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Abstract

Let Fq be the orderq finite field. An Fq cover� : X→ Y of absolutely irreducible normal
varieties has anonsingular locus. Then,� is exceptionalif it maps one–one onFqt points for
∞-ly many t over this locus. Lenstra suggested a curveY may have anExceptional (cover)
Tower over Fq Lenstra Jr. [Talk at Glasgow Conference, Finite Fields III, 1995]. We construct
it, and its canonical limit group and permutation representation, in general. We know all one-
variable tamely ramified rational function exceptional covers, and much on wildly ramified one
variable polynomial exceptional covers, from Fried et al. [Schur covers and Carlitz’s conjecture,
Israel J. Math. 82 (1993) 157–225], Guralnick et al. [The rational function analogue of a
question of Schur and exceptionality of permutations representations, Mem. Amer. Math. Soc.
162 (2003) 773, ISBN 0065-9266] and Lidl et al. [Dickson Polynomials, Pitman Monographs
and Surveys in Pure and Applied Mathematics, vol. 65, Longman Scientific, New York, 1993].
We use exceptional towers to form subtowers from any exceptional cover collections. This gives
us a language for separating known results from unsolved problems.
We generalize exceptionality to p(ossibly)r(educible)-exceptional covers by dropping irre-

ducibility of X. Davenport pairs(DPs) are significantly different covers ofY with the same
ranges (where maps are nonsingular) onFqt points for∞-ly many t. If the range values have
the same multiplicities, we have aniDP. We show how a pr-exceptional correspondence onFq
covers characterizes a DP.
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You recognize exceptional covers and iDPs from theirextension of constantsseries. Our
topics include some of their dramatic effects

• How they produce universalrelations between Poincaré series.
• How they relate to the Guralnick–Thompson genus 0 problem and to Serre’s open image

theorem.
Historical sections capture Davenport’s late 1960s desire to deepen ties between exceptional
covers, their related cryptology, and the Weil conjectures.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction and historical prelude

The pizzazz in a canonical tower of exceptional covers comes from group theory.
Section1.1 explains that and my main results. Then, §1.2 uses the history of exceptional
covers to introduce notation (§1.3). The main topic here is pr-exceptional covers with
their pure covering space interpretation. I call its encompassing domain themonodromy
method. Its virtues include success with old problems and interpretative flexibility,
through additions to Galois theory.
I call zeta function approaches to diophantine questions therepresentation method.

They come from representations of the Frobenius on cohomology. In the 1970s, I con-
nected the monodromy and representation methods through particular problems (around
[Fr76] based on Galois stratification and [Fr78] based on Hurwitz monodromy). Witness
the general zeta function topics of Fried and Jarden [FrJ04, Chapters 30–31] [FrJ86,
Chapters 25–26]. Then, both subjects were still formative and used different techniques.
The former analyzed spaces of covers through intricate group theory. The latter used
abstract group theory and mostly eschewed spaces.
Now we haveChow motives, based much on Galois stratification [DL01,Ni05]. These

directly connect monodromy and representation methods. Worthy monodromy prob-
lems help hone topics in Chow motives. [Fr05b] extends these to Chow motives/zeta
function problems while keeping us on the mathematical earth of pr-exceptional
covers.

1.1. Results of this paper

Let K be any perfect field (usually a finite field or number field). Let� : X→ Y be
a degreen cover (finite flat morphism) ofabsolutely irreduciblevarieties (irreducible
over the algebraic closurēK of K) over K. They need not be projective;quasipro-
jective (locally open in a projective variety) suffices (see [Mum66, Part I] for basics
on varieties). We assume from here that both are normal: defined locally by integral
domains integrally closed in their fractions. Here is our definition ofexceptionalityof
�. Let Y ′ be any Zariski openK subset ofY over which� restricts (call this�Y ′ ) to
a cover,�−1(Y ′) → Y , of nonsingular varieties. The maximalnonsingular locus for
�, Y ns

� , is the complement of this set: the image of singular points ofX union with
singular points ofY.
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Definition 1.1. Call � exceptionalif for some Y ′, �Y ′ is one–one onFqt points for
∞-ly many t. Corollary 2.5 shows exceptionality is independent ofY ′. For maps of
normal curves, no choice ofY ′ is necessary.

From a cover of normal varieties we get an arithmetic Galois closure (§2.1)�̂ :
X̂ → Y . The geometric Galois closure,ab� : abX̂ → Y , is the same construction
done overK̄. This gives two groups: Its geometric,G� = G(abX̂/Y ), and arithmetic,
Ĝ� = G(X̂/Y ), monodromy groups(§2.2). The former is a subgroup of the latter. The
difference between the two groups is the result ofextension of constants, the algebraic
closure ofK in the Galois closure overK is larger thanK. Also, X̂ is absolutely
irreducible if and only ifG� = Ĝ�.
[Fr78] phrased an extension of constants problem as generalizing complex multipli-

cation. Several results used that formulation (for example, [FV92,GMS03]). We refine
it here to construct from any (degreen) � : X → Y an extension of constantsseries
K̂�(2)�K̂�(3)� · · · �K̂�(n−1) (§2.2).
EachK̂�(k) is Galois overK and its group has a canonical faithful permutation rep-

resentationT�,k. Exceptional covers are at one extreme, dependent only onK̂�(2)/K.
For K a finite field, Lift Principle 3.1 (see Corollary 2.5), characterizes exceptionality:
G(K̂�(2)/K) fixes no points underT�,2.
Such a� produces a transitive permutation representationT� : Ĝ� → ST� on cosets

of Ĝ�(1) = G(X̂/X) in Ĝ�: ST� denotes all permutations of these cosets. We can
identify ST� (noncanonically) with the symmetric groupSn on {1, . . . , n}. This paper
emphasizes canonical construction of a certain infinite projective system of absolutely
irreducible covers ofY over K

{�i : Xi → Y }i∈I .

Such a projective system gives projective completions (limit groups)ĜI �GI with
an associated (infinite) permutation representation. Essential to a projective system
is that for any two of its covers, another cover in it dominates both. Our absolute
irreducibility constraint is serious. For two covers�i : X → Y , i = 1,2, to fit in
any canonical projective system requires their fiber productX1 ×Y X2 have a unique
absolutely irreducible factor overK (see §2.3.2).
To be truly canonical, there should be at most one map between any two covers

in the system. So, such infinite canonical projective systems of absolutely irreducible
covers over a fieldK are rare. Here, though, is one. Forn prime to the characteristic

of K, and �n any primitive nth root of 1, letCn = {�jn,1�j�n}. ConsiderT cyc
P1
y ,K

def=
{xn}{n|K∩Cn={1}}. The corresponding covers areP1

x → P1
y = Y by x �→ xn (notation

of §1.3).
For any finite field,Fq this represents the tinycyclic subtowerof the whole excep-

tional tower TP1
y ,Fq

of (P1
y,Fq) (Proposition 4.3). This category with fiber products

includes all exceptional covers ofP1
y over Fq . It captures the whole subject of excep-

tionality, giving empyreal drama to a host of new problems.
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If you personally research (or just like) exceptional covers— they are the nub of any
public key-like cryptography (§4.3.2 and §8)—your special likes or expertises will
appear as subtowers of the full tower. Examples, like the Schur and Dickson subtowers
of §5.1 and §5.2, clarify definitions of subtowers and their limit groups.
Exceptional covers have practical uses outside cryptography. Here are three using

rational function exceptional covers, respectively, in §6.1, §6.2.1 and §8.2.

(1.1a) Producingf ∈ K(x) (rational functions withK a number field or finite field)
indecomposable overK, but decomposable over̄K.

(1.1b) Interpreting Serre’s O(pen)I(mage)T(heorem) as properties of exceptional rational
functions.

(1.1c) Creating generalrelations between zeta functions.

These applications motivate the questions we have posed in §6. Classical number
theorists answered these questions for the subtowers of §5. So, §6 is an introduction
to [Fr05b] and the full context for problems posed in §6.1 (subtowers from modular
curves) and §6.4 (subtowers with wild ramification). There are two distinct ways a
given curve over a number field could produce many tamely ramified exceptional covers
of the projective line over finite fields. One is from reduction of covers that satisfy
an exceptionality criterion according to Chebotarev’s density theorem. Another is less
obvious, but it is through the reduction of curves that have themedian value property
(§8.2.2). We use Refs. [Se81,Se03] to tie the correct primes of reduction toq-expansions
of automorphic functions (§6.3, continued in [Fr05b]).
Section 6.4 outlines how to describe the limit group of the subtowerWPP1

y ,Fq

(of the exceptional tower over(P1
y,Fq), (q = pu) that indecomposable polynomi-

als, wildly ramified over∞, generate. This suggests how to generalize—even arith-
metically—aspects of Grothendieck’s famous theorems on curve fundamental groups.
Section 4.3.2 and Question 6.12 consider exceptional rational functions� : P1

x → P1
y

asscramblingfunctions. The combinatorics of Poincaré series allow us to ask how the
periods of those scramblers vary as the finite field extension changes.
The full role of exceptionality, appears inp(ossibly)r(educible)-exceptionality(starting

in §2.1.2). Davenport’s problem (§3.2) is a special case of pr-exceptionality. Finally,
§1.2 and §7 take us to the historical topics started by Davenport and Lewis (§7.1;
from whence exceptionality sprang) and by Katz (§7.2). These motivated our using the
extension of constants series to put all these exceptional covers together.

1.2. Primitivity and a prelude to the history of exceptionality

Most topics until §5 work as well forY of arbitrary dimension. We, however, un-
derstand tame exceptional covers of curves through thebranch cycletools of §2.1.4.
These allow being constructive.
To shorten the paper, I limit use of branch cycles and associatedNielsen classes

(a bare bones review is in §A.1) to a necessary minimum. Section 5.2 uses branch
cycles to give precise generators of the limit group for the Dickson subtowers.
Another example is in the Nielsen class version setup for Serre’s Open Image Theorem
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(OIT in §6). This approach to modular curves generalizes to form other systems of
tamely ramified exceptional covers in [Fr05b]. Appendix C uses [Fr05d] to guide the
so-inclined reader to the most modern use of Nielsen classes. These example poly-
nomial families from Davenport’s problem seem so explicit, it must be surprising we
cannot do them without some version of branch cycles. Finally, §6.4.1 discusses how
[Fr05b] will use [FrM02] to replace branch cycles (Riemann’s Existence Theorem
(RET)) when covers wildly ramify. Given the structure of Proposition 4.3, unsolved
problems on subtowers of wildly ramified covers are a fine test for this method.

1.2.1. Using primitivity in exceptional covers
Let � : X → Y be a cover of absolutely irreducible (normal) varieties over a field

K. Call � decomposable(over K) if it decomposes as a chain ofK covers

X
�′
−→W �′′

−→Y with �′ and�′′ of degree at least 2.

Otherwise it is indecomposableor primitive (over K). From the time of[Fr70] until
[FGS93], much has come from observing that the arithmetic monodromy group (in its
deg(�) permutation representation) is primitive if and only if the cover is primitive.

Lemma 1.2. Also, assume� is totally ramified over some absolutely irreducible K
divisor (for curves a K point) of Y. Then(if (deg(�), char(K)) = 1, necessary from
[FGS93, Corollary 11.2]):� decomposes overK ⇔ � decomposes over̄K.

The proofs of Fried [Fr69, Proposition 3, p. 101] and Fried and MacRae [FM69a,
Theorem 3.5] are readily adapted to prove this, and it a special case of Fried et al.
[FGS93, Lemma 4.4].
SupposeK is a number field or finite field. In the former case letOK be its ring

of integers. Letkf = kf,K be the number of absolutely irreducibleK components of
P1
x×P1

z
P1
x \� (§2.1). So,kf,K̄ might be larger thankf,K . Davenport and Lewis [DL63]

used exceptional to meankf,K is 0 (§7).
Davenport and Schinzel visited University of Michigan in 1965–1966 (see §8.1.3).

They discussed many polynomial mapping problems. This included Schur’s 1923
[Sch23] conjecture, whose hypothesis and conclusion are the second paragraph of
Lemma 1.3 whenQ = K [Fr70, Theorem 1]; notation from §5.1). Recall the de-
green Tchebychev polynomial,Tn(x): Tn(

x+1/x
2 ) = xn+1/xn

2 (§5.2).

Lemma 1.3. Supposef∈K[x] is indecomposable, (deg(f ), char(K))=1 andkf,K̄ �=1.
Then, f has prime degree and

(1.2) either �1 ◦ f ◦ �−1
2 (x) is cyclic (xdeg(f )) or Chebychev(Tdeg(f )(x)) for some

�1, �2 ∈ A(K̄) (§1.3; Proposition5.1 for precision on the� s).

Let K be a number field, g ∈ OK [x] (maybe decomposable).
(1.3) Assumeg : OK/p→ OK/p is one-one for∞-ly many primesp.

Then, g is a composition over K of polynomials f satisfying(1.2).
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MacCluer[Mc67] earlier showed that iff ∈ Fq [x] gives a tame ramified cover over
K = Fq with kf,K = 0, thenf : Fq → Fq is a one–one map. Fried [Fr74b] quoted
[Mc67] for the name exceptional. It also showed how generally MacCluer’s conclusion
applied, to any finite cover� : X → Y of absolutely irreducible nonsingular varieties
(any dimension, even if wildly ramified) satisfying the general conditionk�,K = 0.

1.2.2. Primitivity and grabbing a generic group
If you have ever done a crossword puzzle, then you will recognize this situation. You

have a clue for 7 Across, a seven letter word, but you have only filled in previously the
4th letter: ...E...: Say, the clue is “Bicycle stunt.” You will be happy for the moment to
find one word that fits, even if it is not the precise fill for the crossword. Should not
that be easier to do than to be given another letter W..E... that constrains you further?
The lesson is that you cannot seem to “grab” a word at random, but need clues

that force you to the “right” word. That also applies to groups. They are too discrete
and too different between them. If you are not a group theorist you likely would not
easily grab a primitive, not doubly transitive, group at random. Exceptional covers and
Davenport’s problem focused group theory on a set of problems that were the analog
of having to fill a suggestive set of letters in a crossword clue.
That tantalized John Thompson and Bob Guralnick to push to complete solutions for

a particular problem where the constraints included that the group was the monodromy
of a genus 0 cover over the complexes. Section 3.3 and 8 show why examples that were
telling in the genus 0 problem (over the complexes) applied to produce an understanding
of wildly ramified covers in positive characteristic. The Guralnick–Thompson genus 0
problem succeeded technically and practically. It was propitious: it took group theory
beyond the classification stage that dominated the simple group program; yet it made
much of that classification work.

1.3. Notation

We denote projective 1-space,P1, with a specific uniformizing variablez by P1
z .

This decoration tracks distinct domain and range copies ofP1.

1.3.1. Group notation
We use some classical algebraic groups over a fieldK: especially affine groups and

groups related to them. IfV = Kn, then the action of GLn(K) on V produces a
semi-direct product groupV ×sGLn(K). Represent its elements as pairs(A, v) so the
multiplication is given by

(A1, v1)(A2, v2) = (A1A2, (v1)A2+ v2).(1.4)

Here we use a right action of matrices on vectors. Regard this whole group as permuting
elements ofV by the action(A1, v1) mapsv ∈ V to (v)A1 + v1. If you prefer a left

action of matrices on vectors, then it is convenient to write(A, v) as
(
A v
0 1

)
. Then,
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multiplication is that expected from matrix multiplication

(
A1 v1
0 1

)(
A2 v2
0 1

) = (
A1A2 v1+A1(v2)
0 1

)
.(1.5)

Representv ∈ V as
( v
1

)
: V ×sGLn(K) permutesV by left multiplication.

A subgroupV ×s H with H�GLn(K) is an affine group. If K is a finite field, it
is an easy exercise to show the action ofV ×s H is primitive if and only if H acts
irreducibly (no proper subspaces) onV.
We use a special notation forA(K), affine transformations

x �→ ax + b, (a, b) ∈ K∗ ×K.

Möbius transformations are PGL2(K). We use their generalization to PGLu+1(K) acting
on k-planes,k�u− 1, of Pu(K) (K points of projectiveu-space). Denote the set ofr
distinct unordered points ofP1

z by Ur = ((P1
z)
r \�r )/Sr (� = �r in §2.1.1). Quotient

by PGL2(C) acting diagonally (commuting withSr on (P
1
z)
r ). If r = 4, these PGL2(C)

orbits form the classicj-line P1
j minus∞ [BFr02, §2.2.2].

We use groups and their representations, especially permutation representations to
translate the geometry of covers. In practice, as in §5.2.3, our usual setup has a subgroup
G of Sn, the symmetric group of degreen with multiplications from theright. Example:
For g1 = (2 3), g2 = (12)(34) ∈ S4, (2)g1g2 = 4 gives the effect of the product of
g1g2 on 2. (Action on the left would giveg1g2(2) = 1.) Abstract notation of §4.1.1
expresses the canonical permutation representation of a cover asT : G→ SV : G acts
on a setV.
Recall: A cover is tame if over its ramification locus, its inertia groups have orders

prime to the characteristic. Since we restrict our maps to avoid singular sets, on the
varieties in the cover, there is no special subtlety to this definition.

1.3.2. Riemann Hurwitz
An elementg ∈ Sn has an index ind(g) = n− u whereu is the number of disjoint

cycles ing. Example: (1 2 3)(4 5 6 7) ∈ S8 (fixing the integer 8) has index 8− 3 = 5.
Suppose� : X→ P1

z is a degreen cover (of compact Riemann surfaces). We assume
the reader is familiar with computing the genusgX of X given a branch cycle description
g = (g1, . . . , gr ) for � (§A.1): 2(n + gX − 1) = ∑r

i=1 ind(gi) [Vo96, §2.2] or [Fr06,
Chapter 4].

1.3.3. Frobenius progressions and fiber products
We need a precise notation for certain types of arithmetic progressions and their

unions. Letn be an integer that refers to a modulus for an arithmetic progression

Aa = Aa,n = {a + kn | 0�k ∈ Z} with 0�a ∈ Z.
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Call Aa a full progression ifa < n. Given n, any u ∈ Aa definesAa uniquely. A
full FrobeniusprogressionFa = Fa,n is the union of the full arithmetic progressions
modn defined by the collection of residue classesa · (Z/n)∗modn. Example: The full
Frobenius progressionF2,12 is A2,12∪ A10,12.

2. Fiber products and extension of constants

This short section has two topics even an experienced reader has never seen before:
pr-exceptionality (§2.1.2) and the extension of constants series (§2.2). We use fiber
products for the latter. Interpreting exceptionality is an example (§2.3).

2.1. Fiber products

There are diophantine subtleties in our use of fiber products (see §2.3.2), for we
remain in the category of normal varieties.

2.1.1. Categorical fiber product
Assume�i : Xi → Y , i = 1,2, are two covers (of normal varieties) overK. The set

theoretic fiber product has geometric points

{(x1, x2) | xi ∈ Xi(K̄), i = 1,2, �1(x1) = �2(x2)}.

Even if these are curves, this will not be normal at(x1, x2) if x1 and x2 both ramify
overY. Thecategoricalfiber product of two covers here means the normalization of the
result. Its components will be disjoint, normal varieties. We retain the notationX1×Y X2
often used for the purely geometric fiber product. AnFq point x of X (x ∈ X(Fq))
means a geometric point inX with coordinates inFq .
When �1 = �2 has degree at least 2 the fiber product,X ×Y X, has at least two

components (if deg(�) = n > 1): one the diagonal. DenoteX×Y X minus the diagonal
component byX2

Y \�. Then, for any integerk, denote thekth iterate of the fiber product
minus thefat diagonal (pairwise diagonal components) byXkY \ �. This is empty if
k > n. There is a slight abuse in using the symbol� for all k.
Any K component ofXnY \� is aK Galois closure�̂ : X̂→ Y of �, unique up toK

isomorphism of Galois covers ofY. The permutation action ofSn on XnY \� gives the
Galois groupG(X̂/Y ) as the subgroup fixinĝX. When considering a family of covers
{Xs → Ys}s∈S over (even) a smooth base spaceS, only in special situations do we
expect the Galois closure construction to work overS. In characteristic 0 (where there
is a locally smooth ramification section) there is an étale coverŜ → S over which the
Galois construction does occur (Remark2.1).

Remark 2.1. To effect construction of a Galois closure canonically for a family of
curve covers in characteristic 0, use forŜ the pullback to theinner Hurwitz space
H(G,C)in (notation from §A.1) as in[FV91]. PracticalAn examples are in [Fr05a,
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§A.2.4, especially Proposition A.5]. A theme of Fried and Mézard [FrM02]: expect
such aŜ in positive characteristic only if a family of projective curve covers tamely
ramifies. Further, its computation is explicitly understood only if|G| is prime to the
characteristic.

2.1.2. Pr-exceptional covers
Let Y be an absolutely irreducible normal variety overFq . Our constructions are

usually over an absolutely irreducible base. As in Definition 1.1, consider the restriction
�Y ′ of a cover� over some openY ′ where it becomes a morphism of nonsingular
varieties.

Definition 2.2. A pr-exceptional(pr for possibly reducible) cover � : X → Y is one
with �Y ′ surjective onFqt points for infinitely manyt for any allowableY ′.

We permitX to have no absolutely irreducibleFq component. (Since it is normal,
such anX has noFq points.) It is essential for Davenport pairs (DPs) (§3.2) to consider
cases whereXmay have several absolutely irreducibleFq components. IfX is absolutely
irreducible, then a pr-exceptional cover� is exceptional.
Here is a special case of Fried [Fr74b]. In [FGS93], it has a group theory proof.

In our generality (allowingY of arbitrary dimension) we need the special case of
Principle 3.1 applied to exceptional covers.

Proposition 2.3 (Riemann Hypothesis Proposition). Suppose� : X→ Y is a cover of
absolutely irreducible normal varieties(over Fq ). Then� exceptional is equivalent to
each of the following.

