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Abstract. Our basic question: Restricting to covers of the sphere by a com-

pact Riemann surface of a given type, do all such compose one connected

family? Or failing that, do they fall into easily discerned components? The
answer has often been “Yes!,” figuring in the connectedness of the moduli

space of curves of genus g (geometry), Davenport’s problem (arithmetic) and
the genus 0 problem (group theory). One consequence is that we then know

the definition field of the family components. Our main goal is to explic-

itly describe specific projective sequences of such families, called M(odular)
T(ower)s. This shows precisely why the Main MT Conjecture holds: high

tower levels have general type and, for K a fixed number field, no K points.

We start with connectedness results for certain absolute Hurwitz spaces
– examples of Liu-Osserman – of alterating group covers. The inner versions

of these spaces are level 0 of our MTs. Connectedness results ensure certain

cusp types – especially those defined by the shift of a H(arbater)-M(umford)
representative – lie on a tower level boundary. Another type, a p-cusp, directly

contributes to showing the Main MT Conjecture.

Modular curve towers have both p- and H-M related cusps, and no others.
General MTs, can have another cusp type. This is like our examples, where

p = 2, which have no p-cusps at level 0. Still, this 3rd type often disappears

at higher levels, to be replaced by p-cusps. Our cusp description uses modular
representations, rather than semi-simple representations. The sh-incidence

matrix, from a natural pairing on cusps, simplifies displaying results. A lift
invariant explains the nature of both components and cusps.
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1. Framework for the problem

The production of MTs is driven by two applications (see §6.1.1).

• Forming families of `-adic representations over which we have control.
• Analyzing definition fields for regular Inverse Galois realizations.

The point of MTs was that these two goals were intimately related. To explain that,
papers like [D06], [DE06], [Fr95b], [Fr06a] and [FK97] used the one well-known
special case: modular curve towers.

The approach is not the usual take on modular curves (see Thm. 1.2). So,
there’s always something knew when viewing MTs as their generalization. That
happens here (starting in §1.1.2) when we show how our approach to cusps gives
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meaning the phrase “over which we have control.” We prove here that MT conjec-
tures – in particular the Main Conjecture 1.4 – generalizing modular curve proper-
ties hold in explicit ways. This makes the towers of this paper available for [Fr11b]:
finding new contexts where Serre’s Open Image Theorem works.
§1.1 describes the main results as a by-product of understanding cusps. We

use cusps types — introduced in [Fr06a, §3.2] — to derive connectedness results.
They do so by giving a group/geometric character to components of the spaces
comprising the MT levels.

1.1. A brief overview. Denote the Riemann sphere, inhomogenously uni-
formized by z, by P1

z. Let G be p-perfect group (§1.3.2) and let C be p′ conjugacy
classes of G (multiplicity of the appearance of conjugacy classes matters). Each
such (G,C, p) produces a projective system of algebraic varieties {Hk}∞k=0.

1.1.1. Equivalence notation. Each ppp ∈ Hk corresponds to an equivalence class
of covers ϕ : X → P1

z. Four different equivalences on covers correspond to four
different, but related, spaces. The names for these equivalences are absolute, inner,
and for each of those an additional equivalence called reduced (App. §A).

Our space notations for these might be Habs,rd
k for the absolute, reduced space,

or Hin
k for the inner (non-reduced) space. Some results hold for both absolute and

inner spaces. In that case our notation will just refer to H∗ or H∗,rd.
In general those spaces that relate to a classical space are reduced spaces. Yet,

for connected results there is a one-one relation between the components of the
non-reduced and their reduced versions. Significantly, often that does not hold for
the relation between absolute and inner spaces.

Definition 1.1. A MT is a projective system of absolutely irreducible com-
ponents on {Hk}∞k=0.

We can always form MTs of inner spaces. Usually, though, we need an extra
condition to form them for absolute spaces. The absolute case arises when G comes
with a permutation representation T – defined by a subgroup we often denote as
G(T, 1) – that extends to a representation on all the groups Gk. Each Gk is a
p-Frattini cover of G (§2.1.2).

(1.1) The natural condition for extension is that (|G(T, 1)|, p) = 1. Then
(Schur-Zassenhaus), Gk → G restricted over G(T, 1) splits.

1.1.2. Modular curve comparison. Rational points on each Hk correspond to
regular realizations of a Frattini covering group Gk → G with p-group kernel (of
exponent pk). One case Gk are dihedral groups {Dpk+1}∞k=0 (p odd) of respective

orders 2 · pk+1. The conjugacy classes are four repetitions of the involution (order

2) class. Here we get spaces Habs,rd
k and Hin,rd

k , because the natural representation
is on a subgroup G(1) generated by an involution, so G(1) satisfies (1.1).

Theorem 1.2. [Fr78, §2] and §2.5.2: A natural map

Habs,rd
k → Y0(pk+1) (resp. Hin,rd

k → Y1(pk+1))

to modular curves – minus their cusps – is an isomorphism of algebraic curves
compatible with the maps of both spaces to the j-line.

General Hurwitz space components at level k correspond to (Artin or Hurwitz)
braid orbits on the (combinatorial) Nielsen class attached to (Gk,C, p) (§1.3). To
understand, however, level k > 0, it is necessary to nail level 0 (G0 = G).
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Some MT levels have nothing over them at the next level (an obstructed level;
some tower levels may even be empty). Some MT levels have several components
(even at level 0). Ex. 2.29 and Ex. 6.12 give, respectively, infinitely many examples
of each situation, including distinctions between absolute and inner spaces.

Being obstructed is not modular curve-like. Yet, homological results show
precisely when there is obstruction (Prop. 2.26). Invariance Prop. 2.23, generalizing
spin structure on a Riemann surface, makes it especially effective when p = 2. §2.1.3
reformulates describing MTs, as a problem in classifying p group extensions of any
finite p-perfect group. The condition that G is p-perfect (resp. that C are p′ classes)
is necessary for any level (resp. any level past the 0th) to be nonempty.

