all open subgroups of Ĝ under consideration
are normal in Ĝ. Axiom (2.9) characterizes cohomological Mackey functors among
all Mackey functors (cf. [15, §7]).

By CMN (Ĝ,prfp) we denote the category of cohomological N -Mackey functors
of Ĝ with coefficients in prfp. A morphism between cohomological N -Mackey
functors η : X → Y is a sequence of mappings (ηU )U∈N , ηU ∈ HomĜ/U (XU ,YU ),
for which the diagrams

(2.10)

XU
ηU−−−−→ YU

iXU,V

⏐⏐� ⏐⏐�iYU,V

XV
ηV−−−−→ YV

XU
ηU−−−−→ YU

NX
V,U

�⏐⏐ �⏐⏐NY
V,U

XV
ηV−−−−→ YV

commute for all U, V ∈ N , V ≤ U . By nat(X,Y) we denote the abelian group of
morphisms of cohomological N -Mackey functors from X to Y.

Using the interpretation of CMN (Ĝ,prfp) as the category of additive Zp-linear
functors from the category of Ĝ-permutation modules of discrete Ĝ-sets with iso-
tropy group being contained in N to the category prfp of abelian pro-p groups (cf.
[15, Prop.7.2]), one sees easily that CMN (Ĝ,prfp) is an abelian category. Kernels
and cokernels are defined in the obvious way.

2.3. From cohomological Mackey functors to Ĝ-modules and vice versa.
Taking the inverse limit over the norm maps NV,U defines a covariant left exact
functor

m : CMN (Ĝ,prfp) −→ Ĝprfp,

m(X) : = lim←−U∈N XU , for X ∈ ob(CMN (Ĝ,prfp)).
(2.11)

In case N contains a countable basis of neighbourhoods of 1 ∈ Ĝ, lim←−
1 vanishes,

since all modules XU are compact. Hence in this case m is exact.
Let M ∈ ob(Ĝprfp) be an abelian pro-p group with continuous left Ĝ-action.

For an open normal subgroup U ∈ N we denote by

(2.12) MU : = Zp[Ĝ/U ]⊗̂ĜM = M/cl(〈 (1 − u).M |u ∈ U 〉)
the U -coinvariants of M . Here ⊗̂ denotes the pro-p tensor product as defined by
A.Brumer (cf. [2, §2]), and cl denotes the closure operation. The assignment X(M)
which assigns U ∈ N the U -coinvariants X(M)U : = MU together with the natural
map N

X(M)
V,U : MV → MU , V ≤ U , and the mapping i

X(M)
U,V : MU → MV , V ≤ U ,

(2.13) i
X(M)
U,V (m + cl(〈 (1− u).M |u ∈ U 〉) : =

∑
x∈V/U

x.m + cl(〈 (1− v).M |v ∈ V 〉),

defines a cohomological N -Mackey functor X(M) ∈ ob(CMN (Ĝ,prfp)). It induces
a covariant additive right exact functor

(2.14) X( ) : Ĝprfp −→ CMN (Ĝ,prfp),
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which will be in general not exact. As we will see in the next subsection, the
cohomological N -Mackey functors obtained this way have a particular property
which characterizes them.

2.4. Cohomology and homology of cohomological N -Mackey functors. Let
X be a cohomological N -Mackey functor for Ĝ with coefficients in prfp. For short
we call X i-injective, if all maps iXU,V , U, V ∈ N , V ≤ U , are injective. Similarly,
X is called N -surjective, if NX

V,U is surjective for all U, V ∈ N , V ≤ U .
Assume that X ∈ ob(CMN (Ĝ,prfp)) is i-injective. Then we call X of type H0,

if

(2.15) im(iXU,V ) = XU/V
V

for all U, V ∈ N , V ≤ U . Here XU/V
V denotes the abelian group of U/V -fixed

points on XV . Cohomological N -Mackey functors of type H0 are sometimes also
called to have Galois descent. The N -surjective cohomological N -Mackey functor
is called of type H0, if

(2.16) ker(NX
V,U ) =

∑
x∈U/V

(x − 1).XV

for all U, V ∈ N , V ≤ U . From this definition it is straight forward, that a
cohomological N -Mackey functor is of type H0, if and only if it is isomorphic to
a functor X(M) for some M ∈ ob(Ĝprfp). The cohomological N -Mackey functors
being oy type H0 are sometimes also called to have Galois codescent.

It is possible to interprete the definitions of being of type H0 or of type H0 in
a more general homological context. For a cohomological N -Mackey functor X we
define for U, V ∈ N , V ≤ U ,

k0(U/V,X) : = ker(iXU,V ), k1(U/V,X) : = XU/V
V /im(iXU,V ),

(2.17)

c0(U/V,X) : = coker(NX
V,U ), c1(U/V,X) : = ker(NX

U,V )/
∑

x∈U/V

(x − 1)XV .

(2.18)

Let 0 → X → Y → Z → 0 be a short exact sequence of cohomological N -Mackey
functors. Then the snake lemma implies that one has exact sequences

0 →k0(U/V,X) → k0(U/V,Y) → k0(U/V,Z) . . .

→k1(U/V,X) → k1(U/V,Y) → k1(U/V,Z),
(2.19)

c1(U/V,X) → c1(U/V,Y) → c1(U/V,Z) → . . .

c0(U/V,X) → c0(U/V,Y) → c0(U/V,Z) → 0.
(2.20)

One can therefore think of k0/1(U/V, ) as the 0- and 1-dimensional section co-
homology of cohomological N -Mackey functors, and of c0/1(U/V, ) as the 0- and
1-dimensional section homology of cohomological N -Mackey functors. It is possible
to extend these functors to cohomological and homological functors, respectively.
Since we will not make use of the higher derived functors we omit a detailed discus-
sion here. However, we would like to remark, that these functors are not unrelated.
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Proposition 2.1. Let X ∈ CMN (Ĝ,prfp) be a cohomological N -Mackey functor
and let U, V ∈ N , V ≤ U . Then one has an exact sequence of Ĝ/U -modules

0 −→ c1(U/V,X) α1−→ Ĥ−1(U/V,XV ) α2−→ k0(U/V,X) α3−→ . . .

c0(U/V,X) α4−→ Ĥ0(U/V,XV ) α5−→ k1(U/V,X) −→ 0,
(2.21)

where Ĥ•(U/V, ) denotes Tate cohomology.

