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Abstract

Let F; be the order finite field. An [, cover ¢ : X — Y of absolutely irreducible normal
varieties has aonsingular locusThen, ¢ is exceptionalif it maps one-one orf,: points for
oo-ly many t over this locus. Lenstra suggested a cuwWenay have anExceptional(covel)

Tower over [, Lenstra Jr. [Talk at Glasgow Conference, Finite Fields I, 1995]. We construct
it, and its canonical limit group and permutation representation, in general. We know all one-
variable tamely ramified rational function exceptional covers, and much on wildly ramified one
variable polynomial exceptional covers, from Fried et al. [Schur covers and Carlitz's conjecture,
Israel J. Math. 82 (1993) 157-225], Guralnick et al. [The rational function analogue of a
question of Schur and exceptionality of permutations representations, Mem. Amer. Math. Soc.
162 (2003) 773, ISBN 0065-9266] and Lidl et al. [Dickson Polynomials, Pitman Monographs
and Surveys in Pure and Applied Mathematics, vol. 65, Longman Scientific, New York, 1993].
We use exceptional towers to form subtowers from any exceptional cover collections. This gives
us a language for separating known results from unsolved problems.

We generalize exceptionality to p(ossibly)r(educible)-exceptional covers by dropping irre-
ducibility of X. Davenport pairs(DPs) are significantly different covers of with the same
ranges (where maps are nonsingular)lga points for co-ly many t. If the range values have
the same multiplicities, we have abP. We show how a pr-exceptional correspondencelgn
covers characterizes a DP.
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You recognize exceptional covers and iDPs from thextension of constantseries. Our
topics include some of their dramatic effects

e How they produce universaklations between Poincaré series.
e How they relate to the Guralnick—=Thompson genus O problem and to Serre’s open image
theorem.
Historical sections capture Davenport’s late 1960s desire to deepen ties between exceptional
covers, their related cryptology, and the Weil conjectures.
© 2005 Elsevier Inc. All rights reserved.

Keywords: Covers of projective varieties; Fiber products and correspondences; Canonical permutation
representations; Exceptional covers; Davenport pairs; Serre’'s Open Image Theorem; Riemann’s existence
theorem; The genus zero problem; Zeta functions and Poincaré series
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1. Introduction and historical prelude

The pizzazz in a canonical tower of exceptional covers comes from group theory.
Sectionl.1 explains that and my main results. Then, 8§1.2 uses the history of exceptional
covers to introduce notation (§81.3). The main topic here is pr-exceptional covers with
their pure covering space interpretation. | call its encompassing domamdhedromy
method Its virtues include success with old problems and interpretative flexibility,
through additions to Galois theory.

| call zeta function approaches to diophantine questionsreépeesentation method
They come from representations of the Frobenius on cohomology. In the 1970s, | con-
nected the monodromy and representation methods through particular problems (around
[Fr76] based on Galois stratification and [Fr78] based on Hurwitz monodromy). Witness
the general zeta function topics of Fried and Jarden [FrJO4, Chapters 30-31] [FrJ86,
Chapters 25-26]. Then, both subjects were still formative and used different techniques.
The former analyzed spaces of covers through intricate group theory. The latter used
abstract group theory and mostly eschewed spaces.

Now we haveChow motivesbased much on Galois stratification [DLO1,Ni05]. These
directly connect monodromy and representation methods. Worthy monodromy prob-
lems help hone topics in Chow motives. [FrO5b] extends these to Chow motives/zeta
function problems while keeping us on the mathematical earth of pr-exceptional
covers.

1.1. Results of this paper

Let K be any perfect field (usually a finite field or number field). ket X — Y be
a degreen cover (finite flat morphism) ofbsolutely irreduciblevarieties (irreducible
over the algebraic closur& of K) over K. They need not be projectiveuasipro-
jective (locally open in a projective variety) suffices (see [Mum66, Part I] for basics
on varieties). We assume from here that both are normal: defined locally by integral
domains integrally closed in their fractions. Here is our definitiorexdeptionalityof
¢. Let Y’ be any Zariski operK subset ofY over which ¢ restricts (call thispy/) to
a cover,p~1(Y’) — Y, of nonsingular varieties. The maximabnsingularlocus for
o, Y(’,)S, is the complement of this set: the image of singular points<afnion with
singular points ofY.
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Definition 1.1. Call ¢ exceptionalif for some Y’, ¢y, is one—one orf,: points for
oo-ly many t. Corollary 2.5 shows exceptionality is independent ¥f. For maps of
normal curves, no choice df’ is necessary.

From a cover of normal varieties we get an arithmetic Galois closure (§2.1)

X — Y. The geometric Galois closurgpp : X — Y, is the same construction
done overK. This gives two groups: Its geometriG,, = G(abf(/ Y), and arithmetic,
(A;q, = G(X/Y), monodromy group$§2.2). The former is a subgroup of the latter. The
difference between the two groups is the resulertension of constantshe algebraic
closure ofK in the Galois closure oveK is larger thanK. Also, X is absolutely
irreducible if and only ifG, = G.

[Fr78] phrased an extension of constants problem as generalizing complex multipli-
cation. Several results used that formulation (for example, [FV92,GMS03]). We refine
it here to construct from any (degreg ¢ : X — Y an extension of constantseries
Kp(Q<KpR)< - <Kyp(n—1) (82.2).

Each qu,(k) is Galois overK and its group has a canonical faithful permutation rep-
resentation?, x. Exceptional covers are at one extreme, dependent onlﬁ(p(rz)/l{ .

For K a finite field, Lift Principle 3.1 (see Corollary 2.5), characterizes exceptionality:
G(K,(2)/K) fixes no points undef, ».
Such ag produces a transitive permutation representafign G(p — Sr, on cosets

of éw(l) = G()?/X) in éw: St, denotes all permutations of these cosets. We can
identify Sz, (noncanonically) with the symmetric groufy on {1,...,n}. This paper
emphasizes canonical construction of a certain infinite projective system of absolutely
irreducible covers off over K

{(/)i : Xi — Ylier.

Such a projective system gives projective completions (limit gro@ﬁyz G with
an associated (infinite) permutation representation. Essential to a projective system
is that for any two of its covers, another cover in it dominates both. Our absolute
irreducibility constraint is serious. For two coveys : X — Y, i = 1,2, to fit in
any canonical projective system requires their fiber prodict<y X» have a unique
absolutely irreducible factor ovef (see 2.3.2).

To be truly canonical, there should be at most one map between any two covers
in the system. So, such infinite canonical projective systems of absolutely irreducible
covers over a fieldK are rare. Here, though, is one. Foiprime to the characteristic

of K, and{, any primitive nth root of 1, letC, = {{/, 1< j <n}. Considerﬁlﬁ'c[( def
{x"}niknc,—(w)- The corresponding covers afét — P! =Y by x > x" (notation
of §1.3).
For any finite field,F, this represents the tingyclic subtowerof the whole excep-
tional tower 7p1 F, of ([P’;, F,) (Proposition 4.3). This category with fiber products
W

includes all exceptional covers 6{}, over [,. It captures the whole subject of excep-
tionality, giving empyreal drama to a host of new problems.
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If you personally research (or just like) exceptional covers —they are the nub of any
public key-like cryptography @3.2 and 88)—your special likes or expertises will
appear as subtowers of the full tower. Examples, like the Schur and Dickson subtowers
of 85.1 and 85.2, clarify definitions of subtowers and their limit groups.

Exceptional covers have practical uses outside cryptography. Here are three using
rational function exceptional covers, respectively, in §6.1, §6.2.1 and 88.2.

(1.1a) Producingf € K(x) (rational functions withK a number field or finite field)
indecomposable ovef, but decomposable ovef .

(1.1b) Interpreting Serre’'s O(pen)l(mage)T(heorem) as properties of exceptional rational
functions.

(1.1c) Creating generaktlations between zeta functions.

These applications motivate the questions we have posed.irCRssical number
theorists answered these questions for the subtowers of 85. So, 86 is an introduction
to [FrO5b] and the full context for problems posed in 86.1 (subtowers from modular
curves) and 86.4 (subtowers with wild ramification). There are two distinct ways a
given curve over a number field could produce many tamely ramified exceptional covers
of the projective line over finite fields. One is from reduction of covers that satisfy
an exceptionality criterion according to Chebotarev’s density theorem. Another is less
obvious, but it is through the reduction of curves that haventeglian value property
(88.2.2). We use Refs. [Se81,Se03] to tie the correct primes of reductipexpansions
of automorphic functions (86.3, continued in [FrO5b]).

Section 6.4 outlines how to describe the limit group of the subtoWé]PP%,[Fq

(of the exceptional tower ove([P’%, Fy), (@ = p*) that indecomposable polynomi-
als, wildly ramified overoo, generate. This suggests how to generalize —even arith-
metically —aspects of Grothendieck’s famous theorems on curve fundamental groups.
Section 4.3.2 and Question 6.12 consider exceptional rational funapioris: — IP’%
as scramblingfunctions. The combinatorics of Poincaré series allow us to ask how the
periods of those scramblers vary as the finite field extension changes.
The full role of exceptionality, appears p{ossibly)r(educible)-exceptionalifgtarting
in 8§2.1.2). Davenport’s problem (83.2) is a special case of pr-exceptionality. Finally,
81.2 and 87 take us to the historical topics started by Davenport and Lewis (87.1;
from whence exceptionality sprang) and by Katz (87.2). These motivated our using the
extension of constants series to put all these exceptional covers together.

1.2. Primitivity and a prelude to the history of exceptionality

Most topics until 85 work as well fol of arbitrary dimension. We, however, un-
derstand tame exceptional covers of curves throughbthech cycletools of §2.1.4.
These allow being constructive.

To shorten the paper, | limit use of branch cycles and associdielden classes
(a bare bones review is in 8A.1) to a necessary minimum. Section 5.2 uses branch
cycles to give precise generators of the limit group for the Dickson subtowers.
Another example is in the Nielsen class version setup for Serre’s Open Image Theorem
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(OIT in 86). This approach to modular curves generalizes to form other systems of
tamely ramified exceptional covers in [FrO5b]. Appendix C uses [Fr05d] to guide the
so-inclined reader to the most modern use of Nielsen classes. These example poly-
nomial families from Davenport’s problem seem so explicit, it must be surprising we
cannot do them without some version of branch cycles. Finally, 86.4.1 discusses how
[Fro5b] will use [FrM02] to replace branch cycles (Riemann's Existence Theorem
(RET)) when covers wildly ramify. Given the structure of Proposition 4.3, unsolved
problems on subtowers of wildly ramified covers are a fine test for this method.

1.2.1. Using primitivity in exceptional covers
Let ¢ : X — Y be a cover of absolutely irreducible (normal) varieties over a field
K. Call ¢ decomposabldover K) if it decomposes as a chain &f covers

x-Zw 2y with ¢’ and ¢” of degree at least.2

Otherwise it isindecomposabler primitive (over K). From the time of[Fr70] until
[FGS93], much has come from observing that the arithmetic monodromy group (in its
dedg¢) permutation representation) is primitive if and only if the cover is primitive.

Lemma 1.2. Also, assumeg is totally ramified over some absolutely irreducible K
divisor (for curves a K poin} of Y. Then(if (deg¢), chark)) = 1, necessary from
[FGS93, Corollary 11.2])p decomposes ovek < ¢ decomposes ovek.

The proofs of Fried [Fr69, Proposition 3, p. 101] and Fried and MacRae [FM69a,
Theorem 3.5] are readily adapted to prove this, and it a special case of Fried et al.
[FGS93, Lemma 4.4].

SupposeK is a humber field or finite field. In the former case @k be its ring
of integers. Letky = ky ¢ be the number of absolutely irreducibie components of
p! Xpi PI\A (§2.1). Sok, ¢ might be larger thait; x . Davenport and Lewis [DL63]
used exceptional to meaky x is 0 (87).

Davenport and Schinzel visited University of Michigan in 1965-1966 (see §8.1.3).
They discussed many polynomial mapping problems. This included Schur's 1923
[Sch23] conjecture, whose hypothesis and conclusion are the second paragraph of
Lemma 1.3 whenQ = K [Fr70, Theorem 1]; notation from 85.1). Recall the de-
green Tchebychev polynomial7;, (x): Tn()Lzl/x) = w (85.2).

Lemma 1.3. Supposef K |[x] is indecomposabl&deq f), charK)) =1 and kg #1.
Then f has prime degree and '

(1.2) either A1 0 f o A3 (x) is cyclic (x%9/)) or Chebycheu(Tyeg ) (x)) for some
A1, 22 € A(K) (81.3; Proposition5.1 for precision on thels).

Let K be a number fieldg € Og[x] (maybe decomposable
(1.3) Assumeg : Og/p — Ok /p is one-one foroco-ly many primesp.

Then g is a composition over K of polynomials f satisfyifig2).
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MacCluer[Mc67] earlier showed that iff € [,[x] gives a tame ramified cover over
K =TF, with ks g =0, thenf : [, — [, is a one—one map. Fried [Fr74b] quoted
[Mc67] for the name exceptional. It also showed how generally MacCluer’s conclusion
applied, to any finite covep : X — Y of absolutely irreducible nonsingular varieties
(any dimension, even if wildly ramified) satisfying the general conditigry = O.

1.2.2. Primitivity and grabbing a generic group

If you have ever done a crossword puzzle, then you will recognize this situation. You
have a clue for 7 Across, a seven letter word, but you have only filled in previously the
4th letter: ...E...: Say, the clue is “Bicycle stunt.” You will be happy for the moment to
find one word that fits, even if it is not the precise fill for the crossword. Should not
that be easier to do than to be given another letter W..E... that constrains you further?

The lesson is that you cannot seem to “grab” a word at random, but need clues
that force you to the “right” word. That also applies to groups. They are too discrete
and too different between them. If you are not a group theorist you likely would not
easily grab a primitive, not doubly transitive, group at random. Exceptional covers and
Davenport’s problem focused group theory on a set of problems that were the analog
of having to fill a suggestive set of letters in a crossword clue.

That tantalized John Thompson and Bob Guralnick to push to complete solutions for
a particular problem where the constraints included that the group was the monodromy
of a genus 0 cover over the complexes. Section 3.3 and 8 show why examples that were
telling in the genus O problem (over the complexes) applied to produce an understanding
of wildly ramified covers in positive characteristic. The Guralnick-=Thompson genus 0
problem succeeded technically and practically. It was propitious: it took group theory
beyond the classification stage that dominated the simple group program; yet it made
much of that classification work.

1.3. Notation

We denote projective 1-spac®!, with a specific uniformizing variable by P}.
This decoration tracks distinct domain and range copie®of

1.3.1. Group notation

We use some classical algebraic groups over a feléspecially affine groups and
groups related to them. I/ = K", then the action of Gl(K) on V produces a
semi-direct product groupy x*GL,(K). Represent its elements as pairs, v) so the
multiplication is given by

(1.4) (A1,V1)(A2,V2) = (A1A2, (V1) A2 + V2).

Here we use a right action of matrices on vectors. Regard this whole group as permuting
elements ofV by the action(A1,vi) mapsv € V to (V) Aj + vi. If you prefer a left

action of matrices on vectors, then it is convenient to wfite v) as (8 1)- Then,
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multiplication is that expected from matrix multiplication

(1.5) (Al Vi )(AZ v2) = (AloAz V1+A11(V2) )

Representv € V as (): V x*GL,(K) permutesV by left multiplication.

A subgroupV x*H with H <GL,(K) is an affine group. If K is a finite field, it
is an easy exercise to show the actionVofx® H is primitive if and only if H acts
irreducibly (no proper subspaces) dn

We use a special notation fak(K), affine transformations

X+ ax+b,(a,b) e K* xK.

Mobius transformations are PGLK ). We use their generalization to P4 (K) acting
on k-planes,k<u — 1, of P“(K) (K points of projectiveu-space). Denote the set of
distinct unordered points dP} by U, = (PH)" \ A,)/S, (A = A, in §2.1.1). Quotient
by PGLx(C) acting diagonally (commuting witl§, on (P})’). If r = 4, these PGR(C)
orbits form the classig-line IP} minus co [BFr02, §2.2.2].

We use groups and their representations, especially permutation representations to
translate the geometry of covers. In practice, as in §5.2.3, our usual setup has a subgroup
G of S, the symmetric group of degreewith multiplications from theright. Example
For g1 = (23),g2 = (12)(34) € Sa4, (2)g1g2 = 4 gives the effect of the product of
g1g2 on 2. (Action on the left would givez1g2(2) = 1.) Abstract notation of 84.1.1
expresses the canonical permutation representation of a covér. 86— Sy: G acts
on a setv.

Recalt A cover istameif over its ramification locus, its inertia groups have orders
prime to the characteristic. Since we restrict our maps to avoid singular sets, on the
varieties in the cover, there is no special subtlety to this definition.

1.3.2. Riemann Hurwitz

An elementg € S, has an index in¢t) = n — u whereu is the number of disjoint
cycles ing. Example (123(4567 € Sg (fixing the integer 8) has index 83 = 5.
Supposep : X — P% is a degreen cover (of compact Riemann surfaces). We assume
the reader is familiar with computing the gengs of X given a branch cycle description
g=1(g1, ..., &) for ¢ (8A.1): 2(n+gx — 1) = > ;_, ind(g;) [Vo96, §2.2] or [Fr06,
Chapter 4].

1.3.3. Frobenius progressions and fiber products
We need a precise notation for certain types of arithmetic progressions and their
unions. Letn be an integer that refers to a modulus for an arithmetic progression

Ag = Agn = {a+kn | 0<k € Z} with 0<a € Z.
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Call A, a full progression ifa < n. Givenn, any u € A, definesA, uniquely. A
full FrobeniusprogressionF, = F,, is the union of the full arithmetic progressions
modn defined by the collection of residue classes(Z/n)*modn. Example: The full
Frobenius progressiofs 12 iS A212U A10.12.

2. Fiber products and extension of constants

This short section has two topics even an experienced reader has never seen before:
pr-exceptionality (8.1.2) and the extension of constants series (82.2). We use fiber
products for the latter. Interpreting exceptionality is an example (82.3).

2.1. Fiber products

There are diophantine subtleties in our use of fiber products (see §2.3.2), for we
remain in the category of normal varieties.

2.1.1. Categorical fiber product
Assumeg; : X; — Y, i = 1,2, are two covers (of normal varieties) oyér The set
theoretic fiber product has geometric points

{(x1,x2) | % € Xi(K),i =1,2, ¢p1(x1) = ¢o(x2)}.

Even if these are curves, this will not be normal(at, x2) if x1 and x2 both ramify
overY. The categoricalfiber product of two covers here means the normalization of the
result. Its components will be disjoint, normal varieties. We retain the notationy X»
often used for the purely geometric fiber product. Ap point x of X (x € X (F,))
means a geometric point ¥ with coordinates inf,.

When ¢, = ¢, has degree at least 2 the fiber produktxy X, has at least two
components (if de@) = n > 1): one the diagonal. Denot€ xy X minus the diagonal
component bw@\A. Then, for any integek, denote thekth iterate of the fiber product
minus thefat diagonal (pairwise diagonal components) bX/’; \ A. This is empty if
k > n. There is a slight abuse in using the symbofor all k.

Any K component ofX} \ A is aK Galois closurep : X — Y of ¢, unique up toK
isomorphism of Galois covers of The permutation action af, on X} \ A gives the
Galois groupG(X/Y) as the subgroup fixing. When considering a family of covers
{X; — Ys}ses Over (even) a smooth base spa8eonly in special situations do we
expect the Galois closure construction to work ofetn characteristic O (where there
is a locally smooth ramification section) there is an étale céves S over which the
Galois construction does occur (Rem&k).

Remark 2.1. To effect construction of a Galois closure canonically for a family of
curve covers in characteristic 0, use fSrthe pullback to theinner Hurwitz space
H(G,C)™ (notation from 8A.1) as ifFV91l]. Practical A, examples are in [FrO5a,
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8A.2.4, especially Proposition A.5]. A theme of Fried and Mézard [FrM02]: expect
such a$ in positive characteristic only if a family of projective curve covers tamely
ramifies. Further, its computation is explicitly understood onlydf is prime to the
characteristic.

2.1.2. Pr-exceptional covers

Let Y be an absolutely irreducible normal variety ovgy. Our constructions are
usually over an absolutely irreducible base. As in Definition 1.1, consider the restriction
¢y of a coverp over some operY’ where it becomes a morphism of nonsingular
varieties.

Definition 2.2. A pr-exceptional(pr for possibly reducible cover ¢ : X — Y is one
with ¢y surjective onlF,: points for infinitely manyt for any allowableY’.