From here on, assume a MT refers to a projective system of components of the
spaces in {Hk}∞k=0 with all levels nonempty.

Definition 1.3. We say a MT is over a field K when all levels (and maps
between them) are defined over K.

Main Conjecture 1.4 is a variant on [FK97, Main Conj. 0.1]. There is an
exposition on it in [D06]. Most significant: Even if you didn’t know what is a
Hurwitz space, they and MT s are forced into existence by the formulation, for any
finite group, of Conj. 1.6 on Dp [Fr06a, Prop. 1.1].

Conjecture 1.4. [Fr06a, §1.1.3]: The following hold for abelianed MT s:

(1.2a) High towers levels have general type.
(1.2b) For K a number field, high tower levels have no K points.

Property (1.2a) applies to the space H̄in,rd
k , the natural projective normalization

of Hin,rd
k as a cover of Pr/PGL2(C)

def
= Jr. It means that its sheaf of holomorphic

1-forms has a tensor product that embeds the space in some projective space.
Property (1.2b) – generalizing a modular curve property from Thm. 1.2 – is

trivial unless the MT is defined over a number field. When r = 4, (1.2a) and (1.2b)

are equivalent; both equivalent having the genus of H∗,rdk rise with k.
1.1.3. The role of cusps. The cusp types from §2.3.3 that naturally generalize

those on modular curves are the g-p′ cusps and the p-cusps. Example: The two
cusps on X0(p) have width p and width 1. In our identifications, the former is a
H(arbater)-M(umford) cusp (that happens to be a p-cusp) and the latter, the shift
of the former, is a very special g-p′ cusp.

The possibility of no p-cusps at any level of a MT – compare with Prop. 2.13
– is what makes the Main Conjecture hard. Connectedness results allow recogniz-
ing components of MT levels by distinguishing cusps (on the boundaries of their
compactifications). To show how this works, we establish the Main Conjecture for
infinitely many cases where G is an alternating group and p = 2.
§1.2 describes our connected results, and how they prove the Conj. 1.4. §1.3

reviews the framework. Proving Conj. 1.4 for abelianized MTs (§2.1) is a stronger
result. Also, abelianized towers are more akin to modular curve towers. Tests for
nonempty abelianized towers are simpler than for general towers (Prop. 2.26).
§2.2.3 has a more detailed list of results, summarizing what comes from a list

of sh-incidence matrix Tables. These apply the cusp pairing on reduced Hurwitz
spaces introduced in [BF02, §2.10]. Tables 2–7 display our main theorem (es-
pecially Table 7 in §5.2.3). These make all components, cusp-types and elliptic
ramification contributions transparent. The remaining sh-incidence tables show
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the difference between assuming spaces of genus 0 covers (say, in the Liu-Osserman
examples) and the case of higher genus covers.

1.2. Spaces whose components appear here. Liu and Osserman consider
all connected covers, ϕ : X → P1

z with the following properties.
(1.3) The degree of deg(ϕ) is n, the genus, gX , of X is 0, and the cover has

r specific pure-cycles as branch cycles (Def. 1.7).
We denote one of their examples by their pure-cycle lengths (with no loss) as

ddd = (d1, . . . , dr). From Riemann-Hurwitz,

(1.4)

∑r
i=1 di−1

2
= (n−1).

Theorem 1.5. [LOs06, Cor. 4.11]: The absolute space, Habs
ddd , of such covers

form one connected family.

1.2.1. Context for Liu-Osserman. Compare the Liu-Osserman genus 0 result
with [Fr11, Thm. A and B]. There the r pure-cycles are all 3-cycles, but gX (as in
(1.3)) is any fixed non-negative integer. Here, if gX > 0 (r ≥ n), then the absolute
(and inner) spaces have exactly two components, distinguishable using our main
tool, the spin invariant (related in this case to Riemann’s half-canonical classes).

The spin invariant has many uses. Two used here:

(1.5a) Deciding, when p = 2, that a non p-cusp has above it only p-cusps.
(1.5b) Formulating a natural umbrella result containing both [LOs06] and

[Fr11] (§6.3.3).

Our main results apply when all the pure-cycles have odd order and r = 4. Then,
G = An and, with no loss, the pure-cycle lengths are d1 ≤ d2 ≤ d3 ≤ d4 with∑4

i=1 di−1

2 = n−1. We redo, while generalizing, part of their results for two reasons.

(1.6a) [LOs06, Cor. 4.11] is on absolute equivalence, but Inverse-Galois and
MT s are on inner equivalence of Galois covers.

(1.6b) Redoing their hardest case, r = 4, using our combinatorial description
of cusps shows quickly its advantage (Table 1 of Lem. 4.3).

Example of (1.6a): Several inner space components may map to the same absolute
space component, as happens when n ≡ 1 mod 8 in Prop. 4.1. This contrasts with
our main result with n ≡ 5 mod 8, when there is just one inner component.

When p = 2, Ex. 3.13 applies Invariance Prop. 2.23 to describe exactly which
of the Liu-Osserman examples are the bottom level of at least one abelianized MT.
When p 6= 2 is a prime dividing n!/2 (but none of the di s), then each Liu-Osserman
example is the bottom level of at least one MT.
§E.3 examples show that if you don’t assume spaces of genus 0 covers, the story

is richer. Yet, the lifting invariant still tells much of the story.
1.2.2. Connecting to the R(egular) I(nverse) G(alois) P(roblem). Each space

in §1.2.1 occurs in the RIGP. Here is why this is also a modular curve-like property.
Spaces H = Hin attached to inner equivalence and a centerless group G come

with a uniquely defined Galois cover Ψ : Y → Hin×P1
z, with group G. Attached to

a K point ppp ∈ H is the fiber Ψppp : Yppp → ppp× P1
z. This is a geometric cover attached

to a K regular realization of G.
Assume p is an odd prime. For modular curves, an old story gives an RIGP

way to look at the K rational points of {Y1(pk+1)}∞k=0. Any ppp ∈ Y1(pk+1)(K)
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corresponds to a regular realization of the dihedral group Dpk+1 of order 2pk+1

with four involution (order 2) branch cycles ([Fr78, §2], for notation §1.3).
A µ(m) point on an abelian variety, A, is an m-division point a ∈ A for which

the group GQ acts the same on the group generated by a as it does on the multi-

plicative group generated by e2πi/m. [DFr94, Thm. 5.1] says that finding a µ(m)
point on a hyperelliptic Jacobian of dimension r

2 − (m−1) is equivalent to finding a
Q regular realization of Dm with where C consists of r involution conjugacy classes,
if m is odd. As a consequence of Mazur’s Theorem, you need at least six branch
points to find a Q regular realization of Dm if odd m exceeds 7. The following is
an extremely special case of Conj. (1.2b).