(2.1a) X2
Y \ � has no absolutely irreducibleFq component.

(2.1b) For any choice ofY ′ in Definition1.1, there are∞-ly many t with�Y ′ surjective
(and one–one) on Fqt points.

Let E�(Fq) be those t where(2.1a) holds with qt replacing q: X2
Y \ � has no

absolutely irreducibleFqt component. A chainX
�′−→X′ �′′−→Y of covers is exceptional

if and only if each cover in the chain is exceptional. Then

E�′′◦�′(Fq) = E�′′(Fq) ∩ E�′(Fq).

We callE�(Fq) the exceptionality set of� (over Fq ). Section2.2 restates exception-
ality using the geometric–arithmetic monodromy groups(G�, Ĝ�) of � : X→ Y . The
quotient Ĝ�/G� is canonically isomorphic to the cyclic groupZ/d(�), where d(�)
defines the degree of the extension of constants field. A quotientZ/d(X2

�) of Z/d(�)
indicates precisely which valuest are inE�(Fq) (Corollary 2.8). The exceptionality set
E� is a union of full Frobenius progressions. This extends to pr-exceptional (Principle
3.1): it has a Galois characterization and the pr-exceptionality setE�(Fq) is a union
of full Frobenius progressions.
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2.1.3. Galois group of a fiber product
Recall the fiber product of two surjective homomorphisms�∗

i : Gi → H , i = 1,2:

G1×H G2 = {(g1, g2) ∈ G1×G2 | �∗
1(g1) = �∗

2(g2)}.

The following hold from an equivalence of categories with fiber product[Fr06,
Chapter 3, Lemma 8.11]. Suppose�i : Xi → Y are two covers, with geometric
(resp. arithmetic) monodromy groupG�i (resp.,Ĝ�i ), i = 1,2. Let abX̂ (resp.,X̂) be

the maximal simultaneous quotient ofabX̂i → Y (resp.,X̂i → Y ), i = 1,2. Then the
geometric (resp., arithmetic) monodromy group of the fiber product

(�1,�2) : X1×Y X2 → Y

is G�1
×H G�2

(resp., Ĝ�1
×H Ĝ�2

) with H = G(abX̂/Y ) (resp.,G(X̂/Y )). Note:
DeterminingH is often the hard part.
We now consider the natural permutation representation attached to a Galois closure

of a fiber product. LetTi : Gi → SVi , i = 1,2, be permutation representations,i = 1,2
(as in §4.1.1). These representations produce a tensor representation on the categorical
fiber product asT : G1×H G2 → SV1×V2 (as in §3.2).

2.1.4. Introduction to branch cycles
Now assumeY = P1

z , the context for classical exceptional covers. If we restrict
to tame covers, thenbranch cycledescriptions often figure out everything in one fell
swoop. Assumez contains all branch points of both�1 and �2. As in §A.1, branch
cycles start from a fixed choice of classical generators onUz (we assume this given;
with r points in z). Section A.3 explains how this applies to tame covers in positive
characteristic.

Proposition 2.4. AssumeGi is a geometric monodromy group for�i , i = 1,2. Suppose
gi (resp., g) is the branch cycle description for�i , i = 1,2 (resp., (�1,�2)). Then,
gk = (g1k , g

2
k ), k = 1, . . . , r. The orbits of T on〈g〉 correspond to the absolutely

irreducible components of the fiber productX1×P1
z
X2.

Finding g is usually the hard part. Proposition5.7 has a practical example.

2.2. The extension of constants series

Many arithmetic properties of covers appear from an extension of constants in going
to the Galois closure of a cover. Let� : X → Y be aK cover, with deg(�) = n, of
absolutely irreducible (normal varieties). As in §2.1, let�̂ : X̂ → Y be its arithmetic
Galois closure with groupĜ�. Denote the group of̂X → X by Ĝ�(1), with similar
notation forabX̂.
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2.2.1. Iterative constants
Let K̂�(k) = K̂(k) be the minimal definition field of the collection of (absolutely

irreducible)K̄ components ofXkY \�, 1�k�n. Then, the kernel of̂G� → G(K̂(n)/K)

is G�. SinceXkY \� has definition fieldK, each extension̂K(k)/K is Galois. Call it the
kth extension of constants field. Further, the groupG(K̂�(k)/K) acts as permutations of
the absolutely irreducible components ofXkY \�. Denote the corresponding permutation
representation on these components byT�,k.
There is a natural sequence of quotients

G(X̂/Y )→ G(K̂�(n)/K)→ · · · → G(K̂�(k)/K)→ · · · → G(K̂�(1)/K).

HereG(K̂(1)/K) is trivial if and only if X is absolutely irreducible. As in Corollary
2.8 the exceptional cover topic primarily deals with the fieldsK̂(2). We record here
an immediate consequence of Proposition 2.3.

Corollary 2.5. For K a finite field, G(K̂�(2)/K) having no fixed points underT�,2
characterizes� being exceptional.

The only general identity between these fields{K̂�(k)}nk=2 is in the next lemma. For
any ordered subsetI = {i1 < · · · < ik} ⊂ {1, . . . , n}, denote projection ofXnY \ � on
the coordinates ofI by prI .

Lemma 2.6. The mapprI : XnY \ � → XkY \ � is a K map. Fork = n − 1 it is an
isomorphism. In particular, K̂�(n) = K̂�(n− 1).

Proof. The ordering on the coordinates ofXnY \ � is defined overK. So, picking out
any coordinates, as prI does, is also. SinceXkY \ � is a normal variety, if prI is
generically one–one then it is an isomorphism. Off the discriminant locus points of
XnY \ � look like (x1, . . . , xn), wherex1, . . . , xn−1 determinexn, the remaining point
over �(x1) ∈ Y . So, whenI = {1< · · · < n− 1}, the map is one–one.�

Remark 2.7. Fried [Fr05b, Appendix B] shows how the arithmetic monodromy group
of An covers is at the other extreme (depending solely onK̂�(n−1).

2.3. Explicit check for exceptionality

Apply the extension of constant series whenK = Fq and F̂q(k) is the kth extension
of constants field. We writeG(F̂q(k)/Fq) as Z/d(�, k). The extension of constants
group is

Ĝ�/G� = G(F̂q,�/Fq) def= Z/d(�, n).
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It defines F̂q(n) = F̂q,�(n), the minimal field over whichX̂ breaks into absolutely
irreducible components. ForX absolutely irreducible,Ĝ�/G� = Ĝ�(1)/G�(1). Any

t ∈ Z/d(�, n) defines aG� cosetĜ�,t
def= G� t̄ , t̄ ∈ Ĝ� with t̄ �→ t .

2.3.1. Using equations
If � is exceptional, then (2.1a) visually givesE�(Fqt ) for any integert. List the

irreducibleFq components ofX2
Y \ � asV1, . . . , Vu.

Corollary 2.8. Exceptionality of� holds if and only if eachVi breaks intosi compo-
nents, conjugate overFq , with si > 1, i = 1, . . . , u, over F̄q . Denote lcm(s1, . . . , su)
by d(�,2). Restrict elements of̂G� to Fqd(�,2) ⊂ Fqd(�) to induce Ĝ�(1)/G�(1) →
Z/d(�,2). Then, E�(Fq) is the union oft ∈ Z/d(�,2) not divisible bysi for any
1� i�u. So, all t ∈ (Z/d(�,2))∗ (or in (Z/d(�, n))∗) are in E�(Fq).

(2.2) A t ∈ Z/d(�, n) is in E�(Fq) precisely when eachg ∈ Ĝ�,t fixes (at least, or
at most) one integer from{1,2, . . . , n}.

2.3.2. Rational points on fiber products
Let �i : Xi → Y , i = 1,2, be twoK covers of (normal) curves. Consider the fiber

productX = X1×Y X2. Any x ∈ X(Fqt ) has image

(2.3) xi ∈ Xi(Fqt ), i = 1,2, with �1(x1) = �2(x2).

Conversely, if at least onexi does not ramify over�i (xi), then x = (x1, x2) is the
uniqueFqt point overxi , i = 1,2. We now stress a point from Principle3.1.
Assume(�1,�2) is a DP of curve covers andt ∈ E(�1,�2)

. Then there isx ∈ X(Fqt )
lying over both xi satisfying (2.3), even if both points ramify over the base. When
(�1,�2) is not a DP, the following is archetypal for counterexamples to there being
x ∈ X(Fqt ) when both thexi ’s tamely ramify over the base. Technically this example
is a DP (two polynomial covers linearly related overF̄q , but not overFq ), though not
for the t we are considering.

Example 2.9.Assumea ∈ F∗q is not ann-power fromFq . Let f1 : P1
x1
→ P1

z map by

x1 �→ xn1 and f2 : P1
x2
→ P1

z map byx2 �→ axn2. Then, the fiber productP1
x1
×P1

z
P1
x2

has no absolutely irreducibleFq components, and so noFq rational points. Still,xi = 0
maps toz = 0, i = 1,2. It is muchmore difficult to analyze this phenomenon if the
ramification is wild.

Remark 2.10. According to Corollary2.8, exceptionality depends only on group data.
Let Ĥ�Ĝ�, H = Ĥ∩G� andĤ (1) = Ĥ∩Ĝ�(1). LetDĤ be the image ofĤ (1)/H(1)

in Z/d(�,2). Call the subgroupĤ exceptionalif H is transitive, and if nosi divides
the order ofD

Ĥ
, i = 1, . . . , u.

3. Pr-exceptional covers

Section 3.1 interprets pr-exceptionality. Then, §3.2 relates it to DPs. Let
� : X→ Y be anyK = Fq cover. ThoughX may have severalK components (some not
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absolutely irreducible), for each there is a Galois closure, and a corresponding permu-
tation representation. Together these components give a Galois closure groupĜ� =
G(X̂/Y ) and a permutation representation: The direct sum of those coming from each
of the components. That is, the group acts on a set of cardinalityn = deg(�), with or-
bits O1, . . . , Ou of respective cardinalities(n1, . . . , nu), corresponding to the different
Fq componentsXi of X.
Denote restriction of� to Xi by �i . The quotientĜ�/G� is isomorphic toZ/d(�).

For each i we have Ĝ� → Ĝ�i defining a surjectionZ/d(�) → Z/d(�i , ki),
1�ki�ni − 1, analogous to whenX has one component.

3.1. Exceptionality set for pr-exceptional covers

Use Definition2.2 for pr-exceptional covers. Comments on the proof of Principle 3.1
are handy for checking pr-exceptionality by going to a larget and using properties on
fiber products off the discriminant locus. Call this thea(void)-ram argument.

3.1.1. Lifting rational points
The following variant on (2.2) definesE�(Fq) for � pr-exceptional. The difference

is removal of the phrase “for at most one integer.”

(3.1) A t ∈ Z/d(�, n) is in E�(Fq) precisely when eachg ∈ Ĝ�,t fixes at least one
integer from{1,2, . . . , n}.

Principle 3.1 (Lift Principle). Suppose� : X→ Y is pr-exceptional andY ′ is chosen
so �Y ′ is a cover of nonsingular varieties. Then those t with�Y ′ surjective onFqt

points isE�(Fq) union with a finite set.

Comments: Aitken et al.[AFH03, Remarks 3.2 and 3.5] discuss the literature and give
a short formal proof for the exceptional case. We extend that here to pr-exceptional.
Assume� : X→ Y is pr-exceptional overFqt . Let Y 0 beY minus the discriminant

locus of �, and X0 the pullback by� of Y 0. Aitken et al. [AFH03, Remark 3.9]
extends in generality, with only notational change, the short proof of Fried and Jarden
[FrJ86, Lemma 19.27] for DPs of polynomials. This proof shows the equivalence of
� : X→ Y pr-exceptional overFqt (without assumingX is absolutely irreducible) with
the following Galois theoretic statement.

(3.2) Eachg ∈ Ĝ�,t fixes at least one element of{1, . . . , n}.
Another way to say this: If eachg ∈ Ĝ�,t fixes an integer in{1, . . . , n}, not only is

� : X0(Fqt )→ Y 0(Fqt ) surjective, so is� : X(Fqt )→ Y (Fqt ).
In the references cited above, everything was said for curves. Fried[Fr74b, Theorem

1] has the result for exceptional coversf : X→ Y whereX andY are copies of affine
n-space (allowing ramification, of course), sof is a generalized polynomial map. The
argument is much the same. It starts withFy0 in the Galois group overy0 ∈ Y (Fqt )
that acts like the Frobenius on the residue class field of a geometric point on the Galois
closure overy0. This argument only depends on the local analytic completion around
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y0. So, it extends to anyf that (analytically) is a map of affine spaces. That is what
we get for any�Y ′ with Y

′ ⊂ Y ns
� (Definition 1.1).

Remark 3.2. The notationE�(Fq) for � : X→ Y may be insufficiently general for all
pr-exceptional covers. Restricting� to a proper unionX′ of Fq components ofX, to
give �′ : X′ → Y , may also be pr-exceptional. Then,E�′(Fq) may be a proper subset
of E�(Fq) and we call�′ a pr-exceptional subcover of�.

Problem 3.3 (A MacCluer-like Problem). Proposition3.1 goes through the domain of
an extensive generalization of MacCluer’s Theorem [Mc67]. When can we assert� :
X(Fqt )→ Y (Fqt ) is one–one fort ∈ E�(Fq), not just one–one overY ns

� ?

3.1.2. Pr-exceptionality versus exceptionality
If � : X→ Y is pr-exceptional, thenE�(Fq) in Principle 3.1 is theexceptional set

of �. From comments of Principle 3.1, when� is exceptional we know eachg ∈ Ĝ�,t
fixes exactly one integer in{1, . . . , n}. In fact, we have a characterization of the subset
of thoset ∈ E�(Fq) for which a pr-exceptional cover acts like an exceptional cover:t
with this property.

(3.3) X ⊗ Fqt has one absolutely irreducibleFqt componentX′, and restricting� to
X′ gives an exceptional cover overFqt .

If � is exceptional, then 1∈ E�(Fq). Example2.9 has a pair of covers that is a DP,
though its exceptionality set does not contain 1. Here the fiber product from this DP
produces a pr-exceptional cover� : X→ Y with X containing no absolutely irreducible
factor overFq .

3.1.3. Pr-exceptional correspondences
SupposeW is a subset ofX1 × X2 with the projections pri : W → Xi finite

maps, i = 1,2. Call W a pr-exceptionalcorrespondence (overFq ) if both pri ’s are
pr-exceptional. We get nontrivial examples of pr-exceptional correspondences that are
not exceptional from (3.6): the fiber product from a DP(�1,�2) is a pr-exceptional

correspondence. Denote the exceptionality set defined byX1 ×Y X2
pri−→Xi , by E�i ,

i = 1,2 (§3.3.1). In the DP case,E�1
∩ E�2

is nonempty (as in Corallary 3.6).
If W is absolutely irreducible both pri ’s are exceptional covers:W is an exceptional

correspondence. Section 4.1.2 allows forming a common exceptional subtowerTX1,X2,Fq
of both TX1,Fq and of TX1,Fq consisting of the exceptional correspondences between
X1 andX2. The exceptional set for the correspondence is thenEpr1 ∩Epr2. We do not
assume bothXi ’s have an exceptional cover to some particularY.

Principle 3.4. An exceptional correspondence betweenX1 andX2 implies |X1(Fqt )| =
|X2(Fqt )| for ∞-ly many t.

Classical cryptology includesXi = P1
zi
, i = 1,2.

Suppose�i : P1
zi
→ P1

z , i = 1,2, is exceptional. ThenP1
z1
×P1

z
P1
z2

has a unique

absolutely irreducible component, which is an exceptional cover ofP1
zi
, i = 1,2
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(Proposition4.3). So, §5.1 produces a zoo of exceptional correspondences between
P1
z1

andP1
z2

(of arbitrary high genus).

3.2. Davenport pairs give pr-exceptional correspondences

Suppose�i : Xi → Y , i = 1,2, are (absolutely irreducible) covers. The minimal
(Fq ) Galois closureX̂ of both is anyFq component ofX̂1×Y X̂2 (§2.1.3). The attached
group Ĝ = Ĝ(�1,�2)

= G(X̂/Y ) is the fiber product ofG(X̂1/Y ) andG(X̂2/Y ) over
the maximalH through which they both factor. Its absolute version isG = G(�1,�2)

.

3.2.1. DPs and pr-exceptionality
Both G and Ĝ have permutation representations,T1 and T2 coming from those of

G(X̂i/Y ), i = 1,2. This induces the tensor productT1⊗T2 of T1 andT2, a permutation
representation on̂G. The cyclic group

Ĝ(�1,�2)
/G(�1,�2)

= G(F̂q,(�1,�2)
/Fq)

is Z/d: d = d(�1,�2) is the extensions of constantsdegree. Fort ∈ Z/d, denote the
G(�1,�2)

coset mapping tot by Ĝ(�1,�2),t
.

We modify Definition1.1 to define a DP. AssumeY ′ is a Zariski openK subset of
Y so (�1,�2) : X1 ×Y X2 → Y restricts overY ′ to a cover of nonsingular algebraic
sets (Y ′ ⊂ Y ns

(�1,�2)
; see Remark 3.8).

Definition 3.5. Then, (�1,�2) is a DP if we get equality of the ranges of�i,Y ′ on
Fqt points, i = 1,2, for ∞-ly many t.

We show equivalence of these conditions:

(3.4a) X1×Y X2
prXi−→Xi , is pr-exceptional, and the exceptionality setsEpri (Fq), i = 1,2,

have nonempty (so infinite) intersection

Epr1(Fq) ∩ Epr2(Fq)
def= E�1,�2

(Fq); and

(3.4b) (�1,�2) is a DP (independent of the choice ofY ′).

The following is a corollary of Principle3.1. Again letY ′ as above be given, and
denote its pullback toX1×Y X2 by (�1,�2)

−1(Y ′), etc.

Corollary 3.6. Either property of(3.4)holds for(�1,�2) if and only if the other holds.
If (3.4), then, t ∈ E(�1,�2)

(Fq) and xi ∈ �−1
i (Y

′)(Fqt ), i = 1,2, with �1(x1)=�2(x2)

implies there isx ∈ (�1,�2)
−1(Y ′)(Fqt ) with pri (x) = xi , i = 1,2:

�1(�
−1
1 (Y

′)(Fqt )) = �2(�
−1
2 (Y

′)(Fqt )).(3.5)

The set of t for which(3.5) holds isE�1,�2
(Fq) union a finite set.
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Further, both conditions of(3.4) are equivalent to there beingt0 ∈ Z/d(�1,�2) so

(3.6) tr(T1(g)) > 0 if and only if tr(T2(g)) > 0 for all g ∈ Ĝ(�1,�2),t0
.

Proof. Condition (3.6) saysT1⊗T2(g1, g2) = T1(g1)T2(g2) > 0 if and only if Ti(gi) >
0 (either i). This is exactly pr-exceptionality forX1×Y X2 → Xi . It is also exactly the
DP condition as in [AFH03, Theorem 3.8]. So, this is equivalent to both conditions
of (3.4).
For the range equality of (3.5), withx1 ∈ �−1

1 (Y
′)(Fqt ) apply pr-exceptionality to

get x ∈ (�1,�2)
−1(Y ′)(Fqt ) over it and let pr2(x) = x2 to get �2(x2) = �1(x1). So,

�1(x1) is in the range of�2 on Fqt points, etc. �

Each DP(�1,�2) has an exceptional set

E(�1,�2)
(Fq)

def= {t modd(�1,�2) with(3.6)}.
Multiplying by (Z/d(�1,�2))

∗ preservesE(�1,�2)
(Fq). Call (�1,�2) a strong

Davenport pair (SDP) if (3.6) holds for allt0 ∈ Z/d.

Remark 3.7. Suppose� : X→ Y is pr-exceptional. If we knew the exceptionality set
E�(Fq) always contained 1, then the conditionEpr1 ∩ Epr2 nonempty in (3.4a) would
be unnecessary.

Remark 3.8 (Nonsingularity of a fiber product). A DP, given�i : Xi → Y , i = 1,2,
uses thoseY ′ with (�1,�2) over Y

′ a map of nonsingular algebraic sets. The union of
any two suchY ′ s is such a set. For suchY ′, both�i s restrict overY ′ to be maps of
nonsingular algebraic sets. Sometimes, however, the converse may not hold. LetS be
the intersection of the ramification loci of�1 and�2 minus common components. We
can assumeY ′ contains the complement ofS.

3.2.2. Interpreting isovalent DPs using pr-exceptionality
Let �i : Xi → Y , i = 1,2, be a pair ofFq covers. Call(�1,�2) an isovalent DP

(iDP) if the equivalent properties of (3.7) hold. Then,j = 1 in (3.7a) is just the DP
condition (in (3.6)).
Denote the fiber productj times (minus the fat diagonal) ofXi overY by Xji,Y \ �.

Use notation around (3.6). We (necessarily) extend the meaning of pr-exceptional: Even
the target may not be absolutely irreducible. We also limit theY ′ s used in Definition
3.5. Use only those for whicĥX → Y , the smallest Galois closure of bothXi → Y ,
i = 1,2, restricts to a cover of nonsingular varieties overY ′. Notation compatible with
Definition 1.1 would haveY ′ ⊂ Y ns

�̂ .

Proposition 3.9. For any t ∈ Z/d(�1,�2), the following are equivalent.

(3.7a) For each1�j�n− 1, Xj1,Y \ �×Y Xj2,Y \ � is a pr-exceptional cover of both

X
j
1,Y \� andXj2,Y \� and t is in the intersection of the common exceptionality

sets, over all j and projections to both factors.
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(3.7b) For an allowable choice ofY ′, t ′ representing t and anyy ∈ Y ′(F
qt
′ ), there is

a range equality with multiplicity:

|�−1
1 (y) ∩X1(Fqt ′ )| = |�−1

2 (y) ∩X2(Fqt ′ )|.