We permit X to have no absolutely irreducible, component. (Since it is normal,
such anX has nolF, points.) It is essential for Davenport pairs (DPs3.@ to consider
cases wher&X may have several absolutely irreducilfle components. IX is absolutely
irreducible, then a pr-exceptional coveris exceptional.

Here is a special case of Fried [Fr74b]. In [FGS93], it has a group theory proof.
In our generality (allowingY of arbitrary dimension) we need the special case of
Principle 3.1 applied to exceptional covers.

Proposition 2.3 (Riemann Hypothesis PropositipnSupposep : X — Y is a cover of
absolutely irreducible normal varietie@ver [,). Then ¢ exceptional is equivalent to
each of the following

(2.1a) Xf, \ A has no absolutely irreducibl&, component
(2.1b) For any choice oft’ in Definition 1.1, there areco-ly many t withgy, surjective
(and one—ongon [, points

Let E,(F,) be those t wherg2.1a) holds W|th q' replacmg q X2 \ A has no

absolutely irreduciblef,» component. A cha|rX—>X’—>Y of covers is exceptional
if and only if each cover in the chain is exceptional. Then

E(p”o(p’([Fq) = E(p”([Fq) N E(p’(mq)-

We call E,(F,) the exceptionality set o (over [,). Section2.2 restates exception-
ality using the geometric—arithmetic monodromy groups,, G p) of o: X — Y. The
quouenth,/Gq, is canonically isomorphic to the cyclic group/d(p), whered(¢p)
defines the degree of the extension of constants field. A qudﬂﬁédltxz) of Z/d(¢p)
indicates precisely which valugsare in E,([,) (Corollary 2.8). The exceptlonallty set
E, is a union of full Frobenius progressions. This extends to pr-exceptional (Principle
3.1): it has a Galois characterization and the pr-exceptionalityEsgl,) is a union
of full Frobenius progressions.
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2.1.3. Galois group of a fiber product
Recall the fiber product of two surjective homomorphisajs: G; — H, i =1, 2:

G1xu G2=1{(g1,82) € G1 x G2 | 91(g1) = 95(g2)}.

The following hold from an equivalence of categories with fiber prodikeD6,
Chapter 3, Lemma 8.11]. Suppose : X; — Y are two covers, with geometric
(resp. arithmetic) monodromy grou@,, (resp.,é%), i =1,2. Let 30X (resp.,X) be
the maximal simultaneous quotient gfX; — Y (resp.,X; — Y), i = 1, 2. Then the
geometric (resp., arithmetic) monodromy group of the fiber product

(@1, 92) : X1 xy Xp = Y

is Gy, x1 Gg, (resp., Gy, xu Gg,) With H = G(apX/Y) (resp., G(X/Y)). Note
DeterminingH is often the hard part.

We now consider the natural permutation representation attached to a Galois closure
of a fiber product. LeT; : G; — Sy,, i = 1, 2, be permutation representationss 1, 2
(as in 8.1.1). These representations produce a tensor representation on the categorical
fiber product asT : G1 xyg G2 — Sy;xv, (as in §3.2).

2.1.4. Introduction to branch cycles

Now assumeY = [P;, the context for classical exceptional covers. If we restrict
to tame covers, thebranch cycledescriptions often figure out everything in one fell
swoop. Assumez contains all branch points of botf; and ¢,. As in §A.1, branch
cycles start from a fixed choice of classical generatord/er{we assume this given;
with r points in Z). Section A.3 explains how this applies to tame covers in positive
characteristic.

Proposition 2.4. Assume&G; is a geometric monodromy group fer, i = 1, 2. Suppose
g (resp, g) is the branch cycle description fap;, i = 1,2 (resp, (¢4, ¢,)). Then
g = (gt. 8%, k = 1,...,r. The orbits of T on(g) correspond to the absolutely
irreducible components of the fiber produky Xp1 X2.

Finding g is usually the hard part. Propositidh7 has a practical example.

2.2. The extension of constants series

Many arithmetic properties of covers appear from an extension of constants in going
to the Galois closure of a cover. Let: X — Y be aK cover, with degp) = n, of
absolutely irreducible (normal varieties). As in §2.1, et X - Y be its arithmetic
Galois closure with groupi;q, Denote the group ok — X by Gq,(l) with similar

notation forabX .
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2.2.1. Iterative constants

Let K,(k) = K (k) be the minimal definition field of the collection of (absolutely
irreducible) K components otX’;\A, 1<k <n. Then, the kernel o(?q, — G(K(n)/K)
is G,. SinceX% \ A has definition fieldk, each extensioi (k)/K is Galois. Call it the
kth extension of constants fieldurther, the groupi;(l?q,(k)/l() acts as permutations of
the absolutely irreducible components)of, \ A. Denote the corresponding permutation
representation on these components7hy;.

There is a natural sequence of quotients

G(X/Y) = G(Ky)/K) — --- = G(Ky(k)/K) — --- — G(Ky(1)/K).

Here G(k(l)/K) is trivial if and only if X is absolutely irreducible. As in Corollary
2.8 the exceptional cover topic primarily deals with the fieki€2). We record here
an immediate consequence of Proposition 2.3.

Corollary 2.5. For K a finite field G(IQ(/,(Z)/K) having no fixed points undef,, »
characterizesp being exceptional

The only general identity between these fields, (k)}7_, is in the next lemma. For
any ordered subset = {i1 < --- < it} C {1,...,n}, denote projection oX} \ A on
the coordinates of by pr;.

Lemma 2.6. The mappr; : X} \ A — X’;, \AisaKmap. Fork =n—1itis an
isomorphism. In particularK ,(n) = K, (n — 1).

Proof. The ordering on the coordinates a&f; \ A is defined overK. So, picking out

any coordinates, as prdoes, is also. Sincé(’; \ A is a normal variety, if pr is
generically one—one then it is an isomorphism. Off the discriminant locus points of
Xy \ A look like (x1,...,x,), wherex, ..., x,_1 determinex,, the remaining point
over ¢(x1) € Y. So, when/ = {1 < --- < n — 1}, the map is one—one.l]

Remark 2.7. Fried [FrO5b, Appendix B] shows how the arithmetic monodromy group
of A, covers is at the other extreme (depending solelykgy(n—1).

2.3. Explicit check for exceptionality

Apply the extension of constant series wh&n= [, and [AFq (k) is the kth extension
of constants field. We WriteG([AFq(k)/[Fq) as Z/d(¢, k). The extension of constants
group is

def

Gp/Gp =Gy o/Fy) = Z/d(e,n).
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It definesF,(n) = F, ,(n), the minimal field over whichX breaks into absolutely
ireducible components. Fox absolutely irreducibleG,/G, = G4(1)/Gy(1). Any

t € Z/d(p.n) defines aG,, cosetG,, & G,i, 7 € G, with 7 > 1.

2.3.1. Using equations
If ¢ is exceptional, then (2.1a) visually gives,(F,.) for any integert. List the
irreducible [, components otX,z, \AasVy,...,V,.

Corollary 2.8. Exceptionality ofe holds if and only if eachV; breaks intos; compo-
nents conjugate overlr,, with s; > 1,i =1,...,u, over [_Fq. Denotelecm(s1, ..., sy)
by d(¢.2). Restrict elements ofi,, t0 F up2 C Fuue to induceGy(1)/Gy(l) —
Z/d(@,?2). Then E,(F,) is the union oft € Z/d(¢,2) not divisible bys; for any
1<i<u. Sq all t € (Z/d(@,2))* (or in (Z/d(¢,n))*) are in Ey(F,).

(22) At e Z/d(p,n)isin Ey(lF,) precisely when eacly e GW fixes (at least or
at mosj one integer from{1, 2, ..., n}.

2.3.2. Rational points on fiber products
Let o, : X; > Y, i = 1,2, be twoK covers of (normal) curves. Consider the fiber
productX = X1 xy X2. Any x € X (F,) has image

(2.3) xi € X;(Fy), i =1,2, with ¢1(x1) = @a(x2).

Conversely, if at least ong; does not ramify ovew; (x;), thenx = (x1, x2) is the
unique [, point overx;, i = 1,2. We now stress a point from Princip&1l.

Assume(q1, @,) is a DP of curve covers ande E(y,.¢,)- Then there isc € X (F,r)
lying over bothx; satisfying (2.3), even if both points ramify over the base. When
(91, @,) is not a DP, the following is archetypal for counterexamples to there being
x € X(F,) when both thex;’s tamely ramify over the base. Technically this example
is a DP (two polynomial covers linearly related O\Eéqr, but not overlF,), though not
for the t we are considering.

Example 2.9. Assumea € [FZ is not ann-power from[,. Let f1 : Pil — IP[E map by
x1> x§ and fo: PL, — P! map byxz > axj. Then, the fiber produdPl xp1 P,
has no absolutely irreducible, components, and so rig, rational points. Stillx; =0

maps toz = 0, i = 1, 2. It is muchmore difficult to analyze this phenomenon if the
ramification is wild.

Remark 2.10. According to Corollary2.8, exceptionality depends only on group data.
Let H< Gy, H=HNGy andH (1) = HNGy(1). Let Dy be the image ot (1)/H (1)
in Z/d(e, 2). Call the subgroupd exceptionalif H is transitive, and if nos; divides

the order of Dy, i =1,...,u.

3. Pr-exceptional covers

Section 3.1 interprets pr-exceptionality. Then, 83.2 relates it to DPs. Let
¢ : X — Y be anyK = [, cover. ThoughX may have severd{ components (some not



M.D. Fried/Finite Fields and Their Applications 11 (2005) 367-433 381

absolutely irreducible), for each there is a Galois closure, and a corresponding permu-
tation representation. Together these components give a Galois closure @gpu:p
G(X/Y) and a permutation representation: The direct sum of those coming from each
of the components. That is, the group acts on a set of cardinaktyded ¢), with or-
bits 04, ..., O, of respective cardinalitie¢ns, ..., n,), corresponding to the different
[, componentsX; of X.

Denote restriction ofp to X; by ¢;. The quotientéq)/Gq, is isomorphic toZ/d (o).

For eachi we have G, — G, defining a surjectionZ/d(¢) — Z/d(¢;, k),
1<k; <n; — 1, analogous to wheiX has one component.

3.1. Exceptionality set for pr-exceptional covers

Use Definition2.2 for pr-exceptional covers. Comments on the proof of Principle 3.1
are handy for checking pr-exceptionality by going to a largend using properties on
fiber products off the discriminant locus. Call this th@roid)-ram argument

3.1.1. Lifting rational points
The following variant on (2.2) defineg,([,) for ¢ pr-exceptional. The difference
is removal of the phrase “for at most one integer.”

(3.1) AtreZ/d(p,n)isin Ey(F,) precisely when eacly e GW fixes at least one
integer from{1, 2, ..., n}.

Principle 3.1 (Lift Principle). Supposep : X — Y is pr-exceptional andr’ is chosen
SO @y, is a cover of nonsingular varieties. Then those t with, surjective onf
points is E,(F,) union with a finite set

CommentsAitken et al.[AFHO3, Remarks 3.2 and 3.5] discuss the literature and give
a short formal proof for the exceptional case. We extend that here to pr-exceptional.

Assumeg : X — Y is pr-exceptional ovef . Let Y° beY minus the discriminant
locus of ¢, and X° the pullback by of Y°. Aitken et al. [AFHO03, Remark 3.9]
extends in generality, with only notational change, the short proof of Fried and Jarden
[Frd86, Lemma 19.27] for DPs of polynomials. This proof shows the equivalence of
¢ : X — Y pr-exceptional ovef,: (without assumingX is absolutely irreducible) with
the following Galois theoretic statement.

(3.2) Eachg e G(,,,, fixes at least one element ¢f, ..., n}.

Another way to say this: If each € CA;W fixes an integer in(1, ..., n}, not only is
@ : XO(F,) — YO(F,) surjective, so isp : X(F,) — Y (Fy0).

In the references cited above, everything was said for curves. fFi@db, Theorem
1] has the result for exceptional covefs: X — Y whereX andY are copies of affine
n-space (allowing ramification, of course), §a@s a generalized polynomial map. The
argument is much the same. It starts witl, in the Galois group oveso € Y (F,1)
that acts like the Frobenius on the residue class field of a geometric point on the Galois
closure overyg. This argument only depends on the local analytic completion around
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yo. So, it extends to any that (analytically) is a map of affine spaces. That is what
we get for anyepy, with Y" C Y;® (Definition 1.1).

Remark 3.2. The notationE, ([,) for ¢ : X — Y may be insufficiently general for all
pr-exceptional covers. Restricting to a proper unionx’ of F, components ofX, to
give ¢’ : X’ — Y, may also be pr-exceptional. TheA,, (F,) may be a proper subset
of E,(F,) and we callp’ a pr-exceptional subcover af.

Problem 3.3 (A MacCluer-like Problem Proposition3.1 goes through the domain of
an extensive generalization of MacCluer's Theorem [Mc67]. When can we agsert
X(F4) — Y(F,) is one—one for € E,([F,), not just one—one oveYQS?

3.1.2. Pr-exceptionality versus exceptionality

If :X — Y is pr-exceptional, therE,([,) in Principle 3.1 is theexceptional set
of ¢. From comments of Principle 3.1, whenis exceptional we know each € (A;(p,,
fixes exactly one integer ifd, ..., n}. In fact, we have a characterization of the subset
of thoser € E,([F,) for which a pr-exceptional cover acts like an exceptional cover:
with this property.

(3.3) X ® F has one absolutely irreduciblg,; componentX’, and restrictingp to
X' gives an exceptional cover oveé,:.

If ¢ is exceptional, then & E,(F,). Example2.9 has a pair of covers that is a DP,
though its exceptionality set does not contain 1. Here the fiber product from this DP
produces a pr-exceptional cover: X — Y with X containing no absolutely irreducible
factor over[,.

3.1.3. Pr-exceptional correspondences

SupposeW is a subset ofX; x Xo with the projections pr: W — X; finite
maps,i = 1,2. Call W a pr-exceptionalcorrespondence (ovek,) if both pr;’s are
pr-exceptional. We get nontrivial examples of pr-exceptional correspondences that are
not exceptional from (3.6): the fiber product from a D@y, ¢,) is a pr-exceptional

correspondence. Denote the exceptionality set defined(bwy XzﬂX,-, by E.,
i =1,2(83.3.1). In the DP caséy, N Eyp, is nonempty (as in Corallary 3.6).

If W is absolutely irreducible both pgs are exceptional cover$V is anexceptional
correspondenceSection 4.1.2 allows forming a common exceptional subtdixerx, r,
of both 7'x1,[Fq and of TXL[Fq consisting of the exceptional correspondences between
X1 and X». The exceptional set for the correspondence is thgn N Epr,. We do not
assume bothX;’s have an exceptional cover to some particiar

Principle 3.4. An exceptional correspondence betweenand X, implies | X1(F,)| =
|X2(F40)| for oo-ly many t

Classical cryptology include; = le,-’ i=1,2.
Supposeyp, : P} — PL i =12, is exceptional. ThefP} x 1 PL has a unique

absolutely irreducible component, which is an exceptional coverPf;gt i =12
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(Proposition4.3). So, 85.1 produces a zoo of exceptional correspondences between
P2, and PL, (of arbitrary high genus).

3.2. Davenport pairs give pr-exceptional correspondences

Supposep; : X; — Y, i = 1,2, are (absolutely irreducible) covers. The minimal
(Fy) Galois closureX of both is anylF, component ofX1 xy X (82.1.3). The attached
group G = G(q,l 0y = G(X/Y) is the fiber product ofG(X1/Y) and G(X2/Y) over
the maximalH through which they both factor. Its absolute versionGis= Gy, .¢,)-

3.2.1. DPs and pr-exceptionality

Both G and G have permutation representationfy, and 7> coming from those of
G(}?i/Y), i =1, 2. This induces the tensor produgt® 7> of Ty and 7>, a permutation
representation oiG;. The cyclic group

G(</71’<P2)/G(§01v(ﬂ2) = G([qu(@lv‘ﬂz)/”:li)

is Z/d: d = d(pq, ¢,) is the extensions of constantkegree. For € Z/d, denote the
G (¢,.0, COSet mapping td by Gy, ¢,).-

We modify Definition1.1 to define a DP. Assumg’ is a Zariski operK subset of
Y s0 (¢4, ¢5) : X1 xy X2 — Y restricts overY’ to a cover of nonsingular algebraic

sets ¢’ C Y(TPS o,)+ S€€ Remark 3.8).

Definition 3.5. Then, (¢4, ) is a DP if we get equality of the ranges g¢f ,, on
F, points,i = 1,2, for co-ly manyt.
We show equivalence of these conditions:

pry.
(3.4a) X1 ><yX2—X’>X,-, is pr-exceptional, and the exceptionality sétg (F,), i = 1,2,
have nonempty (so infinite) intersection

def
Epr, (Fg) 0 Epr,(Fg) = Eq, 4,(Fy); and

(3.4b) (¢4, ,) is a DP (independent of the choice Bf).

The following is a corollary of Principle3.1. Again letY’ as above be given, and
denote its pullback taX1 xy X2 by (@1, ¢,)~1(Y’), etc.

Corollary 3.6. Either property of(3.4) holds for (¢4, ¢5) if and only if the other holds.
If (3.4), then t € E(p,.0,)(Fy) and x; € ;1Y) (Fy0), i = 1,2, with @1(x1) = @a(x2)
implies there isc € (¢4, (pz)_l(Y’)([qu) with pr;(x) = x;, i =1, 2:

(3.5) P17 Y)Y ([Fg)) = @o(p3 (Y)Y (Fyo)).

The set of t for which(3.5) holds is E,, ¢, () union a finite set
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Further, both conditions 0f3.4) are equivalent to there being € Z/d (¢4, ¢,) SO
(3.6) tr(Tu(g)) > 0 if and only if tr(72(g)) > 0 for all g € G(p,.0,) -

Proof. Condition @.6) saysTi ® T»>(g1, g2) = T1(g1)T2(g2) > 0 if and only if T;(g;) >
0 (eitheri). This is exactly pr-exceptionality foK; xy X> — X;. It is also exactly the
DP condition as in [AFHO3, Theorem 3.8]. So, this is equivalent to both conditions
of (3.4).

For the range equality of (3.5), with; € wgl(Y/)([qu) apply pr-exceptionality to
getx € (¢4, <p2)_1(Y’)([qu) over it and let ps(x) = x2 t0 get p,(x2) = @1(x1). So,
¢1(x1) is in the range ofp, on [F, points, etc. []

Each DP(¢4, ¢,) has an exceptional set

def .
E(pp0p(Fy) = (1 modd(gy, @) With(3.6)}.

Multiplying by (Z/d(¢q, ¢,))* preserves Ey, o) (Fy). Call (@1, ¢,) a strong
Davenport pair (SDP) if3.6) holds for allzg € Z/d.

Remark 3.7. Supposep : X — Y is pr-exceptional. If we knew the exceptionality set
Ey(F,) always contained 1, then the conditidfy,, N Epr, Nonempty in (3.4a) would
be unnecessary.

Remark 3.8 (Nonsingularity of a fiber produit A DP, giveng; : X; — Y, i =1,2,
uses thos&” with (¢4, ¢,) over Y’ a map of nonsingular algebraic sets. The union of
any two suchy’s is such a set. For sud, both ¢, s restrict overY’ to be maps of
nonsingular algebraic sets. Sometimes, however, the converse may not hole beet
the intersection of the ramification loci @f; and ¢, minus common components. We
can assumé&’ contains the complement &

3.2.2. Interpreting isovalent DPs using pr-exceptionality

Let o, : X; — Y, i = 1,2, be a pair off, covers. Call(pq, ¢,) anisovalent DP
(iDP) if the equivalent properties of (3.7) hold. Theh= 1 in (3.7a) is just the DP
condition (in @3.6)). _

Denote the fiber produgttimes (minus the fat diagonal) of; overY by X{)Y \ A.
Use notation around (3.6). We (necessarily) extend the meaning of pr-exceptional: Even
the target may not be absolutely irreducible. We also limit ¥ie used in Definition
3.5. Use only those for whiclk — Y, the smallest Galois closure of bofty — Y,
i = 1,2, restricts to a cover of nonsingular varieties o¥ér Notation compatible with
Definition 1.1 would haver’ c Y(gs.