Conjecture 1.6. [DFr94, §5.2]: For any odd prime p, there is no integer r0,
for which there are Q regular realizations of Dpk+1 with at most r0 branch points.

1.2.3. The values of ddd. We restrict to the ddd in Liu-Osserman which are 2-perfect
§1.3.2. When even one of the di is even, the monodromy group of a cover in the
Nielsen class is Sn, which is not 2-perfect . So, we must have all the di s odd.

Standard definitions of modular curves use congruence subgroups of PSL2(Z),
making it a numerical matter to find their genuses. When r = 4, finite index
subgroups of PSL2(Z) define (reduced) MT levels [BF02, Prop. 4.4]. Yet, they
are rarely congruence subgroups; certainly not in the Liu-Osserman cases. Still,
the (compactified) levels have a genus (usually different from that of the curves
their points parametrize). Conj. 1.4 holds if the and only if some tower level genus
exceeds 1 ([Fr06a, Prop. 5.1] or Prop. 2.13).

When all the di s are odd, then G = An for some n. For the most refined results,
we assume all di are equal. We denote the conjugacy classes then by C = C(n+1

2 )4 ,

four repetitions of an n+1
2 -cycle (odd only if n ≡ 1 mod 4). §5.2.3 (for the very

different cases n ≡ 5 mod 8 and n ≡ 1 mod 8) prove the Main Conjecture as a
corollary of computing the genuses (Prop. 5.15) of the reduced absolute and inner
level 0 Hurwitz spaces. A graphic understanding of cases — the first showing the
Main Conjecture holds for infinitely many distinct, non-modular curve, examples
— comes from explicit sh-incidence matrices.

The case n ≡ 1 mod 8 has special interest because there are two braid orbits.
That is H(An,C(n+1

2 )4)in,rd is not connected. The explanation is not from the

lift invariant. Rather, the outer automorphism of An is unbraidable. It permutes
the two components. This produces infinitely many reduced Hurwitz spaces where
G = An and with two components whose definition field is not immediate. Yet,
§6.3.4 shows they are conjugate over a natural quadratic extension of Q.

When n ≡ 5 mod 8, H(An,C(n+1
2 )4)in,rd has just one component, generalizing

level 0 of the case (n = 5) guiding [BF02]. The difference: [BF02, §9] went deeply
into level 1 — including the sh-incidence matrix for it. While here we extract less
information about level 1, we still manage modular curve parallels, as in §1.2.4).

1.2.4. 2-cusps and strengthening the modular curve analogy. None of the spaces
H(An,C(n+1

2 )4)in,rd has any 2-cusps. Yet, each MT (for p = 2) over them does have

a 2 cusp by level 1 (Cor. 6.7). We expand on the §1.1.3 discussion on modular curve
cusps. Cusps on a MT form a projective tree. To tackle the nature of the tree, we
compare it with the cusp tree of modular curves. For that purpose we call the type
of subtree that arises over the long cusp of X0(p) a p-Spire.
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For n ≡ 5 mod 8, the H-M cusps at level 1 are the base of a 2-Spire (Cor. 6.8),
a property stronger than the Main Conjectures when r = 4. Considering when
there is a p-Spire is meaningful for any r ≥ 4.
§6.2.1 gives an approach to proving the Main Conjectures for Liu-Osserman

examples for primes different from 2. Right now it lacks a piece of modular repre-
sentation theory. Still, §6.2.2 shows it working for (A5,C34) and the prime 5.

We didn’t do all the Liu-Osserman An odd pure-cycle genus 0 classes. §6.3
describes other phenomena for analogous results about the cusps for the remainder.
Then, §E.3 continues on what the lift invariant has to say about dropping the genus
0 condition. This big topic should be helpful on understanding the major issues
in the Conway-Fried-Parker-Völklein Thm. (§E.2) that still stands out as the most
definitive result on connectedness of Hurwitz spaces. The [FV91, App.] result
is roughly: If you repeat all conjugacy classes sufficiently many times, then there
is one connected component of the Hurwitz space (absolute or inner) of covers of
the sphere in a given Nielsen class Ni(G,C). We engage expectations for what
sufficiently means. Also, using all classes doesn’t even include the easy classical
results of the connectedness of the moduli of genus g curves, and it defies modern
applications. So, we also drop that.

For each fixed n ≡ 5 mod 8, and conjugacy classes C(n+1
2 )4 , the only primes

that seem to play a role in our MT are those dividing |An|, not dividing n+1
2 .

Building on the examples of [Fr06a, §6], §6.1.4 reminds that this is wrong. Our
example here, generalizes that, but these are still just examples. Take V = (Z)n−1

the n−1 dimensional irreducible representation of An: the standard representation
modulo the trivial representation. Then, p not dividing n+1

2 consider the MT for
p with base Ni(V/pV ×sAn,C(n+1

2 )4). In this modular curve analogy:

Z/2↔ An,Z↔ V and, the primes dividing
n+1

2
are exceptional,

as p = 2 is exceptional for modular curves. Considering when there is a p-Spire is
meaningful for any r ≥ 4, and for any allowable primes p.