(3.7c) tr(T1(g)) = tr(T2(g)) for all g ∈ Ĝ(�1,�2),t
.

Proof. From the a-ram argument (3.7a):y ∈ Y (Fqt ) (not in the discriminant locus of
�1 or �2) being the image ofj distinct points ofXi(Fqt ) holds for i = 1 if and only if
it holds for i = 2. Running over allj, that saysy is achieved with the same multiplicity
in each fiber. The a-ram argument permitst large. So, the nonregular Chebotarev analog
[FrJ86, Corollary 5.11] has this equivalent to (3.7c).�

Definition 3.10. Denote thoset giving the iDP property (3.7) byi-E(�1,�2)
.

Proposition3.12 generalizes [AFH03, Theorem 4.8].

Lemma 3.11. Suppose G and̂G are groups withG� Ĝ. Let Ti be a faithful permu-
tation represention ofĜ induced from the identity representation onHi�G, i = 1,2.
Suppose�T1 = �T2 upon restriction to G. Then, �T1 = �T2 on Ĝ.

Proof. SinceTi = indĜG(ind
G
Hi
(1)), equality of the inner term representations fori = 1

and 2 implies equality of the representationsT1 and T2. �

Proposition 3.12. If (�1,�2) is an iDP, then0 ∈ E(�1,�2)
(Fq) if and only if (�1,�2)

is an isovalent SDP: i-E(�1,�2)
(Fq) = Z/d(�1,�2).

Assume now(�1,�2) is a DP and for somet ∈ E(�1,�2)
(Fq), X1 ×Y X2 has a

unique absolutely irreducibleFqt component Z. Then, both Xi → Y , i = 1,2, are Fqt

exceptional. If this holds for somet ∈ E(�1,�2)
, then 1 ∈ E(�1,�2)

(Fq).

Proof. The first statement is from Lemma3.11 using characterization (3.7c). Now
consider the second paragraph statement and for simplicity assume we have already
restricted to where(�1,�2) is a map of nonsingular spaces.
For such at, restricting toZ→ Xi is a pr-exceptional cover (Corollary 3.6) since the

only Fqt points onX1×Y X2 must be onZ. As Z is absolutely irreducible, Proposition
2.3 saysZ → Xi , i = 1,2, is exceptional. To see that�i is exceptional, again from
Proposition 2.3 we have only to show it is one–one. Using the a-ram argument, it
suffices to do this over the nonbranch locus of both maps. Supposex1, x

′
1 ∈ X1(Fqt )

and �1(x1) = �1(x
′
1) = z. Since this a DP, there isx2 ∈ X2(Fqt ) lying over z. In,

however, the fiber product, the points(x1, x2), (x′1, x2) ∈ Z both lie over x2. This
contradicts thatZ→ X2 is exceptional.
Any absolutely irreducible component ofX1 ×Y X2 over Fq is an absolutely irre-

ducible component overFqt for every t. Suppose, however,X1×Y X2 has no absolutely
irreducible component overFq . Then, over the algebraic closure, components fall into
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conjugate orbits (of length at least 2). Any definition field for one component in this
orbit is a definition field for all components in this orbit.
So, if for somet there is a unique absolutely irreducible component, then this holds

for t = 1. Conclude: Exceptionality fort impliesX1×Y X2 has a unique absolutely ir-
reducibleFq component. The exceptionality set of an exceptional cover always contains
1 (for example, Proposition4.3), giving 1∈ E(�1,�2)

. �

3.3. DPs and the genus 0 problem

It is easy to form new DPs (resp., iDPs if(�1,�2) is an iDP). Compose�i with
�i : X′

i → Xi , with �i exceptional,i = 1,2, with E�1
∩ E�2

∩ E(�1,�2)
�= ∅. Then,

(�1 ◦ �1,�2 ◦ �2) is a DP (resp., iDP).
This subsection shows how we got explicit production of iSDPs (that are not excep-

tional) from our knowledge of iSDPs that exist over number fields. I mean this as a
practicum on the value of the genus 0 problem.

3.3.1. Exceptional correspondences and DPs
Proposition 3.12 characterizes DPs in which both maps are exceptional: Those with

X1×Y X2 having precisely oneFq absolutely irreducible componentZ. Then,Z→ Xi ,
is exceptional,i = 1,2.
Assume�i : Xi → Y , i = 1,2, over Fq is any pair of covers andZ any corre-

spondence betweenX1 and X2 (with the natural projections both covers). We sayZ
respects(�1,�2) if �1 ◦ pr1 = �2 ◦ pr2. Lemma 3.13 says components ofX1 ×Y X2
suffice when seeking pr-exceptional correspondences that respect(�1,�2).

Lemma 3.13. Let Z be a pr-exceptional correspondence betweenX1 and X2 with
Epr1 ∩ Epr2 = E nonempty. If Z respects(�1,�2), then (�1,�2) is a DP (resp., pair
of exceptional covers) with E = E�1,�2

. Also, the imageZ′ of Z in X1 ×Y X2 is a
pr-exceptional(resp., exceptional) correspondence betweenX1 and X2.

Proof. AssumeZ with the properties in the lemma statement andt ∈ E. Apply the
a-ram argument (3.7a) and considerx1 ∈ X1(Fqt ) off the discriminant locus. Pr-
exceptionality givesz ∈ Z(Fqt ) over X1, and pr2(z) = x2 ∈ X1(Fqt ). SinceZ respects
(�1,�2), �1(x1) = �2(x2). This argument is symmetric in�1 and �2 and shows
(�1,�2) is a DP.
Any correspondence respecting(�1,�2) maps naturally toX1 ×Y X2. The above

shows the image is pr-exceptional. IfZ is exceptional, then its image is an absolutely
irreducible varietyZ′. SinceZ→ Xi is exceptional, both the natural mapsZ→ Z′ and
Z′ → Xi , i = 1,2, are exceptional, with the same exceptionality set (Proposition2.3).
Now use that having one absolutely irreducible component onX1×Y X2 characterizes
(�1,�2) being a pair of exceptional covers (Proposition 3.12).�

3.3.2. Some history of DPs
Polynomial pairs(f, g), over a number fieldK, with the same ranges on almost

all residue class fields, were what we once called DPs. §8.3 and Appendix C has
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background on these and on characteristicp DPs. Investigating DPs started with prov-
ing Schur’s conjecture.[AFH03] usedDP to mean a pair of polynomials overFq
as we do in Definition 3.5: Equal ranges onFqt for ∞-ly many t. We usually in-
clude the not-linearly related assumption §8.2.1 to exclude such exceptionality situa-
tions as a degree one cover together with any exceptional cover. We do not expect
covers in an isovalent DP to have the same degree. Still, we learned much from the
case Davenport started: polynomial pairs gave the covers (totally ramified over∞ and
genus 0).
When exceptional covers, possibly withg > 0, took on a life over a given finite field

in [FGS93], it made sense to do the same for DPs. Fried [Fr99, §5.3] showed that over
every finite fieldFq (q = ps) there are indecomposable i-SDPs(f, g) of all degrees

n = pt ·(u+1)−1
pt−1 running over allu�2 andt�1. The geometric monodromy group in this

case is PGLu+1(Fps ). I used [Abh97] for the construction of the polynomialf (over
Fp) with its monodromy representation on points of projective space. Then, I showed
existence of the polynomialg from the action on hyperplanes of the same space. Since
f and g both wildly ramified, it was tricky to compute the genus of the cover ofg
(yes, it came out 0). Bluher [Bl04] constructedg more explicitly.
By contrast, Fried [Fr73, Theorem 2] showed this positive conclusion toward

Davenport’s problem. No indecomposable polynomial DPs could occur overQ. This
was because the occurring conjugacy classesC include a singleSinger cyclepreventing
C from being a rational union (see also [Fr05d, §2.3]). Yet, reducing these pairs modulo
primes produces tame polynomial i-SDPs over many prime finite fields. Further, over
number fields there was a finite set of possible degrees (§8.2). What has this to do
with the genus-0 problem? It was the precise group theory description, using branch
cycles, that allowed us to grab appropriate wildly ramified covers from Abhyankar’s
genus 0 bag in positive characteristic.

Problem 3.14. Show these examples nearly give a complete classification of DPs over
Fq given by polynomials(f, g) with f indecomposable and(deg(f ), p) = 1.

4. Exceptional towers and cryptology

Let Y be a normal, absolutely irreducible variety overFq . It need not be projective
(affine n-space is of interest). We consider the categoryTY,Fq of exceptional covers of
Y over Fq . It has this interpretation (Proposition4.3):

(4.1a) there is at most one morphism between two objects; and
(4.1b) TY,Fq has fiber products.

With fiber products we can considergeneratorsof subtowers (§4.2). Section 5 lists
classical subtowers on which many are expert, because their generators are well-
studied exceptional covers. Our formulation, however, is different than from typical
expertise. That comes clear from questions arising in going to the less known sub-
towers of §6. These questions directly relate to famous problems in arithmetic geo-
metry. Section 4.3 documents mathematical projects in which exceptional covers had a
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significant role. Finally, §4.4 reminds that even for a polynomial the wordexceptional
historically meant something included but not quite the same as in our context.

4.1. Canonical exceptional towers

This subsection showsTY,Fq is a projective system canonically defining a profinite

arithmetic Galois group̂GY,Fq with a self-normalizing permutation representationTY,Fq .
Further, with some extra conditions, pullback allows us to use classical exceptional
covers to produce new exceptional covers on an arbitrary varietyY (Proposition 4.7).

4.1.1. Projective systems of marked permutation representations
For V a set, denote the permutations ofV by SV . For a permutation representation

T : G → SV and v ∈ V , denote the subgroup of{g ∈ G | (v)T (g) = v} by
G(T , v). Suppose{(Gi, Ti)}i∈I is a system of groups with faithful transitive permutation
representations,Ti : Gi → SVi , i ∈ I , a partially ordered index setI. Assume also

(4.2a) for i > i′, there is a homomorphism�i,i′ : Gi → Gi′ , with

�i,i′′ = �i′,i′′ ◦ �i,i′ , if i > i′ > i′′; and

(4.2b) there is a distinguished sequence{vi ∈ Vi}i∈I (markings).

Definition 4.1. We say {(Gi, Ti, vi),�i,i′)}i∈I is a compatible system of permutation
representations if fori > i′, �i,i′ mapsGi(Ti, vi) into G(Ti′ , vi′).

The following is an easy addition of a permutation representation to a standard
lemma on projective limits on groups.

Lemma 4.2. Suppose in Definition4.1 the partial ordering on I is a projective sys-
tem. Then, there is a limit groupGI whose elements naturally act as permutation
representations on projective systems of cosets ofG(TI , vI ) = lim∞←i G(Ti, vi).

4.1.2. The projective system onTY,Fq
We use the usual category structure for spaces over a base. Morphisms(X,�) ∈ TY,Fq

to (X′,�′) ∈ TY,Fq are morphisms� : X→ X′ with � = �′ ◦ �. Partially orderTY,Fq
by (X,�) > (X′,�′) if there is an (Fq ) morphism� from (X,�) to (X′,�′).
Then � induces a homomorphismG(X̂�/X�) to G(X̂�′/X�′), and so a canonical

map from the cosets ofG(X̂�/X�) in G(X̂�/Y ) to the corresponding cosets forX′.
Note: (X,�) is automatically inTX′,Fq . Proposition 4.3, a converse to the second
paragraph of Proposition 3.12, shows the partial ordering onTY,Fq is a projective
system.
The nub of forming an exceptional tower of(Y,Fq) is that there is a unique minimal

exceptional cover dominating any two exceptional covers�i : Xi → Y , i = 1,2
(supporting (4.1b)). This gives fiber products in the categoryTY,Fq . Note the extreme
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dependence onFq . We augment the Proposition4.3 proof with a pure group theory
argument (Remark 4.6) of the unique map property (4.1b).
Let I�N+. Examples we use:I = {t}, a single integer, orI a union of Frobenius

progressions (Definition 1.3.3). Denote those exceptional covers withI in their excep-
tionality sets (§4.2) byTY,Fq (I ). For y0 ∈ Y (Fqt ), let TY,Fq ,y0(I ) be those exceptional
covers ofTY,Fq (I ) wherey0 does not ramify in�.

Proposition 4.3.With �i : Xi → Y , i = 1,2, exceptional overFq , X1 ×Y X2 has a
unique absolutely irreducibleFq component X. Call its natural projection� : X→ Y :
Assigning(X,�) to (�1,�2) gives a categorical fiber product inTY,Fq .
In this category there is at most one(Fq ) morphism between objects(X,�) and

(X∗,�∗). So, � : X→ Y has noFq automorphisms, which has this interpretation: For
any exceptional cover� : X→ Y , the centralizer ofĜ� in SV� is trivial.

For (X,�) ∈ TY,Fq denote the cosets ofG(X̂�/X�) in G(X̂�/Y ) = Ĝ� by V�,

the coset of the identity byv� and the representation of̂G� on these cosets byT� :
Ĝ� → SV� . Then, {(Ĝ�, T�, v�)}(X,�)∈TY,Fq canonically defines a compatible system
of permutation representations. Denote its limit(ĜY,Fq , TY,Fq ).
For I�N+, t ∈ I and y0 ∈ Y (Fqt ), there is a canonical projective sequence

x� ∈ X(Fqt ) of base points for all(X,�) ∈ TY,Fq ,y0(I ) satisfying�(x�) = y0.
ConsiderE = E�1

(Fq) ∩ E�2
(Fq). Then, E = E�(Fq) contains a full Frobenius

progressionF1,d (§1.3.3) for some integer d.

Proof. Suppose�′ : X′ → Y is an exceptional cover and̂G�′/G�′ = Z/d ′. Then, for
each field disjoint fromF̂�′ , X′×Y X′ has only the diagonal as an absolutely irreducible
component. This holds for eacht ∈ (Z/d ′)∗, t ∈ E�′ . Continuing the notation prior to
the statement of the proposition, we showX1×Y X2 has a unique absolutely irreducible
Fq component.Note: No component on it can appear with multiplicity for that would
mean the cover ramified over every point ofXi , rather than over a finite set. LetY ′
be any open subset ofY ns

�1
∩ Y ns

�2
(Definition 1.1).

First, consider whyX1×Y X2 has at least one absolutely irreducibleFq component.
Suppose not. LetFqt0 be a field containing the coefficients of equations of all absolutely
irreducible components ofX1×Y X2. Then, over any field disjoint fromFqt0 (over Fq ),
X1 ×Y X2 has no absolutely irreducible components. So, over such a field the subset
X′
1,2 of it over Y ′, being nonsingular, has no rational points. We show this leads to a

contradiction. LetX′
i be the pullback inXi of Y ′.

From the first paragraph above, for any integert in both (Z/d(�i ))
∗, i = 1,2,

Proposition 2.3 says�i is one–one and onto onX′
i (Fqt ), i = 1,2. Since it is onto,

for t large, this impliesX′
1,2(Fqt ) has rational points. To get a contradiction, taket

large and in(Z/d ′)∗. This gives us the absolutely irreducible componentX. Denote the
pullback in it of Y ′ by X′.
Consider t ∈ E. Use the a-ram argument of Principle 3.1. Suppose two points

x, x′ ∈ X′(Fqt ) go to the same nonbranch point ofY ′. Then they map to distinct
points, in one ofX′

1(Fqt ) or X
′
2(Fqt ) (say the former), that in turn map to the same
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point in Y ′. This is contrary tot being in the exceptional support of�1. This shows
X→ Y is exceptional, andt ∈ E�(Fq) = E.
AssumeX and X∗ are distinct absolutely irreducibleFq components ofX1×Y X2.

Then, for t ∈ E (large) andx ∈ X1(Fqt ) (off the discriminant locus of�1), there
is (x, z) ∈ X(Fqt ) and (x, z∗) ∈ X∗(Fqt ). Then, z and z∗ are two distinct points of
X′
2(Fqt ) lying over �2(z) = �1(x). This contradictsX2 → Y being exceptional.
What if two differentFq morphisms�1,�2 : X→ X∗ commute with�∗? AgainX′

is the pullback ofY ′ ⊂ Y ns
� . Assumet is large and in both the(X,�) and (X∗,�∗)

exceptionality sets. Then there isx ∈ X′(Fqt ) with �1(x) �= �2(x). Yet, �(x) =
�∗ ◦�1(x) = �∗ ◦�2(x): �∗ maps�1(x) and�2(x) to the same place. This contradicts
exceptionality of�∗ for t.
Remark4.4 gives the equivalence of� : X → Y having noFq automorphisms and

the centralizer ofĜ� statement.
To seeE�(Fq) is nonempty, consider thatE�i (Fq) contains allt ∈ (Z/d(�i ))∗ for

both i = 1,2 (from above). SinceZ/d(�) maps surjectively toZ/d(�i ), i = 1,2, any
integert in (Z/d(�))∗ is also in(Z/d(�i ))

∗, i = 1,2. So, 1∈ E�(Fq). The remainder,
including existence of(ĜY,Fq , TY,Fq ), is from previous comments.�

Remark 4.4 (Self-normalizing condition). Denote the normalizer of a subgroupH of a
groupG by NG(H). We sayH�G is self-normalizingif NG(H) = H . We can interpret
this from G acting on cosetsV of H: TH : G → SV . The following equivalences are
in [Fr77, Lemma 2.1] (or [Fr06, Chapter 3, Lemma 8.8], for example).
Self-normalizing is the same as the centralizer ofG in SV being trivial. Finally,

suppose everything comes from field extensions (or covers):L/K is a finite separable
extension, and̂L its Galois closure, withG = G(L̂/K) andH = G(L̂/L). Then, self-
normalizing meansL/K has no automorphisms. IfTH is a primitive representation
(andG is not cyclic), self-normalizing is automatic.

Remark 4.5 (An exceptional cover� : X→ Y has noFq automorphisms). We can
see this special case of Proposition4.3 from group theory. An automorphism� identi-
fies with an element inG(X̂/Y ) \G(X̂/X) normalizingG(X̂/X) = Ĝ(T�,1) (Remark
4.4). Consider anyg ∈ Ĝ�,t ∩G(X̂/X). Then,�g�−1 ∈ Ĝ�,t ∩G(X̂/X) according to
this data. This, however, is a contradiction, for(1)T�(�) �= 1. So, contrary to Corollary
2.8, �g�−1 fixes two integers in the representation.

Remark 4.6 (Group theory of unique morphisms in Proposition4.3). More general
than Remark4.5, we interpret with groups that there is at most oneFq morphism be-
tween(X,�) and(X∗,�∗). Say it this way: if(X,�) > (X∗,�∗), thengG(X̂∗/X∗)g−1

contains the image ofG(X̂/X) only for g ∈ G(X̂∗/X∗).
Supposex ∈ X is generic, and there are two maps�i , giving �i (x) = x∗i ∈ X∗,

i = 1,2. Since�∗◦�i = �, K(x∗i ), i = 1,2, are conjugates. This interprets asĜ(T�,1)

has image inĜ�∗ contained in bothĜ(T�∗ ,1) and Ĝ(T�∗ ,2). For exceptional covers
the contradiction is thatK(y, x∗1, x∗2) is not a regular extension ofK(y) while K(x)
(supposedly containing this) is.
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4.1.3. Pullback
Fiber products give pullback of pr-exceptional covers, and with an extra condition,

of exceptional covers.

Proposition 4.7. Suppose� : Y ′ → Y is any cover of absolutely irreducibleFq va-
rieties. If � : X → Y is pr-exceptional(over Fq ), then pr�,Y ′ : X ×Y Y ′ → Y ′ is
pr-exceptional andE�(Fq) injects intoEpr�,Y ′ (Fq).
Let TY,Fq ,Y ′ be those exceptional covers� : X→ Y in TY,Fq with X×Y Y ′ absolutely

irreducible. This gives a mapprY ′ ◦ (·,�) : TY,Fq ,Y ′ → TY ′,Fq ,

� �→ pr�,Y ′ : X ×Y Y ′ → Y ′, by projection onY ′.

In particular, TY,Fq is nonempty for any variety Y.

Proof. Use the a-ram argument of Principle3.1 with these hypotheses. Assumet ∈
E�(Fq), and yet pr�,Y ′ : X ×Y Y ′ → Y ′ maps (x1, y′), (x2, y′) ∈ X ×Y (Fqt ) to y′.
Then,�(xi) = �(y′), and since� is exceptional, this impliesx1 = x2. So, t is in the
exceptionality set of the pr-exceptional cover pr�,Y ′ .
If a pr-exceptional cover is of absolutely irreducible varieties, then it is exceptional

(from (3.3)). This gives the second paragraph statement. Now consider the problem of
showingTY,Fq is nonempty for any varietyY.

CompleteY in its ambient projective space, and then normalize the result. Normal-
ization of a projective variety is still projective [Mum66, p. 400]. So, if we construct
an exceptional cover of the result, then restriction gives an exceptional cover ofY. This
reduces all to the caseY is projective. Nöther’s normalization lemma now says there
is a cover� : Y → Pt with t the dimension ofY [Mum66, p. 4]. Suppose we produce
an exceptional cover� : X→ Pt whose Galois closure has order prime to the degree
of �. Then, pullback ofX to Y will still be irreducible.
If Y is a curve, sot = 1, we can use one of the many exceptionalFq covers

of P1
z with absolutely irreducible fiber products with� (the easy ones in §1.1, for

example). Fort > 1, Fried and Lidl [FrL87, §2] constructs many exceptional cov-
ers of Pt for every t by generalizing the Redyi functions and Dickson polynomials
(and their relation) to higher dimensions. The construction, based on Weil’s restric-
tion of scalars, applies to any exceptional cover ofP1 to give exceptional covers
of Pt . �

Remark 4.8. The mapE�(Fq)→ Epr�,Y ′ (Fq) in Proposition4.7 may not be onto.