Proposition 3.9. For any ¢ € Z/d(¢4, ¢5), the following are equivalent

(3.7a) For each1< j<n — 1, X{’Y \ A xy Xiy \ A is a pr-exceptional cover of both

X{ y \A and Xé.y \ A and t is in the intersection of the common exceptionality
sets over all j and projections to both factors
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(3.7b) For an allowable choice of’’, ¢’ representing t and any € Y’([Fq,r), there is
a range equality with multiplicity

91 () N Xa(F )] = o3 () N X2(F )],

(3.7¢) t(T1(g)) = tr(T2(g)) for all g € Gy,

Proof. From the a-ram argument (3.7a):c Y (F,) (not in the discriminant locus of
(1 Or @,) being the image of distinct points ofX; (F,:) holds fori = 1 if and only if

it holds fori = 2. Running over alf, that saysy is achieved with the same multiplicity
in each fiber. The a-ram argument perntitarge. So, the nonregular Chebotarev analog
[Frd86, Corollary 5.11] has this equivalent to (3.7c]l]

Definition 3.10. Denote thosé giving the iDP property (3.7) by-E(y,.¢,)-
Proposition3.12 generalizes [AFHO03, Theorem 4.8].

Lemma 3.11. Suppose G and; are groups withG<IG. Let T; be a faithful permu-
tation represention ofs induced from the identity representation éh <G, i = 1, 2.
Supposeyy, = 7, upon restriction to G. Thenyy, = xz, on G.

Proof. SinceT; = indg(indgi(l)), equality of the inner term representations foe 1
and 2 implies equality of the representatidhisand 7,. [

Proposition 3.12. If (@1, ¢,) is an iDP, then0 € E(y, ) (F,) if and only if (¢;, ¢,)
is an isovalent SDPI-E , ¢,)(Fy) = Z/d(¢q, ¢3).

Assume nowWe;, ;) is a DP and for some € E(p, ¢, (F4), X1 xy X2 has a
unique absolutely irreduciblé, component Z. Therboth X; — Y, i = 1,2, are [,
exceptional. If this holds for somee E(,, ¢,), thenle Eqy, 4, (Fy).

Proof. The first statement is from Lemm&a.11 using characterization (3.7c). Now
consider the second paragraph statement and for simplicity assume we have already
restricted to wherdo4, ¢,) is a map of nonsingular spaces.

For such &, restricting toZ — X; is a pr-exceptional cover (Corollary 3.6) since the
only [, points onXy xy X2 must be onZ. As Z is absolutely irreducible, Proposition
2.3 saysZ — X;, i = 1,2, is exceptional. To see that; is exceptional, again from
Proposition 2.3 we have only to show it is one—one. Using the a-ram argument, it
suffices to do this over the nonbranch locus of both maps. Supposg € X1(F;)
and ¢;(x1) = @q(x7) = z. Since this a DP, there isz € X»(F,) lying over z In,
however, the fiber product, the pointsy, x2), (x7, x2) € Z both lie overxz. This
contradicts thatZ — X5 is exceptional.

Any absolutely irreducible component df; xy X, over I, is an absolutely irre-
ducible component ovek,: for everyt. Suppose, howevek; xy X» has no absolutely
irreducible component ovelf,. Then, over the algebraic closure, components fall into
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conjugate orbits (of length at least 2). Any definition field for one component in this
orbit is a definition field for all components in this orbit.

So, if for somet there is a unique absolutely irreducible component, then this holds
for + = 1. Conclude Exceptionality fort implies X3 xy X2 has a unique absolutely ir-
reduciblelr, component. The exceptionality set of an exceptional cover always contains
1 (for example, Propositio#.3), giving 1€ E(y,.¢,). U

3.3. DPs and the genus 0 problem

It is easy to form new DPs (resp., iDPs (i1, ¢,) is an iDP). Composep; with
Y X; — X;, with ; exceptional,i = 1,2, with E, N Ey, N E(g,.9, 7# 9. Then,
(pr0Vq, Pa0,) is a DP (resp., iDP).

This subsection shows how we got explicit production of iSDPs (that are not excep-
tional) from our knowledge of iSDPs that exist over number fields. | mean this as a
practicum on the value of the genus O problem.

3.3.1. Exceptional correspondences and DPs

Proposition 3.12 characterizes DPs in which both maps are exceptional: Those with
X1 xy Xo having precisely oné&, absolutely irreducible componeit Then,Z — X;,
is exceptional; = 1, 2.

Assumeeg; : X; — Y, i = 1,2, over[, is any pair of covers an@ any corre-
spondence betweel; and X, (with the natural projections both covers). We say
respects(¢q, @») if @1 0pry = ¢, o pr,. Lemma 3.13 says components ¥f xy X»
suffice when seeking pr-exceptional correspondences that regpgap,).

Lemma 3.13.Let Z be a pr-exceptional correspondence betweégnand X» with
Epr, N Epr, = E nonempty. If Z respect§p,, ¢,), then (¢4, ¢,) is a DP (resp., pair
of exceptional covejswith £ = E,, ¢,. Alsq the imageZ’ of Z in X3 xy X, is a
pr-exceptional(resp, exceptional correspondence betweexy and X».

Proof. AssumeZ with the properties in the lemma statement and E. Apply the

a-ram argument (3.7a) and considef € Xi([F,) off the discriminant locus. Pr-
exceptionality gives € Z([F,) over X1, and pk(z) = x2 € X1(F,r). SinceZ respects
(01, ©2), P1(x1) = @o(x2). This argument is symmetric ip; and ¢, and shows
(@1, @2) is a DP.

Any correspondence respecti@q, ¢,) maps naturally toX; xy X». The above
shows the image is pr-exceptional. fis exceptional, then its image is an absolutely
irreducible varietyZ’. SinceZ — X; is exceptional, both the natural mags— Z’ and
Z' — X;, i =1, 2, are exceptional, with the same exceptionality set (Proposiigh
Now use that having one absolutely irreducible componenKerxy X, characterizes
(91, @2) being a pair of exceptional covers (Proposition 3.12)]

3.3.2. Some history of DPs
Polynomial pairs(f, g), over a number fieldK, with the same ranges on almost
all residue class fields, were what we once called DPs. 88.3 and Appendix C has
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background on these and on characteriptibPs. Investigating DPs started with prov-
ing Schur's conjecture[AFHO3] used DP to mean a pair of polynomials ovel,
as we do in Definition 3.5: Equal ranges 67 for oo-ly many t We usually in-
clude the not-linearly related assumption §8.2.1 to exclude such exceptionality situa-
tions as a degree one cover together with any exceptional cover. We do not expect
covers in an isovalent DP to have the same degree. Still, we learned much from the
case Davenport started: polynomial pairs gave the covers (totally ramifiecoovand
genus 0).

When exceptional covers, possibly wigh> 0, took on a life over a given finite field
in [FGS93], it made sense to do the same for DPs. Fried [Fr99, 85.3] showed that over

every finite fieldF, (¢ = p’) there are indecomposable i-SDP§ g) of all degrees
n= ”"Zf_l)l_l running over allx >2 andzs >1. The geometric monodromy group in this

case is PGl41(F,s). | used [Abh97] for the construction of the polynomiafover
[F,) with its monodromy representation on points of projective space. Then, | showed
existence of the polynomiaj from the action on hyperplanes of the same space. Since
f and g both wildly ramified, it was tricky to compute the genus of the covergof
(yes, it came out 0). Bluher [BI0O4] constructgdmore explicitly.

By contrast, Fried [Fr73, Theorem 2] showed this positive conclusion toward
Davenport’s problem. No indecomposable polynomial DPs could occur @veFhis
was because the occurring conjugacy clagsésclude a singleSinger cyclepreventing
C from being a rational union (see also [Fr05d, §2.3]). Yet, reducing these pairs modulo
primes produces tame polynomial i-SDPs over many prime finite fields. Further, over
number fields there was a finite set of possible degrees (88.2). What has this to do
with the genus-0 problem? It was the precise group theory description, using branch
cycles, that allowed us to grab appropriate wildly ramified covers from Abhyankar’s
genus 0 bag in positive characteristic.

Problem 3.14. Show these examples nearly give a complete classification of DPs over
F, given by polynomials(f, g) with f indecomposable anteq f), p) = 1.

4. Exceptional towers and cryptology

Let Y be a normal, absolutely irreducible variety ouey. It need not be projective
(affine n-space is of interest). We consider the categdyy, of exceptional covers of
Y over [,. It has this interpretation (Propositich3):

(4.1a) there is at most one morphism between two objects; and
(4.1b) Ty, has fiber products.

With fiber products we can considgeneratorsof subtowers (8.2). Section 5 lists
classical subtowers on which many are expert, because their generators are well-
studied exceptional covers. Our formulation, however, is different than from typical
expertise. That comes clear from questions arising in going to the less known sub-
towers of 86. These questions directly relate to famous problems in arithmetic geo-
metry. Section 4.3 documents mathematical projects in which exceptional covers had a
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significant role. Finally, 8.4 reminds that even for a polynomial the waxceptional
historically meant something included but not quite the same as in our context.

4.1. Canonical exceptional towers

This subsection showSy r, is a projective system canonically defining a profinite

arithmetic Galois groupf}y,[Fq with a self-normalizing permutation representatitny, .
Further, with some extra conditions, pullback allows us to use classical exceptional
covers to produce new exceptional covers on an arbitrary variéBroposition 4.7).

4.1.1. Projective systems of marked permutation representations

For V a set, denote the permutations \¢fby Sy. For a permutation representation
T : G — Sy andv € V, denote the subgroup ofg € G | (v)T(g) = v} by
G(T,v). Supposd(G;, T;)}ies is a system of groups with faithful transitive permutation
representations]; : G; — Sy,, i € I, a partially ordered index sét Assume also

(4.2a) fori > i’, there is a homomorphism, ; : G; — G;/, with
@i = Qo ifi>i">i" and

(4.2b) there is a distinguished sequeroge V;};c; (markings).

Definition 4.1. We say{(G;, T;, vi), ¢; ;)}ier IS @ compatible system of permutation
representations if for > i’, ¢, ;, mapsG;(T;, v;) into G(Ty, vyr).

The following is an easy addition of a permutation representation to a standard
lemma on projective limits on groups.

Lemma 4.2. Suppose in Definitio.1 the partial ordering on | is a projective sys-
tem. Thenthere is a limit groupG; whose elements naturally act as permutation
representations on projective systems of coset§ @, v;) = limeo; G(T;, v;).

4.1.2. The projective system G r,

We use the usual category structure for spaces over a base. Morpldispse 7y r,
to (X', ¢) € Ty r, are morphisms) : X — X' with ¢ = ¢’ o . Partially orderT7y,
by (X, @) > (X', ¢') if there is an ;) morphismy from (X, ¢) to (X', ¢').

Theny induces a homomorphisr&(X,/X,) to G(X,/X,), and so a canonical
map from the cosets OG()A((,)/X@) in G(f((p/Y) to the corresponding cosets faF.
Note (X,y) is automatically inTx/)[Fq. Proposition 4.3, a converse to the second
paragraph of Proposition 3.12, shows the partial ordering7om, is a projective
system.

The nub of forming an exceptional tower Of, [,) is that there is a unique minimal
exceptional cover dominating any two exceptional covers: X; — Y, i = 1,2
(supporting (4.1b)). This gives fiber products in the categbry, . Note the extreme
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dependence ofi,. We augment the Propositioh.3 proof with a pure group theory
argument (Remark 4.6) of the uniqgue map property (4.1b).

Let I <N™T. Examples we usel = {t}, a single integer, ot a union of Frobenius
progressions (Definition 1.3.3). Denote those exceptional coverslwiththeir excep-
tionality sets (84.2) byTy,[Fq (I). For yo € Y([F,), let 7},[Fq,y0(1) be those exceptional
covers ony’Fq (I) where yg does not ramify ing.

Proposition 4.3. With ¢; : X; — Y, i = 1,2, exceptional overf,;, X1 xy X» has a
unique absolutely irreduciblé, component X. Call its natural projectiop : X — Y
Assigning(X, ¢) to (¢4, ¢,) gives a categorical fiber product iffy,r, .

In this category there is at most or(&,) morphism between object, ¢) and
(X*, 9*). Sq ¢ : X — Y has nolF, automorphismswhich has this interpretation: For
any exceptional covep : X — Y, the centralizer ofé(,, in Sy, is trivial.

For (X, ) € Ty, denote the cosets aF(X,/X,) in G(Xo/Y) = G, by V,,
the coset of the identity by, and the representation cxﬁq, on these cosets by, :
Gy — Sv,. Then {(Gy. T,, vp)}x.g)eTy, Canonically defines a compatible system
of permutation representations. Denote its Iir(‘lfty,[gq, Tyr,)-

For I<N', e I and yg € Y(F,), there is a canonical projective sequence
xp € X(F,) of base points for alkX, ¢) € Ty.r, .y, (1) satisfyingo(xy) = yo.

Consider E = E,, (Fy) N Ey,(F,). Then E = E,(F,) contains a full Frobenius
progressionFy 4 (81.3.3) for some integer d

Proof. Supposep’ : X’ — Y is an exceptional cover ané(p//G(,,/ = 7Z/d'. Then, for

each field disjoint froan(,,/, X' xy X’ has only the diagonal as an absolutely irreducible
component. This holds for eache (Z/d")*, t € E,. Continuing the notation prior to
the statement of the proposition, we sha&wxy X2 has a unigque absolutely irreducible
[, componentNote No component on it can appear with multiplicity for that would
mean the cover ramified over every point ¥f, rather than over a finite set. L&t

be any open subset ofg®> N Yg> (Definition 1.1).

First, consider whyX; xy X, has at least one absolutely irreducilfile component.
Suppose not. Lek o be a field containing the coefficients of equations of all absolutely
irreducible components of1 xy X». Then, over any field disjoint froni,« (over[,),

X1 xy X2 has no absolutely irreducible components. So, over such a field the subset
X}, of it over Y’, being nonsingular, has no rational points. We show this leads to a
contradiction. LetX’ be the pullback inX; of Y’.

From the first paragraph above, for any integein both (Z/d(¢;))*, i = 1,2,
Proposition 2.3 sayg; is one—one and onto oX(F,), i = 1,2. Since it is onto,
for t large, this impliesX} 2(Fyr) has rational points. To get a contradiction, take
large and in(Z/d")*. This gives us the absolutely irreducible compon¥nDenote the
pullback in it of Y/ by X'.

Considert € E. Use the a-ram argument of Principle 3.1. Suppose two points
x,x" € X'(Fy;) go to the same nonbranch point &f. Then they map to distinct
points, in one ofX’(F,) or X5(F,) (say the former), that in turn map to the same
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point in Y’. This is contrary tot being in the exceptional support of;. This shows
X — Y is exceptional, and € E,(F,) = E

AssumeX and X* are distinct absolutely irreducible, components ofX; xy X».
Then, fort € E (large) andx € X1(F,) (off the discriminant locus ofp,), there
is (x,z) € X(F;) and (x,z*) € X*(F,). Then,z and z* are two distinct points of
X5(F,) lying over ¢,(z) = @(x). This contradictsX> — Y being exceptional.

What if two differentF, morphismsyq, ¥, : X — X* commute withp*? Again X’
is the pullback ofY” C Yg° Assumet is large and in both théX, ¢) and (X*, ¢*)
exceptionality sets. Then there is € X'(F,) with y1(x) # Yo(x). Yet, p(x) =
Q*or1(x) = @*ofp(x): @* mapsy(x) andy,(x) to the same place. This contradicts
exceptionality ofe* for t.

Remark4.4 gives the equivalence @f : X — Y having nol, automorphisms and
the centralizer off}q, statement.

To seeE,(F,) is nonempty, consider that,, (F,) contains allz € (Z/d(¢p;))* for
bothi =1, 2 (from above). Sinc& /d(¢) maps surjectively tZ/d(¢p;), i = 1,2, any
integert in (Z/d(@))* is also in(Z/d(¢;))*, i =1,2. So, 1e E,(F,). The remainder,
including existence Otéyyﬂ:q, Ty, is from previous comments.[]

Remark 4.4 (Self-normalizing condition Denote the normalizer of a subgrotpof a
groupG by Ng(H). We sayH < G is self-normalizingf Ng(H) = H. We can interpret
this from G acting on coset¥ of H: Ty : G — Sy. The following equivalences are
in [Fr77, Lemma 2.1] (or [Fr06, Chapter 3, Lemma 8.8], for example).

Self-normalizing is the same as the centralizer®fin Sy being trivial. Finally,
suppose everything comes from field extensions (or covérgk is a finite separable
extension, and. its Galois closure, withG = G(L/K) and H = G(L/L) Then, self-
normalizing meansL/K has no automorphisms. Ify is a primitive representation
(and G is not cyclic), self-normalizing is automatic.

Remark 4.5 (An exceptional covep : X — Y has nolr, automorphisms We can
see this special case of Propositiér8 from group theory. An automorphismidenti-
fies with an element iG(X/Y)\ G(X/X) normalizingG(X/X) = G(T,, 1) (Remark
4.4). Consider any € G,, N G(X/X). Then,aga~ € G,, N G(X/X) according to
this data. This, however, is a contradiction, fa)7,(x) # 1. So, contrary to Corollary
2.8, ngo ! fixes two integers in the representation.

Remark 4.6 (Group theory of uniqgue morphisms in Propositidr8). More general
than Remarkd4.5, we interpret with groups that there is at most égemorphism be-
tween(X, ¢) and (X*, ¢*). Say it this way: if(X, ) > (X*, ¢™), thengG (X*/X*)g ™!
contains the image of(X/X) only for g € G(X*/X*).

Supposex € X is generic, and there are two maps, giving ;(x) = x € X*,
i =1,2. Sincep*oy; = ¢, K(x}), i = 1,2, are conjugates. This interpretsé(;T(,,, 1)
has image inG,+ contained in bothG (T,+, 1) and G(T,+, 2). For exceptional covers
the contradiction is thakK (y, xj, x3) is not a regular extension of (y) while K(x)
(supposedly containing this) is.
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4.1.3. Pullback
Fiber products give pullback of pr-exceptional covers, and with an extra condition,
of exceptional covers.

Proposition 4.7. Supposey : Y’ — Y is any cover of absolutely irreduciblg, va-
rieties. If ¢ : X — Y is pr-exceptional(over F,), thenpr,y : X xy Y' — Y is
pr-exceptional andE,(F,) injects into Eprw‘y/([F,,).

Let 7—)/’[Fq’y/ be those exceptional covegs: X — Y in Tyﬁ with X xy Y’ absolutely
irreducible. This gives a mapry, o (-, ¥) : Trr,y = Ty v,

@ pry,y i X xy Y = Y', by projection ony’.

In particular, 7y, is nonempty for any variety.Y

Proof. Use the a-ram argument of Principlel with these hypotheses. Assume
Ey(Fy), and yet Phy X Xy Y' — Y’ maps(x1,y’), (x2,y") € X xy (Fy) to y'.
Then, ¢(x;) = Y(y’), and sincep is exceptional, this implies; = x». So,t is in the
exceptionality set of the pr-exceptional cover,pr.

If a pr-exceptional cover is of absolutely irreducible varieties, then it is exceptional
(from (3.3)). This gives the second paragraph statement. Now consider the problem of
showing 7y r, is nonempty for any variety.

CompleteY in its ambient projective space, and then normalize the result. Normal-
ization of a projective variety is still projective [Mum66, p. 400]. So, if we construct
an exceptional cover of the result, then restriction gives an exceptional coYefTbfs
reduces all to the caséis projective. Nother's normalization lemma now says there
is a covery : Y — P’ with t the dimension off [Mum66, p. 4]. Suppose we produce
an exceptional covep : X — P’ whose Galois closure has order prime to the degree
of . Then, pullback ofX to Y will still be irreducible.

If Yis a curve, sor = 1, we can use one of the many exceptiofigl covers
of IPZl with absolutely irreducible fiber products with (the easy ones in §1.1, for
example). Forr > 1, Fried and Lidl [FrL87, 82] constructs many exceptional cov-
ers of P' for everyt by generalizing the Redyi functions and Dickson polynomials
(and their relation) to higher dimensions. The construction, based on Weil’s restric-
tion of scalars, applies to any exceptional cover ®f to give exceptional covers
of P'. O

Remark 4.8. The mapE,(Fy) — Epr, . (Fy) in Proposition4.7 may not be onto.

Remark 4.9 (Generalization of Propositio#.7). Supposey : Y/ — Y is any mor-
phism of absolutely irreducible normal varieties, not necessarily a cover or a surjection.
Then, Propositiord.7 still holds: this is a very general situation including restriction
to any normal subvarietyy’ of Y. The hard part, of course, is figuring out when
irreducibility of the pullback will hold.
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4.2. Subtowers and equivalences among exceptional covers

Suppose a collectiog of covers from an exceptional towéfy r, is closed under
the categorical fiber product. We say is a subtower We may also speak of the
minimal subtower any collection generates. The following comes from the Proposition
4.3 formula and that the fiber product of unramified covers is unramified. AgairZ, ™.