Proof. The mapping α1 : c1(U/V,X) → Ĥ−1(U/V,XV ) is clearly injective. Since
α2 is induced by the norm map NX

V,U , one has

(2.22) ker(α2) = ker(NX
V,U )/

∑
x∈U/V

(x − 1)XV = im(α1).

Furthermore, by axiom (2.9)

(2.23) ker(α3) = ker(iXU,V ) ∩ im(NV,U ) = NV,U (ker(
∑

x∈U/V

x)) = im(α2).

The mapping α4 is induced by iXU,V . Hence

(2.24) ker(α4) =
(
ker(iXU,V ) + im(NX

V,U )
)
/im(NX

V,U ) = im(α3).

The mapping α5 is the canonical map and thus surjective. Furthermore,

(2.25) ker(α5) = im(iXU,V )/(
∑

x∈U/V x).XV = im(α4).

This yields the claim. �

Remark 2.2. Let Ĝ be a finite cyclic group and let N : = {1, Ĝ}. Using an alterna-
tive approach for the definition of c•(Ĝ, ) and k•(Ĝ, ) one sees that there exist
connecting homomorphisms making the sequence

(2.26) (k0(Ĝ, ),k1(Ĝ, ), c1(Ĝ, ), c0(Ĝ, ))

a (co)homological functor. Let M ∈ ob(Ĝprfp) be a finitely generated Zp[Ĝ]-
module. Then (2.21) says that the Herbrand quotient (cf. [10, Kap.IV, §7])

(2.27) h(Ĝ, M) : =
|Ĥ0(Ĝ, M)|
|Ĥ−1(Ĝ, M)|

can be interpreted as a kind of multiplicative Euler characteristic, i.e., one has

(2.28) h(Ĝ, M) =
|c0(Ĝ, X(M))| · |k1(Ĝ, X(M))|
|c1(Ĝ, X(M))| · |k0(Ĝ, X(M))|

=: χ(X(M)).

For short we say that a cohomological N -Mackey functor X is cohomologically
trivial, if X is of type H0 and H0. From Proposition 2.1 follows that such a functor
satisfies

(2.29) Ĥ−1(U/V,XV ) = Ĥ0(U/V,XV ) = 0

for all U, V ∈ N , V ≤ U .
Proposition 2.3. Let P ∈ ob(Ĝprfp) be projective. Then for V ∈ N , X(P )V

(cf. 2.3) is a projective Zp[Ĝ/V ]-module. In particular, X(P ) is a cohomologically
trivial cohomological N -Mackey functor.
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Proof. The first statement follows from the fact that deflation from Ĝprfp to
Ĝ/V prfp is mapping projectives to projectives. Since restriction to closed sub-
groups is mapping projectives to projectives, it suffices to prove the second claim
for U = Ĝ. Since X(P ) is of type H0, c0/1(Ĝ/V, X(P )) = 0. As PV ∈ ob(Ĝ/V prfp)

is projective, Ĥ−1(Ĝ/V, PV ) = Ĥ0(Ĝ/V, PV ) = 0. Hence Proposition 2.1 yields the
claim. �

3. Class field theories

Throughout this section let Ĝ be a profinite group, and let p be a prime number.
We also assume that N is a normal Mackey system for Ĝ.

For a finite group G we denote by Sp(G) the set of isomorphism types of irre-
ducible (left) Fp[G]-modules. For an irreducible Fp[G]-module S we use the symbol
[S] ∈ Sp(G) to denote its isomorphism type.

3.1. The cohomological Mackey functors Abp and Ab/p. For U ∈ N , let

(3.1) Abp
U : = Uab

p = U/cl([U, U ])
/
Op′(U/cl([U, U ])

denote the largest continuous homomorphic image of U which is an abelian pro-p
group. Here [ , ] stands for the commutator subgroup, and cl denotes the closure
operation. Then for U, V ∈ N , V ≤ U , one has a canonical map NAbp

V,U : V ab
p → Uab

p .
This map together with the transfer map (cf. [10, p.312])

(3.2) iAbp

U,V : = trU
V : Uab

p → V ab
p

makes Abp ∈ ob(CMN (Ĝ,prfp)) a cohomological N -Mackey functor. By Ab/p we
denote its reduction modulo p, i.e., for U ∈ N one has

(3.3) Ab/p
U : = Uab

/p = Abp
U/p.Abp

U ,

and the maps iAb/p

U,V and NAb/p

V,U , U, V ∈ N , V ≤ U , are the maps induced from
iAbp

U,V and NAbp

V,U , respectively. It is obviously a cohomological N -Mackey functor.

3.2. Weak p-class field theories. We define a weak p-class field theory (X, η) (for
(Ĝ,N )) to be a cohomological N -Mackey functor X ∈ ob(CMN (Ĝ,prfp)), together
with a surjective morphism η : X → Abp of cohomological N -Mackey functors with
the following properties:

(i) X is of type H0,
(ii) c0(U/V, η) : c0(U/V,X) → (U/V )ab

p is an isomorphism for all U, V ∈ N ,
V ≤ U .

The property (i) implies that k0/1(U/V,X) = 0 for all U, V ∈ N , V ≤ U . In
particular, one has an isomorphism c0(U/V,X) = Ĥ0(U/V,XV ). The property (ii)
is one of the properties one would expect from a p-class field theory. However, in
order to state the other property, one has also to require some structure on the
normal Mackey system N .
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3.3. p-Class field theories. For short we call a normal Mackey system p-closed,
if it satisfies the following property: Assume that W is an open normal subgroup
of Ĝ which is contained in an open normal subgroup in U ∈ N , such that U/W is
a finite abelian p-group. Then W is also contained in N .

Let N be a p-closed normal Mackey system of Ĝ. Then we call the weak p-class
field theory (X, η) a p-class field theory, if it satisfies additionally the following
property:

(iii) Let U ∈ N and let V, W ≤ U be open and normal in Ĝ, such that U/V
and U/W are finite abelian p-groups. Assume that im(NX

V,U ) = im(NX
W,U ).

Then V = W .
In a similar fashion one defines a /p-class field theory: Let N be a p-closed nor-
mal Mackey system of Ĝ. A cohomological N -Mackey functor X together with a
surjective morphism of N -Mackey functors η : X → Ab/p is called a /p-class field
theory, if the following properties hold:

(i) X is of type H0,
(ii) c0(U/V, η) : c0(U/V,X) → (U/V )ab

/p is an isomorphism for all U, V ∈ N ,
V ≤ U ,

(iii) Let U ∈ N and let V, W ≤ U be open and normal in Ĝ, such that U/V
and U/W are finite elementary abelian p-groups. Assume that im(NX

V,U ) =
im(NX

W,U ). Then V = W .