1.3. Classical π1(P1
z \zzz, z0) Generators. Let ϕ : X → P1

z be a (nonconstant)
function on a compact Riemann surface X. Then, ϕ defines a number of quantities:

(1.7a) A group G for a minimal Galois closure cover ϕ̂ : X̂ → P1
z: Automor-

phisms (Aut(X̂/P1
z)) of X̂ commuting with ϕ̂;

(1.7b) Unordered branch points zzz = {z1, . . . , zr} ∈ Ur;
(1.7c) Conjugacy classes C = {C1, . . . ,Cr} in G; and
(1.7d) A Poincaré extension of groups:

ψϕ̂ : Mϕ̂ → G with kerψ
def
= ker(Mϕ̂ → G) = π1(X̂).

Further, (1.7a) produces a permutation representation of G, by its action on the

cosets of Aut(X̂/X) in Aut(X̂/P1
z). The coset of the identity is canonical, but other

cosets may have no natural labeling.
1.3.1. Homomorphisms and Nielsen classes. Order the points in zzz to consider

(App. A) a set of classical generators, P, of π1(P1
z \ zzz, z0). We don’t order the

conjugacy classes: Ci ↔ zπ(i) for some π ∈ Sr. The isotopy class of P consists of

r (ordered) elements generatoring π1(P1
z \ zzz, z0). Denote these by ḡgg = (ḡ1, . . . , ḡr);

their images in Mϕ̂ also as ḡgg; and their images in G by (g1, . . . , gr) = ggg.
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Then, ggg is in the Nielsen class of (G,C):

Ni(G,C)
def
= {ggg ∈ C | 〈ggg〉 = G,Π(ggg)

def
= g1 · · · gr = 1}.

In English: Ordered r-tuple generators (satisfying generation) of G having product
one, and falling (in some order, multiplicity counted) in the conjugacy classes C.

Given classical generators ḡgg = (ḡ1, . . . , ḡr) of Mϕ, ggg ∈ Ni(G,C) is exactly what
we need to form Mϕ̂ → G, by mapping ḡi 7→ gi, i = 1, . . . , r. The notation Mḡgg

applied to Mϕ̂ is useful, and then it is convenient to rename ψϕ̂ to ψḡgg,ggg.
The classical generators of π1(P1

z \ zzz, z0) form a homogeneous space for the
action of the combinatorial Hurwitz monodromy group. We use the phrase braid
equivalence of these homomorphisms by this action (§2.1.5). When there is just
one such equivalence class, we call the space of such homomorphisms connected.
This corresponds to an actual Hurwitz space H(G,C) being connected.

We use four Hurwitz space attached to any Nielsen class: H(G,C)in,H(G,C)abs

(from a permutation representation of G) and their reduced versions H(G,C)in,rd

and H(G,C)abs,rd. Each corresponds to a further equivalence on Ni(G,C) (§2.1.5).
Connectedness of H(G,C)in and H(G,C)in,rd (resp. H(G,C)abs and H(G,C)abs,rd)
are equivalent, though we emphasize cusps belonging to the reduced spaces. Con-
nected absolute spaces, however, don’t imply connected inner spaces.

App. A summarizes the literature on this correspondence and these spaces.
Most of this paper is about the braid orbits. Applications depend on our figuring
from this useful properties of the Hurwitz space, or their reduction by a PSL2(C)
action, so it has dimension r−3. Usually, initial data about some problem produces
a collection of groups that could be the monodromy group of a cover solving the
problem. So, applications are about collections of related Nielsen classes.

For G a p-perfect group, you can’t get their Hurwitz spaces from Kummer the-
ory; they come from nonabelian covers of P1. The essential data about Hurwitz
spaces we use comes through connectedness results. Properties come from knowing
about cusps – very nicely when r = 4 – through the braid class of our homomor-
phisms ψḡgg,ggg. When the spaces are connected, or their components separate by
discrete invariants, we know their definition fields.

1.3.2. Notation. Equations: If V is quasi-projective and K is a field, then V (K)
is the points on V with coordinates in K.

Orbits: There are two general orbits on a Nielsen class Ni(G,C) (§1.3.1): Braid
orbits (for the action of the braid group), and cusp orbits for the action of a cusp
(sub-) group (§2.2) of the braid group. We denote the former by O, and the latter by
either Cusp or cO (the second more common). Both will often have distinguishing
subscript and superscript decoration.

Permutations: Denote the cyclic group of order N by Z/N . For any finite group
G, with conjugacy classes C = {C1, . . . ,Cr}, denote the least common multiple of
orders of elements in C by NC. We say G is p-perfect if p||G|, but there is no
surjective homomorphism G→ Z/p.

Definition 1.7. A pure-cycle conjugacy class in G ≤ Sn is one in which each
element in the class has exactly one nontrivial (length greater than 1) disjoint cycle.

Displays can simplify using xi,j for (i i+1 · · · j) (assuming 1 ≤ i < j ≤ n). The

inverse of this element is x−1
i,j = xj,i. When operations are confined to a segment

of integers within a permutation we use | | s around the segment, as in Ex. 3.10,
www2 = |6 7 8|. Often we will have (. . . xi,j . . . ) where the . . . on either side indicate
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some integers adjoining the segment |i . . . j|. It is understood the parens around
xi,j have been dropped, so the expression is still a cycle. Example: (x1,3 4 5) = x1,5.

Lemma 1.8. Consider xa,b with a < b and b − a ≡ 0 mod 4 (resp. ≡ 2

mod 4). Then, (b a)(b−1 a+1) · · · (b′ a′) with (b′ a′) = (b− b−a−2
2 a+ b−a−2

2 ), an even

(resp. odd) permutation, conjugates xa,b to its inverse. It has parity (−1)
b−a

2 .
Also, if b− a+ 1 ≡ 0 mod 4 (resp. ≡ 2 mod 4) then (b a)(b−1 a+1) · · · (b′ a′)

with (b′ a′) = (b− b−a−1
2 a+ b−a−1

2 ), an even (resp. odd) permutation, conjugates

xa,b to its inverse. It has parity (−1)
b−a+1

2 .

Previous papers (like [Fr06a]) used a right action of permutations on integers
because several commuting group actions forced both left and right actions. groups.
Throughout this paper we act on the left of integers.