Remark 4.9 (Generalization of Proposition4.7). Suppose� : Y ′ → Y is any mor-
phism of absolutely irreducible normal varieties, not necessarily a cover or a surjection.
Then, Proposition4.7 still holds: this is a very general situation including restriction
to any normal subvarietyY ′ of Y. The hard part, of course, is figuring out when
irreducibility of the pullback will hold.
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4.2. Subtowers and equivalences among exceptional covers

Suppose a collectionC of covers from an exceptional towerTY,Fq is closed under
the categorical fiber product. We sayC is a subtower. We may also speak of the
minimal subtower any collection generates. The following comes from the Proposition
4.3 formula and that the fiber product of unramified covers is unramified. Again,I�Z+.

Lemma 4.10. The collectionsTY,Fq (I ) and TY,Fq ,t0(I ) (t0 ∈ Y (Fqt ); §4.3) are both
subtowers ofTY,Fq .

It is often useful to sayh, h′ ∈ Fq(x) are PGL2(Fq) (resp., A(Fq)) equivalent if
h = � ◦ h′ ◦ �′ for some�, �′ ∈ PGL2(Fq) (resp.,A(Fq)).

Practical cryptology focuses on genus 0 exceptional curve covers:� : X → P1
y is

exceptional, andX has genus 0. Over a finite field,X is isomorphic toP1
x for some

variable x. Since cryptology starts with an explicit place to put data, we expect to
identify such anx. Yet, to give an expedient list of all exceptional covers we often
drop that identification, and extend PGL2(Fq) equivalence.
If h1, . . . , hv and h′1, . . . , h′v are two sequences of rational functions over a field

K, then h1 ◦ h2 ◦ · · · ◦ hv is PGL2(K) equivalentto h′1 ◦ h′2 ◦ · · · ◦ h′v if each h′i is
PGL2(K) equivalent tohi , i = 1, . . . , v. Let Rn1,...,nv be the collection of composi-
tions of v exceptional rational functions of respective degreesn1, . . . , nv. Denote by
Rn1,...,nv /PGL2(K) its PGL2(K) equivalence classes. Similarly, for affine equivalence,
and spaces of polynomials using the notationPn1,...,nv /A(K).
Any explicit compositionf of v rational functions (with degreesn1, . . . , nv), overK,

defines its PGL2(K) equivalence class. Still, there may be other PGL2(K) inequivalent
compositions off into rational functions overK. (If K = Fq and f is exceptional, then
each composition factor will automatically be exceptional.)
So, rather than invariants for the rational functions, these equivalence classes are

invariants for rational functions with explicit decompositions. Still, for any interesting
composition of exceptional rational functions, we immediately recognize the whole
PGL2(Fq) equivalence class.
We extend this definition further. Suppose� : Y → P1

z , with Y of genus 0, has an
explicit decomposition and� : X→ Y is a K cover.

Definition 4.11. Refer to� ◦ � : X→ P1
z as having an explicit decomposition. Then,

the PGL2(K) action on� induces a PGL2(K) action on� ◦� by composition with�
after the action. This gives the PGL2(K) equivalence class of(�,�).

Let Y be an open subset of̄Y , a projective curve. Consider the subtowerT unr
Y,Fq

(resp.,

T unr,tm
Y,Fq

) of TY,Fq consisting of exceptional covers unramified overY (resp., inT unr
Y,Fq

and whose extension to a cover ofȲ is tamely ramified). Proposition4.7 shows how
pullback from one curve to another allows passing exceptional covers around. Still, it
is significant to know when exceptional covers arenew to a particular curve. We even
guess the following.
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Conjecture 4.12. Suppose two curves Y andY ′ over Fq are not isomorphic overFq .
Then, the limit groups ofT unr

Y,Fq
and T unr

Y ′,Fq (and even ofT unr,tm
Y,Fq

and T unr,tm
Y ′,Fq ) are not

isomorphic.

Even if we restrict to exceptional covers with affine monodromy groups, this may
be true. It is compatible with[Ta02], a topic continued in [Fr05b].

4.3. History behind passing messages through the I subtower

Section 4.3.1 compares enthusiasm for cryptology with topics fitting the phrase
scrambling data. Then, §4.3.2 relates cryptology and exceptional correspondences.

4.3.1. Derangements and enthusiasm for cryptology
Many applications model statistical events with card shuffling. Depending on what

is a shuffle and the size of a deck, we might expect a random scrambling (shuffling)
to have a good probability to move every card. Combinatorics rephrases this to another
question: in a given subgroupG�Sn, what is the proportion of elements that will be a
derangement(§4.3.2; [DMP95]). We assume elements equally likely selected (uniform
distribution). Restricting to a particular subgroupG then stipulates what is a shuffle.
The hypothesis of a group just says you can invert and compose shuffles.

Consider this setup:G� Ĝ�Sn, with Ĝ primitive, andĜ/G = 〈�〉 cyclic and non-
trivial. Combinatorialists might ask if a good fraction of the cosetĜ� (notation of
§2.3) is derangements. Example: Fulman and Guralnick [FuG01] outlines progress in
this guiding case (conjectured earlier by Boston and Shalev [Sha98]) where〈�〉 is
trivial, contrary to our assumption.

Problem 4.13. Restrict toĜ = G andG is simple. Show the fraction of derangements
exceeds some nonzero constant, independent ofG.

Group theory callsĜ almost simplewhenG� Ĝ�Aut(G) with G (nonabelian) sim-
ple. To generalize Problem4.13 to Ĝ� you must exclude possible exceptional covers.
Alternatively, use the near derangement property of this coset (§4.3.2).

Many agencies today use cryptology to justify applying algebra outside pure math-
ematics. To include many approaches, cryptologists advertise alternative expertises, in-
cluding encoding in different rings or higher-dimensional spaces. Modern cryptology
(or as formerly, cryptography) connects with historical mathematics literature. Consider
this enthusiastic citation [LP98, p. 279], quoting from Kahn [Ka67]:

The importance of mathematics in cryptography was already recognized by the
famous algebraist A. Adrian Albert, who said in 1941: “It would not be an exag-
geration to state that abstract cryptography is identical with abstract mathematics.”

Lidl and Pilz [LP98, pp. 279–282, Chapter 6] emphasize that many inverse problems
appear when we consider data extraction.
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Hiding data is only one part of cryptography. The nature of the hiding techniques
and finding out what it means that they are secure is the other half. Also, there is no
escaping contingencies and serendipities from patient use of tricks. You get more of
a feeling about these when you hear the outcomes of successful code cracking. The
story of Tuchman[Tu58, Chapter 1] shows the tremendous resources that are required
for a significant payoff for code cracking.
Public key cryptography has been around a long time. Yet, there is a sexy new

tactic—quantumcryptography. While the inspection of data encoded in different finite
fields is at the heart of modern diophantine equations, they who know this also know
about modern diophantine equations. That does not include those bankers who know
about cryptography. See [St04] for the quickest and simplest look at the likelihood that
RSA may soon be replaced.

4.3.2. Periods of exceptional scrambling
As above,g ∈ Sn is aderangementif it fixes no integer. We see this definition appear

for T : Ĝ→ Sn, the arithmetic (G the geometric) monodromy group of an exceptional
cover. A wholeG coset of Ĝ consists ofnear derangements. Its elements each fix
precisely one of{1, . . . , n} (Proposition 2.3). This nonabelian aspect of exceptional
covers raises questions on shuffling of data embedded in finite fields.
General cryptology starts by encoding information into a set. Our sets are finite fields.

So, let t be large enough so that the bits needed to describe elements inFqt allow
encoding our message as one of them. PutI = {t}. Then, we select(X,�) ∈ TY,Fq (I ).
Embed our message asx0 ∈ X(Fqt ). We use� as an efficient one–one function to pass
x0 to �(x0) = y0 ∈ Y (Fqt ) for publication. You and everyone else who can understand
“message”x0 can seey0 below it. To find out what isx0, requires an inverting function
�−1
t : Y (Fqt )→ X(Fqt ).

Question 4.14(Periods). SupposeX andY are explicit copies ofP1. Identify them to
regard� as�t , permutingFqt ∪{∞}. Label the order of�t asm�,t = mt . Then,�mt−1

t

inverts�t . How doesm�,t vary, for genus 0 exceptional�, as t varies?

Question4.14 generalizes to exceptional correspondences as in Principle 3.4. We can
refine Question 4.14 to ask about the distribution of lengths of�t orbits onFqt ∪{∞}.
In standard RSA they are the lengths of orbits onZ/(qt − 1) from multiplication by
an invertible integer. This works for all covers in the Schur Tower (§5.1). We do not
know what to expect of genus 0 covers in the subtowers of §6. Similar questions make
sense fixingt fixed and varying�. See the better framed Question 6.12.

4.4. k-exceptionality

We list alternative meanings forexceptionalover a number fieldK. Section 4.4.1
gives the most obvious from reduction modulo primes. Section 4.4.2 has a sequence
of k-exceptionalconditions; 1-exceptional is that of §4.4.1.
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4.4.1. Exceptionality defined by reduction
Assume� : X → Y is a cover over a number fieldK, with ring of integersOK .

A number theorist might define an exceptional setE�(K) to be those primesp of
OK for which � is exceptional modp. That matches an unsaid use in, say, Schur’s
Conjecture (Proposition1.3) describing polynomial maps withE�(K) infinite. Regard
E�(K) as defined up to finite set. Then, we say� is exceptional ifE�(K) is infinite.
There is a complication. Even if� : X → Y and� : Y → Z are exceptional (over

K), it may be that� ◦� is not. Similarly, you might have two exceptional covers ofY
and yet their fiber product has no component exceptional overY. Examples 4.15 and
4.17 produce both types of situations.

Example 4.15(Compositions of Dickson and cyclic polynomials). Section5.1 and 5.2
describe all indecomposable tamely ramified exceptional polynomials. These descrip-
tions work over any number field. SupposeK = Q and f ∈ Q[x] is a composition of
such polynomials. (From Fried [Fr70, Theorem 1], the composition is of prime degree
polynomials overQ.) We can decide whenf has an infinite exceptional set by knowing
how primes decompose in a cyclotomic extensionL/Q formed from the degrees of the
composition factors. List these ass1, . . . , sv1 (cyclic factors) andsv1+1, . . . , sv2 (Dick-
son factors). The exceptional setEf (Q) is thosep having residue degree exceeding
one in each of

Lj = Q(e2�i/sj ), j = 1, . . . , v1 and inLj = Q(e2�i/sj + e−2�i/sj ),

j = v1+1, . . . , v2.

Question 4.16.Given f ∈ Q[x], can we decide whenEf (Q) is infinite?

The author (as referee of[Ma84]) showed this example to Rex Matthews, who wrote
out the numerics of whenEf (Q) is infinite. Still, Matthews assumed such anf is a
composition of known degree cyclic and Dickson polynomials. An effective answer
for deciding for anyf ∈ Q[x] if it has such a form might be harder, requiring the
technique of Alonso et al. [AGR] (see §6.2.1).
A related example comes from [GMS03, §7.1] (aided by M. Zieve). It stands out

from any of the other examples they constructed.

Example 4.17(Degree 4 exceptional rational functions). Let K be a number field, and
let E/K have groupA3 = Z/3 (resp.,S3). Then, there is a rational functionfE over
K with geometric monodromyZ/2× Z/2 and arithmetic monodromyA4 (resp.,S4),
with extension of constantsE. This gives 4 genus 0 exceptional covers with neither
their compositions nor fiber products exceptional. Guralnick et al.[GMS03] used any
U/Q with group Z/3 × Z/3. Each of the (4) cyclic subgroups is the kernel of a
mapZ/3× Z/3→ Z/3. So, each map defines a degree 3 cyclic extensionE/Q. The
functionsfE from these cyclic extensions ofQ have the desired property.
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4.4.2. Exceptionality defined by rank of subgroups
Recall: A group’s rank is the minimal number of elements required to generate it.

Example: Simple noncyclic finite groups have rank 2 (this requires the classification
of finite simple groups for its proof[AG84, Theorem B]). Denote the absolute Galois
group ofK by GK . Suppose� ∈ (GK)k. Denote the fixed field inK̄ of 〈�〉 by K̄(�).

Suppose� : X → Y produces the extension of constants homomorphismsG →
Ĝ

�−→G(K̂(2)/K) as in Corollary 2.5. Consider a conjugacy class of subgroups repre-
sented byH�G(K̂/K).

Definition 4.18. If restricting T�,2 to H has no fixed points, then we say� is H-
exceptional. Also,� is k-exceptionalif the smallest rank of a subgroupH�Ĝ�/G�
with H-exceptionality isk.

For H = 〈�〉 having rank 1, the Chebotarev density theorem gives a positive density
of primes p where � is the Frobenius inK̂ for p. So, 1-exceptional is equivalent
to the definition in §4.4.1. We can also apply [FrJ86, Theorem 18.27]. This shows
1-exceptional is equivalent toX2

Y \� having no rational points over̄K	 for a positive
density of	 ∈ GK .
The analog fork-exceptionality is thatk is the minimal integer with a positive density

of elements� ∈ (GK)k so thatX2
Y \ � has noK̄� points.

Remark 4.19. All these definitions extend to replaceT�,2 by T�,j for j�2.

5. The most classical subtowers ofTY,Fq

We put some structure into particular exceptional towers. Especially, we use now
classical contributions to form interesting subtowers. The tool that allows explicitly
computing the limit group for these subtowers is branch cycles as in §2.1.4 (and Nielsen
classes, Appendix A.1). These are the easiest significant cases. We are illustrating to a
newcomer how to use branch cycles.
We here describe subtowers that tame polynomials—essentially all exceptional poly-

nomials with degrees prime to the characteristic (§6.4)—generate. Section 6.1 considers
the majority of tame exceptional covers from rational functions not in this section. Then,
there is a finite list of sporadic genus 0 exceptional cover monodromy groups. Solving
the genus 0 problem simplified their precise description in [GMS03]. That produced
their possible branch cycle descriptions, placing them as Riemann surface covers. The
inverse Galois techniques of Fried [Fr77] (the Branch Cycle Lemma (§B.1) and the
Hurwitz monodromy criterion) then finished the arithmetic job of showing they did
give exceptional covers. No new technical problems happened in these cases.
In turn, refinements (as in §8.1.2) of the original genus 0 problem came from ex-

ceptional polynomial and DPs studies: §3.3.2, §6.4 and Appendix C. Using these pre-
liminaries simplifies how Fried [Fr05b] continues this topic. For all genus 0 covers in
any exceptional tower, we may consider Question 4.14.
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5.1. The Schur subtower ofTP1
y ,Fq

Degrees of polynomials in this section will always be prime top = char(Fq). A
reminder ofA(Fq) equivalent polynomials prime top is in Lemma1.3. Forp �= 2,
and n odd, there is a the unique polynomialTn with the propertyTn(12(x + 1/x)) =
1
2(x

n + 1/xn). Note: Tn maps 1,−1,∞, respectively, to 1,−1,∞. For u ∈ F∗
q2

and

a = u2, defineTn,a = lu◦Tn◦lu−1, lu : z �→ uz. Then,Tn,a mapsu,−u,∞, respectively,
to u,−u,∞.

Proposition 5.1. Assume n, n′ and p are odd. By its defining property, Tn is an odd
function. SoTn,a depends only on a(rather than u) and Tn,a ◦ Tn′,a = Tn·n′,a .
Suppose h is a polynomial withdeg(h) > 1, (deg(h), p) = 1 and h ∈ TP1

y ,Fq
. Then,

h is a composition of odd prime degree polynomialsFq [x] of one of two types
(5.1a) A(Fq) equivalent toxn with (n, q − 1) = 1; or
(5.1b) A(Fq) equivalent toTn,a , (n, q2− 1) = 1,a representing[a] ∈ F∗q/(F∗q)2.

Conversely, a composition of polynomials satisfying these conditions for a given q is
exceptional. In case(5.1a) (resp., (5.1b)) a functional inverse forxn (resp., Tn,a) on
Fq is xm (resp., Tm,a) wheren ·m ≡ 1modq − 1 (resp., n ·m ≡ 1modq2− 1).

Comments on the proof: Map x to −x in the functional equation

Tn(
1
2(x + 1/x)) = 1

2(x
n + 1/xn)

to seeTn is odd. So,lu ◦ Tn ◦ lu−1 is invariant for the changeu �→ −u. Apply both of
Tn,a ◦ Tn′,a and Tn·n′,a to the composition ofx �→ 1

2(x + 1/x) and lu. They both give

the composition ofx �→ 1
2(x

n·n′ + 1/xn·n′) and lu and are thus equal.
Let g∞ = (12 . . . n),

g1 = (1n)(2n− 1) · · · ((n− 1)/2 (n+ 3)/2) and
g2 = (n2)(n− 13) · · · ((n+ 3)/2 (n+ 1)/2).

(5.2)

Fried [Fr70] shows an indecomposable polynomialh ∈ TP1
y ,Fq

of degree prime top

is in one of two absolute Nielsen classes: Ni(Z/n, (1,−1)) (1 and−1 representing
conjugacy classes inZ/n) or Ni(Dn,C22·∞) (with conjugacy classes represented by
(g1, g2, g∞) resp.). Further, suppose we give the branch points in order. Then only
one absolute branch cycle class gives a cover with those branch points:(g∞, g−1∞ )
or (g1, g2, g−1∞ ). The translation starts with group theory using the small, significant,
arithmetic observation thath indecomposable overFq implies h indecomposable over
F̄q . This holds becauseh is a polynomial of degree prime top.
For doubly transitive geometric monodromyG acting on{1, . . . , n}, it is immediate

that any cosetGt as in Corollary 2.8 has an element fixing at least two integers.Reason:
We can assure a representativet fixes 1. If it sends 2 toj, multiply t by g ∈ G(T ,1)
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with (j)g = 2 (use double transitivity). So,gt fixes 1 andj. Serious group theory uses
thatG is primitive, but not doubly transitive.
Consider the second case. This indicates a cover� : X → P1

y with two finite
branch pointsy1, y2 (and corresponding branch cyclesg1 andg2). Further, as a set, the
collection {y1, y2} has field of definitionF. Eachyi has a unique unramifiedF point
xi ∈ X over it corresponding to the length 1 disjoint cycle ofgi . With no loss, up to
A(Fq) equivalence, takey1 + y2 = 0, y1 = u, y2 = −u, and−y21 = −u ∈ F . So, we
produce such a cover by the polynomial mapTn,a(x). This has±u as the unramified
points over±u. Up to A(F ) equivalence, that determinesu as a representative of
F ∗/(F ∗)2.

Similarly, the first case has one finite branch pointy′, over which is exactly one
place. As a result, up toA(F ) equivalence� : P1

x → P1
y by x �→ axn. If, however,

� is exceptional overFq , then there existsx0 ∈ Fq for which a(x0)n = 1, anda is an
nth root in Fq . Again, since� is exceptional, there is only onenth root in F, showing
the A(F ) equivalence of� to x �→ xn.
See Proposition5.3 for why compositions from (5.1) are exceptional.

Remark 5.2 (Decomposability overK̄ and not over K). Fried et al.[FGS93, §4] an-
alyzes the decomposability situation for polynomialsh when (char(K), deg(h)) > 1.
A particular example where an indecomposableh over Fp becomes decomposable over
F̄q occurs ([FGS93, Example 11.5], due to [Mu93]) with degh = 21 andp = 7.

For rational functions, §6.2 gives many examples of this, in all characteristics, from
Serre’s Open Image Theorem. The geometric monodromy groups of these rational
functions has the form(Z/n)2×s {±1}.

5.2. The Dickson subtower

Here, we study the subtower of exceptional covers generated by Dickson polynomi-
als.

5.2.1. Dickson polynomials
Lidl et al. [LMT93, p. 8] defines Dickson polynomials as

Dn,a(x) =
[n/2]∑
i=0

n

n− i
(
n− i
i

)
(−a)ixn−2i .

Most relevant is its functional propertyDn,a(x + a/x) = xn + (a/x)n. While Tn,a(x)
does not equalDn,a(x) it is related to it.

Proposition 5.3. Assume n is odd. Then, Dn,a(x) = an−1Tn,a(x). In particular, the
two polynomials areA(Fq) equivalent. Both polynomials, independent ofa ∈ F∗q , give
exceptional covers overFqt precisely when(n, q2t − 1) = 1.

michaelf
Pencil

michaelf
Note
D_[n,a)(2x)/2=D_{n,a}^*(x)=u^{n-1}T_{n,a}(x)
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Proof. Let mb(x) = 1
2(x+b/x). Considerx �→ 1

2x
n + (a/x)n as a composition of two

maps in two ways:

x �→ xn �→ man(x) = x �→ ma(x) �→ Dn,a(ma(x)).(5.3)

Note: x �→ x + b/x maps the ramified points±√b to ±√b. So, the left-hand side of
(5.3) shows this for the composite:±u �→ ±un; over each of±un there are precisely
n points ramified of order 2; and there are two points with ramification ordersn that
map to∞. As x �→ ma(x) maps±u �→ ±u, ramified of order 2, and it maps 0 and
∞ to ∞, Dn,a(x) has these properties. There are(n− 1)/2 points ramified of order 2
over±un, and±u also lie over these points, but as the only (respectively) unramified
points. So, these determining properties showan−1Tn,a = Dn(x, a).

Exceptionality under the condition(n, q2t − 1) = 1 is in [LMT93, Theorem 3.2].
It is exactly the proof in [Fr70], using the equationDn,a(x + a/x) = xn + (a/x)n
(the latter said only the casea = 1). �

5.2.2. Exceptional sets
We list exceptional sets for certain Dickson subtowers. These easy specific subtowers

are a model for harder cases like §6.1 and in [Fr05b].