3.4. The p-Frattini class field theory and the /p-Frattini class field theory.
Let G be a finite group, and let πp : G̃p → G denote its universal p-Frattini cover.
We are considering the normal Mackey system

(3.4) F : = {U ≤ ker(πp) | U open and normal in G̃p }.
As ker(πp) is a pro-p group, it is obviously p-closed.

Let

(3.5) 0 −→ P1
δ−→ P0

ε−→ Zp −→ 0

be a minimal projective resolution of the trivial Zp[[G̃p]]-module Zp in G̃p
prfp.

In particular, ε : P0 → Zp and δ′ : P1 → ker(ε) are minimal projective covers in
G̃p

prfp.
Let Sp(G) denote the set of isomorphism types of irreducible Fp[G]-modules,

and let τS : PS → S denote a minimal projective cover in G̃p
prfp, [S] ∈ Sp(G). As

(3.5) is minimal, one has isomorphisms

(3.6) HomG̃p
(P1, S) � H1(G̃p, S)

for all [S] ∈ Sp(G). In particular, P1 � ∐
[S]∈Sp(G) PμS

S , where

(3.7) μS : =
dimFp(H1(G̃p, S))
dimFp(EndG(S))

.

Let U ∈ F . As U is right exact, one has an exact sequence

(3.8) (P1)U
δU−→ (P0)U

εU−→ Zp −→ 0.

As G̃p → G̃p/U is a p-Frattini extension, inflation induces isomorphisms

(3.9) H1(G̃p, S) � H1(G̃p/U, S)



10 TH. WEIGEL

for all [S] ∈ Sp(G) (cf. [16, Prop.3.1]). This yields that

(3.10) H1(G̃p/U, S) � HomG̃p/U ((P1)U , S)

for all [S] ∈ Sp(G), and from this one concludes easily that (3.8) is a partial minimal
projective resolution. In particular, ker(δU ) = Ω2(G̃p/U, Zp).

Let Ω2 : = ker(X(δ)). Then one has an exact sequence of cohomological F-
Mackey functors

(3.11) 0 −→ Ω2 −→ X(P1)
X(δ)−→ X(P0)

X(ε)−→ X(Zp) −→ 0,

and Ω2,U = Ω2(G̃p/U, Zp).
From the Eckmann-Shapiro lemma for Tor• (cf. [13, Lemma 3.3.4]), and the

canonical isomorphism H1(U, Zp) � Uab
p = Abp

U , where H• denotes homology as
defined by A.Brumer (cf. [2, §2]), one obtains an isomorphism

(3.12) η : Ω2 −→ Abp

of cohomological F-Mackey functors.
By Ω/p

2 we denote the reduction mod p of Ω2, i.e., one has a short exact sequence
in CMF (G̃p,prfp)

(3.13) 0 −→ Ω2
p.id−→ Ω2 −→ Ω/p

2 −→ 0.

By η/p : Ω/p
2 → Ab/p we denote the induced isomorphism.

Theorem 3.1. Let G be a finite group, πp : G̃p → G its universal p-Frattini cover,
and let F be given as in (3.4).

(a) The tuple (Ω2, η) is a p-class field theory for (G̃p,F).
(b) The tuple (Ω/p

2 , η/p) is a /p-class field theory for (G̃p,F).

We call (Ω2, η) the p-Frattini class field theory for (G̃p,F), and (Ω/p
2 , η/p) the

/p-Frattini class field theory for (G̃p,F).

Proof. (a) One has to verify the axioms (i)-(iii). Axiom (ii) is obviously satisfied.
Consider the short exact sequence

(3.14) 0 −→ Ω2
ι−→ X(P1) −→ coker(ι) −→ 0.

Since coker(ι) is a cohomological F-subMackey functor of X(P0), k0(coker(ι)) = 0
(cf. (2.19), Prop.2.3). The long exact sequence (2.19) applied to (3.14) and the
cohomological triviality of X(P0) and X(P1) yields that Ω2 is of type H0. Hence
axiom (i) is satisfied. It remains to verify (iii). We may assume that p divides
the order of the finite group G, since otherwise Ω2 = 0, and there is nothing
to prove. In this case G̃p is of cohomological p-dimension 1, and thus of strict
cohomological p-dimension 2 (cf. [12, §I.3.2]). In particular, by Brumer’s theorem
(cf. [2], [10, Kap.IV, §6, Aufg.6]) Ĝ possesses a tautological class field theory. Let
(H, ρ) denote its restriction to the Mackey system F , i.e., HU = Abp

U and ρU is the
identity on Abp

U . In particular (H, ρ) and (Ω2, η) essentially coincide, i.e., one has
a commutative diagram in CMF (G̃p,prfp)

(3.15)

Ω2
η−−−−→ H

η

⏐⏐� ∥∥∥
Abp Abp



11

The property (iii) is well-known for (H, ρ) (cf. [10, Kap.IV, Thm.6.7]). Thus it also
holds for (Ω2, η).
(b) It suffices to prove that Ω/p

2 is of type H0. The axiom (ii) is obvious, and axiom
(iii) follows from axiom (iii) for (Ω2, η).

Let X(P0/1)/p denote the reduction mod p of X(P0) and X(P1), respectively.
Then one has a short exact sequence

(3.16) 0 −→ Ω/p
2

ι/p

−→ X(P1)/p −→ coker(ι/p) −→ 0,

and coker(ι/p) is a cohomological F-sub Mackey functor of X(P0)/p. From Proposi-
tion 2.1 one concludes that X(P0)/p and X(P1)/p are cohomologically trivial. Hence
the long exact sequence (2.19) yields the claim. �

Let π : G̃ → G be any p-Frattini extension, finite or infinite. By universality,
there exists a mapping τ : G̃p → G̃, such that πp = π ◦ τ . Since π is a p-Frattini
extension, τ is surjective. For short we put N : = ker(τ).

The morphism τ induces a canonical bijection of sets τ∗ : FN → F(G̃), where F
is given as in (3.4) and

FN : = {U ∈ F | N ≤ U },
F(G̃) : = {U ′ ≤ ker(π) | U ′ open and normal in G̃ }.