Lemma 4.10. The coIIectionsTy,[Fq(I) and YA (to € Y(F,); 84.3) are both
subtowers ony,[Fq.

It is often useful to sayr, ' € F,(x) are PGlzo(F,) (resp, A(F,)) equivalentif
h=ooh'oo for somea, o' € PGLx(F,) (resp.,A(F,)).
Practical cryptology focuses on genus O exceptional curve coyersX — [P’i is

exceptional, andX has genus 0. Over a finite fiel is isomorphic toIP)lc for some
variable x. Since cryptology starts with an explicit place to put data, we expect to
identify such anx. Yet, to give an expedient list of all exceptional covers we often
drop that identification, and extend P&I,) equivalence.

If hi,....hy, andhy,..., h, are two sequences of rational functions over a field
K, thenhiohzo---oh, is PGLa(K) equivalentto i} o h)yo--- o h; if eachh! is
PGLx(K) equivalent toh;, i = 1,...,v. Let R,, .., be the collection of composi-

tions of v exceptional rational functions of respective degreegs...,n,. Denote by
Rn,...n,/PGL2(K) its PGLx(K) equivalence classes. Similarly, for affine equivalence,
and spaces of polynomials using the notatidn, .. ., /A(K).

Any explicit compositionf of v rational functions (with degrees, ..., n,), overK,
defines its PGL(K) equivalence class. Still, there may be other B@L) inequivalent
compositions off into rational functions oveK. (If K = [F, andf is exceptional, then
each composition factor will automatically be exceptional.)

So, rather than invariants for the rational functions, these equivalence classes are
invariants for rational functions with explicit decompositions. Still, for any interesting
composition of exceptional rational functions, we immediately recognize the whole
PGLx(F,) equivalence class.

We extend this definition further. Suppose: ¥ — P%, with Y of genus 0, has an
explicit decomposition ang/ : X — Y is aK cover.

Definition 4.11. Refer top oy : X — [F"% as having an explicit decomposition. Then,
the PGLy(K) action onys induces a PGE(K) action ong oy by composition withy
after the action. This gives the P@IK) equivalence class ofi, ¢).

Let Y be an open subset 6f, a projective curve. Consider the subtoW(}‘l“[}; (resp.,

unr,tm ‘ot . e f
Ty.[ﬂ, ) of Ty, consisting of exceptional covers unramified o¥e(resp., in YUEZ

and whose extension to a cover bfis tamely ramified). Propositiod.7 shows how
pullback from one curve to another allows passing exceptional covers around. Still, it
is significant to know when exceptional covers aewvto a particular curve. We even
guess the following.
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Conjecture 4.12. Suppose two curves Y aritl over [, are not isomorphic ovefr,.
Then the limit groups ofT;fE; and #f‘[rFq (and even ofTYLfFF‘:tm and 7;]’[,1[?;”1) are not
isomorphic

Even if we restrict to exceptional covers with affine monodromy groups, this may
be true. It is compatible witliTa02], a topic continued in [FrO5b].

4.3. History behind passing messages through the | subtower

Section 4.3.1 compares enthusiasm for cryptology with topics fitting the phrase
scrambling dataThen, 84.3.2 relates cryptology and exceptional correspondences.

4.3.1. Derangements and enthusiasm for cryptology

Many applications model statistical events with card shuffling. Depending on what
is a shuffle and the size of a deck, we might expect a random scrambling (shuffling)
to have a good probability to move every card. Combinatorics rephrases this to another
question: in a given subgrou@ < S,;, what is the proportion of elements that will be a
derangement84.3.2; [DMP95]). We assume elements equally likely selected (uniform
distribution). Restricting to a particular subgro@then stipulates what is a shuffle.
The hypothesis of a group just says you can invert and compose shuffles.

Consider this setupG<1G <, with G primitive, andG/G = («) cyclic and non-
trivial. Combinatorialists might ask if a good fraction of the coset (notation of
§2.3) is derangements. Example: Fulman and Guralnick [FuG01] outlines progress in
this guiding case (conjectured earlier by Boston and Shalev [Sha98]) wheres
trivial, contrary to our assumption.

Problem 4.13. Restrict toG = G andG is simple. Show the fraction of derangements
exceeds some nonzero constant, independe@. of

Group theory callsG almost simplevhen G<1 GSAuUt(G) with G (nonabelian) sim-
ple. To generalize Problem.13 to G, you must exclude possible exceptional covers.
Alternatively, use the near derangement property of this coset (84.3.2).

Many agencies today use cryptology to justify applying algebra outside pure math-
ematics. To include many approaches, cryptologists advertise alternative expertises, in-
cluding encoding in different rings or higher-dimensional spaces. Modern cryptology
(or as formerly, cryptography) connects with historical mathematics literature. Consider
this enthusiastic citation [LP98, p. 279], quoting from Kahn [Ka67]:

The importance of mathematics in cryptography was already recognized by the
famous algebraist A. Adrian Albert, who said in 1941: “It would not be an exag-
geration to state that abstract cryptography is identical with abstract mathematics.”

Lidl and Pilz [LP98, pp. 279-282, Chapter 6] emphasize that many inverse problems
appear when we consider data extraction.
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Hiding data is only one part of cryptography. The nature of the hiding techniques
and finding out what it means that they are secure is the other half. Also, there is no
escaping contingencies and serendipities from patient use of tricks. You get more of
a feeling about these when you hear the outcomes of successful code cracking. The
story of TuchmanTu58, Chapter 1] shows the tremendous resources that are required
for a significant payoff for code cracking.

Public key cryptography has been around a long time. Yet, there is a sexy new
tactic—guantumcryptography. While the inspection of data encoded in different finite
fields is at the heart of modern diophantine equations, they who know this also know
about modern diophantine equations. That does not include those bankers who know
about cryptography. See [St04] for the quickest and simplest look at the likelihood that
RSA may soon be replaced.

4.3.2. Periods of exceptional scrambling

As above,g € S, is aderangemenif it fixes no integer. We see this definition appear
for T : G — §,, the arithmetic G the geometric) monodromy group of an exceptional
cover. A wholeG coset of G consists ofnear derangements. Its elements each fix
precisely one of{1,...,n} (Proposition 2.3). This nonabelian aspect of exceptional
covers raises questions on shuffling of data embedded in finite fields.

General cryptology starts by encoding information into a set. Our sets are finite fields.
So, lett be large enough so that the bits needed to describe elemerfts iallow
encoding our message as one of them. Pyt {¢t}. Then, we selectX, ¢) € Ty.r, (D).
Embed our message as € X (F,). We usep as an efficient one—one function to pass
xo 10 @(x0) = yo € Y () for publication. You and everyone else who can understand
“message’xp can seeyp below it. To find out what iscg, requires an inverting function
ot Y (Fy) — X(Fyo).

Question 4.14(Period9. SupposeX andY are explicit copies of®!. Identify them to
my—1

regarde as ¢, permutinglF, U{oc}. Label the order ofp, asm, , = m,. Then, ¢,
inverts ¢,. How doesm,,; vary, for genus O exceptiona, ast varies?

Question4.14 generalizes to exceptional correspondences as in Principle 3.4. We can
refine Question 4.14 to ask about the distribution of lengthg,obrbits on[F,: U {oo}.
In standard RSA they are the lengths of orbits (g’ — 1) from multiplication by
an invertible integer. This works for all covers in the Schur Tower (85.1). We do not
know what to expect of genus 0 covers in the subtowers of 86. Similar questions make
sense fixingt fixed and varyingp. See the better framed Question 6.12.

4.4. k-exceptionality
We list alternative meanings faexceptionalover a number fieldK. Section 4.4.1

gives the most obvious from reduction modulo primes. Section 4.4.2 has a sequence
of k-exceptionalconditions; 1-exceptional is that of §4.4.1.
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4.4.1. Exceptionality defined by reduction
Assumeg : X — Y is a cover over a number fiell, with ring of integersOk.
A number theorist might define an exceptional #&§(K) to be those primeg of
Ok for which ¢ is exceptional mog. That matches an unsaid use in, say, Schur’s
Conjecture (Propositiod.3) describing polynomial maps with,(K) infinite. Regard
E,(K) as defined up to finite set. Then, we sayis exceptional ifE,(K) is infinite.
There is a complication. Even ip : X — Y andy : Y — Z are exceptional (over
K), it may be that) o ¢ is not. Similarly, you might have two exceptional coversYof
and yet their fiber product has no component exceptional Yvé&xamples 4.15 and
4.17 produce both types of situations.

Example 4.15(Compositions of Dickson and cyclic polynomjalSection5.1 and 5.2
describe all indecomposable tamely ramified exceptional polynomials. These descrip-
tions work over any number field. Suppoge= Q and f € Q[x] is a composition of

such polynomials. (From Fried [Fr70, Theorem 1], the composition is of prime degree
polynomials overQ.) We can decide whehhas an infinite exceptional set by knowing
how primes decompose in a cyclotomic extensigi) formed from the degrees of the
composition factors. List these as, ..., sy, (cyclic factors) ands,, 11, ..., sy, (Dick-

son factors). The exceptional sét;(Q) is thosep having residue degree exceeding
one in each of

Lj=Q?/5), j=1,...,v1 and inL; = Q(e?™/*i 4 ¢=2m/57),
j=v1+1, ..., v.

Question 4.16.Given f € Q[x], can we decide whelk ((Q) is infinite?

The author (as referee §§¥1a84]) showed this example to Rex Matthews, who wrote
out the numerics of wheik ;(Q) is infinite. Still, Matthews assumed such &ris a
composition of known degree cyclic and Dickson polynomials. An effective answer
for deciding for anyf € Q[x] if it has such a form might be harder, requiring the
technigue of Alonso et al. [AGR] (see 8§6.2.1).

A related example comes from [GMS03, §7.1] (aided by M. Zieve). It stands out
from any of the other examples they constructed.

Example 4.17 (Degree 4 exceptional rational functionsLet K be a number field, and
let E/K have groupAs = Z/3 (resp.,S3). Then, there is a rational functiofiz over

K with geometric monodromy’/2 x Z/2 and arithmetic monodromy, (resp., S4),
with extension of constantg. This gives 4 genus 0 exceptional covers with neither
their compositions nor fiber products exceptional. Guralnick efGIMS03] used any
U/Q with group Z/3 x Z/3. Each of the (4) cyclic subgroups is the kernel of a
mapZ/3x Z/3 — Z/3. So, each map defines a degree 3 cyclic extengig@. The
functions fg from these cyclic extensions @ have the desired property.
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4.4.2. Exceptionality defined by rank of subgroups
Recall A group’s rank is the minimal number of elements required to generate it.
Example Simple noncyclic finite groups have rank 2 (this requires the classification
of finite simple groups for its proofAG84, Theorem B]). Denote the absolute Galois
group of K by Gg. Supposes € (Gx)X. Denote the fixed field irk of (e) by K@,
Supposep : X — Y produces the extension of constants homomorphisins>

G—%G([Q(Z)/K) as in Corollary 2.5. Consider a conjugacy class of subgroups repre-
sented byH < G(K/K).

Definition 4.18. If restricting T, » to H has no fixed points, then we say is H-

exceptional. Also,p is k-exceptionalif the smallest rank of a subgrouﬁgéq,/Gw
with H-exceptionality isk.

For H = (1) having rank 1, the Chebotarev density theorem gives a positive density
of primes p where 7 is the Frobenius ink for p. So, l-exceptional is equivalent
to the definition in 8.4.1. We can also apply [FrJ86, Theorem 18.27]. This shows
1-exceptional is equivalent tﬁ'?, \ A having no rational points ovek? for a positive
density ofo € Gg.

The analog fok-exceptionality is thak is the minimal integer with a positive density
of elementss € (Gg)* so thatX2 \ A has noK° points.

Remark 4.19. All these definitions extend to repladg, > by 7, ; for j>2.

5. The most classical subtowers offy,f,

We put some structure into particular exceptional towers. Especially, we use now
classical contributions to form interesting subtowers. The tool that allows explicitly
computing the limit group for these subtowers is branch cycles ag.th&(and Nielsen
classes, Appendix A.1). These are the easiest significant cases. We are illustrating to a
newcomer how to use branch cycles.

We here describe subtowers that tame polynomials — essentially all exceptional poly-
nomials with degrees prime to the characteristic (86.4) —generate. Section 6.1 considers
the majority of tame exceptional covers from rational functions not in this section. Then,
there is a finite list of sporadic genus 0 exceptional cover monodromy groups. Solving
the genus O problem simplified their precise description in [GMS03]. That produced
their possible branch cycle descriptions, placing them as Riemann surface covers. The
inverse Galois techniques of Fried [Fr77] (the Branch Cycle Lemma (8B.1) and the
Hurwitz monodromy criterion) then finished the arithmetic job of showing they did
give exceptional covers. No new technical problems happened in these cases.

In turn, refinements (as in §8.1.2) of the original genus 0 problem came from ex-
ceptional polynomial and DPs studies: §3.3.2, 86.4 and Appendix C. Using these pre-
liminaries simplifies how Fried [FrO5b] continues this topic. For all genus O covers in
any exceptional tower, we may consider Question 4.14.
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5.1. The Schur subtower %;’Fq

Degrees of polynomials in this section will always be primepto= charl,). A
reminder of A([,) equivalent polynomials prime tp is in Lemmal.3. For p # 2,
and n odd, there is a the unique polynomi&} with the propertyT,,(%(x + 1/x)) =
%(x” + 1/x"). Note T, maps 1—1, oo, respectively, to 1-1, co. Foru € [FZ2 and
a = u?, defineT, , = l,0T,0l,1, 1, : 7 — uz. Then, T, , mapsu, —u, co, respectively,
to u, —u, oo.

Proposition 5.1. Assume pn’ and p are odd. By its defining propert¥, is an odd
function. So7, , depends only on gather than  and 7, , 0 T, g = T 4-
Suppose h is a polynomial witteg) > 1, (degh), p) =1 and i € Tp1 - Then
5

h is a composition of odd prime degree polynomigj$x] of one of two types

(5.1a) A(F,) equivalent tox" with (n,q —1) = 1; or
(5.1b) A(F,) equivalent tdT, 4, (n,q?— 1) = 1 a representingla] € [F(’;/([Fj)z.

Conversely a composition of polynomials satisfying these conditions for a given q is
exceptional. In cas€5.1a) fesp, (5.1b))a functional inverse forx” (resp, 7,,) on
F, is x™ (resp, Tu,q) Wheren -m =1modg —1 (resp, n-m =1 modg? — 1).

Comments on the praoMap x to —x in the functional equation
T,(3(x + 1/x)) = 3(x" + 1/x")

to seeT, is odd. S0/, o T, ol,-1 is invariant for the change — —u. Apply both of
ThaoTy, andT,, , to the composition ofc %(x + 1/x) andl,. They both give
the composition ofc > 3(x"" + 1/x"") and/, and are thus equal.

Let goo = (12... n),

(5.2) g =An2n-1---(n—-1/2(n+3)/2) and
’ g2=m2n-13---(n+3)/2(n+1)/2).

Fried [Fr70] shows an indecomposable polynomiak TP;,[F({ of degree prime t@

is in one of two absolute Nielsen classes:(&in, (1, —1)) (1 and —1 representing
conjugacy classes i@ /n) or Ni(D,, Cx..,) (with conjugacy classes represented by
(21, g2, g00) resp.). Further, suppose we give the branch points in order. Then only
one absolute branch cycle class gives a cover with those branch p(g’g{;sggol)
or (g1, g2, g5). The translation starts with group theory using the small, significant,
arithmetic observation that indecomposable ovef, implies h indecomposable over
[_Fq. This holds becausk is a polynomial of degree prime to

For doubly transitive geometric monodron® acting on{1, ..., n}, it is immediate
that any coseGt as in Corollary 2.8 has an element fixing at least two integeesason
We can assure a representativéixes 1. If it sends 2 tg, multiply t by ¢ € G(T, 1)
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with (j)g = 2 (use double transitivity). Sat fixes 1 andj. Serious group theory uses
that G is primitive, but not doubly transitive.

Consider the second case. This indicates a caver X — PI with two finite
branch pointsy1, y» (and corresponding branch cycles and g»). Further, as a set, the
collection {y1, y2} has field of definitionF. Eachy; has a unique unramifieB point
x; € X over it corresponding to the length 1 disjoint cycle gf With no loss, up to
A(F4) equivalence, takg1 + y» =0, y1 = u, y» = —u, and —yf =—u € F. So, we
produce such a cover by the polynomial map,(x). This hastu as the unramified
points over+u. Up to A(F) equivalence, that determinas as a representative of
F*/(F*)z.

Similarly, the first case has one finite branch point over which is exactly one
place. As a result, up té\(F) equivalencep : IP)% — P% by x — ax". If, however,
¢ is exceptional ovefr,, then there existsg € [, for which a(xg)" = 1, anda is an
nth root in [,. Again, sinceg is exceptional, there is only orgh root in F, showing
the A(F) equivalence ofp to x — x".

See Propositiors.3 for why compositions from (5.1) are exceptional.

Remark 5.2 (Decomposability oveX and not over K Fried et al.[FGS93, §4] an-
alyzes the decomposability situation for polynomialsvhen (charK), degh)) > 1.
A particular example where an indecomposaflever [F, becomes decomposable over
[_Fq occurs ([FGS93, Example 11.5], due to [Mu93]) with deg 21 andp = 7.

For rational functions, 86.2 gives many examples of this, in all characteristics, from
Serre’s Open Image Theorem. The geometric monodromy groups of these rational
functions has the formiZ/n)? x* {#1}.

5.2. The Dickson subtower

Here, we study the subtower of exceptional covers generated by Dickson polynomi-
als.

5.2.1. Dickson polynomials
Lidl et al. [LMT93, p. 8] defines Dickson polynomials as

& no(n—i i n—2i
Dpaty=3 ——(" " )cax ™

i=0

Most relevant is its functional propert, ,(x +a/x) = x" + (a/x)". While T, ,(x)
does not equab,, ,(x) it is related to it.

Proposition 5.3. Assume n is odd. Theﬂ)nng.);a”_‘l@x}. In particular, the
two polynomials areA\(F,) equivalent. Both polynomialsndependent of: € [}, give

exceptional covers ovelr, precisely when(, g% -1 =1.


michaelf
Pencil

michaelf
Note
D_[n,a)(2x)/2=D_{n,a}^*(x)=u^{n-1}T_{n,a}(x)
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Proof. Let m;(x) = %(x +b/x). Considerx — %{r" + (a/x)’aas a composition of two
maps in two ways:

(5.3) X=X man(x) = x = mg(x) — D:,a(ma(x)).

m; O

Note x xi{—_b_,z.x maps the ramified point&+/b to ++/b. So, the left-hand side of
(5.3) shows this for the compositetu — +u”; over each oftu" there are precisely
n points ramified of order 2; and there are two points with ramification ordeitsat
map tooco. As x — m,(x) maps+u — =+u, ramified of order 2, and it maps 0 and
oo to oo, Dy 4(x) has these properties. There dre— 1)/2 points ramified of order 2
over +u”, and+u also lie over these rlrPoiﬁﬂﬁ_@t_he,tmlyiﬁpe%ively) unramified
points. So, these determining properfies show'7, , = Dy(x,a). o= ™)

Exceptionality under the conditiotw, g% 31) = 1 is in [LMT93, Theorem 3.2].
It is exactly the proof in [Fr70], using the equatidd, ,(x + a/x) = x" + (a/x)"
(the latter said only the case=1). O

5.2.2. Exceptional sets
We list exceptional sets for certain Dickson subtowers. These easy specific subtowers
are a model for harder cases like §6.1 and in [FrO5b].

Definition 5.4. Let v be an integer and& = p1,..., py,, a product of (possibly not
distinct) primes with(n,2-3- p) = 1. Compose all degreey, ..., p, Dickson poly-
nomials up toA(l,) equivalence. (Order and repetitions of the primes do not matter,
nor what are thea-values attached to them.) We denote the subtower these generate
by D, 4, the n-Dickson Tower (overf,).

Proposition 5.5. With n as abovee € D, , has exceptional set equal tE,’l,q def {t |

(n,q% — 1) = 1}. This is nonempty if and only if the order gimodp; exceeds2,
i=1...,v.