Definition 5.4. Let v be an integer andn = p1, . . . , pv, a product of (possibly not
distinct) primes with(n,2 · 3 · p) = 1. Compose all degreep1, . . . , pv Dickson poly-
nomials up toA(Fq) equivalence. (Order and repetitions of the primes do not matter,
nor what are thea-values attached to them.) We denote the subtower these generate
by Dn,q , the n-Dickson Tower (overFq ).

Proposition 5.5.With n as above, � ∈ Dn,q has exceptional set equal toE′
n,q

def= {t |
(n, q2t − 1) = 1}. This is nonempty if and only if the order ofqmodpi exceeds2,
i = 1, . . . , v.

Proof. Consider a composition ofv degreep1, . . . , pv Dickson polynomials under
A(Fq) equivalence. Use the notation of §4.2. (5.1b) gives a natural map

�p1,...,pv;q : (F∗q/(F∗q)2)v → Pp1,...,pv /A(Fq)

representing all such equivalence classes. Any point[f ] in the image has the excep-
tionality set given in the statement of the proposition. Apply Proposition4.3 to see any
element in this tower has the same exceptionality set.
Now consider whenE′

n,q is nonempty. Ifpi divides n and q2− 1≡ 0modpi , then
pi divides (n, q2t − 1) for any t. So, assume this does not hold for any suchpi . That
implies (n, q2 − 1) = 1. Whatever is the orderd of q2modn, then for t prime to d,
t ∈ E′

n,q . �
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We leave as an exercise to describe the exceptional set for any composition ofv

Dickson and Redei functions overFq .

Remark 5.6 (Varying a inDn,a(x) and Redei functions). Lidl et al. [LMT93, Chapter
6], in their version of the proof of the Schur conjecture, make one distinction from that
of Fried [Fr70]. By considering the possibilitya is 0, they includexn as a specialized
Dickson polynomial, rather than treating them as two separate cases.
The functionxn (n odd) maps 0,∞ to 0,∞. Considerl′u : x �→ x−u

x+u , mapping±u
to 0,∞. A similar, but easier, game comes from

twist xn to Ra = (l′u)−1 ◦
(
x − u
x + u

)n

for which±u are the only ramified points,u2 = a andRa(±u) = ±u. We have pinned
down Ra precisely by adding the condition∞ �→ 1. This, modeled on that for the
Dickson polynomials, matches[LMT93, §5].

5.2.3. Dickson subtower monodromy
Order exceptional covers in a tower as in §4.1.1. One exceptional cover sits above

them all in any finitely generated subtower (Proposition 4.3). We call that the limit
(cover). When all generating covers tamely ramify, the limit has a branch cycle de-
scription, represented by an absolute Nielsen class. Using this succinctly describes the
geometric monodromy of the limit cover.
We use some subtowers ofTP1

z ,Fq
to show how this works. Consider the subtower

generated by PGL2(Fq) equivalence classes ofv compositions of cyclic and Dickson
polynomials overFq running over allv. Denote this by ScFq . We now use Proposition
2.4 to consider branch cycles for some subtower limit covers.
For a ∈ F∗q , (5.2) gives a branch cycle description forTn,a . Label letters on which

these act as{1a, . . . , na}, and elements corresponding to (5.2) acting on these by
(ga,1, ga,2). To label the limit cover branch cycles, use an orderinga1, . . . , aq−1 of F∗q .
For eachaj , let ±uj be its square roots, these being branch points forTaj ,n.
We induct on 1�k�q − 1. Assume we have listed branch cycles

(ga1,1, ga1,2, . . . , gak−1,1, gak−1,2, ga1,...,ak−1,∞)(5.4)

for the limit cover generated byTn,a1, . . . , Tn,ak−1. In the inductive fiber product con-
struction, permutations act onVa1,...,ak−1 = {(ja1, . . . , jak−1) | 1�jau�n}k−1

u=1. Also, the
following hold:

(5.5a) gaj ,1, gaj ,2 are respective branch cycles corresponding to±uj ;
(5.5b) entries in (5.4) generate a transitive group and their product is 1; and
(5.5c) ga1,...,ak−1,∞ is a product of disjointn-cycles.

Proposition 5.7. For a given n, with q odd and(n, q2 − 1) = 1, denote the subtower
of Dn,q generated by{Tn,a | a ∈ F∗q} (resp., {Tn,a + b | a ∈ F∗q, b ∈ Fq}), by D′

n,q
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(resp., D′′
n,q ). Then, the limit cover forD′

n,q has degreeq
n overP1

z , and it has unique
branch cycles in the absolute Nielsen class formed inductively from the conditions(5.5).
Also, D′

n,q = D′′
n,q .

Proof. Denote branch cycles forTn,ak by gak,1, gak,2, acting on {1ak , . . . , nak } as in
(5.2). Our goal is to form

(g∗a1,1, g
∗
a1,2, . . . , g

∗
ak,1, g

∗
ak,2, g

∗
a1,...,ak,∞)

with ∗ indicating the actions extend corresponding elements to the setVa1,...,ak , yet
satisfying the corresponding conditions to (5.5). We show now how this forces a unique
element up to absolute equivalence in the resulting Nielsen class. We’ll usen = 3 (even
though this never gives an exceptional cover) andk = 2 to help sort the notation as a
subexample. First we construct one element as follows.
In the induction,g∗ s act on pairs(u, v): u (resp.,v) from the permuted set of

〈gai ,j ,1� i�k−1,1�j�2〉 (resp.,〈gak,j ,1�j�2〉).

This is the tensor notation in §2.1.3. Form the elementsg∗aj ,t , t ∈ {1,2}, j�k − 1, by

replacing any cycle(u u′) in gaj ,t by
∏n
iak=1 ((u, iak ) (u

′, (iak )�)) with � ∈ Sn.
With � = 1, list as rows orbits of the productg∗a1,1 · g∗a1,2 · · · · · g∗ak−1,1

· g∗ak−1,2
. Call

this row displayRn,k−1. Here isR3,1, n = 3, k − 1= 1:

(1,1)→ (2,1)→ (3,1),
(1,2)→ (2,2)→ (3,2),
(1,3)→ (2,3)→ (3,3).

Now consider the corresponding extensiong∗ak,1, g
∗
ak,2

of gak,1, gak,2 by replacing any
disjoint cycle (i i′) for one of gak,1, gak,2 with

∏
u∈Va1,...,ak−1

((u, i) ((u)�, i′)) with � a

permutation onVa1,...,ak−1.
Whatever is our choice in this last case we can read off the effect of the product of

the g∗ entries by considering the orbits of this in the tableRn,k−1. We know the group
generated by theg∗ s is to be transitive, and all these orbits will proceed from left to
right and be of lengthn. Conclude, that up to a reordering of the rows and a cycling
of each row (it was up to us where we started the row), the orbit path inRn,k−1 takes
the shape of a stair case to the right. Example,n = 3, k − 1 = 1, the product of the
g∗ entries starting at(1,1) would give (1,1) → (2,2) → (3,3) as an orbit. So, the
conditions of (5.5) determineg∗ak,1, g

∗
ak,2

.
To conclude the proof we have only to show the coversTn,a + b are quotients of

the limit cover forD′
n,q . The branch points ofTn,a + b are at±u+ b in the previous

notation. We show the coverTn,a + b is a quotient of the exceptional cover fiber
product ofT±(u+b) andT±(b−u), the degreen Dickson polynomials with branch points
at ±(u+ b) and±(b − u), respectively.
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This fiber product has branch points at±(u + b), ±(b − u), and∞, and branch
cycles (g1,1, g1,2, g2,1, g2,2, g∞) = g with branch pointsu+ b, b− u corresponding to
g1,2, g2,1 at the 2nd and 3rd positions. LetG be the geometric monodromy of this fiber
product, with T ′ and T ′′ the permutation representations fromT±(u+b) and T±(b−u).
All we need is some representative in the absolute equivalence class of this branch
cycle with the shape(g′1, g1,1, g1,2, g′4, g∞) for someg′1, g′4. Then,T ′ applied to this
gives branch cycles forTn,a + b (the same forT±(u+b) but with branch points at the
appropriate places). Apply the braidq2q1 ∈ H5 (as in (A.2)) to g:

(g)q2q1 = (g1,1, g′2, g1,2, g2,2, g∞) q1 = (g′1, g1,1, g1,2, g2,2, g∞)

with g′2 = g1,2g2,1g−1
1,2 and g′1 = g1,1g′2g−1

1,1. We already know this represents the same
element in the Nielsen class asg. �

Problem 5.8. Use Proposition5.7 to describe the limit branch cycles for ScFq .

6. Introduction to the subtowers in [Fr05b]

Serre’s open image theorem (OIT) [Ser68] forces a divide between two types, GL2
and CM, of contributions to the genus 0 covers in theTP1

z ,Fq
tower. We concentrate on

the mysterious GL2 part, limiting to topics around one serious question: decomposition
of rational functions and their relation to exceptional covers in §6.2.
Any one elliptic curveE without complex multiplication produces a collection of

{fp,E}p>cE for some constantcE with these properties. Each

fp,E mod5 : P1
x → P1

y is indecomposable and exceptional,

but it decomposes over̄F5. §6.3 then considers using automorphic functions to give a
useful description of primes5 for which a givenfp,E has these properties. Finally, §6.4
sets straight a precise development about wildly ramified exceptional covers that several
sources have garbled. Using this to describe the wildly ramified part of exceptional
subtowers generated by genus 0 covers continues in [Fr05b].

6.1. Tame exceptional covers from modular curves

Fried [Fr05c, §6.2] will continue in [Fr05b]. The former is the Modular Tower setup
of Serre’s OIT. This framework shows there are other Modular Towers whose levels
are j-line covers (though not modular curves) having cases akin to GL2 and CM.

6.1.1. Setup for indecomposability applications
The affine lineP1

j \ {∞} = U∞ identifies with the quotientS4\(P1
z)

4 \ �/PGL2(C)
(§1.3). Forp > 1 an odd prime, andK a number field, infinitely manyK points on
U∞ produce rational functions of degreep2 with these properties.
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(6.1a) They are indecomposable overK, yet decompose over̄K (§6.2).
(6.1b) Modulo almost all primes they give tamely ramified rational functions with

property (6.1a) over finite fields.
(6.1c) They give exceptional covers (as in §4.4.1) with nonsolvable extension of con-

stants group.

Most from the remaining genus 0, tame exceptional covers are related to (6.1) [Fr78,
§2]. Guralnick et al. [GMS03] concentrated more on the CM type, because there are
hard problems with being explicit in the GL2 case. §6.3 gives specific examples of
those problems. Ribet’s words [R90] from 14 years ago on [Ser68] still apply:

Since the publication of Serre’s book in 1968, there have been numerous advances
in the theory of5-adic representations [of absolute Galois groups] attached to
abelian varieties [He lists Faltings’ proof of the semisimplicity of the represen-
tations; and ideas suggested by Zarhin].. . . Despite these recent developments,
the 1968 book of Serre is hardly outmoded.. . . it’s the only book on the subject
[. . . and] it can be viewed as a toolbox [of] clear and concise explanations of
fundamental topics [he lists some].

6.1.2. Sequences of nonempty Nielsen classes
We briefly remind how Fried[Fr05c, §6] formulates additional examples that have

OIT properties using a comparison with OIT. You can skip this without harm for the
indecomposability applications of §6.2. Consider the following objects:F2 = 〈x1, x2〉,
the free group on two generators;J2 = Z/2 = {±1} acting asxi �→ x−1

i , i = 1,2, on
F2; andP2, all primes different from 2. Denote thenontrivial finite p group quotients

of F2 on which J2 acts, withp /∈ P2, by QF2(P2) def= QF2(P2, J2).
Use the notationC24 = C for four repetitions of the nontrivial conjugacy class ofJ2.

For anyU ∈ QF2(P2, J2), C lifts uniquely to conjugacy classes of order 2 inU ×sJ2.
This defines a collection of Nielsen classes

N = {Ni(G,C24)
in}{G=U×sJ2|U∈QF2(P2,J2)}.

Suppose for somep, Gp,I = {Ui}i∈I is a projective subsequence of (distinct)p
groups fromQF2(P2). Form a limit groupGp,I = lim∞←i Ui ×s J2. Assume further,
all Nielsen classes Ni(Ui ×s J2,C) are nonempty. Then,{Ni(Ui ×s J2,C)in}i∈I is a
project system with a nonempty limit Ni(Gp,I ,C).

6.1.3. Achievable Nielsen classes from modular curves
Let z = {z1, . . . , z4} be any four distinct points ofP1

z , without concern to order.
As in §A.1, choose a set of (four) classical generators for the fundamental group of
P1
z \ z= Uz.
This group identifies with the free group on four generators� = (	1, . . . ,	4), modulo

the product-one relation	1	2	3	4 = 1. Denote its completion with respect to all normal
subgroups for which the kernel toJ2 is 2′ (has order prime to 2) byF̂�. Let Zp
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(resp.,F̂2,p) be the similar completion ofZ (resp.,F2) by all normal subgroups with
p (�= 2) group quotient. The following is[Fr05d, Proposition 6.3].

Proposition 6.1. Let D̂� be the quotient ofF̂� by the relations

	2
i = 1, i = 1,2,3,4 (so 	1	2 = 	4	3).

Then,
∏
p �=2 Z2

p ×s J2 ≡ D̂�. Also, Z2
p ×s J2 is the uniqueC24 p-Nielsen class limit.

As an if and only if statement, it has two parts (§6.1.4): a Nielsen class from an
abelianU ∈ QF2(P2) (resp., nonabelianU) is nonempty (resp., empty).

Remark 6.2 (For those more into Nielsen classes). The major point of Fried[Fr05d]
starts by contrasting thisJ2 case with an action ofJ3 = Z/3 on F2 (illustrating a
general situation). The exact analog there has all Nielsen classes nonempty [Fr05d,
Proposition 6.5]. It also conjectures—special case of a general conjecture— that each
H4 ((A.2), the groupHr with r = 4) orbit on those limit Nielsen classes contains
a Harbater–Mumford representative: element of the form(g1, g

−1
1 , g2, g

−1
2 ). We know

theH4 orbits precisely for theJ2 case (§6.1.4).

6.1.4. Nature of the nonempty Nielsen classes in Proposition 6.1
Denote an order 2 element inGpk+1 = (Z/pk+1)2 ×s {±1} by (−1; v) with v ∈

(Z/pk+1)2. An explicit v has the form(a, b), a, b ∈ Z/pk+1. The multiplication
(−1; v1)(−1; v2) yields v1 − v2 as one would expect from formally taking the ma-
trix product

(−1 v1
0 1

)(−1 v2
0 1

)
as in (1.5).

We have an explicit description of the Nielsen classes Ni(Gpk+1,C24). Elements are
4-tuples((−1; v1), . . . , (−1; v4)) satisfying two conditions from §A.1

(6.2a) Product-one: v1− v2+ v3− v4; and
(6.2b) Generation: 〈vi − vj ,1� i < j�4〉 = (Z/pk+1)2.

By conjugation inGpk+1 we may assumev1 = 0. Now takev2 = (1,0), v3 = (0,1)
and solve forv4 from (6.2a).
Proposition6.3 explains subtleties on the inner and absolute Nielsen classes in this

case. ForV = Vpk+1 = (Z/pk+1)2, V ×sGL2(Z/pk+1) is the normalizer ofGpk+1

in SV (notation of §4.1.1). Let Ni(G,C) be a Nielsen class (withC a rational union
of conjugacy classes) and assume there is a permutation representationT : G → Sn.
There is always a natural map� : H(G,C)in → H(G,C)abs (or �rd) on the reduced
spaces (§A.2). Restricted to anyQ component ofH(G,C)in, � is Galois with group a
subgroup ofNSn(G)/G [FV91, Theorem 1]. For the Nielsen class from(Gpk+1,C24),
etc. denote this map�pk+1.
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Proposition 6.3. The following properties hold for these absolute classes:

(6.3a) |Ni(Gpk+1,C24)
abs| = 1, soH(Gpk+1,C24)

abs,rd identifies withU∞.
(6.3b) Rational functions of degree(pk+1)2 representNi(Gpk+1,C24)

abs covers.

The following properties hold for these inner classes:

(6.4a) H4 haspk+1− pk orbits onNi(Gpk+1,C24)
in.

(6.4b) �pk+1 (or �rd
pk+1) is Galois with groupGL2(Z/pk+1)/{±1}.

(6.4c) Fix j ′ ∈ U∞(Q) without complex multiplication. Then, excluding a finite setPj ′
of primes p, the fiber of�rd

pk+1 over j ′ is irreducible.

Comments on using the proposition: Use the symbol(v1, . . . , v4) to denote the
Nielsen element((−1; v1), . . . , (−1; v4)). Conjugating by
 ∈ GL2(Z/pk+1) on this
Nielsen element maps it to(
(v1), . . . ,
(v4)). Conjugating by(1, v) translates by
(v, v, v, v). So, now we may takev1 = 0. That there is one absolute class follows from
transitive action of GL2(Z/pk+1) on pairs(v2, v3), whose entries are now forced to be
independent if they are to represent an element of the Nielsen class.
On the other hand, consider the action of theq s in H4. Example: q2 applied to the

symbol (v1, . . . , v4) gives (v1,2v2 − v3, v2, v4). So these actions are in SL2(Z/p
k+1).

Any cover in the Nielsen class has odd degree(pk+1)2 and genus 0 as computed by
Riemann–Hurwitz. Takej ′ ∈ Q to be thej-invariant of the branch point set correspond-
ing to the cover. Conclude, there is a rational functionfj ′ : P1

w → P1
z representing

this odd degree genus 0 cover.
According to Serre[Ser68, IV-20] we can say explicit things about the fibers of

H(Gpk+1,C24)
in → H(Gpk+1,C24)

abs over p ∈ H(Gp,C24)
abs depending on thej-value

of the 4 branch points for the cover�p : Xp → P1
z corresponding top. §6.2.2 and §6.2

show our special interest in such covers overQ with the full arithmetic monodromy
groupVpk+1 ×sGL2(Z/pk+1).
We now note what is the cover�p. Let E be any elliptic curve in Weierstrass normal

form, and[pk+1] : E→ E multiplication bypk+1. Mod out by the action of{±1} on
both sides of this isogeny to get

E/{±1} = P1
w

�
pk+1−→ E/{±1} = P1

z,

a degreep2(k+1) rational function. ComposingE → E/{±1} and multiplication by
p2(k+1) gives the Galois closure of�pk+1. This is a geometric proof why Ni((Z/pk+1)2

×s J2,C24) is nonempty. IfE has definition fieldK, so does�pk+1. We may, however,
expect the Galois closure field of�pk+1 to have an interesting set of constants coming
from the fields of definition ofpk+1 division points onE.
The geometric group is(Z/pk+1)2 ×s {±1} acting as permutations on(Z/pk+1)2.

This group is not primitive because{±1} does not act irreducibly. On each side of the

degreep2 isogenyE
[p]−→E, mod out by{±1}. If E has no complex multiplication but
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a number field as definition field, then for almost all primesp,

(6.5) the arithmetic monodromy group is(Z/p)2 ×sGL2(Z/p): and for pk+1 it is
(Z/pk+1)2×sGL2(Z/pk+1).

Remark 6.4 (More on explicitness). The proof of [Ser68, IV-20] concludes the proof
of (6.5) for nonintegral (so not complex multiplication)j-invariant. Serre’s initial proof
of (6.4c) for almost all primes for integral (not complex multiplication)j-invariant relied
on unpublished results of Tate. Though Falting’s theorem now replaces that, it is still
not explicit. So even today, being explicit on the exceptional primes in Proposition 6.3
still requires nonintegralj-invariant. (Note, however, comments of §6.3.2 from Serre’s
using modularity of an elliptic curve.)

6.2. Indecomposability changes from K tōK

Section 6.2.1 notes that finding the minimal field over which one may decompose
rational functions, or any cover� : X → Y , is a problem in identifying a specific
subfieldK�(ind) of K̂� (§2.2). For tamely ramified covers, Proposition 6.6 shows the
OIT is the main producer of rational functions� = f : P1

x → P1
z over a number field

(or over a finite field), whereK�(ind) will nontrivially extend the constant field.

6.2.1. The indecomposability field
Two ingredients go into a test for indecomposability of any cover� : X → Y .

These are a use of fiber products and a test for reducibility in the following way.
CheckX×Y X minus the diagonal for irreducible componentsZ which have the form
X′ ×Y X′. If there are none, then� is indecomposable. Otherwise,� factors through
X′ → Y .
Fried and MacRae [FM69b, Theorems 2.3, 4.2] used the polynomial cover case of

this when the degree was prime top. As a result for that case, there is a maximal
proper variables separated factor. Alonso et al. [AGR] exploited [FM69b] similarly for
rational functions. Denote the minimal Galois extension ofK over which� decomposes
into absolutely indecomposable covers byK�(ind): The indecomposability field of�.
Conclude the following.

Proposition 6.5. For any cover� : X→ Y over a field K, K�(ind) ⊂ K̂�(2).

6.2.2. Ogg’s example
Serre [Ser68, IV-21-22] outlines computing�3+,p(GQ), the image ofGQ on the

p-division pointsE[p] an elliptic curveE for a case ofE where we can listp s that
are exceptions to (6.5).
The curve 3+ of Ogg [O67] has affine model{(x, y) | y2 + x3 + x2 + x = 0} with

j invariant 211 · 3−1, discriminant−24 · 3 and conductor 24. It also has an isogeny
of degree 2 to the modular curveX0(24). The nontrivial degree 2 isogeny shows the
image�3+,2(GQ) of GQ is not GL2(Z/2), and the image has order 2, corresponding
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to the field extensionQ(
√−3). For, however,p �= 2, he shows the following.

• Determinant on�3+,p(GQ) has imageF∗p (because the base isQ).
• �3+,p(GQ) has a transvection (use Tate’s form of 3+ for p = 3: 31/p ∈ E revealing

the tame inertia group generator acts as a transvection).