(3.17)

Let C ∈ ob(CMF(G̃)(G̃,prfp)) denote the cohomological F(G̃)-Mackey functor
given by

(3.18) CU : = Ω2,τ−1
∗ (U), U ∈ F(G̃)

equipped with the obvious maps iCU,V , NC
V,U , U, V ∈ F(G̃), V ≤ U . Let γ : C →

Abp denote the morphism of F(G̃)-Mackey functors induced by η. In particular, γ

is surjective, but if G̃ does not coincide with the universal p-Frattini cover, γ will
not be an isomorphism.

Similarly, we define the reduction mod p C/p of C, i.e., one has

(3.19) C/p
U : = Ω/p

2,τ−1
∗ (U)

, U ∈ F(G̃),

and by γ/p : C/p → Ab/p we denote the surjective morphism induced by η/p.
Again, apart from the case G̃ � G̃p, γ/p will not be surjective. From Theorem 3.1
one concludes:
Corollary 3.2. Let G be a finite group, and let π : G̃ → G be any p-Frattini
extension. Then

(a) The tuple (C, γ) is a p-class field theory for (G̃,F(G̃)).
(b) The tuple (C/p, γ/p) is a /p-class field theory for (G̃,F(G̃)).

Remark 3.3. The definition of a p or a /p-class field theory we have given here is
very much adapted to our main purpose, which is to prove Theorem B. Nevertheless,
(Ω2, η) satisfies all class field theory axioms, which are usually required in number
theory, i.e., using Tate cohomology one sees easily that for all U, V ∈ F , V ≤ U ,

(3.20) H1(U/V,Ω2,V ) = H1(G̃p/V,Ω2,V ) = 0.

Moreover, (3.11) defines a canonical class c ∈ nat2(X(Zp),Ω2), where nat•( , )
denote the derived functors of nat( , ) (cf. [9, Chap.XII]). This also applies to
the p-class field theory (C, γ) defined for any p-Frattini cover π : G̃ → G. However,
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as the reader might verify by himself, (3.20) does not hold for the /p-class field
theories (Ω/p

2 , η/p) or (C/p, γ/p). Nevertheless, as we will see in the next section,
these are the class field theories which are easiest to deal with.

4. p-Poincaré duality groups of dimension 2 as p-Frattini extensions

Throughout this section we assume that G is a finite group, and that π : G̃ → G
is a p-Frattini extension. By

P1
δ−→ P0

ε−→ Zp,

Q1
δ/p

−→ P0
ε/p

−→ Fp

(4.1)

we denote partial minimal projective resolutions in G̃prfp and G̃prf/p, respectively.

4.1. Universal norms. Let π : G̃ → G be a p-Frattini extension, and let (C, γ)
denote its p-Frattini class field theory. We call the cohomological F(G̃)-Mackey
functor N : = ker(γ) the universal norms of (C, γ). Similarly, N/p : = ker(γ/p)
will be called the universal norms of (C/p, γ/p). One has:

Proposition 4.1. Let π : G̃ → G be a p-Frattini extension. Then:

(a) N is N -surjective. Let P1
δ−→ P0 −→ Zp be a partial minimal projective

resolution of Zp in G̃prfp. Then ker(δ) � m(N).

(b) N/p is N -surjective. Let Q1
δ−→ Q0 −→ Fp be a partial minimal projective

resolution of Fp in G̃prf/p. Then ker(δ) � m(N/p).

Proof. (a) For simplicity let us assume that ι : N → C is given by inclusion. Let
{Uk}k∈N ⊆ F(G̃) be a linearly ordered basis of neighbourhoods of 1 ∈ G̃. We
have to show that for x ∈ ⋂

m≥n im(NC
Um,Un

), there exists a sequence (yk)k∈N0 ,
yk ∈ CUn+k

, such that y0 = x and yk = NUn+k+1,Un+k
(yk+1).

Let Z : =
∏

k∈N0
CUn+k

. Then Z is compact by Tychonoff’s theorem. Let

(4.2) Zx,r : = { (zk)k∈N0 ∈ Z | z0 = x, NUk+1,Uk
(zk+1) = zk for all k ≤ r. }.

Then Zx,r+1 ⊆ Zx,r and all sets Zx,r are closed. By definition, any finite intersection
of sets Zx,r is non-empty. Hence Zx,∞ : =

⋂
r∈N

Zx,r is non-empty. Any element
(yk)k∈N0 ∈ Zx,∞ will have the desired property.

By construction, ker(X(δ)) = C. Moreover, one has a short exact sequence of
F(G̃)-Mackey functors 0 → N → C → Abp → 0. Obviously, m(Abp) = 0. Thus
the claim follows from the exactness of m. The assertion (b) follows by a similar
argument. �

4.2. Weakly oriented p-Poincaré duality groups. Let Ĝ be a profinite group
of cohomological p-dimension d, d ∈ N. Then Ĝ is called a p-Poincaré duality group
of dimension d, if

(i) for every finite discrete left Ĝ-module of p-power order X and for all k ∈ N0

one has

(4.3) |Hk(Ĝ, X)| < ∞,

(ii) the p-dualizing module IĜ,p of Ĝ is isomorphic to Qp/Zp as abelian group,
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(iii) for every finite discrete left Ĝ-module of p-power order X, cup-product
induces a non-degenerate pairing

(4.4) Hk(Ĝ, X ′) × Hd−k(Ĝ, X)
Hd(evX)◦(.∪.)−→ Hd(Ĝ, IĜ,p)

i−→ Qp/Zp,

where X ′ : = Hom(X, IĜ,p), evX : X ′ × X → IĜ,p is the evaluation map
and i is given as in [12, §I.3.5].

The p-Poincaré duality group Ĝ of dimension d is called orientable, if IĜ,p is a
trivial Ĝ-module, and weakly-orientable, if the socle of IĜ,p is a trivial Ĝ-module,
i.e., soc(IĜ,p) � Fp.

One can charcterize these groups by continuous cochain cohomology as intro-
duced by J.Tate (cf. [14]) with coefficients in Fp[[Ĝ]] as follows:

Proposition 4.2. Let Ĝ be a profinite group of cohomological p-dimension d, d ∈
N, and assume (4.3) holds for every finite discrete left Ĝ-module of p-power order
X. Then the following are equivalent:

(i) Ĝ is a weakly-orientable p-Poincaré duality group of dimension d,
(ii)

(4.5) Hk(Ĝ, Fp[[Ĝ]]) =

{
Fp for k = d,
0 for k �= d,

where Fp denotes the trivial Ĝ-module and H• denotes continuous cochain
cohomology.