Proof. Consider a composition o degreeps, ..., p, Dickson polynomials under
A(F4) equivalence. Use the notation of.8. (5.1b) gives a natural map

Voroovg - E/EDDY = Ppy i/ AF)

representing all such equivalence classes. Any ppfiitin the image has the excep-
tionality set given in the statement of the proposition. Apply Propos#iéto see any
element in this tower has the same exceptionality set.

Now consider wherE;, , is nonempty. Ifp; dividesn and g% — 1= 0modp;, then
p; divides (n, g% — 1) for anyt. So, assume this does not hold for any sychThat
implies (n, g% — 1) = 1. Whatever is the orded of ¢g2modn, then fort prime tod,
tekE,, U
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We leave as an exercise to describe the exceptional set for any composition of
Dickson and Redei functions ovét,.

Remark 5.6 (Varying a in D, ,(x) and Redei functions Lidl et al. [LMT93, Chapter
6], in their version of the proof of the Schur conjecture, make one distinction from that
of Fried [Fr70]. By considering the possibility is 0, they includex” as a specialized
Dickson polynomial, rather than treating them as two separate cases.

The functionx” (n odd) maps Qoo to 0, co. Considerl), : x — ‘h Mapping=+u
to 0, co. A similar, but easier, game comes from

1, x—u\"
twist x” to Ra_(l)
X+u

for which +u are the only ramified points;? = a and R, (£u) = +u. We have pinned
down R, precisely by adding the conditiono +— 1. This, modeled on that for the
Dickson polynomials, matchgeMT93, 85].

5.2.3. Dickson subtower monodromy

Order exceptional covers in a tower as in 84.1.1. One exceptional cover sits above
them all in any finitely generated subtower (Proposition 4.3). We call that the limit
(cover). When all generating covers tamely ramify, the limit has a branch cycle de-
scription, represented by an absolute Nielsen class. Using this succinctly describes the
geometric monodromy of the limit cover.

We use some subtowers %1 F, to show how this works. Consider the subtower
generated by PGI(F,) equwalence classes af compositions of cyclic and Dickson
polynomials overfr, running over allv. Denote this by Sc. We now use Proposition
2.4 to consider branch cycles for some subtower limit covers.

Fora e [FZ, (5.2) gives a branch cycle description fff ,. Label letters on which
these act adl,,...,n,}, and elements corresponding to (5.2) acting on these by
(84,1, 8a,2). To label the limit cover branch cycles, use an ordeung. . ., a,—1 of [F;;.

For eachaj, let +u; be its square roots, these being branch points7fgy,.

We induct on Kk<qg — 1. Assume we have listed branch cycles

(54) (gal,l» 8a1,2> -+ 8ap_1,1> ay_1,2» gal,...,uk,l.oo)
for the limit cover generated b¥, 4, ..., Th.4,_,- In the inductive fiber product con-
struction, permutations act oW,;, ¢, 1 = {(ags - - - Jar_1) | 1< g, <n}k 1. Also, the

following hold:

(5.52) ga;.1, 84;,2 are respective branch cycles correspondingtto;
(5.5b) entries in %.4) generate a transitive group and their product is 1; and
(5.5€) guy,...a1_1,00 IS @ product of disjoinin-cycles.

Proposition 5.7. For a given n with g odd and(n, g2 — 1) = 1, denote the subtower
of D, , generated bY{T, . | a € Fy} (resp, {T,o +b | a € Fy,b € Fy}), by D, ,
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(resp, D,’{q) Then the limit cover forD,, ¢ has degree;” over P and it has unique
branch cycles in the absolute Nielsen class formed inductively from the cond@id)s
Also D, , =Dy ,.

Proof. Denote branch cycles fof, ,, by g4.1. 84..2, acting on{l,,,...,n4} as in
(5.2). Our goal is to form

ES * * * *
(gal,l’ 8ay,20 -5 8ay,10 8y, 2> gal,...,ak,oo)

,,,,,

satisfying the corresponding conditions to (5.5). We show now how this forces a unique
element up to absolute equivalence in the resulting Nielsen class. We'll &#s8 (even
though this never gives an exceptional cover) @nd 2 to help sort the notation as a
subexample. First we construct one element as follows.

In the induction,g* s act on pairqu, v): u (resp.,v) from the permuted set of

(8a;,j, 1Si<k—1,1<j<2) (resp.,(gq,j, 1</ <2)).

This is the tensor notation in281.3. Form the elements;. ,, € {1.2}, j <k —1, by
replacing any cyclgu u’) in 8aj.t DY ]_[:’ _q (u,ig) (', (ig)m) With T € S,,.

With = =1, list as rows orbits of the produ<gi§1 178027 8 11" 8.2+ Call
this row displayR, x—1. Here isR3 1, n =3, k—1=1:

11— (2,1) — (3,1,
1,2) - (2,2) - (3,2,
1,3 - (2,3) = (3,3).

Now consider the corresponding extensggrlll, ng,Z of g4.1, 84,2 Dy replacing any
disjoint cycle (i i") for one of g4, .1, ga,.2 With ] ((u, ) ((w)t,i")) with T a
permutation onV,, 4 ;-

Whatever is our choice in this last case we can read off the effect of the product of
the g* entries by considering the orbits of this in the tal®g;_1. We know the group
generated by thg* s is to be transitive, and all these orbits will proceed from left to
right and be of lengtm. Conclude, that up to a reordering of the rows and a cycling
of each row (it was up to us where we started the row), the orbit path, jn_, takes
the shape of a stair case to the right. Example; 3, k — 1 = 1, the product of the
g* entries starting atl, 1) would give (1,1) — (2,2) — (3,3) as an orbit. So, the
conditions of (5.5) determing; 1, g7 .

To conclude the proof we have only to show the covérg + b are quotients of
the limit cover forD’ . The branch points of, , + b are at+u + b in the previous
notation. We show the covef, , + b is a quotient of the exceptional cover fiber
product of T4 (,4+4) and T—yy, the degreen Dickson polynomials with branch points
at +(u + b) and (b — u), respectively.

MEValw..ak,l
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This fiber product has branch points #tu + b), £(b — u), and oo, and branch
cycles(g1.1, g1.2, €2.1. £2.2, 8o0) = g With branch points: 4+ b, b — u corresponding to
g1.2, g2.1 at the 2nd and 3rd positions. L&t be the geometric monodromy of this fiber
product, with7’ and 7" the permutation representations fraf .5 and 74—y
All we need is some representative in the absolute equivalence class of this branch
cycle with the shapég], g1.1, 81,2, &4, 8) for somegj, g;. Then, 7’ applied to this
gives branch cycles fof, , + b (the same forT+ but with branch points at the
appropriate places). Apply the braigg: € Hs (as in A.2)) to g:

(9g2q91 = (81,1, 85, 81,2, 82,2, &) q1 = (g7, 811, §1.2 §2.2, 8o0)

with g5 = gl,ggz,lgl_% andg] = gl,lg/zgii. We already know this represents the same
element in the Nielsen class gs [

Problem 5.8. Use Propositiorb.7 to describe the limit branch cycles forsc

6. Introduction to the subtowers in [FrO5b]

Serre’s open image theorem (OIT) [Ser68] forces a divide between two types, GL
and CM, of contributions to the genus O covers in 7‘?@,@ tower. We concentrate on
the mysterious Gt part, limiting to topics around one serious question: decomposition
of rational functions and their relation to exceptional covers in §6.2.

Any one elliptic curveE without complex multiplication produces a collection of
{fp,E}p>c, fOr some constantz with these properties. Each

fp.emod¢ : Pi — P)l, is indecomposable and exceptional,

but it decomposes ovef,. §6.3 then considers using automorphic functions to give a
useful description of primeé for which a givenf), ¢ has these properties. Finally, §6.4
sets straight a precise development about wildly ramified exceptional covers that several
sources have garbled. Using this to describe the wildly ramified part of exceptional
subtowers generated by genus 0 covers continues in [FrO5b].

6.1. Tame exceptional covers from modular curves

Fried [FrO5c, §6.2] will continue in [FrO5b]. The former is the Modular Tower setup
of Serre’s OIT. This framework shows there are other Modular Towers whose levels
arej-line covers (though not modular curves) having cases akin tp &id CM.

6.1.1. Setup for indecomposability applications

The affine lineP} \ {o0} = U, identifies with the quotiens,\(P}H)*\ A/PGLy(C)
(81.3). Forp > 1 an odd prime, and& a number field, infinitely many points on
Us produce rational functions of degrg€ with these properties.
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(6.1a) They are indecomposable oweryet decompose ovek (§6.2).

(6.1b) Modulo almost all primes they give tamely ramified rational functions with
property (6.1a) over finite fields.

(6.1c) They give exceptional covers (as id.41) with nonsolvable extension of con-
stants group.

Most from the remaining genus 0, tame exceptional covers are related to (6.1) [Fr78,
§2]. Guralnick et al. [GMSO03] concentrated more on the CM type, because there are
hard problems with being explicit in the GLcase. 86.3 gives specific examples of
those problems. Ribet’'s words [R90] from 14 years ago on [Ser68] still apply:

Since the publication of Serre’s book in 1968, there have been numerous advances
in the theory of¢-adic representations [of absolute Galois groups] attached to
abelian varieties [He lists Faltings’ proof of the semisimplicity of the represen-
tations; and ideas suggested by Zarhin]. Despite these recent developments,
the 1968 book of Serre is hardly outmoded. it's the only book on the subject

[... and] it can be viewed as a toolbox [of] clear and concise explanations of
fundamental topics [he lists some].

6.1.2. Sequences of nonempty Nielsen classes

We briefly remind how FriedFrO5c, §6] formulates additional examples that have
OIT properties using a comparison with OIT. You can skip this without harm for the
indecomposability applications of §6.2. Consider the following objeEts= (x1, x2),
the free group on two generatorg; = 7/2 = {£1} acting asx; xl._l, i=12 0n

F»; and P, all primes different from 2. Denote theontrivial finite p group quotients

of F» on which J, acts, withp ¢ Py, by 072(Py) & 0F2(P,, Jy).

Use the notatiorC,« = C for four repetitions of the nontrivial conjugacy class bt
For anyU e Qf2(P, J»), C lifts uniquely to conjugacy classes of order 2 Ghx* Js.
This defines a collection of Nielsen classes

N ={Ni(G. Co)" Y Gu xsppe0Fa(pr i)

Suppose for some, G, = {Ui}ic; is a projective subsequence of (distingt)
groups fromQ*2(P,). Form a limit groupG,,; = lime; U; x* Jo. Assume further,
all Nielsen classes N/; x* J, C) are nonempty. Then{Ni(U; x* Jo, C)M};c; is a
project system with a nonempty limit &, ;, C).

6.1.3. Achievable Nielsen classes from modular curves

Let z = {z1,...,z4} be any four distinct points oP%, without concern to order.
As in 8A.1, choose a set of (four) classical generators for the fundamental group of
PI\z= U,

This group identifies with the free group on four generatots (o1, .. ., g4), modulo
the product-one relationjo2o304 = 1. Denote its completion with respect to all normal
subgroups for which the kernel td, is 2 (has order prime to 2) bys. Let Z,
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(resp.,ﬁg,p) be the similar completion o¥ (resp., F2) by all normal subgroups with
p (# 2) group quotient. The following i§Fr05d, Proposition 6.3].

Proposition 6.1. Let D, be the quotient of’; by the relations
0?=1, i =1,234 (S0 0102 = 0403).

Then [, 75 < Jp = Dy. Also, 7% x* J is the uniqueC,s p-Nielsen class limit

As an if and only if statement, it has two parts6(84): a Nielsen class from an
abelianU e Q"2(P,) (resp., nonabeliat)) is nonempty (resp., empty).

Remark 6.2 (For those more into Nielsen clas$eShe major point of FriedFr05d]

starts by contrasting thid, case with an action ofl3 = Z/3 on F, (illustrating a
general situation). The exact analog there has all Nielsen classes nonempty [Fr05d,
Proposition 6.5]. It also conjectures—special case of a general conjecture —that each
Hs ((A.2), the groupH, with r = 4) orbit on those limit Nielsen classes contains

a Harbater-Mumford representative: element of the fogm g, L g, 8y 1). We know

the Hy orbits precisely for the/> case (86.1.4).

6.1.4. Nature of the nonempty Nielsen classes in Proposition 6.1

Denote an order 2 element i6 w1 = (Z/p*™)? x* (&1} by (—1;v) with v €
(Z/p*1H2. An explicit v has the form(a,b), a,b € Z/p*tl. The multiplication
(=1; v1)(—1; vo) yields v1 — v» as one would expect from formally taking the ma-
trix product

(594 2) as in (L5).

We have an explicit description of the Nielsen classe@Gli+1, Cp4). Elements are
4-tuples((—1; v1), ..., (—=1; vg)) satisfying two conditions from 8A.1

(6.2a) Product-one vi — Vo + V3 — vg4; and
(6.2b) Generation (v; — v;, 1<i < j<4) = (Z/pF+h2.

By conjugation inGpm we may assume&i = 0. Now takevo = (1,0), vz = (0, 1)
and solve forvy from (6.2a).

Proposition6.3 explains subtleties on the inner and absolute Nielsen classes in this
case. Forv = Vi = (Z/pF™h?2, vV x*GLa(Z/p**?) is the normalizer ofG .1
in Sy (notation of §4.1.1). Let NiG, C) be a Nielsen class (witlC a rational union
of conjugacy classes) and assume there is a permutation represefitatiGn— S,,.
There is always a natural map : H(G, C)"™ — H(G, C)2s (or ¥') on the reduced
spaces (8A.2). Restricted to afly component of# (G, C)", ¥ is Galois with group a
subgroup ofNs, (G)/G [FV91, Theorem 1]. For the Nielsen class fraf@ 1, Cx),
etc. denote this mal¥’ k1.
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Proposition 6.3. The following properties hold for these absolute classes

(6.32) [Ni(G r+1, C20)2 = 1, 50 H(G pp+1, C0)35™ identifies withUso.
(6.3b) Rational functions of degregpft1)2 representNi(G 1, C4)2°S covers

The following properties hold for these inner classes

(6.4a) Hy has p*+1 — p* orbits onNi(G 1, Cpa)™.

(6.4b) ¥ i1 (or \P;g+1) is Galois with groupGL2(Z/p**1) /{+1).

(6.4c) Fix j' € Ux(Q) without complex multiplication. Theexcluding a finite seP;s
of primes p the fiber of‘P:de+1 over j’ is irreducible

Comments on using the propositiodse the symbol(vy,...,Vv4) to denote the
Nielsen element((—1;vy), ..., (—1; v4)). Conjugating byp € GL2(Z/p*t1) on this
Nielsen element maps it t@f(v1),..., f(v4)). Conjugating by(1,Vv) translates by
(v, v, Vv, V). So, now we may takg; = 0. That there is one absolute class follows from
transitive action of Gk(Z/ p**1 on pairs(v2, v3), whose entries are now forced to be
independent if they are to represent an element of the Nielsen class.

On the other hand, consider the action of the in Hs. Example ¢2 applied to the
symbol (vi, ..., Va) gives (V1, 2Vo — V3, Vo, V4). So these actions are in §1Z/p~t1).
Any cover in the Nielsen class has odd degtpét1)? and genus 0 as computed by
Riemann—Hurwitz. Takg’ € Q to be thej-invariant of the branch point set correspond-
ing to the cover. Conclude, there is a rational functifn : P}U — IP’% representing
this odd degree genus 0 cover.

According to Serre[Ser68, IV-20] we can say explicit things about the fibers of
H(G 1, Cot)™ — H(G i1, Ca)®S over p € H(G . C»)3"S depending on thg-value
of the 4 branch points for the cover, : Xp — P% corresponding tg. §86.2.2 and 86.2
show our special interest in such covers o@rwith the full arithmetic monodromy
group V1 x*GLa(Z/ p*tt).

We now note what is the coves,. Let E be any elliptic curve in Weierstrass normal
form, and[p**1] : E — E multiplication by p**1. Mod out by the action of+1} on
both sides of this isogeny to get

1 P ph+1

E/{£1) = P 5 E/{x1) = PL,

w

a degreep?®*+D rational function. ComposingZ — E/{£1} and multiplication by
p?**D gives the Galois closure af 1. This is a geometric proof why NiZ/p*+1)2
x*Jz,Cp) is nonempty. IfE has definition fieldK, so doesp 1. We may, however,
expect the Galois closure field of .11 to have an interesting set of constants coming
from the fields of definition ofp**1 division points onE.

The geometric group i§Z/p*t1)2 x5 {+1} acting as permutations o€Z/p**t1)2.
This group is not primitive becaudet1} does not act irreducibly. On each side of the
degreep? isogenyEﬂE, mod out by{#1}. If E has no complex multiplication but
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a number field as definition field, then for almost all prings

(6.5) the arithmetic monodromy group &/p)? x* GL2(Z/p): and for p**1 it is
(Z/p"h? x*GLa(Z/ p**h).

Remark 6.4 (More on explicitnegs The proof of[Ser68, 1V-20] concludes the proof

of (6.5) for nonintegral (so not complex multiplicatiojt)nvariant. Serre’s initial proof

of (6.4c) for almost all primes for integral (not complex multiplicatigapvariant relied

on unpublished results of Tate. Though Falting’s theorem now replaces that, it is still
not explicit. So even today, being explicit on the exceptional primes in Proposition 6.3
still requires nonintegraj-invariant. (Note, however, comments of 86.3.2 from Serre’s
using modularity of an elliptic curve.)

6.2. Indecomposability changes from K b

Section 6.2.1 notes that finding the minimal field over which one may decompose
rational functions, or any covep : X — Y, is a problem in identifying a specific
subfield K, (ind) of qu, (82.2). For tamely ramified covers, Proposition 6.6 shows the
OIT is the main producer of rational functiogs= f : P} — IP’} over a number field
(or over a finite field), whereX,(ind) will nontrivially extend the constant field.

6.2.1. The indecomposability field

Two ingredients go into a test for indecomposability of any coyger X — Y.
These are a use of fiber products and a test for reducibility in the following way.
Check X xy X minus the diagonal for irreducible componei@svhich have the form
X' xy X’'. If there are none, thep is indecomposable. Otherwise, factors through
X Y.

Fried and MacRae [FM69b, Theorems 2.3, 4.2] used the polynomial cover case of
this when the degree was prime o As a result for that case, there is a maximal
proper variables separated factor. Alonso et al. [AGR] exploited [FM69b] similarly for
rational functions. Denote the minimal Galois extensiorKajver which¢ decomposes
into absolutely indecomposable covers Ky, (ind): The indecomposability field of.
Conclude the following.

Proposition 6.5. For any coverp : X — Y over a field K K, (ind) C 13(/,(2).

6.2.2. Ogg’s example

Serre [Ser68, V-21-22] outlines computings:+ ,(Gg), the image ofGg on the
p-division points E[p] an elliptic curveE for a case ofE where we can listp s that
are exceptions to (6.5).

The curve 3 of Ogg [067] has affine moddi(x, y) | y% + x3 + x2 + x = 0} with
j invariant 21 . 371, discriminant—2* - 3 and conductor 24. It also has an isogeny
of degree 2 to the modular cun&y(24). The nontrivial degree 2 isogeny shows the
image p3+ »(Gg) of Gg is not GLp(Z/2), and the image has order 2, corresponding
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to the field extensioril(./—3). For, however,p # 2, he shows the following.

e Determinant onps+ ,(Gg) has image[F; (because the base (3).

e p3+ ,(Gg) has a transvection (use Tate’s form of Sor p = 3: 3Y/7 ¢ E revealing
the tame inertia group generator acts as a transvection).

If we know G acts irreducibly fomp, then[Ser68, IV-20, Lemma 2] says the complete
action is through Gk(Z/p). All we need is to assure, from the irreducible action, the

transvection(j 1) conjugates td] 9), and these two generate 8Z/p).

Serre uses Ogg’s list to see that fpr# 2 the action is irreducible, for otherwise
there would be a degrgeisogeny 3 — E’ over Q, and E’ would also have conductor
24. Ogg listed all the curves with conductor 24, and they are all isogenous tay 3
an isogeny of degree“2with u = 0, ..., 3. Thus, 3 would have an isogeny not in
Z, contrary to nonintegraj-invariant.

6.2.3. Exceptional covers giving, (ind)#K

Proposition 6.6 gives exceptional covers pf degree over any number field from
any elliptic curveE without complex multiplication, excluding a finite set of primes
(dependent oit). Still, using Ogg’s example shows the best meaning of being explicit
for we may include any primg > 3. Here we usel for a prime of reduction to
get indecomposable rational functions, and exceptional coversrivat decompose
in .