If we knowGQ acts irreducibly forp, then[Ser68, IV-20, Lemma 2] says the complete
action is through GL2(Z/p). All we need is to assure, from the irreducible action, the

transvection
(1 1
0 1

)
conjugates to

(1 0
1 1

)
, and these two generate SL2(Z/p).

Serre uses Ogg’s list to see that forp �= 2 the action is irreducible, for otherwise
there would be a degreep isogeny 3+ → E′ overQ, andE′ would also have conductor
24. Ogg listed all the curves with conductor 24, and they are all isogenous to 3+ by
an isogeny of degree 2u, with u = 0, . . . ,3. Thus, 3+ would have an isogeny not in
Z, contrary to nonintegralj-invariant.

6.2.3. Exceptional covers givingK�(ind)�=K
Proposition 6.6 gives exceptional covers ofp2 degree over any number field from

any elliptic curveE without complex multiplication, excluding a finite set of primesp
(dependent onE). Still, using Ogg’s example shows the best meaning of being explicit
for we may include any primep > 3. Here we use5 for a prime of reduction to
get indecomposable rational functions, and exceptional covers, mod5 that decompose
in F̄5.

ConsiderE = 3+ as in §6.2.2.

Proposition 6.6. For this E, fp : P1
x → P1

y (p > 3) decomposes into two degree p
rational functions over some extensionKp of Q with group GL2(Z/p)/{±1}. It is,
however, indecomposable overQ.
Suppose5 �= 2,3, p, and A5 ∈ GL2(Z/p) represents the conjugacy class of the

Frobenius inKp. Then, reduction offpmod5, gives an exceptional indecomposable
rational function precisely when the group〈A5〉 acts irreducibly on(Z/p)2 = Vp. This
holds for infinitely many primes5.

Proof. Section6.2.2 showed forE = 3+ the arithmetic (resp., geometric) monodromy
group of the coverfp is (Z/p)2×sGL2(Z/p) (resp.,(Z/p)2×s {±1}). Now apply the
nonregular analog of the Chebotarev density theorem [FrJ86, Corollary 5.11]. Modulo
a prime5 of good reduction, the geometric monodromy offpmod5 does not change,
and it and someg = (A5, v) ∈ (Z/p)2 ×sGL2(Z/p) (notation of §1.3.1) generate the
arithmetic monodromyHp where A5 generates a decomposition group for5 in the
field Kp/Q. That is, the image ofA5 in GL2(Z/p)/{±1} is in the conjugacy class of
the Frobenius for the prime5. Also, fpmod5 is indecomposable if and only ifHp is
primitive. From §1.3.1, this holds if and only ifA5 acts irreducibly on(Z/p)2.
The same Chebotarev analog also says any element of GL2/{±1} is achieved as

(the image of)A5 for infinitely many 5. Acting irreducibly is the same as the (degree
2) characteristic polynomial ofA5 being irreducible overF5. The elementary divi-
sor theorem says every irreducible degree 2 polynomial is represented by a matrix
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acting irreducibly. From this there are infinitely many5 with fpmod5 indecomposable
over F5 but not over its algebraic closure. We have only to relate exceptionality and
indecomposability mod5.
SupposeA5 ∈ GL2(Z/p) acts irreducibly. LetX = P1

x andY = P1
y . Then,fpmod5

decomposes into two degreep rational functions overF52. Any componentU of X2
Y \�

is birational to the algebraic set defined by a relation betweenx1 and xj with x1 and
xj two distinct points ofX over a generic pointy ∈ Y . With no loss assumeA5 fixes
x1. So it movesxj to another point, a point different from the conjugate ofxj from
applying the nontrivial element of the geometric monodromy group corresponding to−1
(or elseA leaves a subspace invariant).Conclude: The Frobenius moves the absolutely
irreducible component from the relation betweenx1 and x2. So, that component is not
defined overF5. That means indecomposability is equivalent to exceptionality.�

In Proposition6.6, Kp contains allpth roots of 1, but it is far from abelian. So
those5 above, running over allp, produce tremendous numbers of exceptional rational
functions. Asking Question 4.14 on the order of the inverse of�t for each is valid.

6.3. Explicit primes of exceptionality

We give a model for [Fr05b] for our best understanding of how we could explicitly
describe the primes5 that give exceptionality forfpmod5 in Proposition 6.6. Our
two primesp and 5 defines classical notation. So, in figuring where §6.3.1 is going,
substitute(p2− 1)/2 for n and 5 for p.

6.3.1. A tough question for the easy polynomialsxn − x − 1
For an irreducible quadratic polynomialf (x) ∈ Z[x], quadratic reciprocityallows

explicitly writing down the collection of primes for whichf has no zeros as a union
of arithmetic progressions (and a finite set of explicit primes).
Serre [Se03] considers this set of polynomials{xn − x − 1}∞n=1, well-known to be

irreducible, with groupSn = G(Ln/Q). The task he sets is to write, for eachn, an
automorphic form (on the upper half-plane) whoseq expansion is

∑∞
m=0 amq

m and
from which we can decide the number of zerosNp,n of xn − x − 1 mod p from ap.
The last case he gives is whenn = 4. He says [Cr97] gives a newformF(q) of

weight 1 from which he extracts the formula

(ap)
2 = ( p

283

)+Np,4− 1 for p �= 283.(6.6)

It so happens there is a cover� : GL2(F3) → S4 with kernel Z/2 and a natural
embedding� : GL2(F3)→ GL2(C).
A theorem of Langlands and Tunnell says, if a Galois extension ofQ has group

GL2(F3), then you can identify the Mellin transform of theL-series for� with a weight
1 automorphic function. Tate constructed a Galois extensionL̃4 of Q unramified overL4
realizing�. Since Serre already had experience with thisL-series from Tate’s extension,
he knew how to express it using standard automorphic functions. The character formula
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� ⊗ � = � ⊕ (
 − 1) is done in standard books on representation theory to write
all characters of a small general linear group. Here
 is the degree 4 permutation
representation character forS4. So,
(g̃) is Np,4 if the image ofg̃ is the Frobenius for
p in L4, andG is the character from quadratic reciprocity on the degree 2 extension
of Q in L4 (sign character ofS4). Even with this, however, Serre has no closed
formula for Np,4; in his expression in standard automorphic forms, they appear to
powers.

6.3.2. Automorphic connections to exceptionality primes
To me the statement[Se03, p. 435] is still cryptic (though I am aware there are few

nonsolvable extensions ofQ expressed through the Langlands program by cusp forms):
“No explicit connection with modular forms. . . is known [for n�5], although some
must exist because of the Langland’s program.” Still, compatible with another Serre
use of automorphic forms in this paper, I accept it as a worthy goal and formulate an
analog of finding such a form related to Ogg’s example. LetKp/Q be the constant
extension of the Galois closure of the coverfp.

Problem 6.7. For each primep�5, express the primes5 where the Frobenius in
G(Kp/Q) = GL2(Z/p)/{±1} acts transitively on(Z/p)2\0 mod± I as a function
of the 5th coefficient a5 of the q-expansion of an automorphic functionFp(q) =∑∞
n=0 amq

m. This is equivalent to expressing the primes5 in Proposition6.6 with
fpmod5 exceptional.

Fried [Fr05b] uses results from the Langlands Program for SL2(Z/5)/{±1} = A5
to look at the casep = 5. Of course, one may consider this problem for any elliptic
curve overQ without complex multiplication.

Now Ogg’s curve has been long known to be modular. So there is an explicit ex-
pression for its Hasse–Weil zeta function as a weight two cusp form. For any elliptic
curveE over Q, consequence of Wiles’ proof of the Shimura–Taniyama–Weil conjec-
ture, the same holds. Serre [Se81, Theorem 22] uses that cusp form to show, under the
generalized Riemann hypothesis, that ifE has no complex multiplication then there is
a constantc independent ofE for which the Galois group generated by thep-division
points onE is isomorphic to GL2(Z/p) for all p > cDE whereDE is an expression
just of the product of the primes at whichE has bad reduction.
If FE(q) = ∑∞

m=0 bmq
m is this automorphic function, then for the primes of good

reduction ofE, bp = 1+ p − Np(E) whereNp(E) is the number ofFp points on
Emodp. Use similar notation for another elliptic curveE′. Here are results of Serre
[Se81] that give the result above.

(6.7a) For any specific integerh there is an asymptotic bound on the number of primes
p < x for which bp = h.

(6.7b) For somep less than a specific constant of the type above,ap �= a′p.
It is with (6.7a) whenh = 0 (supersingular primes forE) that we conclude, though

it is in the wrong direction, for our next question. So, we note[LT] conjectures the
number of supersingular primes forE without complex multiplication is asymptotic
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to cEx1/2/ log(x), cE > 0. Our final question is on the median value curve topic of
§8.2.2.

Problem 6.8. Let E be Ogg’s elliptic curve 3+. Is there a presentation ofEmodp as
an exceptional cover for all primesp for which E is supersingular.

While we can ask this kind of question for all elliptic curves, this explicit curve and
its isogenies to other elliptic curves have been well-studied. The result we are after is
to give one elliptic curve whose reductions have presentations as exceptional covers of
P1
y for infinitely many p.

6.4. Wildly ramified subtowers

This subsection is on wildly ramified exceptional covers. We assume understood that
all (indecomposable) polynomial exceptional coversP : P1

x → P1
z over Fq of degree

prime top come from the proof of Schur’s conjecture. This is Proposition1.3, slightly
augmented by Fried et al. [FGS93, §5] to handle the characteristic 2 case, where there
is some wild ramification.
Our comments aim at describing the limit group of the subtowerWPP1

y ,Fq
(of TP1

y ,Fq
,

q = pu) that indecomposable polynomials, wildly ramified over∞, generate. Call the
subtower generated by those ofp-power degree thepure wildly ramified subtower.
Denote it byWPpu

P1
y ,Fq

. The Main Theorem of Fried et al. [FGS93] says this.

(6.8a) If p �= 2 or 3, thenWPpu
P1
y ,Fq

= WPP1
y ,Fq

, and generating polynomials have

affine geometric monodromy(Fp)t ×sH with H�GLt (Z/p) (§1.3).

(6.8b) If p = 2 and 3, add toWPpu
P1
y ,Fq

polynomial generators with almost simple

monodromy of core PSL2((Z/p)a) (a�3 odd) to getWPpu
P1
y ,Fq

.

6.4.1. What can replace Riemann’s Existence Theorem
A general use of RET related ideas appears in[Fr94,GS02] under the following

rubric. Given a pair of groups(G, Ĝ) that could possibly be the geometric–arithmetic
monodromy group pair for an exceptional cover, each shows that covers do occur with
that pair. Fried [Fr02, §3.2.2] explains the different territories covered by these results.
We briefly remind of these. The former gives tame covers ofP1

y over Fq where p
is sufficiently (though computably) large. The latter gives wildly covers of curves of
unknown genus overFq with p fixed, but q unknowably large. What Fried [Fr05b]
continues is the use [FrM02] to get a result like Guralnick and Stevenson [GS02], but
with the virtues of Fried [Fr94]. That means, effective, even for covers ofP1

y over Fq
with p fixed, andq bounded usefully.
The Guralnick–Stevens paper uses [Kz88, Main Theorem]. We comment on that and

a stronger result from [Fr74a, pp. 231–234], which was used almost exactly for their
purpose. (There are more details and embellishments in [FrM02].) Katz [Kz88, Main
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Theorem] says separable extensions ofF̄p((
1
z
)) correspond one–one with geometric

Galois covers� : X→ P1
z with these properties.

• They totally ramify over∞ with groupP ×sH .
• The groupH is cyclic andp′, andP is a p-group.
• � tamely ramifies over 0 and does not ramify outside{0,∞}.
RET works by considering the deformation of the branch points of a tame cover

of a curve C. In the explicit case whenC = P1
y , RET gives great command of

how these covers vary as you deform their (r) branch points keeping them distinct.
That control comes from representations of the Hurwitz monodromy group (as in
(A.2)), identified with the fundamental group of the spaceUr of r unordered branch
points.
The spaceUr is a target for any family ofr branch point covers. By recognizing

the hidden assumptions in this—under the labelconfiguration space—[FrM02] forms
a configuration space that replacesr by a collection of data calledramification data.
Note that exceptional covers arefar from Galois.
This ramification data, and the Newton Polygon attached to it, are invariants de-

fined for any cover, not necessarily Galois. The significance of this Galois closure
observation is serious when considering wildly ramified covers. That is because the
Galois closure process used for families of covers in [FV91], by which we com-
pare arithmetic and geometric monodromy, is much subtler for wildly ramified covers
[FrM02, §6.6]. The use of Harbater patching in [GS02] sets them up for dealing
with, one wildly ramified branch point, with the rest tamely ramified. It allows nice
comparison with general use of Fried and Mezard [FrM02] applied to exceptional
polynomial covers, with the only case left, where they have affine monodromy groups
(see below).

6.4.2. A surprising source of dissension!
If you were a co-author of a book, you likely would expect your co-author to ask

your opinion on matters in which you are demonstrably expert. You would not expect
him to publish, in a new edition, versions ofyour results as if they belonged to others,
versions many years later than yours. You would not expect to have no say about all
this, would you?
Related to the topics of this paper, Fried and Jarden [FrJ04, Lemma 21.8.11] quotes

[Tur95, Proposition 2.2] for the proof of the statement Lemma 1.2, quoted from two of
my first four papers, essentially from the same time as [Fr70]. The proof of Turnwald
[Tur95, Proposition 2.2] is identical to mine in [Fr69, Proposition 3, p. 101]. The whole
context of using the lemma for primitivity is mine, used whenever related topics come
up. Further, my proof of Schur’s conjecture was in about four pages.
If contention caused this, then its bone is RET. Having developed tools enhancing

RET that work in generality, I went home one night as a recent Ph.D. (at the Institute
for Advanced Study in 1968) and thought I would apply it to a list of problems that
included Davenport’s. First, however, there was Schur’s Conjecture. I saw the tools
were in place so it all came down to group theoretic statements. I found in the library
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Burnside’s and Schur’s group theorems soon after. With Schur’s conjecture out of the
way, it was possible to attack the serious business in Davenport’s problem, and the
study of the exceptional examples there.
Twenty-five years later there is in print another proof of Schur’s conjecture, differing

at one point. From Riemann–Hurwitz alone, exactly as done in all these sources, you
get down to wanting to know this. Is a genus 0 dihedral cover totally ramified over
∞, and ramified over two finite branch points, represented up to linear equivalence
by a Chebychev polynomial? (As comments on Proposition5.1 explains, sensitivity to
Dickson polynomials is illusory generality.)
The uniqueness up to affine equivalence of a polynomial cover withDp as mon-

odromy group comes immediately from RET and the uniqueness of the branch cycle
description. Instead of that Turnwald [Tur95] gives a “direct proof.” Of course that is
easy! The Galois closure of the cover is a sequence of two genus 0 cyclic covers. RET
in that case follows from using the first semester of graduate complex variablesbranch
of log [Fr06, Chapter 1]. Still, essentially my first paper proved a (then) 50-year-old
unsolved problem overnight because I powerfully used RET to turn the whole thing
into combinatorics and deft use of Lemma 1.2. Then, I went on to Davenport’s much
tougher problem [Fr73].
Here is [FrJ04, p. 493] dismissing RET: “Fried [Fr70] uses the theory of Riemann

surfaces to prove Schur’s conjecture.” Consider this in the light of what happens with
nonsolvable monodromy groups: the only real tool is insights from RET.

Problem 6.9. Explain why a co-author who often asks for your mathematical help
would do this. Then, try, why he would want to dismiss one of the greatest geniuses
of mathematical history (Riemann)? Then, for fun, take up my challenge in §8.1.2 of
doing Davenport’s problem as in §C without RET.

Yet, there is more. Fried et al. [FGS93] take on wildly ramified exceptional cov-
ers, the first to do so coherently. Step back! If exceptional covers have any signif-
icance, then you want their nature. That means their arithmetic monodromy groups,
period!
Again primitivity is the key, so you need only look at the primitive groups. The

result is this. Fried et al. [FGS93] listed all arithmetic monodromy groups of primitive
polynomials over a finite field with one caveat. A mystery was this affine monodromy
possibility. There might be unknown exceptional polynomials overFq (q = pu) with
geometric monodromy group(Z/p)n×sH , H acting irreducibly on(Z/p)n (as in (6.8)).
The polynomial would then have degreepn. There are so many primitive affine groups,
so that is what we considered the major unsolved remainder about exceptional poly-
nomials. Yet, [FGS93, Theorem 8.1] almost trivialized the nearly 100-year-old Dickson
conjecture ((6.9c); no serious group theory needed), including it in the precise descrip-
tion of the rankn = 1 case of exceptional polynomials.
Jarden sent our paper—as an editor of the Israel Journal— to D. Wan who, appar-

ently in this refereeing period, formulated theCarlitz–Wan conjecture. That says the
exceptional polynomial degrees are prime toq − 1. So the affine case already passes
this conjecture. Instead of the above, Fried and Jarden [FrJ04, p. 487] says only that
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a proof is contained in[FGS93]. It says nothing of what Fried et al. [FGS93] proves,
as given in the previous two sentences. I quote

A proof of the Carlitz–Wan Conjecture forp > 3 that uses the classification of
finite simple groups appears in[FGS93]. It gives information about the possible
decomposition factors [of the monodromy groups].

Both thep > 3 and the lazy reference to decomposition groups is ridiculous. We
knew exactly what the monodromy groups (of the non-p-power degrees) were for
p = 2 and 3, and for all others they were affine groups as listed above. More so, Fried
et al. [FGS93] have nothing to say on the Carlitz–Wan conjecture because the paper
was already in print before we heard of it.
Most importantly, Fried and Jarden [FrJ04] takes three pages on the Carlitz–Wan

conjecture proof—exposition from [CFr95]—and what does that give? That conjecture
is on the nature of tamely ramified extensions over the completion at infinity. The
Carlitz–Wan conjecture is a contrivance to steal attention from a real theorem. That
contrivance worked and is supported by Fried and Jarden [FrJ04]. Compare it with
[FGS93] about the topic of interest, exceptional polynomials as explained in §6.4.

Remark 6.10. I never saw a copy of Fried and Jarden[FrJ04] until it was in print.
While there seem to be laws preventing that, you have go to court: international in
this case!

Remark 6.11 (Producing the monodromy groups). Note how careful attention to mon-
odromy groups led others to projects (listed in (6.9b) and (6.9c)) investigating actual
exceptional polynomials. This exemplifies being able tograb a group: having a work-
able use of the classification (as in §1.2.2). Yet, Lenstra never once mentioned [FGS93]
in his talk at MSRI in Fall of 1999 (see Acknowledgments).
Using [FGS93], the papers [GZ05,GRZ05] classify all indecomposable exceptional

polynomials with PSL2 monodromy (as in (6.8b) and (6.9c)). Also, [GZ05] has all the
indecomposable polynomials, excluding those in (6.8) with affine monodromy group
of prime-power degree, that become decomposable over some extension. These are the
only examples: in characteristic 7, that of Müller in Remark 5.2 of degree 21; and in
characteristic 11, of degree 55.

6.4.3. Problems on periods of exceptional correspondences
Suppose we have an exceptional correspondence between copies ofP1

z (§3.1.3). Is
there some structure on the permutations these produce onP1

z(Fqt ) running overt in
the exceptional set?Example: If (n, qt − 1) = 1, then Euler’s Theorem (F∗qt is cyclic)

gives the inverting map forz �→ zn on P1
z(Fqt ). We pose finding analogs for more

general exceptional covers such as those in these exceptional towers.

(6.9a) The GL2 exceptional tower (§6.1); or
(6.9b) 1-point and 2-point wildly ramified exceptional towers which will contain all

subtowers generated by exceptional polynomials
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(6.9c) Especially from the Dickson conjecture proof[FGS93, Theorem 8.1] of 1896
and the Cohen–Lenstra–Matthews–Müller–Zieve PSL2 monodromy examples
(as in (6.8b); [CM94,LeZ96,Mu94]).

Suppose� : P1
x → P1

y is one of the exceptional genus 0 covers listed in (6.9). Use

the notation of Question 4.14 for the periodm�,t of � over Fqt after identifyingP1
x

andP1
y . Consider the Poincaré seriesP� = ∑

t∈E�(Fq )
m�,tw

t .

Question 6.12. Is P� a rational function?

Suppose�i : Xi → Y , i = 1,2, is any pair ofFq covers (of absolutely irreducible
curves). From (3.6), these are a DP if and only ifX1 ×Y X2 is a pr-exceptional
correspondence betweenX1 and X2 with Epr1 ∩ Epr2 infinite. Then, it is automatic
from the Galois characterization of DPs (in (3.6)) that this intersection is a union of
full Frobenius progressions.
SupposeW is a pr-exceptional correspondence between any two varietiesXi , i = 1,2.

Then, the exceptional sets for pri : W → Xi , i = 1,2 are also unions of full Frobenius
progressions.

Question 6.13.Could it happen thatEpr1∩Epr2 is empty (even if these varieties come
with covers�i : Xi → Y , i = 1,2, andW = X1×Y X2)?

7. Monodromy connection to exceptional covers

This section extends the historical discussion from §1.2. The name exceptional arose
from Weil’s Theorem on Frobenius eigenvalues applied to a family of curves. Davenport
and Lewis considered special situations for the following question. SupposePf,g =
{f (x, y)+ �g(x, y)} is the pencil overFp, andp + E� is the number of solutions in
(x, y) ∈ Fp × Fp of the equation given by the parameter�.

Question 7.1.Can you give a lower bound on an accumulated estimate for the error
term from Weil’s result running over rational values of�?

Their aim was find out for which(f, g) a nonzero constant timesp2 would be

a lower bound for
∑

� E
2
�

def= Wf,g. That is, when would the Weil error ofc�
√
p

accumulate significantly in the pencil?