Proof. The implication (i) ⇒ (ii) is implicitly already contained in a letter from
J.Tate to J-P.Serre (cf. [12, App.1]) Here one should only note that the second
property of a Poincaré duality group ensures that Hk(G̃, Fp[[G̃]])∗ = Ek(Fp).

Note that property (4.5) already implies that (4.4) holds for all finite Fp-vector
spaces which are discrete Ĝ-modules. Then the same argument used in the proof of
[12, Prop.I.32]) shows that (4.4) holds for all finite discrete Ĝ-modules of p power
order. �

4.3. Cohomological Mackey functors for p-Frattini extensions. Let X be a
cohomological F(G̃)-Mackey functor, such that XU are finitely generated Fp[G̃/U ]-
modules for all U ∈ F(G̃). Then applying HomG̃( , Fp) and changing the role of i

and N defines a new cohomological F(G̃)-Mackey functor which we denote by X∗.
The functor ∗ is obviously contravariant and exact.

For short put S(Fp) : = X(Fp), T(Fp) : = S(Fp)∗. Then S(Fp) is a cohomological
F(G̃)-Mackey functor with all mapping N

S(Fp)
V,U bijective, and T(Fp) is a F(G̃)-

Mackey functor with all mapping i
T(Fp)
U,V bijective, U, V ∈ F(G̃), V ≤ U .

Thus one has an exact sequence of cohomological F(G̃)-Macke functors

(4.6) 0 −→ T(Fp)
X(ε/p)∗−→ X(Q0)∗

X(δ/p)∗−→ X(Q1)∗.

We put

Ω1(G̃/ , Fp) : = ker(X(δ/p)∗),

Ω2(G̃/ , Fp) : = coker(X(δ/p)∗).
(4.7)
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It is an easy exercise to show that Ω1(G̃/ , Fp) is i-injective and N -surjective, and
that Ω2(G̃/ , Fp) is of type H0.

4.4. Extending injective maps Ω1(G, Fp) → Ω2(G, Fp). The first step in proving
Theorem B is establishing the following proposition:
Proposition 4.3. Let G be a finite group, and let α : Ω1(G, Fp) → Ω2(G, Fp)
be a mapping of Fp[G]-modules. Then there exists a closed normal subgroup N ,
N ≤ ker(πp) of the universal p-Frattini extension G̃p, G̃ : = G̃p/N , and a map of
cohomological F(G̃)-Mackey functors

(4.8) α : Ω1(G̃/ , Fp) −→ C/p,

satisfying im(α) = N/p and αker(πp) = ιker(πp) : α, where ι : N/p → C/p denotes
the canonical map.

Moreover, if α is injective, α is injective.

Proof. Put V0 : = ker(πp) and α0 : = α : Ω1(G, Fp) → Ω2(G, Fp). Assume we have
constructed open normal subgroups V0, .., Vk−1 and injective morphisms

(4.9) αVi : Ω1(G̃p/Vi) −→ Ω2(G̃p/Vi, Fp),

i = 0, ..., k − 1, such that the diagrams

(4.10)

Ω1(G̃p/Vi−1, Fp)
αVi−1−−−−→ Ω2(G̃p/Vi−1, Fp)

iΩ
1

Vi−1,Vi

⏐⏐� ⏐⏐�i
Ω2
Vi−1,Vi

Ω1(G̃p/Vi, Fp)
αVi−−−−→ Ω2(G̃p/Vi, Fp)

(4.11)

Ω1(G̃p/Vi−1, Fp)
αVi−1−−−−→ Ω2(G̃p/Vi−1, Fp)

NΩ1
Vi,Vi−1

�⏐⏐ �⏐⏐N
Ω2
Vi,Vi−1

Ω1(G̃p/Vi, Fp)
αVi−−−−→ Ω2(G̃p/Vi, Fp)

commute, i = 1, .., k − 1. In the first step we construct Vk and a mapping

(4.12) αVk
: Ω1(G̃p/Vk, Fp) → Ω2(G̃p/Vk, Fp)

such the diagrams (4.10) and (4.11) commute for (k − 1, k).
Let Vk ≤ ker(πp) be the unique open normal subgroup such that Vk−1/Vk is ele-

mentary p-abelian, and im(αVk−1) = im(NΩ2
Vk,Vk−1

). The uniqueness is guaranteed
by axiom (iii) of a /p-class field theory. Since (Q0)∗Vk

is a projective Fp[G̃p/Vk]-
module, there exists a mapping α′ : (Q0)∗Vk

→ Ω2(G̃p/Vk, Fp) making the diagram

(4.13)

Ω1(G̃p/Vk−1, Fp)
αVk−1−−−−→ Ω2(G̃p/Vk−1, Fp)

N

�⏐⏐ �⏐⏐N
Ω2
Vk,Vk−1

(Q0)∗Vk

α′
−−−−→ Ω2(G̃p/Vk, Fp)

commute, where N : (Q0)∗Vk
→ Ω1(G̃p/Vk−1, Fp) is the canonical map. Since the

Fp[G̃p/Vk]-module Ω2(G̃p/Vk, Fp) is directly indecomposable, and as (Q0)∗Vk
is also

injective, α′ cannot be injective. Hence α′ factors through a mapping

(4.14) αVk
: Ω1(G̃p/Vk, Fp) → Ω2(G̃p/Vk, Fp).
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for which diagram (4.11) commutes for (k − 1, k).
Let x ∈ Ω1(G̃p/Vk−1, Fp). As Ω1(G̃p/ , Fp) is N -surjective, there exists y ∈

Ω1(G̃p/Vk, Fp) such that NΩ1

Vk,Vk−1
(y) = x. Thus

iΩ2
Vk−1,Vk

(αVk−1(x)) = iΩ2
Vk−1,Vk

(αVk−1(N
Ω1

Vk,Vk−1
(y))),

= iΩ2
Vk−1,Vk

(NΩ2
Vk,Vk−1

(αVk
(y))) = NVk−1/Vk

(αVk
(y)),

(4.15)

where NVk−1/Vk
: =

∑
g∈Vk−1/Vk

g. On the other hand

αVk
(iΩ

1

Vk−1,Vk
(x)) = αVk

(iΩ
1

Vk−1,Vk
(NΩ1

Vk,Vk−1
(y)))

= αVk
(NVk−1/Vk

(y)) = NVk−1/Vk
(αVk

(y)),
(4.16)

i.e., the diagram (4.10) commutes for (k − 1, k) aswell.
Since iΩ

1

Vk−1,Vk
: soc(Ω1(G̃p/Vk−1, Fp) → soc(Ω1(G̃p/Vk, Fp) is bijective, and as

C/p is of type H0, αVk
is injective provided αVk−1 is injective.