ConsiderE = 3* as in 86.2.2.

Proposition 6.6. For this E, f, : P; — P} (p > 3) decomposes into two degree p
rational functions over some extensidf, of Q with group GL2(Z/p)/{£1}. It is,
howevey indecomposable ovel.

Supposel # 2,3, p, and A, € GL2(Z/p) represents the conjugacy class of the
Frobenius inK,. Then reduction of f, mod¢, gives an exceptional indecomposable
rational function precisely when the group,) acts irreducibly on(Z/p)? = V,. This
holds for infinitely many primes.

Proof. Section6.2.2 showed forE = 3% the arithmetic (resp., geometric) monodromy
group of the coverf, is (Z/p)? x*GL2(Z/p) (resp.,(Z/p)? x*{£1}). Now apply the
nonregular analog of the Chebotarev density theorem [FrJ86, Corollary 5.11]. Modulo
a prime¢ of good reduction, the geometric monodromy ffmod¢ does not change,
and it and some = (A¢, V) € (Z/p)? x*GLo(Z/p) (notation of §1.3.1) generate the
arithmetic monodromyH, where A, generates a decomposition group forin the

field K,/Q. That is, the image oA, in GL2(Z/p)/{£1} is in the conjugacy class of

the Frobenius for the primé. Also, f, mod{ is indecomposable if and only iff, is
primitive. From §1.3.1, this holds if and only ik, acts irreducibly on(Z/p)2.

The same Chebotarev analog also says any element of {&ll} is achieved as
(the image of)A, for infinitely many ¢. Acting irreducibly is the same as the (degree
2) characteristic polynomial ofd, being irreducible overf,. The elementary divi-
sor theorem says every irreducible degree 2 polynomial is represented by a matrix
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acting irreducibly. From this there are infinitely maayith f, mod¢ indecomposable
over [y, but not over its algebraic closure. We have only to relate exceptionality and
indecomposability mod.

Supposed, € GLo(Z/p) acts irreducibly. Letx = P andy = PL. Then, f, mod¢
decomposes into two degr@erational functions oveff,2. Any componeny of X)z,\A
is birational to the algebraic set defined by a relation betwegeand x; with x; and
x; two distinct points ofX over a generic poiny € Y. With no loss assumd, fixes
x1. So it movesx; to another point, a point different from the conjugatexgffrom
applying the nontrivial element of the geometric monodromy group correspondind to
(or elseA leaves a subspace invarianfonclude The Frobenius moves the absolutely
irreducible component from the relation betweegnand x,. So, that component is not
defined overf,. That means indecomposability is equivalent to exceptionality.

In Proposition6.6, K, contains allpth roots of 1, but it is far from abelian. So
those¢ above, running over al, produce tremendous numbers of exceptional rational
functions. Asking Question 4.14 on the order of the inverseppfor each is valid.

6.3. Explicit primes of exceptionality

We give a model for [FrO5b] for our best understanding of how we could explicitly
describe the primeg that give exceptionality forf,mod¢ in Proposition 6.6. Our
two primesp and ¢ defines classical notation. So, in figuring where 8§6.3.1 is going,
substitute(p? — 1)/2 for n and ¢ for p.

6.3.1. A tough question for the easy polynomigls— x — 1

For an irreducible quadratic polynomigl(x) € Z[x], quadratic reciprocityallows
explicitly writing down the collection of primes for which has no zeros as a union
of arithmetic progressions (and a finite set of explicit primes).

Serre [Se03] considers this set of polynomifts — x — 1}°° ;, well-known to be
irreducible, with groupS, = G(L,/Q). The task he sets is to write, for eadh an
automorphic form (on the upper half-plane) whageexpansion is) . ; ang™ and
from which we can decide the number of ze®§s, of x" —x —1 modp from a,,.

The last case he gives is when= 4. He says [Cr97] gives a newforri(g) of
weight 1 from which he extracts the formula

(6.6) (ap)? = (%) +Np4—1 for p #2883,

It so happens there is a cover : GL(F3) — S4 with kernel Z/2 and a natural
embeddingp : GL2(F3) — GL2(C).

A theorem of Langlands and Tunnell says, if a Galois extensioit)ofias group
GL2(F3), then you can identify the Mellin transform of theseries forp with a weight
1 automorphic function. Tate constructed a Galois extensipof Q unramified over,
realizing ¢. Since Serre already had experience with thiseries from Tate’s extension,
he knew how to express it using standard automorphic functions. The character formula



M.D. Fried/Finite Fields and Their Applications 11 (2005) 367-433 409

p®p =¢® (0 —1 is done in standard books on representation theory to write
all characters of a small general linear group. Hérés the degree 4 permutation
representation character f85. So, 0(g) is N, 4 if the image ofg is the Frobenius for

p in L4, and G is the character from quadratic reciprocity on the degree 2 extension
of Q@ in L4 (sign character ofSs). Even with this, however, Serre has no closed
formula for N, 4; in his expression in standard automorphic forms, they appear to
powers.

6.3.2. Automorphic connections to exceptionality primes

To me the statemer5e03, p. 435] is still cryptic (though | am aware there are few
nonsolvable extensions @ expressed through the Langlands program by cusp forms):
“No explicit connection with modular forms.. is known [for n >5], although some
must exist because of the Langland’s program.” Still, compatible with another Serre
use of automorphic forms in this paper, | accept it as a worthy goal and formulate an
analog of finding such a form related to Ogg’s example. Kgt/Q be the constant
extension of the Galois closure of the covgy.

Problem 6.7. For each primep>5, express the primeg where the Frobenius in
G(K,/Q) = GLa(Z/p)/{£1} acts transitively on(Z/p)®\0 mod+ I as a function
of the ¢th coefficienta, of the g-expansion of an automorphic functiof,(q) =
> o amg™. This is equivalent to expressing the primésn Proposition6.6 with
fpmod¢{ exceptional.

Fried [FrO5b] uses results from the Langlands Program fos(8[5)/{£+1} = As
to look at the case = 5. Of course, one may consider this problem for any elliptic
curve over@Q without complex multiplication.

Now Ogg’s curve has been long known to be modular. So there is an explicit ex-
pression for its Hasse—Weil zeta function as a weight two cusp form. For any elliptic
curve E over @, consequence of Wiles’ proof of the Shimura—Taniyama—Weil conjec-
ture, the same holds. Serre [Se81, Theorem 22] uses that cusp form to show, under the
generalized Riemann hypothesis, thaEithas no complex multiplication then there is
a constant independent of for which the Galois group generated by thalivision
points onE is isomorphic to Gk(Z/p) for all p > ¢Dg where Dg is an expression
just of the product of the primes at whidh has bad reduction.

If Fe(q) => oo bmg™ is this automorphic function, then for the primes of good
reduction ofE, b, = 14+ p — N,(E) where N,(E) is the number off-, points on
E modp. Use similar notation for another elliptic cund&’. Here are results of Serre
[Se81] that give the result above.

(6.7a) For any specific integérthere is an asymptotic bound on the number of primes
p < x for which b, = h.
(6.7b) For somep less than a specific constant of the type abene# a;,.

It is with (6.7a) whenh = 0 (supersingular primes fdg) that we conclude, though
it is in the wrong direction, for our next question. So, we nfit€] conjectures the
number of supersingular primes f& without complex multiplication is asymptotic
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to cgx¥2/log(x), cg > 0. Our final question is on the median value curve topic of
§8.2.2.

Problem 6.8. Let E be Ogg's elliptic curve 8. Is there a presentation df modp as
an exceptional cover for all primgs for which E is supersingular.

While we can ask this kind of question for all elliptic curves, this explicit curve and
its isogenies to other elliptic curves have been well-studied. The result we are after is
to give one elliptic curve whose reductions have presentations as exceptional covers of
P! for infinitely many p.

6.4. Wildly ramified subtowers

This subsection is on wildly ramified exceptional covers. We assume understood that
all (indecomposable) polynomial exceptional covérs [P’i — Pg over [, of degree
prime top come from the proof of Schur’s conjecture. This is Propositiady, slightly
augmented by Fried et al. [FGS93, 85] to handle the characteristic 2 case, where there
is some wild ramification.

Our comments aim at describing the limit group of the subtoWé?P;[Fq (of 733,%’%,

g = p*) that indecomposable polynomials, wildly ramified ower, generate. Call the
subtower generated by those pfpower degree thepure wildly ramified subtower
Denote it byWP?; _ . The Main Theorem of Fried et al. [FGS93] says this.
y 4
(6.8a) If p # 2 or 3, thenWPgi ; = WP, and generating polynomials have
yrq v
affine geometric monodromyf,)’ x*H with H <GL,(Z/p) (§1.3).

(6.8b) If p = 2 and 3, add toWP'DO;i . polynomial generators with almost simple
vy q

monodromy of core PSI((Z/p)) (a >3 odd) to getWPE;ul -
v

6.4.1. What can replace Riemann’s Existence Theorem

A general use of RET related ideas appearqgFr94,GS02] under the following
rubric. Given a pair of groupsG, G) that could possibly be the geometric—arithmetic
monodromy group pair for an exceptional cover, each shows that covers do occur with
that pair. Fried [Fr02, 83.2.2] explains the different territories covered by these results.
We briefly remind of these. The former gives tame covergpéf over [, wherep
is sufficiently (though computably) large. The latter gives wildly covers of curves of
unknown genus ovefr, with p fixed, butg unknowably large. What Fried [FrO5b]
continues is the use [FrM02] to get a result like Guralnick and Stevenson [GS02], but
with the virtues of Fried [Fr94]. That means, effective, even for cover@iobver Fy
with p fixed, andq bounded usefully.

The Guralnick—Stevens paper uses [Kz88, Main Theorem]. We comment on that and
a stronger result from [Fr74a, pp. 231-234], which was used almost exactly for their
purpose. (There are more details and embellishments in [FrM02].) Katz [Kz88, Main
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Theorem] says separable extensions[_th(%)) correspond one—one with geometric
Galois coversp : X — P% with these properties.

e They totally ramify overoo with group P x* H.
e The groupH is cyclic andp’, andP is a p-group.
e ¢ tamely ramifies over 0 and does not ramify outs{@eoco}.

RET works by considering the deformation of the branch points of a tame cover
of a curve C. In the explicit case wherC = P%, RET gives great command of
how these covers vary as you deform thaiy Branch points keeping them distinct.
That control comes from representations of the Hurwitz monodromy group (as in
(A.2)), identified with the fundamental group of the spdée of r unordered branch
points.

The spaceU, is a target for any family of branch point covers. By recognizing
the hidden assumptions in this—under the lab@hfiguration space-[FrM02] forms
a configuration space that replacedy a collection of data calledamification data
Note that exceptional covers afar from Galois.

This ramification data, and the Newton Polygon attached to it, are invariants de-
fined for any cover, not necessarily Galois. The significance of this Galois closure
observation is serious when considering wildly ramified covers. That is because the
Galois closure process used for families of covers in [FV91], by which we com-
pare arithmetic and geometric monodromy, is much subtler for wildly ramified covers
[FrM02, 86.6]. The use of Harbater patching in [GS02] sets them up for dealing
with, one wildly ramified branch point, with the rest tamely ramified. It allows nice
comparison with general use of Fried and Mezard [FrM02] applied to exceptional
polynomial covers, with the only case left, where they have affine monodromy groups
(see below).

6.4.2. A surprising source of dissension!

If you were a co-author of a book, you likely would expect your co-author to ask
your opinion on matters in which you are demonstrably expert. You would not expect
him to publish, in a new edition, versions pbur results as if they belonged to others,
versions many years later than yours. You would not expect to have no say about all
this, would you?

Related to the topics of this paper, Fried and Jarden [FrJO4, Lemma 21.8.11] quotes
[Tur95, Proposition 2.2] for the proof of the statement Lemma 1.2, quoted from two of
my first four papers, essentially from the same time as [Fr70]. The proof of Turnwald
[Tur95, Proposition 2.2] is identical to mine in [Fr69, Proposition 3, p. 101]. The whole
context of using the lemma for primitivity is mine, used whenever related topics come
up. Further, my proof of Schur’s conjecture was in about four pages.

If contention caused this, then its bone is RET. Having developed tools enhancing
RET that work in generality, | went home one night as a recent Ph.D. (at the Institute
for Advanced Study in 1968) and thought | would apply it to a list of problems that
included Davenport’s. First, however, there was Schur's Conjecture. | saw the tools
were in place so it all came down to group theoretic statements. | found in the library
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Burnside’s and Schur’'s group theorems soon after. With Schur’s conjecture out of the
way, it was possible to attack the serious business in Davenport’'s problem, and the
study of the exceptional examples there.

Twenty-five years later there is in print another proof of Schur’s conjecture, differing
at one point. From Riemann—-Hurwitz alone, exactly as done in all these sources, you
get down to wanting to know this. Is a genus 0 dihedral cover totally ramified over
oo, and ramified over two finite branch points, represented up to linear equivalence
by a Chebychev polynomial? (As comments on Proposifidnexplains, sensitivity to
Dickson polynomials is illusory generality.)

The uniqueness up to affine equivalence of a polynomial cover Withas mon-
odromy group comes immediately from RET and the unigueness of the branch cycle
description. Instead of that Turnwald [Tur95] gives a “direct proof.” Of course that is
easy! The Galois closure of the cover is a sequence of two genus 0 cyclic covers. RET
in that case follows from using the first semester of graduate complex variatalesh
of log [Fr06, Chapter 1]. Still, essentially my first paper proved a (then) 50-year-old
unsolved problem overnight because | powerfully used RET to turn the whole thing
into combinatorics and deft use of Lemma 1.2. Then, | went on to Davenport's much
tougher problem [Fr73].

Here is [FrJ04, p. 493] dismissing RET: “Fried [Fr70] uses the theory of Riemann
surfaces to prove Schur’s conjecture.” Consider this in the light of what happens with
nonsolvable monodromy groups: the only real tool is insights from RET.

Problem 6.9. Explain why a co-author who often asks for your mathematical help
would do this. Then, try, why he would want to dismiss one of the greatest geniuses
of mathematical history (Riemann)? Then, for fun, take up my challenge8.ih. 2 of
doing Davenport’'s problem as in §C without RET.

Yet, there is more. Fried et al. [FGS93] take on wildly ramified exceptional cov-
ers, the first to do so coherently. Step back! If exceptional covers have any signif-
icance, then you want their nature. That means their arithmetic monodromy groups,
period!

Again primitivity is the key, so you need only look at the primitive groups. The
result is this. Fried et al. [FGS93] listed all arithmetic monodromy groups of primitive
polynomials over a finite field with one caveat. A mystery was this affine monodromy
possibility. There might be unknown exceptional polynomials dvgr(g = p*) with
geometric monodromy grou@’/p)" x*H, H acting irreducibly on(Z/p)" (as in (6.8)).

The polynomial would then have degreé. There are so many primitive affine groups,

so that is what we considered the major unsolved remainder about exceptional poly-
nomials. Yet, [FGS93, Theorem 8.1] almost trivialized the nearly 100-year-old Dickson
conjecture ((6.9c); no serious group theory needed), including it in the precise descrip-
tion of the rankn = 1 case of exceptional polynomials.

Jarden sent our paper—as an editor of the Israel Journal—to D. Wan who, appar-
ently in this refereeing period, formulated ti@arlitz—\Wan conjectureThat says the
exceptional polynomial degrees are primegte- 1. So the affine case already passes
this conjecture. Instead of the above, Fried and Jarden [FrJ04, p. 487] says only that
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a proof is contained ifFGS93]. It says nothing of what Fried et al. [FGS93] proves,
as given in the previous two sentences. | quote

A proof of the Carlitz—Wan Conjecture fgp > 3 that uses the classification of
finite simple groups appears [IFGS93]. It gives information about the possible
decomposition factors [of the monodromy groups].

Both the p > 3 and the lazy reference to decomposition groups is ridiculous. We
knew exactly what the monodromy groups (of the mmwpewer degrees) were for
p =2 and 3, and for all others they were affine groups as listed above. More so, Fried
et al. [FGS93] have nothing to say on the Carlitz—Wan conjecture because the paper
was already in print before we heard of it.

Most importantly, Fried and Jarden [FrJO4] takes three pages on the Carlitz—Wan
conjecture proof —exposition from [CFr95]—and what does that give? That conjecture
is on the nature of tamely ramified extensions over the completion at infinity. The
Carlitz—Wan conjecture is a contrivance to steal attention from a real theorem. That
contrivance worked and is supported by Fried and Jarden [FrJO4]. Compare it with
[FGS93] about the topic of interest, exceptional polynomials as explained in §6.4.

Remark 6.10. | never saw a copy of Fried and Jardg#rJ04] until it was in print.
While there seem to be laws preventing that, you have go to court: international in
this case!

Remark 6.11 (Producing the monodromy groupsNote how careful attention to mon-
odromy groups led others to projects (listed in (6.9b) and (6.9c)) investigating actual
exceptional polynomials. This exemplifies being ablegtab a group having a work-

able use of the classification (as id.8.2). Yet, Lenstra never once mentioned [FGS93]
in his talk at MSRI in Fall of 1999 (see Acknowledgments).

Using [FGS93], the papers [GZ05,GRZ05] classify all indecomposable exceptional
polynomials with PSk monodromy (as in (6.8b) and (6.9c)). Also, [GZ05] has all the
indecomposable polynomials, excluding those in (6.8) with affine monodromy group
of prime-power degree, that become decomposable over some extension. These are the
only examples: in characteristic 7, that of Miller in Remark 5.2 of degree 21; and in
characteristic 11, of degree 55.

6.4.3. Problems on periods of exceptional correspondences

Suppose we have an exceptional correspondence between codiés(és.ls). Is
there some structure on the permutations these produd@zldn,) running overt in
the exceptional setExample If (n,q’ — 1) = 1, then Euler's Theorem[th is cyclic)

gives the inverting map fot — z" on [P%([th). We pose finding analogs for more
general exceptional covers such as those in these exceptional towers.

(6.9a) The GL exceptional tower (&1); or
(6.9b) 1-point and 2-point wildly ramified exceptional towers which will contain all
subtowers generated by exceptional polynomials
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(6.9c) Especially from the Dickson conjecture prd6iGS93, Theorem 8.1] of 1896
and the Cohen-Lenstra—Matthews—Muller—Zieve PShonodromy examples
(as in (6.8b); [CM94,LeZ96,Mu94])).

Supposep : IP} — [P’i is one of the exceptional genus 0 covers listed in (6.9). Use
the notation of Question 4.14 for the peried,, of ¢ over [, after identifying p!
1 . . 7 .
and Py. Consider the Poincaré serié¢y =3,z ) Mo W'

Question 6.12.Is P, a rational function?

Supposep; : X; — Y, i =1, 2, is any pair ofl, covers (of absolutely irreducible
curves). From 3.6), these are a DP if and only X; xy X2 is a pr-exceptional
correspondence betweexy and X» with Epr, N Ep,, infinite. Then, it is automatic
from the Galois characterization of DPs (in (3.6)) that this intersection is a union of
full Frobenius progressions.

SupposéN is a pr-exceptional correspondence between any two varigties= 1, 2.
Then, the exceptional sets for;prtW — X;, i =1, 2 are also unions of full Frobenius
progressions.

Question 6.13.Could it happen thaEy, N Epr, is empty (even if these varieties come
with coversg; : X; — Y, i =12, andW = X1 xy X)?

7. Monodromy connection to exceptional covers

This section extends the historical discussion frohi2§ The name exceptional arose
from Weil's Theorem on Frobenius eigenvalues applied to a family of curves. Davenport
and Lewis considered special situations for the following question. Supppge=
{f(x,y)+ Ag(x, y)} is the pencil overF,, and p + E; is the number of solutions in
(x,y) € F, x F, of the equation given by the parameter

Question 7.1.Can you give a lower bound on an accumulated estimate for the error
term from Weil's result running over rational values &7

Their aim was find out for which(f, g) a nonzero constant timeg? would be

a lower bound fory"; E2 X Wye. That is, when would the Weil error of;,/p
accumulate significantly in the pencil?

7.1. The name exceptional appears[BL63]

Davenport and Lewis [DL63] considered this hyperelliptic pengfl— f(x)+4, f €
Fplx]. They concludedW,z2 ;) 1>crp? with ¢y > 0, if f: X =Pt > Pl =7V is
not exceptional

Use notation from 82.1. Soon after publication of Davenport and Lewis [DL63],
being exceptional meant (2.1a) in Proposition ZX”.%:\A has no absolutely irreducible
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[, components. For their case, lef be the number of its absolutely irreducibls,
components. Though confident of expressingin the degree of, they are not precise
about it.