7.1. The name exceptional appears in[DL63]

Davenport and Lewis [DL63] considered this hyperelliptic pencil:y2−f (x)+�, f ∈
Fp[x]. They concludedWy2−f (x),1�cf p2, with cf > 0, if f : X = P1

x → P1
z = Y is

not exceptional.
Use notation from §2.1. Soon after publication of Davenport and Lewis [DL63],

being exceptional meant (2.1a) in Proposition 2.3:X2
Y \� has no absolutely irreducible
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Fp components. For their case, letkf be the number of its absolutely irreducibleFp
components. Though confident of expressingcf in the degree off, they are not precise
about it.
Denote the Jacobi symbol ofumodp by ( u

p
). We can see:|{(x, y) | y2 = f (x)}| is∑

x∈Fp
1+ ( f (x)+�

p
) = p + E�. Thus,

(E�)
2 =

∑
x,y

(f (x)+ �
p

)(f (y)+ �
p

)
=

∑
x,y

( (f (x)+ �)(f (y)+ �)
p

)
.

Now sum a particular summand in(x, y) over �. If f (x) ≡ f (y)modp, then all
arguments are squares, adding up top − 1 for the nonzero arguments. Otherwise,

complete the square in�. The sum becomesUd
def= ∑

u

(
u2+d
p

)
for some nonzero

dmodp. Note: Ud depends only on whetherd is square modp. From that, summing
Ud over d showsUd is independent ofd: it is −1.
Let V = P1

x \ {∞}, U = P1
z \ {∞}. We conclude:Wy2−f,1 = pNf with Nf =

|(V 2
U \ �)(Fp)|. Weil’s estimate showsNf = kf p + O(p1/2). So, kf is the main

determiner of the constant in the Davenport–Lewis result. This is the source of the
nameexceptionalfor polynomialsf.

Davenport and Lewis[DL63, p. 59] notes cyclic and Chebychev polynomials are
exceptional for those primesp where they are permutation.
Both substitution polynomials and exceptional polynomials admit functional com-
position: If f andg belong to these classes, then so doesf (g(x)). This is obvious
in the case of substitution polynomials and …

They partially factorf (g(x)) over Fp to see it is exceptional iff and g are. They
were not sure their meaning of exceptional also meant (2.1b) in Proposition2.3. Was
f automatically substitution? C. MacCluer’s 1966 thesis [Mc67] took on that question,
answering it affirmatively for tame polynomials satisfying (2.1a). The proof of Principle
3.1 seems easy now, applying generally to pr-exceptional. Yet, the literature shows that
belies much mathematical drama.

7.2. The monodromy problem of Katz [Kz81]

Let � : X → S be a smooth family of (projective) curves over a dimensionN base
S. Assume the family has definition fieldK, which we take to be a number field. This
setup has an action of the fundamental group�1(S, s0) = G on the 1st cohomology
V = H 1(Xs0,C) of the fiber of� over s0 ∈ S. Let Vs = H 1(Xs ,C) for s ∈ S.
(7.1) Equivalently,∪̇s∈S Vs is a locally constant bundle overS.

7.2.1. Using complete reducibility
A theorem of Deligne saysG has completely reducibleaction [Gri70, Theorem

3.3]. So,V breaks into a direct sum⊕mi=1Vi with G acting on eachVi irreducibly
(with no proper invariant subspace). Two irreducible representations�′ : G→ GL(V ′)
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and �′′ : G → GL(V ′′) of G are equivalent if dimC(V ′) = dimC(V
′′) = n, and

for some identification of these withCn, there is an elementM ∈ GLn(C) with
�′ = M ◦ �′′ ◦ M−1. Rewrite the sum⊕mi=1Vi as ⊕m′

i=1miV
′
i with the V ′

i s pairwise

inequivalent. Denote
∑m′
i=1 m

2
i by W�. Then, withV ∗ the complex dual ofV (with G

action):

W� =
m′∑
i=1

m2
i = dimC EndG(V, V ) = dimC (V ⊗ V ∗)G.(7.2)

7.2.2. The strategy for going to a finite field
The 5-adic analog of (7.1) gives varying5-adic 1st cohomology groups over the

baseS. These form a locally constant sheafT = T5 with G action. Elements of the
absolute Galois groupGK also act on this. There is a comparison theorem inQ5

developed by Artin, Deligne, Grothendieck and Verdier that Deligne used extensively
[De74].
The idea from here is to regardS as an algebra over some ring of integersR of K

and to use primesp of R for reducing the whole family. Suppose the residue class field
R/p has orderq. We would then have a sheaf on which the Frobenius Frq (q-power
map) acts. To relate this to a Davenport–Lewis-type sum for the accumulated Weil
error, we need a two-chain comparison.

(7.3a) Extract the Davenport–Lewis estimate for the family overR/p from Frqt action
(somet) on the cohomology of the5-adic sheafT ⊗ T .

(7.3b) Compare Frqt on the cohomology with the quantityW�.

The comparison (7.3a) is crucial. The rational primep that appeared in the Davenport–
Lewis estimate is long gone. So, we will be considering the analog of their computation

with Fqt (⊃ R/p def= Fp) for t large replacingFp, and subject—as we will see— to
another constraint. The convention for writing the Davenport–Lewis estimate for the
family over Fqt is in the following notation:

∑
s∈S⊗RFp(Fqt )

E2
p,t,s =

∑
s∈S⊗RFp

tr(Frqt |Ts ⊗ Ts).(7.4)

The Lefschetz fixed point formula computes the right-hand side as

N∑
i=0

(−1)i tr(Frqt |Hi5(S ⊗ F̄p, T ⊗ T )).(7.5)

7.2.3. Using the full Weil conjectures
Deligne’s version of the Riemann hypothesis isolates one term (i = N ) from this.

With that we conclude by fulfilling (7.3b). To do so requires assuring the trace term
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on H 2N
5 has a bound away from zero in the limsup overt: so Frqt eigenvalues on it

do not nearly cancel for allt.
Then, that term will have absolute value roughlyq(N+1)t times dimQ5

(H 2N
5 ). (Do

not forget to add the affect of Frqt on the stalkTs ⊗ Ts in which the cohomology
elements take values.) This will dominate all other terms in (7.5). Still, to isolate out
that term, we must chooset large, and yet mysteriously. Reason? We do not actually
know what are the eigenvalues of the Frobenius onH 2N(S ⊗ F̄p, T ⊗ T ), though we
soon interpret how many there are.
To fix notation, suppose�1, . . . , �u are the eigenvalues of the Frobenius forFp on

H 2N(S ⊗ F̄p, T ⊗ T ), with Fp = Fqt0 . Consider the corresponding eigenvalues of
the Frobenius forFqt with t0 dividing t, which is the t/t0 = v power of the first
Frobenius. So its eigenvalues are thevth powers of�1, . . . , �u. These all have absolute
valueqv(N+1). A simple diophantine argument shows there is a subsequenceL of such
t so the absolute value of(

∑u
i=1 �ui )/q

v(N+1) has limit u. This is the limsup of the
right-hand side of (7.5) divided byqt(N+1) as a function oft (divisible by t0). Thus,
u is Davenport–Lewis limit of the left-hand side of (7.4) divided byqt(N+1). For the
hyperelliptic family, this was the number of absolutely irreducible factors ofX2

Y \ �
over the fieldsFqt , t ∈ L.
The numberW� is the same as dim(H 0

5 (S ⊗ F̄p, T ⊗ T )). By Poincaré duality, this
is the same as dim(H 2N

5 (S ⊗ F̄p, T ⊗ T )) = u. It is the left-hand side of (7.4) divided
by qt(N+1). So, the Davenport–Lewis estimate only works on the quantity Katz is after
if we run over the lim supt 5-adic cohomology estimate.
Generalizing this situation has straightforward aspects. We comment on that, then

conclude in §7.2.4 with a different tack on the Davenport–Lewis setup. This motivates
how Fried [Fr05b] uses zeta relations to detect the effects of exceptionality.
Since the fibers are curves, you can easily adjust to consider collections of affine

curves with points deleted from the fibers. This does not affect the final computation:
using error estimates from the affine (instead of from the projective) fibers gives the
same result. Katz [Kz81, §IV] writes this in detail. Also, in estimating counting errors
in rational points, it may be useful to haveS an open set inAN over R, with the
family the restriction ofW → AN (still with 1-dimensional fibers). If we use the
latter family to make the count, likely some fibers will be singular, even geometrically
reducible. What happens if we include them in the computation for our estimate for the
calculation overS? Answer: This makes the error for a family overAN an upper bound
to counting the sums of squares of the irreducible components for the monodromy action
[Kz81, §V].
Katz uses thewrong direction from [DL63]; as an upper, rather than lower, bound. It

is a shame to lose the precision. So, when dim(S) = 1, the correct estimate forW� is
the lim sup of the Davenport–Lewis error estimate divided byq2t . That is the expected
kf (computed over the algebraic closure ofK).

7.2.4. Detecting exceptionality through zeta properties
Now we list lessons from the combination of Davenport–Lewis and Katz. Consider

the projective curveU� defined byy2 + �u2 − xu = 0 in projective 2-spaceP2 with
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variables(x, y, u), for a fixed value of a parameter�. Denote the space inP2 × A1
�

defined by same equation asU∗. There is a well-defined map� : (x, y, u, �) ∈ U∗ �→
x/u = z ∈ P1

z .
View any (nonconstant)f (w) ∈ Fq(w), f : P1

w → P1
z , as a substitution. Davenport

and Lewis[DL63] asked how substitutingf (w) for z affects the sum over� ∈ A1(Fqt )

of the squared difference between|U�(Fqt )| and qt + 1. This Weil error vanishes over
Fqt where f is exceptional. Excluding suchf and a possible finite set oft values, it
is far from vanishing. The investigation starting from MacCluer’s thesis [Mc67] found
this precise vanishing for infinitely manyt to characterize exceptionality. Note: In this
formulation, you can replacew �→ f (w) by any cover� : X→ P1

z .
Katz interpreted this error variation as a zeta function statement. Specific conclusions

related to�1(S, s0) action involved anf exceptional over a number field (as in §4.4.1).
This is just one phenomenon. Relations between general zeta functions defined by
exceptional covers and iDPs (§8.2.2) generalize the Davenport–Lewis situation around
exceptional polynomials.

8. The effect of pr-exceptionality on group theory and zeta functions

The Davenport–Lewis collaboration [DL63] motivated MacCluer’s Theorem [Mc67].
This first connecting of two meanings of exceptionality (§7.1) applied just to tame
polynomials. Our final form as in Principle 3.1: pr-exceptionality translates to a pure
monodromy statement, a (now) transparent proof. This section lists examples of how
pr-exceptionality relates to many other topics.
Section 8.1 enhances thecrosswordanalogy of §1.2.2 for an historical explanation

of how exceptionality and Davenport’s problem affectedgroup theory. The examples
of §8.2 show these special arithmetic covers raise tough questions on the nature of
zeta functions and how much they capture of cover arithmetic. Finally, we discuss the
history of DPs. These topic introductions continue in [Fr05b].

8.1. Group theory versus exceptionality

Many supposed by 1969 that we knew everything about rational functions in one
variable that one could possibly care about. Sections 8.1.1 and 8.1.3 (with technical
fill from the appendices) take us through the mathematical history that exposed that
supposition as premature.

8.1.1. Rational functions set the scene
Consider a rational functionf, indecomposable over̄Fq , that might have appeared

in §7.2.4. Whenf is a polynomial and has degree prime top, we know either that
f is Dickson or cyclic, orkf is exactly 1. With anyf ∈ Fq(w), the lim sup of the
Davenport–Lewis variation divided byq2t is still kf computed overK̄. Even, how-
ever, under our extra hypotheses, we do not expect this to be 1. For example, hav-
ing just one absolutely irreducible component translates as doubly transitive geometric
monodromy.
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Our indecomposability criterion is that the geometric monodromy is primitive. The
geometric monodromy group of a rational function is called agenus 0group. I suspect
even those who knew what primitive meant in 1969 would have thought the geometric
monodromy group of an indecomposable rational function could be any primitive group
whatsoever. That is what the genus 0 problem tackled. The serious unsolved aspects in
1987 translated to considering genus 0 covers whose geometric monodromy is primitive,
but not doubly transitive. The main tool, besides group theory, was RET (existence of
branch cycles as in §2.1.4).

8.1.2. Guralnick’s optimistic conjecture
I have used the same title for this section as does Fried [Fr05d, §7.3]. For the

convenience of the reader I repeat a bit of that to express what is expected (and has
been partly proved) on the geometric monodromy of genus 0 covers. (For genusg = 1
and g > 1, there is a similar conjecture aboutg-sporadic groups.) The easiest result
from the elementary part of RET—use of branch cycles in §2.1.4— is that every finite
group is the geometric monodromy group of a cover ofP1

z . If the following were truths
for you, then you might not suspect the need for RET.

• It is easy to construct genus 0 covers ofP1
z with desired properties.

• All groups appear as monodromy groups of genus 0 covers ofP1
z .

Both, however, are false, whatever you mean byeasy, even if you restrict to genus 0
covers with a totally ramified place (represented by polynomials; see §C).
The original Guralnick–Thompson conjecture was that for eachg, excluding finitely

many simple groups, the only composition factors of monodromy groups ofP1
z cov-

ers are alternating groups and cyclic groups. Still, composition factors are one thing,
actual genus 0 primitive monodromy groups another. Also, the attached permutation
representations do matter. What arose in the middle 1800s from elementary production
of covers were cyclic, dihedral, alternating and symmetric groups using genus zero
covers. Such examples appear in 1st year graduate algebra books. The list of (8.2)
shows these and a small set of tricky alternatives to these.

Definition 8.1. We sayT : G→ Sn, a faithful permutation representation, with prop-
erties (8.1) and (8.2) is 0-sporadic.

DenoteSn acting on unorderedk sets of {1, . . . , n} by Tn,k : Sn → S(nk): standard
action isTn,1. Alluding to Sn (or An) with Tn,k nearby refers to this presentation. In
(8.2), Va = (Z/p)a (p a prime). Use §6.1.4 for semidirect product in theTVa case on
points ofVa ; C can beS3. In the 2nd(An, Tn,1) case,T : G→ Sn2.

(8.1) (G, T ) is the monodromy group of a primitive (§A.1) compact Riemann surface
cover� : X→ P1

z with X of genus 0.

(8.2) (G, T ) is not in this list of group-permutation types.

• (An, Tn,1): An�G�Sn, or An × An ×sZ/2�G�Sn × Sn ×sZ/2.
• (An, Tn,2): An�G�Sn.
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• TVa : G = V ×s C, a ∈ {1,2}, |C| = d ∈ {1,2,3,4,6} and a = 2 only if d does not
divide p − 1.
Indecomposable rational functionsf ∈ C(x) represent 0-sporadic groups byf :

P1
x → P1

z if their monodromy is not in the list of (8.2). We say(G, T ) is polynomial
0-sporadic, if some f ∈ C[x] has monodromy outside this list. We know of covers
satisfying (8.1) and falling in the series of groups in the list of (8.2). There are,
however, other 0-sporadics with anAn component [GSh04]. For example, if there were
a genus 0 cover with monodromyA6 acting on unordered triples from{1,2,3,4,5,6},
we would call it 0-sporadic. The point, however, of 0-sporadics is that you only have
a small list ofn ’s for which the geometric monodromy of the genus 0 cover will be
An acting on unordered triples.
Emphasis: Do not toss the 0-sporadics away, because it is they that give a clue for

quite different set of primitive genus 0 covers in positive characteristic. The finite set
of (genus 0)-sporadic groups (overC; Appendix C) adumbrates a bigger set of genus
0 groups over finite fields. While we do not have so precise a RET in characteristicp,
there are tools. By focusing on the group requirements for exceptional covers and DPs
we have applied characteristic 0 thinking to characteristicp problems. An understanding
why this works starts from [Fr74a], and a preliminary version of [FrM02] in 1972. More
solid applications in print encourage extending [Fr94] and [GS02]. The precise structure
of exceptional towers makes describing their limit groups an apt sub-problem from the
unknowns left by Harbater–Raynaud ([Ha94,Ra94]) in their solution of Abhyankar’s
problem.
Davenport asked me several times to explain why transitivity of a permutation rep-

resentation (from a polynomial coverp : P1
x → P1

z) is equivalent to irreducibility of
p(x)− z over the fieldK(z). He did not like Galois theory, and his reaction to group
theory was still stronger. It was not only Davenport. Genus 0 exceptional covers force
an intellectual problem faced by the whole community.

(8.3a) RET guides us to how to find exceptional covers.
(8.3b) Using exceptional covers demands an explicit presentation of equations that

(8.3a) cannot give directly.

8.1.3. From Davenport pairs to the genus 0 problem
I knew Harold Davenport from graduate school (University of Michigan), my second

year, 1965–1966. He lectured on analytic number theory and diophantine approxima-
tion (my initial interest), though this included related finite field topics.Discussions with
Armand Brumer (algebraic number theory, from whom I learned Galois theory), Don-
ald Lewis (diophantine properties of forms; my Ph.D. advisor) and Andrzej Schinzel
(properties of one variable polynomials) were part of seminars I attended. MacCluer
attended these, too; we overlapped two years of graduate school. Problems formulated
by Schinzel used the topics of these discussions.
My understanding of the literature on finding variables separated polynomialsf (x)−

g(y) that factor started with Davenport et al.[DLS61] and Davenport and Schinzel
[DS64]. At the writing of these papers, the authors did not realize the equivalence
between this factorization problem and Davenport’s value set problem [Fr73]. Within
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2 years from that time, I had finished that project. This used small private lectures
from John McLaughlin on permutation representations.
Years later, I returned to these topics while writing my lecture at Andrzej Schinzel’s

birthday conference[Fr99]. I record some points here.

(8.4a) Davenport wished (Ohio State, Spring 1966) that confusions among polynomial
ranges over finite fields received greater attention.

(8.4b) He insisted many used Weil’s theorem on zeta functions gratuitously.
(8.4c) Groups and Galois theory frustrated him.

Small subsections below explain each point.

8.2. Arithmetic uniformization and exceptional covers

Exceptional covers and cryptology go together (§4.1.1 and §4.3). We would now
express Davenport’s concern in (8.4a) as this: how to detect when one isovalent DP is
formed from another by composing with exceptional covers.

8.2.1. (8.4a): Davenport’s problem led to studying exceptional covers
Davenport asked whether two polynomials could (consequentially) have the same

ranges modulop for almost all primesp? By consequential we mean, no linear change
of variables, even over̄Q, equates them (an hypothesis that we intend from this point).
Fried [Fr73] restricted to having one polynomial indecomposable (primitive as a cov-
ering map, §1.2). A first step then says they have the same degree. Over an arbitrary
number field, there may be consequential DPs. Yet, only for a bounded set of degrees
{7,11,13,15,21,31}. Further (again the indecomposable case) this cannot happen over
Q. The first result uses the simple group classification. The second does not. For it,
we need only theBranch-Cycle Lemma(Appendix B).
Müller made a practical contribution to the genus 0 problem by listing primitive

monodromy groups of tame polynomial covers. There are three nontrivial families of
indecomposable polynomial DPs. Section C explains how these Davenport families are
exactly the nontrivial families of sporadic polynomial monodromy groups.Nontrivial
in that the pairs have a significant variation; somereduced deformation(§A.2). We
recount points from the detailed analysis of Fried [Fr05d, §3 and §5]. Section B.2.2, for
example, reminds of the historical relation between the production of Abelian varieties
whose field of moduli is not a field of definition—an unsolved problem at the time—
and these DPs.

8.2.2. (8.4b): The name exceptional and eigenvalues of the Frobenius
For three of our topics, exceptional covers conjure up zeta functions and Frobenius

eigenvalues that support Davenport’s desire in (8.4a).
First: Still with genus 0 exceptional covers, we use §7.1 to tell from whence came

the phraseexceptional polynomial. The start was a paper in the long collaboration of
Davenport and Lewis. Davenport and Lewis [DL63] checked, in a hyperelliptic curve
pencil, if the Weil error accumulates significantly. When it did not, they called that
case exceptional. Later they guessed an equivalence between their exceptionality and



422 M.D. Fried /Finite Fields and Their Applications 11 (2005) 367–433

the conclusion of Schur’s conjecture (Proposition1.3). The latter generalizes to what
we now call exceptionality. Katz [Kz81] used Ref. [DL63] to discover for the same
pencils that exceptionality is equivalent to irreducible monodromy action of the base’s
fundamental group on the pencil fibers (§7.2). There is, however, a surprise. Katz drew
conclusions on exceptional covers for values oft where, overFqt , the polynomials
were as far from exceptional as possible. This motivates topics that are now haphazard
in the literature: To inspect exceptional polynomials outside their exceptional sets, and
to consider exceptional covers of higher genus.
Second: If � : Y → P1

z is exceptional, thenY is e-median.

• It is median value: Y (Fqt ) = qt + 1 for ∞-ly many t.
• The median value exceptional set oft containst = 1 (Proposition4.3).

Exceptional correspondences withP1
z are examples of e-median curves (§3.1.3) that are

not a’ priori given by curves from an exceptional cover like�. We characterize DPs
as having a special pr-exceptional correspondence between their curves. A fundamental
question arises: how can we characterize curves that have an exceptional correspon-
dence withP1

z? Fried [Fr94, §3.5] notes the genus 1 curves with this property are
supersingular. It also checks examples (from [GF94, Proposition 14.4]) of supersin-
gular genus 1 curves and shows they are, indeed, exceptional covers ofP1

z . A next
step is the program of Problem 6.8. The following remark starts our continuation in
[Fr05b]: e-median is a pure zeta function property and not all e-median curves will
have supersingular Jacobians.
Third: Suppose we have a Poincaré seriesWD,Fq (u) =

∑∞
t=1 ND(t)u

t for a diophan-
tine problemD over a finite fieldFq . We call theseWeil vectors. (Example: One from
a zeta function of an algebraic variety.) Assume also:�i : X → Y , i = 1,2, is an
isovalent DP overFq . If D has a map toY, this DP produces new Weil vectorsW

�i
D,Fq

,

i = 1,2, and arelation betweenW
�1
D,Fq

(u) andW
�2
D,Fq

(u): an infinite set oft, where the

coefficients ofut in W
�1
D,Fq

(u)−W�2
D,Fq

(u) equal 0. Producing relations between Weil
vectors is characteristic of isovalent DPs. Fried [Fr05b] has an effectiveness result: for
any Weil vector, the support set oft ∈ Z of 0 coefficients differs by a finite set from
a union of full Frobenius progressions (§1.3.3).