One frequent computation (as in Prop. 5.1) has a cycle α of consecutive integers
conjugating another cycle β containing a subsegment of those integers. As an
example, take α = (1 . . . k) and β = (b1 . . . bt i i+1 . . . j), 1 ≤ i < j ≤ k, and
the bi s disjoint from {1, . . . , k}, with it understood i i+1 . . . j is a sequence of
consecutive integers. Then, the act of conjugating β by α is to form αβα−1. This
produces β′ = (b1 . . . bt i+1 i+2 . . . j+1), 1 ≤ i < j ≤ k with the proviso that if
j = k, you replace j+1 by 1. This and similar types, and iterations (by αu) of such
conjugations will be regarded as instantaneously recognizable, with the operation
referred to as translation of a segment.

The acronym R-H (App. A) is for the Riemann-Hurwitz formula. It gives the
genus of a sphere cover from a branch cycle description for it. The genus of covers
in a given Nielsen class Ni(G,C) is constant, denoted gG,C.

2. Tools and MT definitions

§2.1 introduces the braid group and certain of its quotients and subgroups,
especially for a natural equivalence on group extensions. Definitions of MTs and
their abelianization appear here. §2.2 has the combinatorial definition of cusps used
in the paper’s precise results. Their relation to the Main Conjecture is in §2.3.
§2.4 has the main homological tool, the spin lift invariant and how it applies

to deciding braid orbits and existence of MTs. Finally, §2.5 introduces the precise
Nielsen classes for our main result. Here there are examples of how to apply the
lift invariant for information on cusps at the next level.

2.1. Braid actions and MTs. We start with braid actions on sphere covers.
2.1.1. Deformation equivalence of extensions. If ϕ : X → P1 is Galois with

group G with G abelian, we could write equations for it by hand. From, however,
G being p-perfect, it isn’t. Further, why deal one cover at-a-time? Consider all
covers with (G,C) as their data: In the Nielsen class.

Our topological need: To devine connected components of all covers in a given
Nielsen class. Each component has a cover with any a priori fixed (collection of
r distinct) branch points zzz0. That is, any cover (with branch points zzz) deforms
through covers with r branch points to a cover with branch points zzz0. Further, if
(ggg,C) is associated to it, consider a §1.3.1 homomorphism: ψḡgg,ggg : Mḡgg → G. Then,
ψḡgg,ggg and any of its extensions deform with it. This, the identification of Hurwitz
Monodromy group Hr with π1(Ur, zzz

0), and the explicit action (with representing
paths) on ḡgg in (2.1) is in [Fr77, §4].
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For further help, Hr — related to classical braid group discussions — and their
consequences are reviewed in [BF02, §2.2]. (Proofs are compatible with our use in
[Fr08a, Chap. 4, 5]; exposition in html definition files as in §E.1.) We especially
use H4 though, generally: Hr is the group of automorphisms of π1(P1

z \zzz0, z0) that
preserves an (transitive) action on classical generators. Given classical generators,
it identifies with π1(Ur, zzz

0).
We give the generators of Hr by their actions on ḡgg:

(2.1a) Shift: sh : ḡgg 7→ (ḡ2, . . . , ḡr, ḡ1); and
(2.1b) 2nd Twist: q2 : ḡgg 7→ (ḡ1, ḡ2ḡ3ḡ

−1
2 , ḡ2, ḡ4, . . . ).

For each i = 1, . . . , r−1 there is an i-twist qi
def
= shi−2q2sh

−i+2 (i mod r−1).
Our formulas are best seen using i = 2 when r = 4.

2.1.2. MT definitions. Denote the maximal p-Frattini cover of G with elemen-
tary p group kernel by G1 → G = G0. Let Gk+1 = G1(Gk). Note: We drop most
p notation. Still, if you change p, the new Gk for k > 0 is a different group.

Definition 2.1 (MT). A projective system of Hr orbits on {Ni(Gk,C)in}∞k=0

is a M(odular) T(ower). Let kerk,0 = ker(Gk → G0 = G). An abelianized MT
is similarly a projective system, except the braid orbits are in the Nielsen classes
from replacing Gk by Gk/(kerk,0, kerk,0) = Gk,ab (as in [BF02, Prop. 4.16]).

Denote the projective limit of all Gk,ab s by pG̃/(ker0, ker0) = pG̃ab. Though
G1,ab = G1, for k > 1, the natural map Gk → Gk,ab has (known) degree exceeding
1 if and only if dimZ/p ker(G1 → G) > 1⇔ G0 is not p super-solvable [BF02, §5.7].

Let Mḡgg,ab be the natural quotient of Mḡgg with ker(Mḡgg,ab → G) the homology
of the Riemann surface for which ker(Mḡgg → G) is its fundamental group. Finding

extensions of ψḡgg,ggg : Mḡgg → G to pG̃ab is equivalent to its extension to Mḡgg,ab → G.
Any p-perfect group G has a universal central p extension ψ∗ : R∗G,p → G.

Universal here means that if µH,G : H → G → 1 is a central p extension, than a
unique map ψ : R∗G,p → H commutes between ψ∗ and µH,G. Let µk : Rk → Gk be
the universal exponent p central extension of Gk:

(2.2) Gk+1 → Gk factors through µk, and ker(Rk → Gk) is the max. elemen-
tary p-quotient of the Schur multiplier of Gk.

2.1.3. Group form of MTs. For a prime p dividing |G|, we ask the following.

(2.3a) When does ψḡgg,ggg extend to all covers H → G with p-group kernel?
(2.3b) How does this depend on ggg?
(2.3c) What equivalence reasonably describes all extensions of ψḡgg,ggg?

2.1.4. Basic Reductions. The following reductions apply to considering when
there is an affirmative answer to (2.3a).

(2.4a) Complete Mḡgg so kerψḡgg,ggg is the pro-p completion of π1(X).
(2.4b) Restrict to p-Frattini covers H → G (no H proper in G maps onto).
(2.4c) Any g ∈ C must have order prime to p.
(2.4d) G must be p-perfect (it has no Z/p quotient).