Denote the Jacobi symbol efmodp by (%). We can seel{(x,y) | y2 = f(x)}] is

Dver, 1+ (@) = p+ E;. Thus,

(E))? = Z(f(x;+ /"L)(J‘(y;jL /l) _ Z((f(x) —i—)v)p(f(y) +g)>.

X,y X,y

Now sum a particular summand itx, y) over 1. If f(x) = f(y)modp, then all

arguments are squares, adding up po- 1 for the nonzero arguments. Otherwise,

. def 2
complete the square id. The sum becomed/;, = ¥, (=) for some nonzero

dmodp. Note: U; depends only on whethet is square mogh. From that, summing
U, overd showsUy, is independent ofl: it is —1.

Let V = P} \ {oo}, U = P!\ {oo}. We conclude:W,2_; = pNy with Ny =
|(V2\ A)(Fp)|. Weil's estimate showsN; = k;p + O(pY/?). So, k; is the main
determiner of the constant in the Davenport-Lewis result. This is the source of the
nameexceptionalfor polynomialsf.

Davenport and Lewi§DL63, p. 59] notes cyclic and Chebychev polynomials are
exceptional for those primgs where they are permutation.

Both substitution polynomials and exceptional polynomials admit functional com-

position: If f andg belong to these classes, then so dgés(x)). This is obvious

in the case of substitution polynomials and ...

They partially factor f(g(x)) over [, to see it is exceptional if and g are. They

were not sure their meaning of exceptional also meant (2.1b) in Propo&itsonNas

f automatically substitution? C. MacCluer's 1966 thesis [Mc67] took on that question,
answering it affirmatively for tame polynomials satisfying (2.1a). The proof of Principle
3.1 seems easy now, applying generally to pr-exceptional. Yet, the literature shows that
belies much mathematical drama.

7.2. The monodromy problem of Katz [Kz81]

Let ®: X — S be a smooth family of (projective) curves over a dimendibbase
S Assume the family has definition field, which we take to be a number field. This
setup has an action of the fundamental grouyps, so) = G on the 1st cohomology
V = HY(X,,, C) of the fiber of ® oversy € S. Let V; = HY(X;, C) for s € S.

(7.1) Equivalently,Uscs Vs is a locally constant bundle ove&

7.2.1. Using complete reducibility

A theorem of Delighe say$s has completely reducibleaction [Gri70, Theorem
3.3]. So,V breaks into a direct sun®;’ ;V; with G acting on eachV; irreducibly
(with no proper invariant subspace). Two irreducible representafiong — GL(V')
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and p” : G — GL(V") of G are equivalent if dim(V’) = dimg(V”) = n, and
for some identification of these witlC", there is an element/ € GL,(C) with
p' = Mop’ oML Rewrite the sumd” |V, as & ;m;V/ with the V/s pairwise
inequivalent. Denot@:ﬁl ml2 by Wg. Then, with V* the complex dual o¥/ (with G
action):

(7.2) Wo = Z m? = dimg Endg (V, V) = dime (V ® V¥)©.
i=1

7.2.2. The strategy for going to a finite field

The ¢-adic analog of 7.1) gives varying¢-adic 1st cohomology groups over the
baseS These form a locally constant she@f = 7, with G action. Elements of the
absolute Galois groufiix also act on this. There is a comparison theoremQin
developed by Artin, Deligne, Grothendieck and Verdier that Deligne used extensively
[De74].

The idea from here is to rega® as an algebra over some ring of integ&®»f K
and to use primep of R for reducing the whole family. Suppose the residue class field
R/p has orderg. We would then have a sheaf on which the Frobenius (Grpower
map) acts. To relate this to a Davenport—-Lewis-type sum for the accumulated Well
error, we need a two-chain comparison.

(7.3a) Extract the Davenport-Lewis estimate for the family aRgp from Fr,: action
(somet) on the cohomology of thé-adic sheaf7 @ 7.
(7.3b) Compare FF on the cohomology with the quantitys.

The comparison (7.3a) is crucial. The rational primhat appeared in the Davenport—
Lewis estimate is long gone. So, we will be considering the analog of their computation

with F,(D R/p def Fp) for t large replacinglF,, and subject—as we will see—to
another constraint. The convention for writing the Davenport—Lewis estimate for the
family over [ is in the following notation:

(7.4) Y Efo= ) tFrT®T).
S€S®R[Fp([|:q;) seS®Rlp

The Lefschetz fixed point formula computes the right-hand side as

N
(7.5) Y (D)t (Fry Hi(S @ Fp, T @ T)).
i=0

7.2.3. Using the full Weil conjectures
Deligne’s version of the Riemann hypothesis isolates one térm §) from this.
With that we conclude by fulfilling (7.3b). To do so requires assuring the trace term
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on HZZN has a bound away from zero in the limsup oveso Fr: eigenvalues on it
do not nearly cancel for al.

Then, that term will have absolute value rougl{¥+tb’ times dimp, (HfN). (Do
not forget to add the affect of fr on the stalk7; ® 7; in which the cohomology
elements take values.) This will dominate all other terms7irb); Still, to isolate out
that term, we must chooselarge, and yet mysteriously. Reason? We do not actually
know what are the eigenvalues of the Frobeniusiof' (S ® Fp, 7 ® T), though we
soon interpret how many there are.

To fix notation, suppose;, ..., y, are the eigenvalues of the Frobenius fgy on
HN (S ® Fp,’f@) T), with Fp = F,o. Consider the corresponding eigenvalues of
the Frobenius forf,: with 7o dividing t, which is thez/fo = v power of the first
Frobenius. So its eigenvalues are thth powers ofy,, ..., 7,. These all have absolute
value g"W+D . A simple diophantine argument shows there is a subsequenfesuch
t so the absolute value afy"}_; y*)/¢"¥*V has limit u. This is the limsup of the
right-hand side of (7.5) divided by’™*? as a function oft (divisible by 79). Thus,

u is Davenport—Lewis limit of the left-hand side of (7.4) divided &§V+V. For the
hyperelliptic family, this was the number of absolutely irreducible factor§(§f\ A
over the fieldsF,:, ¢ € L.

The numberW,, is the same as dit#2(S ® Fp, 7 ® 7)). By Poincaré duality, this
is the same as ditH2" (S ® Fp, 7 ® 7)) = u. It is the left-hand side of (7.4) divided
by ¢'™+D . So, the Davenport—Lewis estimate only works on the quantity Katz is after
if we run over the lim sup¢-adic cohomology estimate.

Generalizing this situation has straightforward aspects. We comment on that, then
conclude in 87.2.4 with a different tack on the Davenport—Lewis setup. This motivates
how Fried [FrO5b] uses zeta relations to detect the effects of exceptionality.

Since the fibers are curves, you can easily adjust to consider collections of affine
curves with points deleted from the fibers. This does not affect the final computation:
using error estimates from the affine (instead of from the projective) fibers gives the
same result. Katz [Kz81, 8§IV] writes this in detail. Also, in estimating counting errors
in rational points, it may be useful to ha®an open set inAY over R, with the
family the restriction of\W — AN (still with 1-dimensional fibers). If we use the
latter family to make the count, likely some fibers will be singular, even geometrically
reducible. What happens if we include them in the computation for our estimate for the
calculation overS? Answer This makes the error for a family ovék™ an upper bound
to counting the sums of squares of the irreducible components for the monodromy action
[Kz81, §VI.

Katz uses thavrong direction from [DL63]; as an upper, rather than lower, bound. It
is a shame to lose the precision. So, when dim= 1, the correct estimate faWVy is
the lim sup of the Davenport-Lewis error estimate dividedyBy That is the expected
k¢ (computed over the algebraic closure K.

7.2.4. Detecting exceptionality through zeta properties
Now we list lessons from the combination of Davenport—Lewis and Katz. Consider
the projective curvel/; defined byy? + ju? — xu = 0 in projective 2-spacé? with
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variables(x, y, u), for & fixed value of a parameter Denote the space if*? x A}
defined by same equation &5°. There is a well-defined map : (x, y,u, 1) e U* —
x/u=zEe€ P%.

View any (nonconstanty (w) € I, (w), f : Pl — Pl, as a substitution. Davenport
and Lewis[DL63] asked how substituting (w) for z affects the sum ovei € Al([Fq,)
of the squared difference betwegl; (F,/)| and g’ 4 1. This Weil error vanishes over
F, wheref is exceptional. Excluding suchand a possible finite set dfvalues, it
is far from vanishing. The investigation starting from MacCluer’s thesis [Mc67] found
this precise vanishing for infinitely manyto characterize exceptionality. Note: In this
formulation, you can replace — f(w) by any coven) : X — P%.

Katz interpreted this error variation as a zeta function statement. Specific conclusions
related torm1(S, so) action involved arf exceptional over a number field (as in §4.4.1).
This is just one phenomenon. Relations between general zeta functions defined by
exceptional covers and iDPs (88.2.2) generalize the Davenport-Lewis situation around
exceptional polynomials.

8. The effect of pr-exceptionality on group theory and zeta functions

The Davenport—Lewis collaboration [DL63] motivated MacCluer's Theorem [Mc67].

This fl[fl-‘, connecting of two meaninas of exceptionality (87.1) applied just to tame

polyno|(@and we know exactly when that happens (as in Lem. 1.3 and es to a pure

monod86{(and we know exactly when that happens (as in Lem. 1.3and __ jles of how

pr-excepti{ge.1 )
Section 8.1 enhances fleeosswordanalogy of 81.2.Z for an historical explanation

of how exceptionality and Davenport's problem affecgup theory The examples

of 88.2 show these special arithmetic covers raise tough questions on the nature of

zeta functions and how much they capture of cover arithmetic. Finally, we discuss the
history of DPs. These topic introductions continue in [FrO5b].

8.1. Group theory versus exceptionality

Many supposed by 1969 that we knew everything about rational functions in one
variable that one could possibly care about. Sections 8.1.1 and 8.1.3 (with technical
fill from the appendices) take us through the mathematical history that exposed that
supposition as premature.

8.1.1. Rational functions set the scene

Consider a rational functio, indecomposable ove?q, that might have appeared
in 8§7.2.4. Whenf is a polynomial and has degree prime gpwe know either that
f is Dickson or cyclic, orky is exactly 1. With anyf e F,(w), the limsup of the
Davenport-Lewis variation divided by?% is still ky computed overK. Even, how-
ever, under our extra hypotheses, we do not expect this to be 1. For example, hav-
ing just one absolutely irreducible component translates as doubly transitive geometric
monodromy.
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Our indecomposability criterion is that the geometric monodromy is primitive. The
geometric monodromy group of a rational function is callegeaus Ogroup. | suspect
even those who knew what primitive meant in 1969 would have thought the geometric
monodromy group of an indecomposable rational function could be any primitive group
whatsoever. That is what the genus 0 problem tackled. The serious unsolved aspects in
1987 translated to considering genus 0 covers whose geometric monodromy is primitive,
but not doubly transitive. The main tool, besides group theory, was RET (existence of
branch cycles as in&1.4).

8.1.2. Guralnick’s optimistic conjecture

| have used the same title for this section as does Fried [FrO5d, 8§7.3]. For the
convenience of the reader | repeat a bit of that to express what is expected (and has
been partly proved) on the geometric monodromy of genus 0 covers. (For geads
and g > 1, there is a similar conjecture abogtsporadic groups.) The easiest result
from the elementary part of RET —use of branch cycles in §2.1.4 —is that every finite
group is the geometric monodromy group of a coveﬂméf If the following were truths
for you, then you might not suspect the need for RET.

e It is easy to construct genus 0 coversﬂ@j with desired properties.
e All groups appear as monodromy groups of genus 0 coverf@%of

Both, however, are false, whatever you meandagy even if you restrict to genus 0
covers with a totally ramified place (represented by polynomials; €9e 8§

The original Guralnick—=Thompson conjecture was that for egicexcluding finitely
many simple groups, the only composition factors of monodromy groupE%on‘,ov-
ers are alternating groups and cyclic groups. Still, composition factors are one thing,
actual genus 0 primitive monodromy groups another. Also, the attached permutation
representations do matter. What arose in the middle 1800s from elementary production
of covers were cyclic, dihedral, alternating and symmetric groups using genus zero
covers. Such examples appear in 1st year graduate algebra books. The list of (8.2)
shows these and a small set of tricky alternatives to these.

Definition 8.1. We sayT : G — S, a faithful permutation representation, with prop-
erties 8.1) and (8.2) is Gporadic

Denote S, acting on unordered sets of{1,...,n} by T, : S, — Sy standard
action is 7, 1. Alluding to S, (or A,) with T, x nearby refers to this presentation. In
(8.2), V., = (Z/p)* (p a prime). Use 86.1.4 for semidirect product in thg case on
points of V,;; C can beSs. In the 2nd(A,, 7,.1) case,T : G — S,2.

(8.1) (G, T) is the monodromy group of a primitive (8A.1) compact Riemann surface
cover ¢ : X — P! with X of genus 0.

(8.2) (G, T) is not in this list of group-permutation types.

o (An, Tp1): An<G<Sn, OF Ay X Ay x*ZJ2< G < Sy X Sp x*Z)2.
° (Aann,Z): A <GS,
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e Ty:G=Vx'C,aec{l,2},|Cl=de{l,23,4,6} anda = 2 only if d does not

divide p — 1.

Indecomposable rational functions € C(x) represent O-sporadic groups by :
|P>)1C — P% if their monodromy is not in the list of8.2). We say(G, T) is polynomial
O-sporadic if some f € C[x] has monodromy outside this list. We know of covers
satisfying (8.1) and falling in the series of groups in the list of (8.2). There are,
however, other O-sporadics with at), component [GSh04]. For example, if there were
a genus 0 cover with monodronms acting on unordered triples frotfi, 2, 3, 4, 5, 6},
we would call it 0-sporadic. The point, however, of 0-sporadics is that you only have
a small list ofn’s for which the geometric monodromy of the genus O cover will be
A, acting on unordered triples.

Emphasis Do not toss the 0-sporadics away, because it is they that give a clue for
quite different set of primitive genus O covers in positive characteristic. The finite set
of (genus 0)-sporadic groups (ovér, Appendix C) adumbrates a bigger set of genus
0 groups over finite fields. While we do not have so precise a RET in charactgxistic
there are tools. By focusing on the group requirements for exceptional covers and DPs
we have applied characteristic 0 thinking to charactergfitoblems. An understanding
why this works starts from [Fr74a], and a preliminary version of [FrM02] in 1972. More
solid applications in print encourage extending [Fro94] and [GS02]. The precise structure
of exceptional towers makes describing their limit groups an apt sub-problem from the
unknowns left by Harbater-Raynaud ([Ha94,Ra94]) in their solution of Abhyankar’s
problem.

Davenport asked me several times to explain why transitivity of a permutation rep-
resentation (from a polynomial cover : Pt — P1) is equivalent to irreducibility of
p(x) — z over the fieldK (z). He did not like Galois theory, and his reaction to group
theory was still stronger. It was not only Davenport. Genus 0 exceptional covers force
an intellectual problem faced by the whole community.

(8.3a) RET guides us to how to find exceptional covers.
(8.3b) Using exceptional covers demands an explicit presentation of equations that
(8.3a) cannot give directly.

8.1.3. From Davenport pairs to the genus O problem

I knew Harold Davenport from graduate school (University of Michigan), my second
year, 1965-1966. He lectured on analytic number theory and diophantine approxima-
tion (my initial interest), though this included related finite field topics.Discussions with
Armand Brumer (algebraic number theory, from whom | learned Galois theory), Don-
ald Lewis (diophantine properties of forms; my Ph.D. advisor) and Andrzej Schinzel
(properties of one variable polynomials) were part of seminars | attended. MacCluer
attended these, too; we overlapped two years of graduate school. Problems formulated
by Schinzel used the topics of these discussions.

My understanding of the literature on finding variables separated polynonhials—
g(y) that factor started with Davenport et §DLS61] and Davenport and Schinzel
[DS64]. At the writing of these papers, the authors did not realize the equivalence
between this factorization problem and Davenport’'s value set problem [Fr73]. Within
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2 years from that time, | had finished that project. This used small private lectures
from John McLaughlin on permutation representations.

Years later, | returned to these topics while writing my lecture at Andrzej Schinzel's
birthday conferencgFr99]. | record some points here.

(8.4a) Davenport wished (Ohio State, Spring 1966) that confusions among polynomial
ranges over finite fields received greater attention.

(8.4b) He insisted many used Weil's theorem on zeta functions gratuitously.

(8.4c) Groups and Galois theory frustrated him.

Small subsections below explain each point.
8.2. Arithmetic uniformization and exceptional covers

Exceptional covers and cryptology go togethe#.(81 and 84.3). We would now
express Davenport's concern in (8.4a) as this: how to detect when one isovalent DP is
formed from another by composing with exceptional covers.

8.2.1. (8.4a): Davenport’s problem led to studying exceptional covers

Davenport asked whether two polynomials could (consequentially) have the same
ranges modulg for almost all prime9? By consequential we mean, no linear change
of variables, even ove®), equates them (an hypothesis that we intend from this point).
Fried [Fr73] restricted to having one polynomial indecomposable (primitive as a cov-
ering map, 81.2). A first step then says they have the same degree. Over an arbitrary
number field, there may be consequential DPs. Yet, only for a bounded set of degrees
{7,11, 13, 15, 21, 31}. Further (again the indecomposable case) this cannot happen over
Q. The first result uses the simple group classification. The second does not. For it,
we need only theBranch-Cycle Lemm#Appendix B).

Muller made a practical contribution to the genus 0 problem by listing primitive
monodromy groups of tame polynomial covers. There are three nontrivial families of
indecomposable polynomial DPs. Section C explains how these Davenport families are
exactly the nontrivial families of sporadic polynomial monodromy group®ntrivial
in that the pairs have a significant variation; somegluced deformatior(8A.2). We
recount points from the detailed analysis of Fried [Fr05d, 83 and 85]. Section B.2.2, for
example, reminds of the historical relation between the production of Abelian varieties
whose field of moduli is not a field of definition—an unsolved problem at the time —
and these DPs.

8.2.2. (8.4b): The name exceptional and eigenvalues of the Frobenius

For three of our topics, exceptional covers conjure up zeta functions and Frobenius
eigenvalues that support Davenport’s desire in (8.4a).

First: Still with genus O exceptional covers, we use §7.1 to tell from whence came
the phraseexceptional polynomialThe start was a paper in the long collaboration of
Davenport and Lewis. Davenport and Lewis [DL63] checked, in a hyperelliptic curve
pencil, if the Weil error accumulates significantly. When it did not, they called that
case exceptional. Later they guessed an equivalence between their exceptionality and
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the conclusion of Schur's conjecture (Propositibi3). The latter generalizes to what
we now call exceptionality. Katz [Kz81] used Ref. [DL63] to discover for the same
pencils that exceptionality is equivalent to irreducible monodromy action of the base’s
fundamental group on the pencil fibers (§7.2). There is, however, a surprise. Katz drew
conclusions on exceptional covers for valuestofvhere, overl,:, the polynomials
were as far from exceptional as possible. This motivates topics that are now haphazard
in the literature: To inspect exceptional polynomials outside their exceptional sets, and
to consider exceptional covers of higher genus.

SecondIf ¢:Y — Pg is exceptional, thely is e-median

e It is median value Y (F,) = ¢’ + 1 for co-ly manyt.
e The median value exceptional set to€ontainst = 1 (Proposition4.3).

Exceptional correspondences Wﬂ@lj are examples of e-median curves (83.1.3) that are
not &’ priori given by curves from an exceptional cover like We characterize DPs
as having a special pr-exceptional correspondence between their curves. A fundamental
question arises: how can we characterize curves that have an exceptional correspon-
dence with le? Fried [Fr94, §3.5] notes the genus 1 curves with this property are
supersingular. It also checks examples (from [GF94, Proposition 14.4]) of supersin-
gular genus 1 curves and shows they are, indeed, exceptional cov@Z% @t next
step is the program of Problem 6.8. The following remark starts our continuation in
[FrO5b]: e-median is a pure zeta function property and not all e-median curves will
have supersingular Jacobians.