Let N : =
⋂

k∈N0
Vk. Then {Vk/N}k∈N0 is a basis of open neighbourhoods of

1 ∈ G̃p/N .
Let V ∈ FN : = {U ∈ F | N ≤ U }. Then there exist k ∈ N0 such that

Vk ≤ V . Since Ω1(G̃p/ , Fp) and Ω2(G̃p/ , Fp) are i-injective cohomological F-
Mackey functors, there exists a unique mapping

(4.17) αV : Ω1(G̃p/V, Fp) −→ Ω2(G̃p/V, Fp)

making the diagram

(4.18)

Ω1(G̃p/V, Fp)
αV−−−−→ Ω2(G̃p/V, Fp)

iΩ
1

V,Vk

⏐⏐� ⏐⏐�i
Ω2
V,Vk

Ω1(G̃p/Vk, Fp)
αVk−−−−→ Ω2(G̃p/Vk, Fp)

commute. It is easy to check that for all U, V ∈ FN , V ≤ U , the diagram

(4.19)

Ω1(G̃p/U, Fp)
αU−−−−→ Ω2(G̃p/U, Fp)

iΩ
1

U,V

⏐⏐� ⏐⏐�i
Ω2
U,V

Ω1(G̃p/V, Fp)
αV−−−−→ Ω2(G̃p/V, Fp)

commutes. Note that Ω2(G̃/ , Fp) is i-injective, and that for x ∈ Ω1(G̃p/V, Fp)

iΩ2
U,V (αU (NΩ1

V,U (x))) = αV (iΩ
1

U,V (NΩ1

V,U (x))) = αV (NU/V (x)),(4.20)

iΩ2
U,V (NΩ2

V,U (αV (x))) = NV/U (αV (x)) = αV (NU/V (x)).(4.21)

Hence the diagram

(4.22)

Ω1(G̃p/U, Fp)
αU−−−−→ Ω2(G̃p/U, Fp)

NΩ1
V,U

�⏐⏐ �⏐⏐N
Ω2
V,U

Ω1(G̃p/V, Fp)
αV−−−−→ Ω2(G̃p/V, Fp)

commutes as well showing that

(4.23) α : Ω1(G̃p/ , Fp) −→ Ω2(G̃p/ , Fp)
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is a morphism of cohomological F(G̃p/N)-Mackey functors. By construction, one
has im(α) = N/p. Moreover, if α is injective, then the construction shows that α
is also injective. This yields the claim. �

4.5. Ω1-relator p-Frattini extensions. Let π : G̃ → G be a p-Frattini extension
of G, and let (C/p, γ/p) denote its /p-Frattini class field theory. We call π an
Ω1-relator p-Frattini extension, if there exists a map

(4.24) α : Ω1(G̃/ , Fp) → C/p

of cohomological F(G̃)-Mackey functors with im(α) = N/p. If necessary we include
the mapping α in the notation, i.e., we write (π, α) for a Ω1-relator p-Frattini
extension.

For the universal p-Frattini extension πp : G̃p → G one has N/p = 0, and thus
πp is a Ω1-relator p-Frattini extension.

From Proposition 4.3 one concludes that one can also construct such a p-Frattini
extenion starting from a map α : Ω1(G, Fp) → Ω2(G, Fp).

Another source of examples arises in the context of modular towers. The starting
point in the study of modular towers is a fixed surjective morphism φ : Ĝ → G
where Ĝ is a certain profinite orientable p-Poincaré duality group of dimension 2
onto a finite group G. A modular tower consists of all open normal subgroups
U in Ĝ contained in ker(φ) such that the induced map φU : G̃/U → G is a p-
Frattini extension (cf. [1]). The ‘limit groups’ of a modular tower correspond to
a closed normal subgroup A ≤ ker(φ) such that φA : Ĝ/A → G is a maximal p-
Frattini extension φ can factor through. In particular, (φA, πA), πA : G̃ → Ĝ/A
the canonical projection, is a maximal p-Frattini quotient of φ (cf. [16]). These
p-Frattini extension have the following property.

Proposition 4.4. Let φ : Ĝ → G be a surjective map of the profinite weakly-
orientable p-Poincaré duality group Ĝ of dimension 2 onto the finite group G. Then
for every maximal p-Frattini quotient (π, β), π : im(β) → G is a Ω1-relator p-
Frattini extension of G.

Proof. Let B : = im(β), and let

(4.25) Q1
δ/p

−→ Q0 −→ Fp

be a partial minimal projective resolution in Bprf/p. Put M : = ker(δ). By [16,
Prop.3.4], one has a surjective map α : Q0 → M . Since N/p is norm surjective (cf.
Prop.4.1(b)), one has a surjective map of cohomological F(B)-Mackey functors

(4.26) ρ : X(Q0) −→ X(M) −→ N/p.

Since N/p is a F(B)-sub Mackey functor of C, and as (Q0)U is an injective Fp[B/U ]-
module, ρU : (Q0)U → N

/p
U ≤ Ω2(B/U, Fp) cannot be injective, i.e, soc((Q0)U ) ≤

ker(ρU ). Hence ρ induces a surjective mapping

(4.27) ρ∗ : Ω1(B/ , Fp) −→ N/p

of cohomological F(B)-Mackey functors and this yields the claim. �

In order to finish the proof of Theorem B, we establish the following theorem:
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Theorem 4.5. Let (π,α), π : G̃ → G, be a Ω1-relator p-Frattini extension. Assume
further that α is injective, and that αker(π) is not an isomorphism. Then G̃ is a
weakly-orientable p-Poincaré duality group of dimension 2.

Proof. Note that dimFp
(Ω2(G, Fp)) > dimFp

(Ω1(G, Fp)) implies that G̃ is infinite
(cf. [16, Prop.3.5]). It suffices to prove that Hk(G̃, Fp[[G̃]]) = 0 for k �= 2, and
H2(G̃, Fp[[G̃]]) � Fp. As beforre H• denotes continuous cochain cohomology.