Equivalent: When are all p-Frattini covers H → G achieved by unramified exten-
sions YH → X extending X → P1?

Here is the source of the (2.4) reductions. For (2.4b), consider a p extension

µ : H → G→ 1.

Take any subgroup H∗ ≤ H for which µH∗ is still surjective. A minimal such is a
p-Frattini cover of G. If you can extend ψḡgg,ggg to that, you can extend it through µ.
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Any element of order p in G = G0 has all its lifts to G1 of order p2 [FK97, Lifting
Lem. 4.1]. That explains (2.4c).

Finally, for (2.4d), we now know all elements of C are p′. So, entries of a Nielsen
class element cannot generate if G has Z/p as a quotient (as in [Fr06a, Lem. 2.1]).

Since the Gk s (of §2.1.2) are co-final in all p-Frattini covers of G, goal (2.3a)
needs only for H to run over the Gk s.

2.1.5. Braid Comments. Through (2.1), the Hr action on ḡgg extends to the
image of ḡgg in any quotient group G of Mḡgg. Then, it acts compatibly on these sets:

(2.5a) Inner Nielsen Classes: Ni(G,C)/G
def
= Niin.

(2.5b) Absolute Nielsen classes: Ni(G,C)/NSn(G)
def
= Niabs. with G ≤ Sn

giving a permutation representation.
(2.5c) Poincaré extensions: ψḡgg,ggg : Mḡgg → G.

Since we want extensions of homomorphism ψḡgg,ggg, the action (starting from q ∈ Hr

acting on ḡgg, from the left) is given by ψḡgg,ggg 7→ ψḡgg,(ggg)q−1 , an action on the right. Any
extension properties of ψḡgg,ggg are preserved by a braid orbit.

Problem 2.2 (H1 action). Given (G,C, p), understand projective systems of
Hr orbits on {Ni(Gk,ab,C)in}∞k=0.

2.2. Cusp types and sh-incidence. We understand Hr orbits (and reduced
Hurwitz spaces) through the cusps that lie on an orbit. For each M(odular) T(ower)
(Def. 2.1), there is a prime p (dividing |G|), and a notion of p-cusp that starts the
story of distinguishing cusp types.

2.2.1. Hurwitz space Cusps. A combinatorial definition of cusps gives them as
an Hr suborbit of a cusp group Cur < Hr.

(2.6a) For r ≥ 5: Cur = 〈q2〉.
(2.6b) For r = 4: with Q′′ = 〈sh2, q1q

−1
3 〉, Cu4 = 〈q2,Q′′〉.

Much data is from the conjugacy class of Cur. So — except for normalizations
related to identifications with upper half-plane objects — if done consistently, we
could substitute qi for the appearance of q2 in Cur.

Definition 2.3. A p-cusp is the Cur orbit of ggg ∈ cO for which pµp(ggg)||ord(g2g3),
µp(ggg) > 0 (p-multiplicity of ggg).

The definition doesn’t depend on the representive of the p-cusp, as changing
the representative changes (g2, g3) to (hg2h

−1, hg3h
−1) with h a power of g2g3. For

r = 4, to see that being a p-cusp is independent of the representative, you would
substitute (g4, g1) (resp. (g1, g4)) for (g2, g3) to see the condition for a p-cusp is
unchanged by applying sh2 (resp. q1q

−1
3 ) to ggg. When r = 4, we call ord(g2g3) the

middle product of ggg, denoted (ggg)mp.
2.2.2. Other cusp types for r = 4. See App. B for r > 4.

(2.7a) g(roup)-p′: U1,4(ggg) = 〈g1, g4〉 and U2,3(ggg) = 〈g2, g3〉 are p′ groups
(2.7b) o(nly)-p′: not a p cusp, but U1,4(ggg) or U2,3(ggg) are not p′.

For even r = 2s, H(arbater)-M(umford) cusps have a cusp orbit representative
of form (g1, g

−1
1 , . . . , gs, g

−1
s ). When r = 4, its shift (g−1

1 , g2, g
−1
2 , g1) is a represen-

tative for a g-p′ cusp, no matter what is p since the middle product is 1.
Having an H-M rep. requires classes that are pairable: C1,C

−1
1 , . . . ,Cs,C

−1
s

where C−1 denotes the class of the inverse of an element in C. Consider a Liu-
Osserman pure-cycle Nielsen class Ni(G,Cddd)

abs (§1.2). So, with d1 < d2 < · · · < du,
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necessarily the conjugacy classes defining the Nielsen class have form Cddd, with
ddd = de11 · · · deuu and each ei even.

The only time there are two distinct conjugacy classes of length di is when
G = An, and du = n (if n is odd) or du = n−1 (when n is even). In these cases
denote the conjugacy class pairs by C(n)′,C(n)′′ (resp. C(n−1)′,C(n−1)′′).

Proposition 2.4 ( g-p′ MT). If a braid orbit O0 has a g-p′ cusp, then a MT,
O = {Ok ⊂ Ni(Gk,C)in}∞k=0, lies over it.

Consider a pure-cycle Nielsen class Ni(G,Cddd)
abs (§1.2), with all the di s odd,

and G a transitive, but not cyclic, subgroup of An. Then, Prop. 3.11 says G = An.
This Nielsen class contains an H-M rep. if and only if one of the following:

(2.8a) n ≡ 1 mod 4 (resp. n−1 ≡ 1 mod 4), du = n (resp. du = n−1)
and exactly half the eu conjugacy classes of length du are equal C(n)′

(resp. C(n−1)′); or
(2.8b) n ≡ 3 mod (resp. n−1 ≡ 3 mod 4), du = n (resp. du = n−1)

and each of the conjugacy classes C(n)′ and C(n)′′ (resp. C(n−1)′ and
C(n−1)′′) appear with even multiplicity.