Third: Suppose we have a Poincaré seﬂhéﬁ[pq (u) =Y ;21 Np(t)u' for a diophan-
tine problemD over a finite fieldl,. We call thesé/eil vectors (Example: One from

a zeta function of an algebraic variety.) Assume algp:: X — Y, i = 1,2, is an
isovalent DP ovefr,. If D has a map t&, this DP produces new Weil vectowg"[F ,
g

i =1, 2, and arelation betweenwgl[Fq (u) and Wgz[Fq (u): an infinite set oft, where the

coefficients ofu’ in Wg}[Fq (u) — ng[Fq (1) equal 0. Producing relations between Weil
vectors is characteristic of isovalent DPs. Fried [FrO5b] has an effectiveness result: for
any Weil vector, the support set ofe Z of 0 coefficients differs by a finite set from

a union of full Frobenius progressions (81.3.3).

8.3. History of Davenport pairs

DP first referred to pairg f, g) of polynomials, over a number field (with ring
of integersOk), with the same ranges on almost all residue class fields. Now we call
that astrong Davenport pair (of polynomials) ovef. An SDP over(Y, K) is a pair
of coversg,; : X; — Y, i = 1,2, overK satisfying Range equality

(8.5) ¢1(X1(O/p)) = p2(X2(0/p)) for almost all prime idealp of Ok.

Aitken et al. [AFHO3] reserves the acronym DP ovéY, K) to mean equality on
ranges holds for infinitely manp. An iDP is then an isovalent DP (88.2.1 and Propo-
sition 3.9), iISDP means isovalent SDP, etc.
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Proposition 8.2. If (¢4, ¢,, K) is an iSDP foroo-ly manyp, then it is an iSDP for
almost all p.

{pe E((pl,(/)z)(K) | (01, @2, O/p) is an SDR

is either finite or cofinite iNE,, ¢, (K).

Proof. Use notation of 8.2, with extra decoration indicating the base field. Far
large, letc € G(K/K) be a choice of Frobenius for the prinpe Then, we can identify
two geometric—arithmetic monodromy group pairs [FrJ86, Lemma 19.27]:

(G((ﬂlv(ﬂz)»o/l” G((Plﬂ’z)yo/]’) and (G((pl,(pz),KJ’ G((pl,(pz),le”)‘

Restrict to suchp. Then, E (¢, ,).0/p = NT if and only if (@1, ¢,, O/p) is an SDP.
Lemma3.11 shows this is equivalent to the representation (air7>) giving equiv-
alent representations i N aka condition independent @f. So, excluding finitely

many p, this holds elther for aII or none of the O
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Appendix A. Review of Nielsen classes

WhenY = |]3’1 a Nielsen class is a combinatorial invariant attached to the cover.
Supposez is the branch point set o, U; = Pl\ {z} andzg € Us. ConS|der analytlc
continuation of the points overp along paths based ap, of the formy-4§; -y, 7,
on U; and §; a small clockwise circle aroungt. This gives a collection of conjugacy
classesC = (Cy, ..., C,, one for eacty; € z, in G,. The associatedlielsen class

(A1) Ni=Ni(G,C)={g=1(g1,---.8) 188 =1(9) =G andge C}.

Writing g € C means theg; s, in some order, define the same conjugacy class& in
(with multiplicity) as those inC. We call the respective conditiong ---g, = 1 and
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(g) = G, the product-oneand generationconditions. Each covep : X — Pg has a
uniquely attached Nielsen clasg:is in the Nielsen class N, C). We give examples

in 85.2.3. The examples of the degree 7, 13 and 15 degree DPs in [Fr05d, §5] can
give a reader a full taste of why even polynomial covers require RET. The point is that
these three examples are the most significant of the 0-sporadic polynomial covers. The
reduced spaces parametrizing these covers are each genus 0 curves defin@d over
Each is a (nonmodular curvéjline cover [FrO5d, Proposition 4.1]. These facts come
directly from using Nielsen classes.

A.1. Inner and absolute Nielsen classes

Suppose we have (branch) pointsz, and a corresponding choiag of classical
generatorsfor 71(Uz, zo) [BFr02, 81.2]. Then, NiG, C) lists all surjective homomor-
phismsn1(Uz, zo) — G with local monodromy inC given by g, — g;, i =1,...,r.

Each gives a cover with branch poirgsassociated tqG, C). The g € Ni(G, C) are
branch cycle descriptionfor these covers relative t9. Equivalence classes of covers
with fixed branch pointsz correspond one—one to equivalence classes di@,NG).
Caution Attaching a Nielsen class representative to a cover requires picking one from
many possibler-tuplesg. It is not an algebraic process.

Bailey and Fried [BFr02, §3.1] reviews common equivalences with examples and rel-
evant definitions, such as the gro@y below. LetNs, (G, C) be thoseg € S, normal-
izing G and permuting the collection of conjugacy classe€irmbsolute (resp., inner)
equivalence classes of covers (with branch pointg) atorrespond to the elements of
Ni(G, C)/Ns, (G, C)) (resp., N{(G, C)/G). Fried [Fr05d, 85] usesbsoluteand inner
(and for each of theseeduced equivalence. These show how to compute specific prop-
erties of manifolds (G, C)3S #(G, C)" and their reduced versions, parametrizing
the equivalences classes of coverszagries. Orbits of the Hurwitz monodromy group
H, on the respective absolute and inner Nielsen classes determine components of these
spaces. Here is thé&l, action using generatoig, ..., g-—1 on g € Ni(G, C):

A2) q:9=(g1,....8) (g1,...,8&-1, gigi+1gi_1,gi,gi+2,--.,gr).
A.2. Reduced Nielsen classes whes 4

Reduced equivalencef covers equivalences a cover @E QX — Pg, with any
coveroo @ : X — [P’g from composinge with o € PGLy(C). This makes sense
for covers with any number of branch points, though the case= 4 has classical
motivation. Then, the PGL action associates to the branch point sed j-invariant.
You can think of it as thg-invariant of the genus 1 curve mapping 2—to—1ﬂ?§: and
branched az. The branch point set of a cover iselliptic if it equals that of an elliptic
curve with automorphism group of order larger than 2.

We now review from[BFr02, §2.6 and 83.7.2] how Nielsen classes describe the
collection of reduced classes of covers up to inner or absolute equivalence that have
a particular nonelliptic value of as their invariant. Indeed, this set is just the inner
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or absolute Nielsen classes modulo an action of a quaternion g€, on the
respective Nielsen classes. The action@f= ((g192¢3)?, 9193 1 (using @.2)) factors
through a Klein group actio®”. This arises from there always being a Klein 4-group
(=Z/2x 7/2) in PGLy(C) leaving the branch point setfixed. (An even larger group
leaves ellipticz fixed.) Then, absolute reduced and inner reduced equivalence have
respective representatives

Ni(G, C)/(Ns, (G, C), Q") and NiG, C)/(Ns, (G, C), Q").

When r = 4, these give formulas for branch cycles presentiigG, C)2Ps™ and
H(G, C)"1d as quotients of the upper half-plane by a finite index subgroup off5L
as a ramified cover of the classicgline. These branch over the traditional places
(normalized in[BFr02, Proposition 4.4] tgi = 0, 1, co) with the points overo mean-
ingfully called cusps.

Fried [FrO5d, 84] has many examples of this. For example: Fried [Fr05d, Proposition
4.1] uses these tools to produce a genydife cover (dessins d’enfant) defined ovgr
that parametrizes the paitg, g) of reduced classes of degree 7 Davenport polynomial
pairs. As a parameter space for the 1st (resp., 2nd) coordfnésp.,g) the two
families are defined and conjugate ov@c/—7).

A cover (overK) in the Nielsen class NG, C) with arithmetic monodromy group
G is a (G, G, C) realization (over K).

A.3. Algebraist’'s branch cycles

Grothendieck’s Theorem [Gro59] gives us branch cycles for any tame cover, even in
positive characteristic. We state its meaning ([Fr06, Chapter 4, Proposition 2.11] has
details). Consider a perfect algebraically closed figldFor 7’ e P%(F) ande a positive
integer prime to chak ), denote the field of Laurent formal seriég((z —z/)¥/¢)) by
P:,e. We choose a compatible sk}, . charg)=1), Of roots of 1. Leto, . : Pz —

P,.. be the automorphism (fixed oki((z—z'))) that acts by(z —z)¥¢ > {,(z—z)e.
Let z= {z1, ...,z ber distinct points of L.

Proposition A.1 (Algebraist branch cyclds Assumd. is the Galois closure of a tamely
ramified extension/F(z) having branch pointsz. Then there are embeddings; :

L — P, ., with ¢; the ramification index of. over z; satisfying this. The restrictions
8.y, € Gy ofaoy . tO L,i=1,...,r, have the generation and product-one properties

i

(A.1) [Fr06, Chapter 2, §7.5].

Suppose given distinct points orﬂmzl. Then, any set of classical generators (as in 8A)
of n1(Ug, zo) produces the collectiog = (..., 8>+ for all covers in Proposition
A.l. These are also compatible, in the following sense. Given branch cycleg for
X — P% appearing in a chainy : xZx - P}, this uniquely gives branch cycles
of ¢’ (dependent ony).
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Also, we explain how fiber products alone give a notion of compatibility without
any appeal to paths. Leb, : X; — [Fl’zl and assumep : X — [P’i is a cover defined
by a F componentX of X1 Xp1 X2. Supposey; is a branch cycle description fap;,

i = 1,2. We sayg; and g, are compatible if there are branch cyclgsfor ¢ that
restrict tog; on ¢;, i = 1,2, as in PropositiorA.1. Note Referencing branch cycles
gives meaning to the Nielsen class (any type) of a tame cover in any characteristic. If
we want to compare branch cycle descriptions of a finite set of tamely ramified covers
over P%, we may take their fiber products and a branch cycle description of a cover
that dominates them all.

Suppose NiG, C) defines some Nielsen class (say absolute or innerpnjugacy
classes). The rest of Grothendieck's theorem requit€s, chark)) = 1. Then we
interpret it as follows. Giverg, r distinct points onPZ?(F), equivalence classes of
covers in the Nielsen class with branch poiateave a compatible set of branch cycle
descriptions that correspond one—one with the Nielsen class representatives.

Appendix B. Weil's cocycle condition and the Branch Cycle Lemma

Often we apply Nielsen classes to problems asking about the realization of covers
over Q or some variant likegG, G, C) realization problems (8A.2).

B.1. The Branch Cycle Lemma story

Realization problems, according to the Branch Cycle Lemma, redliireonjugacy
classes inG < Ns,, (G,C)<S,, to berational. It is now a staple of the theory of
covers.

Definition B.1. Let G* be a group betwee® and Ns, (G, C). Suppose for each integer
k prime to the orders of elements @, there ish = hy € G* andn € S, so that
we have the identity:C).h 1 = Cff, i=1,...,r, in conjugacy classes. The@, is a
rational union of conjugacy classes mGd.

For this special case of Frid#r77, Theorem 5.1], th&ranch Cycle Lemm#&BCL)
saysC is a rational union of conjugacy classes n@dis a necessary condition for a
(G, G", C) realization withG<G" <G'.

Some version of the BCL and Weil's cocycle condition is now standard to determine
when equivalence classes of covers have equations over the smallest possible field one
could expect for that. Though standard, getting it there required getting researchers to
master the notion of Nielsen class. For example, in the special case mentioned above
of DPs, the BCL was the main tool in [Fr73, 83]. Fried [Fr77] proved converses of
the conclusion of the BCL, by formulatinBraid rigidity (though not calling it that).

In [FrO5d] examples—giving complete details on the parameter spaces of DPs of
indecomposable polynomials over number fields—the Braid Rigidity hypothesis holds
and we apply the converse.
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B.2. Weil’'s cocycle condition and its place in the literature

SectionB.2.1 explains how Weil's cocycle condition works for families of covers,
then 8B.2.2 tells some history behind it.

B.2.1. How the co-cycle condition works

Supposep : X — Y is a cover withY embedded in some ambient projective space
over a perfect field= and X similarly embedded in a projective space over Then,
consider

Gy =0 € G(F/F) for which there exists), : X* — X s0 ¢ o ¢, = ¢°.

Denote the fixed field oG, in F by L.

Proposition B.2. Assume alsothere is no isomorphisnyy : X — X that commutes
with ¢. Then there is a coverp’ : X’ — Y with L, a field of definition ofX” and ¢’,
and an isomorphisny’ : X’ — X with p o)/ = ¢'.

Proof. Regard the pairg(X?, ?)sec(ir) aS A subvariety of some ambient projec-
tive space. Theny, induces an isomorphismiX?, ¢’) — (X, ¢), and this gives an
isomorphismy, o nﬁ;l =5, (X%, 0%) — (X7, @"). That there is no automorphism
Y : X — X that commutes withp implies that forg, 7,7 € G,

lpr,y © ‘/ja,r = lpa,y'

This is the co-cycle condition attached to our situation.

The conclusion is the existence of an actual p@i, ¢’) over L, by applying
[We56]. Examples with the covers represented by polynomials appear in [FrO5d, 84
and 85] with, typical of its use, a much stronger conclusion: The whole family of
covers in a Nielsen class has definition figld [

B.2.2. Some history of applying the co-cycle condition to families of covers

| learned the Weil cocycle condition from the 1961 version of Shimura [Sh61-98,
p. 27] when | learned complex multiplication studying with Shimura during my years
1967-1969 at IAS. | showed Shimura the BCL, and the effect of applying the Weil
cocycle condition to the arithmetic of covers. In particular, | showed its application to
DPs. This produced curves with field of moda@i not equal to their field of definition.
Those first curves were the Galois closures of DPsg), such as those of degree 7
over Q(v/=7).

As in [Fr73, Proposition 3], the arithmetic Galois closutgsof the covers fromf
andg are the same, and the BCL showledndg are conjugate. So, the field of moduli
of X as a Galois extension d?’% is @ (an inner equivalence class as in 8A.1): The
field of moduli of the cover together with its automorphisms. If, howe@@nvere its
field of definition, then the subgroups corresponding to the covers givehdnd g
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would also be ovefd. So, the field of definition for this equivalence of covers is not
Q. It is easy to show the full automorphism group Xfin this case is PG4(Z/2)
together with its diagram automorphism, and from that to conclude the field of moduli
of X is not a field of definition for it.

Shih’s paper[Shi74], with some version of the BCL, was in print before [Fr77]
(though not before [Fr73]). Some authors have revised the situation of its priority,
saying the results were done independently.

Fried [Fr77] was half of an original paper that was in Shimura’s hands by Fall
of 1971. It was broken apart in Spring of 1972 when | was again at IAS. Shimura
sent Shih to visit me when | was at MIT, fall 1971, on a Sloan. This resulted from
Shimura asking me to give an elementary approach to canonical fields of definition. My
answer was the Hurwitz space approach, using the BCL, and applying it in particular
to modular curves in [Fr78] (the other half of the 1971 preprint). | said | would quote
[Shi74], and he could use the BCL if he said from where he got it. | did my part. He
did not.

Appendix C. DPs and the genus O problem

Davenport phrased his problem starting ov@rand at least for indecomposable
polynomials, Fried [Fr73, Theorem 2] showed it was true: two polynomfalse Q[x]
with the same ranges modulo almost all primesre linearly related:f (ax + b) =
g(x) for somea, b € Q. Because of indecomposability, we actually may také € Q
(Remark C.1). 8C.1 is a complement to [Fr05d, 84 and 8§5].

We consider indecomposable polynomial DPs over a number Heldhese are
essential cases in the genus 0 problem. The polynomials that arise in serious arithmetic
problems are not generic. So, in continuing §8.1.2 we show how Davenport’s Problem
relates to O-sporadic polynomials. Miller's Theorem in this direction is a gem from
my view for two reasons. It shows how truly significant DPs were to this direction,
and it is easy to understand.

C.1. Miller’s list of primitive polynomial monodromy and DPs

Suppose(f, g) is a DP over a number fiel& (f, ¢ € K[x]). We always assume
(f, g) are not affine equivalent. Lemma 1.3 says thabmdecomposable translates to
[ [P’)lc — [P)g having doubly transitive geometric monodromy. In particular it shys
is not exceptional. [AFHO03, Corollary 7.30] showgd= g1(g2(x)) is a decomposition
(over K) with (f, g1) an iSDP.

C.1.1. The three 1-dimensional reduced spaces of 0-sporadic polynomial covers

You do not have to be a group theorist to read the list from [Mu95] of primitive
polonomial groups that are not cyclic, dihedrdl, or S,,.

Our version of Miller's list shows how pertinent was Davenport’s problem. All ap-
pearing groups are almost simple (84.3.1). Exclude those (finitely many) that normalize
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PSLy(F,) (for very smallq) and the degree 11 and 23 Matthieu groups. Then, all
remainingG are from[Fr73] and they have these objects.

(C.1a) Two inequivalent doubly transitive representations, equivalent as (deyjree
group representations; and
(C.1b) ann-cycle (for these representations).

We know such groups. There is one of degree 11. The others are Chevalley groups
that normalize PSL1(F,) (acting on points and hyperplanes Bf). Fried [Fr99, §9]
reviews and completes this. All six (with corresponding Nielsen classes) give DPs. We
concentrate on those three with one extra property:

(C.2) Modulo PGIlx(C) (reduced equivalence as i) action, the space of these
polynomials has dimension at least (in all cases, equal) 1.

These properties hold for sporadic polynomial maps with4 branch points.

e They have degrees frofv, 13, 15} andr = 4.

e All >4 branch point indecomposable polynomial maps in an iDP pair are in one
of the, respectively, 2, 4 or 2 Nielsen classes corresponding to the respective degrees
7, 13 and 15.

Fried [Fr73] outlines this.

Fried [Fr99, 88] and Miuller [Mu98a], [Mu95, §2.7] say much on the group the-
ory of the indecomposable polynomial SDPs over number fields. Yet, we now say
something new on the definition field of these families, a subtlety on dessins d’enfant,
presented as genus jdine covers. LetH2", #DP and #2P denote the spaces of
polynomial covers that are one from a DP having four branch points (countihg
The subscript decoration corresponds to the respective degrees. We assume absolute,
reduced equivalence (as in 8A.2). Then, all these spaces are irreducible and defined
over @ as covers of thg-line. EachHPP is labeled by a difference set moduip
n = 7,13 15, and there is an action @fg on the difference sets (modulo translation)
[FrO5d, §2.3].

In these cases, analytic families of respective degr@®elynomials fall into several
components%{?P are those of degree 7). Yet, each component corresponds to a unique
Nielsen class and a particular value @f We understand these Nielsen classes and the
definition fields of these components from the BCL.

Remark C.1 (Linearly related overQ versus overQ). The comments on proof in
Proposition5.1 note the degree Chebychev polynomial;, gives all Dickson polyno-
mials by composing with linear fractional transformations in the féym7, o/,-1. All
Dickson polynomials of degrem over a given finite field have the same exceptional
polynomial behavior and branch cycle descriptions placing them in one family. Whether
you see them as significantly different depends on your perspective. | tend to downplay
this, though there are times it is worthy to consider.

Fried [Fr73, Theorem 2fioeshave the conclusion that indecomposable DPs @ver
are linearly related ove®. Still, there are elementary examples of (composable) DPs,
linearly related over® and not overQ. Davenport likely knew those for he used the
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same_examples elsewher@:(x®), 1(16x8)) with h € Q[x] are a DP, linearly related
over Q [FrJO4, Remark 21.6.1].

C.1.2. Masking

Consider the statement in the paragraph starting 8C.1. One possibility not yet ex-
cluded for (f, g1) from [AFHO03, Corollary 7.30] is thafe; is affine equivalent td,
and yetg, is not exceptional.

This has an analog over a finite field. Possigland g o g1 have precisely the same
range foroo-ly many residue classes of a number field (or extensigakeven though
g1 is not exceptional. (Fried [Fr73], for example, shows this cannot lheifd g1 have
the same ranges on almost all residue class fields, or on all extensidn3. of

Aitken et al. [AFHO03, Definition 1.3] calls this possibility an example rofisking
Muller [Mu98a, 84] found a version of it, motivating our name.

C.2. Print version miscues in [Fr05d]

Here are several typographical difficulties in the final version of Fried [Fr05d], though
not in the files | sent the publishers.

e Expressions Problefn’ (for n = 1 and 2 representing two distinct problems John
Thompson considered) appear as ProtéFé)m
e Throughout the manuscript, whenever a reference is made to an expression in a
section or subsection, the reference came out to be a meaningless number. So §3.2
titted: Difference sets give properties (3.1a) and (3.2b), had those last two references
appear as (91) and (92). We follow this pattern in the other cases, labeling the
sections and giving the changes in the form (8%)(3.1a) and (92— (3.2b).
§3.3: (92)— (3.1b).
§5.2.1: (171)— (5.3a)
§5.2.2 (172)— (5.3b)
§5.2.3 (172)— (5.3b)
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