By definition, one has exact sequences of cohomological F(G̃)-Mackey functors

0 −→ T(Fp) −→ X(Q0) −→ Ω1(G̃/ , Fp) −→ 0,(4.28)

0 −→ Ω1(G̃/ , Fp) −→ Ω2(G̃/ , Fp) −→ Ab/p −→ 0,(4.29)

0 −→ Ω2(G̃/ , Fp) −→ X(Q1) −→ X(Q0) −→ S(Fp) −→ 0.(4.30)

As G̃ is infinite m(T(Fp)) = m(Ab/p) = 0. Thus applying the functor m yields
that one has a minimal projective resolution

(4.31) 0 −→ Q0 −→ Q1 −→ Q0 −→ Fp −→ 0

of Fp in G̃prf/p. Hence G̃ is of cohomological p-dimension 2.
In his letter to J-P.Serre (cf. [12, App.1]), J.Tate described how one can compute

the Pontryagin dual of the cohomology groups Hk(G̃, Fp[[G̃]]). Translated to our
situation we obtain

H2(G̃, Fp[[G̃]])∗ = lim−→
U

H2(U, Fp),

H1(G̃, Fp[[G̃]])∗ = lim−→
U

H1(U, Fp).
(4.32)

Since G̃ is infinite, H0(G̃, Fp[[G̃]]) = 0. From the exact sequences (4.28) it follows
that one has an isomorphism of F(G̃)-Mackey functors H2( , Fp) � T(Fq). This
yields H2(G̃, Fp[[G̃]]) � Fp.

Let α∗ : Ω2(G̃/ , Fp) −→ Ω1(G̃/ , Fp) be the Pontryagin dual of α. Then by
(4.32), H1(G̃, Fp[[G̃]]) � m(ker(α∗)). Moreover, α∗ is surjective. Since for all
U ∈ F(G̃), one has an isomorphism

(4.33) hd(α∗
U ) : hd(Ω2(G̃/U, Fp)) −→ hd(Ω1(G̃/U, Fp)),

where hd( ) denotes the head of a module, one obtains a commutative diagram

(4.34)

0 −−−−→ Ω1(G̃/ , Fp) −−−−→ X(Q1)∗ −−−−→ Ω2(G̃/ , Fp) −−−−→ 0

ρ

⏐⏐� σ

⏐⏐� α∗
⏐⏐�

0 −−−−→ Ω2(G̃/ , Fp) −−−−→ X(Q1)∗ −−−−→ Ω1(G̃/ , Fp) −−−−→ 0.

By (4.33), σ is an isomorphism. So by the snake lemma, ρ is injective, and one
has an isomorphism coker(ρ) = ker(α∗). Since Ω1(G̃/ , Fp) is N -surjective, all
elements in im(σ) are universal norms. Hence by dimension arguments, im(ρ) =
im(α) and this yields

(4.35) m(ker(α∗)) � m(coker(ρ)) � m(Ab/p) = 0.

This yields the claim. �
Corollary 4.6. Let G be a finite group and let p be a prime number. Then the
following are equivalent:
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(i) There exists a p-Frattini extension π : G̃ → G with G̃ a profinite weakly-
orientable p-Poincaré duality group of dimension 2.

(ii) There exists an injection α : Ω1(G, Fp) → Ω2(Fp) which is not an isomor-
phism.

Proof. This is a direct consequence of [16, Thm.4.1] and Theorem 4.5. �

Remark 4.7. (a) Let p = 2 and let G = PSl2(q), q ≡ 3 mod 4. The explicit de-
scription of the projective indecomposable F2[G]-modules obtained by K.Erdmann
[5] shows that in this case one has an injection α : Ω1(G, Fp) → Ω2(G, Fp).
(b) If G is p-perfect, i.e., Gab

p = 0, G̃ is p-perfect too. Thus every G̃-module
M ∈ ob(G̃prfp), which underlying abelian pro-p group is isomorphic to Zp and
which reduction mod p M/p.M is a trivial G̃-module, must be trivial. Hence in
this case one can conclude that G̃ is indeed a orientable p-Poincaré duality group
of dimension 2.
(c) In [16, Ex.1.4] an example was given were for any maximal p-Frattini quotient
(π, β) of a morphism φ : Ĝ → PSl2(7), the p-Frattini extension π is of the type
described in Theorem 4.5.
(d) One question which has been untouched completely is to describe all isomor-
phism types of extensions π : G̃ → G satisfying (i) of Corollary 4.6. The construc-
tion we used does not give any evidence how one can achieve this goal.

5. Δ-Frattini extensions

Throughout this section we fix a prime number p. For a given finite group G we
denote by Sp(G) the set of isomorphism types of irreducible (left) Fp[G]-modules.
For an irreducible Fp[G]-module S we use the symbol [S] ∈ Sp(G) to denote its
isomorphism type.

5.1. The Δ-head of an Fp[G]-module. Let Δ ⊆ Sp(G) be a set of isomor-
phism types of irreducible Fp[G]-modules. For short we call an Fp[G]-module
M ∈ ob(G modp) of finite Fp-dimension a Δ-module, if M has a composition se-
ries (Mk)0≤k≤m, 0 = M0 < M1 < · · · < Mm = M , with each composition factor
being contained in Δ, i.e., [Mk/Mk−1] ∈ Δ for all k = 1, .., m. We also assume that
0 ∈ ob(G modp) is a Δ-module.

Let M be an Fp[G]-module of finite Fp-dimension. We call an Fp[G]-submodule
N ≤ M a Δ-kernel, if M/N is a Δ-module. Obviously, the intersection of any set
of Δ-kernels Ni ≤ M , i ∈ I, is again a Δ-kernel. Hence there exists a minimal
Δ-kernel MΔ ≤ M . For short we call

(5.1) hdΔ(M) : = M/MΔ

The Δ-head of M .

5.2. The universal Δ-Frattini extension. Let

(5.2) 1 −→ Ω2(G, Fp)
ι−→ G̃/p

π/p−→ G −→ 1

be the universal elementary p-abelian Frattini extension of G, where ι is consid-
ered to be given by inclusion. Factoring by the minimal Δ-kernel Ω2(G, Fp)Δ of
Ω2(G, Fp) yields a Δ-Frattini extension

(5.3) 1 −→ hd(Ω2(G, Fp))
ι−→ G̃/Δ

π/Δ−→ G −→ 1
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which is easily seen to be universal with respect to all elementary p-abelian Δ-
Frattini extensions of G. Thus for G0 : = G, and πi+1,i : Gi+1 → Gi the universal
elementary p-abelian Δ-Frattini extension of Gi, we obtain an inverse system whose
inverse limit

(5.4) G̃Δ : = lim←−
i∈N0

Gi

together with the canonical map πΔ : G̃Δ → G is a Δ-Frattini extension of G.
The universality aswell as the uniqueness up to isomorphism follows by the same
arguments which were used to prove these statements for the universal p-Frattini
extension (cf. [6]).