Proof. The first result applies to the general definition of g-p′ cusp as in
App. B [Fr06a, Fratt. Princ. 3.6]. The necessity of (2.8) is a consequence of the def-
inition of H-M rep., and the congruence condition for declaring when C(n)′,C(n)′′,
etc. each contain the inverse of any element in them (say, Lem. 1.8).

Finally, to fulfill an H-M rep. under these conditions requires only producing

transitive pure-cycles whose lengths in order are given by the symbol d
e′1
1 · · · d

e′u
u with

e′ denoting e
2 . Since,

∑u
i=1

e′

2 (di−1) ≥ n−1, this is easy. Begin with g1 = (1 . . . d1).
Then continue inductively, starting the next pure-cycle — and its increasing integer
sequence — with the last integer occuring in the previous pure-cycle. When you
get to n, cycle around to 1. Example: For n = 7, r = 6 and ddd = 34 · 52, so
e′1 = 2, e′2 = 1, take g1 = (1 2 3), g2 = (3 4 5), g3 = (5 6 7 1 2). �

Remark 2.5 (When G = Sn, or gG,Cddd > 0 ). If in Prop. 2.4 – the pure-cycle
case – one of the di s is even then G is no longer in An. There are two changes.

(2.9a) A complication: You expect G = Sn, but there are some exceptions.
(2.9b) A simplication: In Sn, their shape determines conjugacy classes, so

there is no need for a Lem. 1.8.

I comment on (2.9a), using Rem. 3.14 which I distilled from [LOs06, Thm. 5.3].
Cyclic groups are one exception. Liu-Osserman have gG,C = 0. But, R-H shows for
r ≥ 3, pure-cycles can’t generate a cyclic (transitive) subgroup of Sn. Also, if r = 3,
we could have n = 5, and ddd = 42 · 5 where G is the non-standard representation of
S5 in S6: S5 acting by conjugation on the normalizer of a 5-Sylow.

If we expand beyond the genus 0 case, we can also have A5 = G in this degree six
representation (with C among the two 5-cycle conjugacy classes). So, for gG,C > 0,
these sporadic pure-cycle cases require careful accounting.

2.2.3. sh-incidence on our main example. Thm. 2.9 summarizes the main data
we get from the explicit production of the sh-incidence pairing on cusps for the
Nielsen classes denoted Ni(An,C(n+1

2 )4)in,rd, n ≡ 1 mod 4.

Definition 2.6. For r = 4, and ∗ = abs or in, the reduced ∗ Nielsen classes are
elements of the quotient Ni(G,C)∗/Q′′. Denote these by Ni(G,C)∗,rd; (reduced)



NIELSEN CLASS COMPONENTS 13

cusps correspond to Cu4 orbits on Ni(G,C)∗,rd. The length (or width) of a cusp is
the length of that Cu4 orbit.

This combinatorial cusp definition produces a pairing on cusps.

Definition 2.7 (sh-incidence). Given two cusp orbits cO1, cO2 (elements are
∗, rd representatives) the pairing maps (cO1, cO2) 7→ |cO1 ∩ cO2|. [BF02, §2.10]:
It makes sense for all r ≥ 4; each matrix block corresponds to a component of the
corresponding reduced Hurwitz space.

Lemma 2.8. Assume r = 4. If gggin
1 = ((ggg2)sh)in implies ((ggg1)sh)in = ((ggg2sh

2)in,
which is reduced equivalent to gggin

2 . So, the sh-incidence matrix is symmetric.

The mapping class group M̄4
def
= H4/Q′′ (from (2.6b)) has orbits on Ni(G,C)∗,rd

with * any appropriate equivalence; here either inner or absolute.

Proposition 2.9. [BF02, Prop. 2.3]: There is a one-one correspondence be-
tween Hr orbits O on a reduced Nielsen class Ni(G,C)∗,rd and components HO of
the reduced Hurwitz space H(G,C)∗,rd. Each HO is a natural Jr cover.

When r = 4, H(G,C)O is an upper-half plane quotient, j-line cover, whose
only possible ramified points are over 0 (resp. 1) of index dividing 3 (resp. 2).

Its projective normalization H̄O is a cover of P1
j , whose points over j = ∞

(cusps) correspond one-one with the reduced cusps in Def. 2.6 that lie on O. They
have ramification indices equal to the corresponding cusp lengths.

Assume r = 4. Then, Q′′ acts through a Klein 4-group K4 = 〈q1q
−1
3 , sh2〉/〈sh4〉

[BF02, §2.10]. The expected length of the Cu4 orbit on ggg ∈ Ni(G,C)in,rd is the
length of the q2 orbit of ggg as an element of Ni(G,C)in – denote that (ggg)〈q2〉 – and
that is usually 2 · (ggg)mp. That means the cusp widths are often easy to compute,
but there are two modifications.

(2.10a) The length of (ggg)〈q2〉 is (ggg)mp if and only if (ggg)mp is odd and the
condition of Princ. 3.5 holds.

(2.10b) The K4 action could equivalence elements in (ggg)〈q2〉, pairs (respec-

tively) 4-tuples, giving an orbit length of (ggg)mp
2 (resp. (ggg)mp

4 ).

Proving Thm. 2.10 – a summary of level 0 results – starts by listing absolute
(§4.1.2) and inner (§4.1.3) cusps. The sh-incidence pairing immensely simplifies
detecting connected components. Example: In the absolute cases, one long cusp
intersects all other cusps, guaranteeing one matrix block, so one component. For
all level 0 absolute results, proviso (2.10a) applies (Lem. 4.3), but significantly it is
more complicated for inner results (Lem. 4.4). On the other hand, (2.10a) does not
hold, because another rare event occurs: K4 acts trivially (Lem. D.3; the reduced
spaces lack fine moduli properties).