8.3. History of Davenport pairs

DP first referred to pairs(f, g) of polynomials, over a number fieldK (with ring
of integersOK ), with the same ranges on almost all residue class fields. Now we call
that a strongDavenport pair (of polynomials) overK. An SDP over(Y,K) is a pair
of covers�i : Xi → Y , i = 1,2, overK satisfyingRange equality:

(8.5) �1(X1(O/p)) = �2(X2(O/p)) for almost all prime idealsp of OK .
Aitken et al. [AFH03] reserves the acronym DP over(Y,K) to mean equality on

ranges holds for infinitely manyp. An iDP is then an isovalent DP (§8.2.1 and Propo-
sition 3.9), iSDP means isovalent SDP, etc.
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Proposition 8.2. If (�1,�2,K) is an iSDP for∞-ly manyp, then it is an iSDP for
almost all p.

{p ∈ E(�1,�2)
(K) | (�1,�2,O/p) is an SDP}

is either finite or cofinite inE(�1,�2)
(K).

Proof. Use notation of §3.2, with extra decoration indicating the base field. For|p|
large, let	 ∈ G(K̂/K) be a choice of Frobenius for the primep. Then, we can identify
two geometric–arithmetic monodromy group pairs [FrJ86, Lemma 19.27]:

(G(�1,�2),O/p, Ĝ(�1,�2),O/p) and (G(�1,�2),K̂
	 , Ĝ(�1,�2),K̂

	).

Restrict to suchp. Then,E(�1,�2),O/p = N+ if and only if (�1,�2,O/p) is an SDP.
Lemma3.11 shows this is equivalent to the representation pair(T1, T2) giving equiv-

alent representations onG
(�1,�2),K̂

, a condition independent ofp. So, excluding finitely
many p, this holds either for all or none of thep. �
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Appendix A. Review of Nielsen classes

When Y = P1
z , a Nielsen class is a combinatorial invariant attached to the cover.

Supposez is the branch point set of�, Uz = P1
z \ {z} and z0 ∈ Uz. Consider analytic

continuation of the points overz0 along paths based atz0, of the form� · �i · �−1, �, �
on Uz and �i a small clockwise circle aroundzi . This gives a collection of conjugacy
classesC = (C1, . . . ,Cr , one for eachzi ∈ z, in G�. The associatedNielsen class:

Ni = Ni(G,C) = {g = (g1, . . . , gr ) | g1 · · · gr = 1, 〈g〉 = G and g ∈ C}.(A.1)

Writing g ∈ C means thegi s, in some order, define the same conjugacy classes inG
(with multiplicity) as those inC. We call the respective conditionsg1 · · · gr = 1 and
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〈g〉 = G, the product-oneand generationconditions. Each cover� : X → P1
z has a

uniquely attached Nielsen class:� is in the Nielsen class Ni(G,C). We give examples
in §5.2.3. The examples of the degree 7, 13 and 15 degree DPs in [Fr05d, §5] can
give a reader a full taste of why even polynomial covers require RET. The point is that
these three examples are the most significant of the 0-sporadic polynomial covers. The
reduced spaces parametrizing these covers are each genus 0 curves defined overQ.
Each is a (nonmodular curve)j-line cover [Fr05d, Proposition 4.1]. These facts come
directly from using Nielsen classes.

A.1. Inner and absolute Nielsen classes

Suppose we haver (branch) pointsz, and a corresponding choicēg of classical
generatorsfor �1(Uz, z0) [BFr02, §1.2]. Then, Ni(G,C) lists all surjective homomor-
phisms�1(Uz, z0)→ G with local monodromy inC given by ḡi �→ gi , i = 1, . . . , r.
Each gives a cover with branch pointsz associated to(G,C). The g ∈ Ni(G,C) are
branch cycle descriptionsfor these covers relative tōg. Equivalence classes of covers
with fixed branch pointsz correspond one–one to equivalence classes on Ni(G,C).
Caution: Attaching a Nielsen class representative to a cover requires picking one from
many possibler-tuples ḡ. It is not an algebraic process.

Bailey and Fried [BFr02, §3.1] reviews common equivalences with examples and rel-
evant definitions, such as the groupQ′′ below. LetNSn(G,C) be thoseg ∈ Sn normal-
izing G and permuting the collection of conjugacy classes inC. Absolute (resp., inner)
equivalence classes of covers (with branch points atz) correspond to the elements of
Ni(G,C)/NSn(G,C)) (resp., Ni(G,C)/G). Fried [Fr05d, §5] usesabsoluteand inner
(and for each of thesereduced) equivalence. These show how to compute specific prop-
erties of manifoldsH(G,C)abs, H(G,C)in and their reduced versions, parametrizing
the equivalences classes of covers asz varies. Orbits of the Hurwitz monodromy group
Hr on the respective absolute and inner Nielsen classes determine components of these
spaces. Here is theHr action using generatorsq1, . . . , qr−1 on g ∈ Ni(G,C):

qi : g = (g1, . . . , gr ) �→ (g1, . . . , gi−1, gigi+1g
−1
i , gi, gi+2, . . . , gr ).(A.2)

A.2. Reduced Nielsen classes whenr = 4

Reduced equivalenceof covers equivalences a cover ofP1
z , � : X → P1

z , with any
cover � ◦ � : X → P1

z from composing� with � ∈ PGL2(C). This makes sense
for covers with any numberr of branch points, though the caser = 4 has classical
motivation. Then, the PGL2 action associates to the branch point setz a j-invariant.
You can think of it as thej-invariant of the genus 1 curve mapping 2-to-1 toP1

z and
branched atz. The branch point setz of a cover iselliptic if it equals that of an elliptic
curve with automorphism group of order larger than 2.
We now review from[BFr02, §2.6 and §3.7.2] how Nielsen classes describe the

collection of reduced classes of covers up to inner or absolute equivalence that have
a particular nonelliptic value ofj as their invariant. Indeed, this set is just the inner
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or absolute Nielsen classes modulo an action of a quaternion groupQ�H4 on the
respective Nielsen classes. The action ofQ = 〈(q1q2q3)2, q1q−1

3 〉 (using (A.2)) factors
through a Klein group actionQ′′. This arises from there always being a Klein 4-group
(�Z/2×Z/2) in PGL2(C) leaving the branch point setz fixed. (An even larger group
leaves ellipticz fixed.) Then, absolute reduced and inner reduced equivalence have
respective representatives

Ni(G,C)/〈NSn(G,C),Q′′〉 and Ni(G,C)/〈NSn(G,C),Q′′〉.

When r = 4, these give formulas for branch cycles presentingH(G,C)abs,rd and
H(G,C)in,rd as quotients of the upper half-plane by a finite index subgroup of PSL2(Z)

as a ramified cover of the classicalj-line. These branch over the traditional places
(normalized in[BFr02, Proposition 4.4] toj = 0,1,∞) with the points over∞ mean-
ingfully called cusps.
Fried [Fr05d, §4] has many examples of this. For example: Fried [Fr05d, Proposition

4.1] uses these tools to produce a genus 0j-line cover (dessins d’enfant) defined overQ

that parametrizes the pairs(f, g) of reduced classes of degree 7 Davenport polynomial
pairs. As a parameter space for the 1st (resp., 2nd) coordinatef (resp., g) the two
families are defined and conjugate overQ(

√−7).
A cover (overK) in the Nielsen class Ni(G,C) with arithmetic monodromy group

Ĝ is a (G, Ĝ,C) realization (over K).

A.3. Algebraist’s branch cycles

Grothendieck’s Theorem [Gro59] gives us branch cycles for any tame cover, even in
positive characteristic. We state its meaning ([Fr06, Chapter 4, Proposition 2.11] has
details). Consider a perfect algebraically closed fieldF̄ . For z′ ∈ P1

z(F̄ ) ande a positive
integer prime to char(K̄), denote the field of Laurent formal series̄F(((z− z′)1/e)) by
Pz,e. We choose a compatible set{�e}{e|(e,char(K̄)=1)} of roots of 1. Let	z′,e : Pz,e →
Pz,e be the automorphism (fixed on̄K((z−z′))) that acts by(z−z′)1/e �→ �e(z−z′)1/e.
Let z= {z1, . . . , zr} be r distinct points ofP1

z .

Proposition A.1 (Algebraist branch cycles). AssumeL̂ is the Galois closure of a tamely
ramified extensionL/F̄ (z) having branch pointsz. Then there are embeddings�i :
L̂→ Pzi ,ei with ei the ramification index of̂L over zi satisfying this. The restrictions
gzi ,�i ∈ Gf of 	zi ,ei to L̂, i = 1, . . . , r, have the generation and product-one properties
(A.1) [Fr06, Chapter 2, §7.5].

Suppose givenr distinct points onP1
z . Then, any set of classical generators (as in §A)

of �1(Uz, z0) produces the collectiong = (. . . , gzi ,�i , . . .) for all covers in Proposition
A.1. These are also compatible, in the following sense. Given branch cycles for� :
X → P1

z appearing in a chain� : X �′
−→X′ → P1

z , this uniquely gives branch cycles
of �′ (dependent on�).
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Also, we explain how fiber products alone give a notion of compatibility without
any appeal to paths. Let�i : Xi → P1

z and assume� : X → P1
z is a cover defined

by a F̄ componentX of X1×P1
z
X2. Supposegi is a branch cycle description for�i ,

i = 1,2. We sayg1 and g2 are compatible if there are branch cyclesg for � that
restrict togi on �i , i = 1,2, as in PropositionA.1. Note: Referencing branch cycles
gives meaning to the Nielsen class (any type) of a tame cover in any characteristic. If
we want to compare branch cycle descriptions of a finite set of tamely ramified covers
over P1

z , we may take their fiber products and a branch cycle description of a cover
that dominates them all.
Suppose Ni(G,C) defines some Nielsen class (say absolute or inner;r conjugacy

classes). The rest of Grothendieck’s theorem requires(|G|, char(K̄)) = 1. Then we
interpret it as follows. Givenz, r distinct points onP1

z(F̄ ), equivalence classes of
covers in the Nielsen class with branch pointsz have a compatible set of branch cycle
descriptions that correspond one–one with the Nielsen class representatives.

Appendix B. Weil’s cocycle condition and the Branch Cycle Lemma

Often we apply Nielsen classes to problems asking about the realization of covers
over Q or some variant like(G, Ĝ,C) realization problems (§A.2).

B.1. The Branch Cycle Lemma story

Realization problems, according to the Branch Cycle Lemma, requireC, conjugacy
classes inG�NSn, (G,C)�Sn, to be rational. It is now a staple of the theory of
covers.

Definition B.1. Let G∗ be a group betweenG andNSn(G,C). Suppose for each integer
k prime to the orders of elements inC, there ish = hk ∈ G∗ and � ∈ Sr so that
we have the identityhC(i)�h−1=Cki , i = 1, . . . , r, in conjugacy classes. Then,C is a
rational union of conjugacy classes modG∗.

For this special case of Fried[Fr77, Theorem 5.1], theBranch Cycle Lemma(BCL)
saysC is a rational union of conjugacy classes modG′ is a necessary condition for a
(G,G′′,C) realization withG�G′′�G′.
Some version of the BCL and Weil’s cocycle condition is now standard to determine

when equivalence classes of covers have equations over the smallest possible field one
could expect for that. Though standard, getting it there required getting researchers to
master the notion of Nielsen class. For example, in the special case mentioned above
of DPs, the BCL was the main tool in [Fr73, §3]. Fried [Fr77] proved converses of
the conclusion of the BCL, by formulatingBraid rigidity (though not calling it that).
In [Fr05d] examples—giving complete details on the parameter spaces of DPs of
indecomposable polynomials over number fields— the Braid Rigidity hypothesis holds
and we apply the converse.
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B.2. Weil’s cocycle condition and its place in the literature

SectionB.2.1 explains how Weil’s cocycle condition works for families of covers,
then §B.2.2 tells some history behind it.

B.2.1. How the co-cycle condition works
Suppose� : X→ Y is a cover withY embedded in some ambient projective space

over a perfect fieldF and X similarly embedded in a projective space overF̄ . Then,
consider

G� = 	 ∈ G(F̄ /F ) for which there exists�	 : X	 → X so � ◦ �	 = �	.

Denote the fixed field ofG� in F̄ by L�.

Proposition B.2. Assume also, there is no isomorphism� : X → X that commutes
with �. Then, there is a cover�′ : X′ → Y with L� a field of definition ofX′ and�′,
and an isomorphism�′ : X′ → X with � ◦ �′ = �′.

Proof. Regard the pairs{(X	,�	)}	∈G(F̄ /F ) as a subvariety of some ambient projec-
tive space. Then,�	 induces an isomorphism(X	,�	) → (X,�), and this gives an
isomorphism�� ◦ �−1

	 = �	,� : (X	,�	)→ (X�,��). That there is no automorphism
� : X→ X that commutes with� implies that for	, �, � ∈ G�,

��,� ◦ �	,� = �	,�.

This is the co-cycle condition attached to our situation.
The conclusion is the existence of an actual pair(X′,�′) over L� by applying

[We56]. Examples with the covers represented by polynomials appear in [Fr05d, §4
and §5] with, typical of its use, a much stronger conclusion: The whole family of
covers in a Nielsen class has definition fieldQ. �

B.2.2. Some history of applying the co-cycle condition to families of covers
I learned the Weil cocycle condition from the 1961 version of Shimura [Sh61-98,

p. 27] when I learned complex multiplication studying with Shimura during my years
1967–1969 at IAS. I showed Shimura the BCL, and the effect of applying the Weil
cocycle condition to the arithmetic of covers. In particular, I showed its application to
DPs. This produced curves with field of moduliQ not equal to their field of definition.
Those first curves were the Galois closures of DPs(f, g), such as those of degree 7
over Q(

√−7).
As in [Fr73, Proposition 3], the arithmetic Galois closuresX̂ of the covers fromf

andg are the same, and the BCL showedf andg are conjugate. So, the field of moduli
of X̂ as a Galois extension ofP1

z is Q (an inner equivalence class as in §A.1): The
field of moduli of the cover together with its automorphisms. If, however,Q were its
field of definition, then the subgroups corresponding to the covers given byf and g
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would also be overQ. So, the field of definition for this equivalence of covers is not
Q. It is easy to show the full automorphism group ofX̂ in this case is PGL3(Z/2)
together with its diagram automorphism, and from that to conclude the field of moduli
of X̂ is not a field of definition for it.
Shih’s paper[Shi74], with some version of the BCL, was in print before [Fr77]

(though not before [Fr73]). Some authors have revised the situation of its priority,
saying the results were done independently.
Fried [Fr77] was half of an original paper that was in Shimura’s hands by Fall

of 1971. It was broken apart in Spring of 1972 when I was again at IAS. Shimura
sent Shih to visit me when I was at MIT, fall 1971, on a Sloan. This resulted from
Shimura asking me to give an elementary approach to canonical fields of definition. My
answer was the Hurwitz space approach, using the BCL, and applying it in particular
to modular curves in [Fr78] (the other half of the 1971 preprint). I said I would quote
[Shi74], and he could use the BCL if he said from where he got it. I did my part. He
did not.

Appendix C. DPs and the genus 0 problem

Davenport phrased his problem starting overQ and at least for indecomposable
polynomials, Fried [Fr73, Theorem 2] showed it was true: two polynomialsf, g ∈ Q[x]
with the same ranges modulo almost all primesp are linearly related:f (ax + b) =
g(x) for somea, b ∈ Q̄. Because of indecomposability, we actually may takea, b ∈ Q

(Remark C.1). §C.1 is a complement to [Fr05d, §4 and §5].
We consider indecomposable polynomial DPs over a number fieldK. These are

essential cases in the genus 0 problem. The polynomials that arise in serious arithmetic
problems are not generic. So, in continuing §8.1.2 we show how Davenport’s Problem
relates to 0-sporadic polynomials. Müller’s Theorem in this direction is a gem from
my view for two reasons. It shows how truly significant DPs were to this direction,
and it is easy to understand.

C.1. Müller’s list of primitive polynomial monodromy and DPs

Suppose(f, g) is a DP over a number fieldK (f, g ∈ K[x]). We always assume
(f, g) are not affine equivalent. Lemma 1.3 says thatf indecomposable translates to
f : P1

x → P1
z having doubly transitive geometric monodromy. In particular it saysf

is not exceptional. [AFH03, Corollary 7.30] showedg = g1(g2(x)) is a decomposition
(over K) with (f, g1) an iSDP.

C.1.1. The three 1-dimensional reduced spaces of 0-sporadic polynomial covers
You do not have to be a group theorist to read the list from [Mu95] of primitive

polonomial groups that are not cyclic, dihedral,An or Sn.
Our version of Müller’s list shows how pertinent was Davenport’s problem. All ap-

pearing groups are almost simple (§4.3.1). Exclude those (finitely many) that normalize
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PSL2(Fq) (for very small q) and the degree 11 and 23 Matthieu groups. Then, all
remainingG are from[Fr73] and they have these objects.

(C.1a) Two inequivalent doubly transitive representations, equivalent as (degreen)
group representations; and

(C.1b) ann-cycle (for these representations).

We know such groups. There is one of degree 11. The others are Chevalley groups
that normalize PSLu+1(Fq) (acting on points and hyperplanes ofPu). Fried [Fr99, §9]
reviews and completes this. All six (with corresponding Nielsen classes) give DPs. We
concentrate on those three with one extra property:

(C.2) Modulo PGL2(C) (reduced equivalence as in §A.2) action, the space of these
polynomials has dimension at least (in all cases, equal) 1.

These properties hold for sporadic polynomial maps withr�4 branch points.

• They have degrees from{7,13,15} and r = 4.
• All r�4 branch point indecomposable polynomial maps in an iDP pair are in one
of the, respectively, 2, 4 or 2 Nielsen classes corresponding to the respective degrees
7, 13 and 15.

Fried [Fr73] outlines this.
Fried [Fr99, §8] and Müller [Mu98a], [Mu95, §2.7] say much on the group the-

ory of the indecomposable polynomial SDPs over number fields. Yet, we now say
something new on the definition field of these families, a subtlety on dessins d’enfant,
presented as genus 0j-line covers. LetHDP

7 , HDP
13 and HDP

15 denote the spaces of
polynomial covers that are one from a DP having four branch points (counting∞).
The subscript decoration corresponds to the respective degrees. We assume absolute,
reduced equivalence (as in §A.2). Then, all these spaces are irreducible and defined
over Q as covers of thej-line. EachHDP

n is labeled by a difference set modulon,
n = 7,13,15, and there is an action ofGQ on the difference sets (modulo translation)
[Fr05d, §2.3].
In these cases, analytic families of respective degreen polynomials fall into several

components (HDP
7 are those of degree 7). Yet, each component corresponds to a unique

Nielsen class and a particular value ofD. We understand these Nielsen classes and the
definition fields of these components from the BCL.

Remark C.1 (Linearly related overQ versus overQ̄). The comments on proof in
Proposition5.1 note the degreen Chebychev polynomialTn gives all Dickson polyno-
mials by composing with linear fractional transformations in the formlu ◦Tn ◦ lu−1. All
Dickson polynomials of degreen over a given finite field have the same exceptional
polynomial behavior and branch cycle descriptions placing them in one family. Whether
you see them as significantly different depends on your perspective. I tend to downplay
this, though there are times it is worthy to consider.
Fried [Fr73, Theorem 2]doeshave the conclusion that indecomposable DPs overQ

are linearly related overQ. Still, there are elementary examples of (composable) DPs,
linearly related overQ̄ and not overQ. Davenport likely knew those for he used the
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same examples elsewhere:(h(x8), h(16x8)) with h ∈ Q[x] are a DP, linearly related
over Q̄ [FrJ04, Remark 21.6.1].

C.1.2. Masking
Consider the statement in the paragraph starting §C.1. One possibility not yet ex-

cluded for (f, g1) from [AFH03, Corollary 7.30] is thatg1 is affine equivalent tof,
and yetg2 is not exceptional.
This has an analog over a finite field. Possiblyg andg ◦ g1 have precisely the same

range for∞-ly many residue classes of a number field (or extensionsFqt ) even though
g1 is not exceptional. (Fried [Fr73], for example, shows this cannot be iff andg1 have
the same ranges on almost all residue class fields, or on all extensions ofFq ).
Aitken et al. [AFH03, Definition 1.3] calls this possibility an example ofmasking.

Müller [Mu98a, §4] found a version of it, motivating our name.

C.2. Print version miscues in [Fr05d]

Here are several typographical difficulties in the final version of Fried [Fr05d], though
not in the files I sent the publishers.

• Expressions Problemg=0
n (for n = 1 and 2 representing two distinct problems John

Thompson considered) appear as Problemg=0
0 n.

• Throughout the manuscript, whenever a reference is made to an expression in a
section or subsection, the reference came out to be a meaningless number. So §3.2
titled: Difference sets give properties (3.1a) and (3.2b), had those last two references
appear as (91) and (92). We follow this pattern in the other cases, labeling the
sections and giving the changes in the form (91)�→ (3.1a) and (92)�→ (3.2b).

§3.3: (92) �→ (3.1b).
§5.2.1: (171)�→ (5.3a)
§5.2.2 (172)�→ (5.3b)
§5.2.3 (172)�→ (5.3b)
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