At this point we have to deal with the question how one characterize the universal
Δ-Frattini extension among all Δ-Frattini extensions. This is the subject of the
following proposition.
Proposition 5.1. Let π : G̃ → G be a Δ-Frattini extension of G, Δ ⊆ Sp(G).
Then the following are equivalent:

(i) π coincides with the universal Δ-Frattini extension of G.
(ii) H2(G̃, S) = 0 for all irreducible Fp[G]-modules S, [S] ∈ Δ.

Proof. Assume that π : G̃ → G is the universal Δ-Frattini extension of G, and
that there exists an irreducible Fp[G]-module S, [S] ∈ Δ, with H2(G̃, S) �= 0. For
η ∈ H2(G̃, S), η �= 0, the associated extension of profinite groups

(5.5) s(η) : 1 −→ S −→ X
τ−→ G̃ −→ 1

is non-split and thus τ ◦π : X → G is a Δ-Frattini extension. The universality of π
implies that τ has a section σ : G̃ → X contradicting the fact that s(η) is non-split.
Thus (i) implies (ii).

Assume that H2(G̃, S) = 0 for all [S] ∈ Δ, and let πΔ : G̃Δ → G be the universal
Δ-Frattini extension of G. Then one has a surjective map β : G̃Δ → G̃, and thus
an isomorphism

(5.6) β̃−1 : G̃ −→ G̃Δ/ker(β).

Assume that ker(β) �= 1 is non-trivial, and let U ≤ ker(β) be a maximal open
subgroup of ker(β) which is normal in G̃Δ. Since [ker(β)/U ] ∈ Δ, one has
H2(G̃, ker(β)/U) = 0. Hence the embedding problem

(5.7)

G̃⏐⏐�β̃−1

s : 1 −−−−→ ker(β)/U −−−−→ G̃Δ/U −−−−→ G̃Δ/ker(β) −−−−→ 1

has a weak solution (cf. [16, Prop.3.2]). This implies that s is split exact, which
contradicts the fact that s is also a p-Frattini extension. Thus ker(β) = 1, and this
yields the claim. �

5.3. Chevalley groups over Zp. For a given Dynkin diagram D let XD be the
simple simply-connected Z-Chevalley group scheme associated to D, i.e., if D is of
type An, one has XD = Sln+1. It has been proved in [18, Thm.B] that

(5.8) πD : XD(Zp) −→ XD(Fp)
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is a p-Frattini extension apart from possibly 11 explicitly known values of (D, p).
It was also shown that in 8 of these 11 cases (5.8) fails to be a p-Frattini extension.

In case πD is a p-Frattini extension, then it is also a ΔD-Frattini extension,
where ΔD consists of all the Fp[X(Fp)]-composition factors of the Fp-Chevalley Lie
algebra LD ⊗ Fp (cf. [18, (2.5)]). If one has additionally

(D, p) �∈{ (An, p), p|(n + 1), (Bn, 2), (Cn, 2), (Dn, 2), . . .

. . . , (E6, 3), (E7, 2), (F4, 2), (G2, 2), (G2, 3) },(5.9)

then LD ⊗Fp is an irreducible Fp[XD(Fp)]-module (cf. [18, Lemma 2.10]), and thus
ΔD = {[LD ⊗ Fp]}.

The question raised in [6, Prob.20.40] can now be restated in the following way.
Question 5.2. Assume that p is large with respect to the Coxeter number of D. Is
it true that the p-Frattini extension πD : X(Zp) → X(Fp) coincide with the universal
ΔD-Frattini extension?

From Proposition 5.1 one concludes that the problem of Question 5.2 is equiva-
lent to the following vanishing problem.
Question 5.3. Assume that p is large with respect to the Coxeter number of D. Is
it true that

(5.10) H2(XD(Zp),LD ⊗ Fp) = 0?

As we see in the following theorem both questions have an affirmative answer
for XD = Sl2.
Theorem 5.4. Let p be a prime number different from 2, 3 or 5. Then

(5.11) πA1 : Sl2(Zp) → Sl2(Fp)

coincides with the universal Δ-Frattini extension for all Δ ⊆ Sp(Sl2(Fp)) satisfying
[M2] ∈ Δ, [Mp−3] �∈ Δ, where Mk, k = 0, .., p−1 denotes the irreducible Fp[Sl2(Fp)]-
module of heighest weight k and Fp-dimension k + 1.

Proof. By the previously mentioned remark and Proposition 5.1 it suffices to show
that H2(Sl2(Zp), Mk) = 0 for all k �= p − 3.

As p �= 2, 3, G̃ : = Sl2(Zp) is p-torsionfree, and thus a p-Poincaré duality group
of dimension d (cf. [13, Prop.4.4.1]). As we assumed p �= 2, 3, G̃ is perfect (cf.
[18, Prop.3.2]). Thus its p-dualizing module IG̃,p is a trivial G̃-module. Hence by
Poincaré duality and the Universal Coefficiant Theorem one has

(5.12) H2(Sl2(Zp), Mk) � H1(Sl2(Zp), Mk) � H1(Sl2(Zp), Mk)∗,

where ∗ denotes the Pontryagin dual. Moreover, from [16, Prop.3.1] and [17] one
concludes that

(5.13) H1(Sl2(Zp), Mk) � H1(Sl2(Fp), Mk) = 0

for k �= p − 3. This yields the claim. �

Remark 5.5. Theorem 5.4 does not hold for p = 2, 3 or 5, but in each case for a
different reason.

For p = 2 or 3, πA1 is not a 2-Frattini extension (cf. [18, Thm.B]). For p = 3, πA1

is even a split extension, since in this case LA1 ⊗ F3 is isomorphic to the Steinberg
module for Sl2(F3).
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For p = 5, Ω2(Sl2(F5), F5) is a ΔA1-module (cf. [17]). Hence the universal ele-
mentary p-abelian ΔA1-extension coincides with the universal elementary p-abelian
Frattini extension π/p. However,

(5.14) dimF5(Ω2(Sl2(F5), F5) = 6, dimF5(ker(πA1)
ab) = 3.

This phenomenon can also be explained by analyzing cohomology groups. Since
p − 3 = 2, Poincaré duality and [16, Prop.3.1] implies that
(5.15)
H2(Sl2(Z5),LA1 ⊗ F5)∗ � H1(Sl2(Z5),LA1 ⊗ F5) � H1(Sl2(F5),LA1 ⊗ F5) � F5.
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