Theorem 2.10. Absolute cusps in Ni(An,C(n+1
2 )4)abs,rd — all fall in one braid

orbit, with a unique cusp of each odd length between 1 and n. Each cusp “meets”
any other (including itself) at most twice (precisely in §5.1.3). For n ≡ 1 mod 8,
Ni(An,C(n+1

2 )4)in,rd has two braid orbits (two Hurwitz space components; conjugate

over Q), each having sh-incidence pairing exactly as in the absolute case.
For n ≡ 5 mod 8, Ni(An,C(n+1

2 )4)in,rd and each odd k, 1 ≤ k ≤ n, there

are either two length k cusps, or one length 2k cusp. The Ni(An,C(n+1
2 )4)in,rd sh-

incidence derives – mainly – from that of Ni(An,C(n+1
2 )4)abs,rd by substituting in
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sh-incidence entries of the latter one of symbols 1
1+

1
1 , 2

0+
0
2 or 0

2+
2
0 . Most important are

rules for level 0 cusps to have only 2-cusps above them at level 1 (§6.1.3).

§2.2.4 has general tools helping with elliptic fixed points and, from that and
Thm. 2.10, computing the genuses of reduced Hurwitz spaces. The actual compu-
tations in our examples are in §5.3 (Prop. 5.15).

Our understanding of higher tower levels is dominated by the need to locate
p-cusps, the topic of §2.3. It is from this that we can see a sense in which general
MTs have some resemblance to modular curve towers.

2.2.4. Elliptic fixed points and computing the genus. [Fr06a, §3.1.2] has a for-
mula for the genus, gggO, of the compact reduced Hurwitz space component H̄∗O for
O. Induce permutation actions of q1q2, or sh, or q2 on O. Call these, respectively,
γ′0, γ

′
1, γ
′
∞. Rem. 2.12 shows why γ′0 has orbit lengths 1 or 3. ThenR-H says:

(2.11) 2(|O|+ gO − 1) = ind(γ′0) + ind(γ′1) + ind(γ′∞).

The next lemma shows fixed points of either γ′0 or γ′1 (as in (2.11)) contribute
to the main diagonal of the sh-incidence matrix.

Lemma 2.11. The sh incidence pairing applied to all cusps in a reduced Nielsen
class has its irreducible blocks corresponding one-one to the braid orbits (compo-
nents). Further, we can replace the shift (represented by q1q2q1) by q1q2 (repre-
senting γ0) to form the matrix. More precisely, the set (cO

′)q1q2 is the same as
(cO

′)sh, and therefore their intersections with cO are the same.
Thus, any γ′0 or γ′1 fixed point in the Nielsen class contributes to the diagonal

of the matrix. If all braid orbits on |Ni(G,C)∗,rd| have length exceeding 1, then
reduced Nielsen classes fixed by γ′0 are distinct from such classes fixed by γ′1.

The set cO ∩ (cO)sh is preserved by the shift. In particular, if |cO ∩ (cO)sh|
is odd, then cO ∩ (cO)sh contains at least one γ′1 fixed point.

Proof. The 1st sentence is [BF02, Lem. 2.26]. We show the second. If q1q2

mod K4 fixes ggg ∈ cO
′, then q2q1q2 maps: ggg′ = (ggg)q−1

2 ∈ cO
′ 7→ ggg ∈ (cO

′)q2q1q2.
One braid relation is q2q1q2 = q1q2q1, the shift mod K4. So, ggg ∈ cO

′ ∩ (cO
′)sh.

Since γ′0 and γ′1 generate M̄4 acting on reduced Nielsen classes, any simultaneous
fixed point of both is a length 1 braid orbit. We excluded this.

Since sh2 is trivial on reduced Nielsen classes, applying the shift to cO
′∩(cO

′)sh
gives (cO

′)sh ∩ cO
′, the same set. This concludes the proof. �

Remark 2.12. Applying (q1q2)3 to ggg ∈ Ni(G,C) conjugates ggg by its 4th entry.

2.3. Higher tower levels and p-cusps. Compatible with Def. 1.1, A MT
corresponds to a projective system of braid orbits O = {Ok ⊂ Ni(Gk,C)∗}∞k=0, ∗ =
in or abs. There are two sequences of spaces attached to this: a projective system
(tower) of ordinary (resp. reduced) Hurwitz spaces {Hk}∞k=0 (resp. {Hrd

k }∞k=0), for
each k a nonsingular (resp. normal) absolutely irreducible affine variety of dimension
r (resp. r−3) covering Ur ⊂ Pr (resp. Jr). Each Hrd

k is the quotient of Hk/PGL2(C)
of Hk by the connected group PGL2(C).

Prop. 2.13 applied to the precise form of the last line of Thm. 2.10 gives the
Main Conjecture 1.4: Getting p-cusps (2-cusps in our cases) is the main point. The
Main Conjecture is trivial unless G is p-perfect, for otherwise Ni(G,C) is empty
when C are p′ conjugacy classes [Fr06a, Lem. 2.1]. It is trivial, too, unless the
MT has some number field K as definition field. That is, all levels, simultaneously
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including the maps between them, have K as definition field. [Fr06a, Prop. 3.3]
reduces the Main Conjecture in general to this case:

(2.12) The prime p does not divide the order of the center of G.
From here we assume these things:

(2.13) G is p-perfect and has p′ center.
2.3.1. Reductions on Conj. 1.4. Prop. 2.13 shows the Main Conj. for {Hk}∞k=0

follows from it holding for {Hrd
k }∞k=0. When r = 4 it shows the main ingredient in

getting explicit lower bounds on the genuses from knowing about cusps.

Proposition 2.13. As in §1.1.2, let H̄rd
k be the unique (projective) normaliza-

tion of J̄r in the function field of Hrd
k . If there is at least one p-cusp at level k0, the

relative degree deg(H̄rd
k+1/H̄rd

k )
def
= dk+1,k, is some integer multiple of p for k ≥ k0.

It is always true that lim sup←k dk+1,k > 1.
The conclusion of Conj. 1.4 holds if and only if it holds with each Hk replaced by

Hrd
k . Also, if r = 4, Conj. 1.4 holds unless for k >> 0, either the cover H̄rd

k+1 → H̄rd
k

• doesn’t ramify and each H̄rd
k has genus 1,

• or it is equivalent to a degree p polynomial cover of P1
w → P1

j ,
• or it is equivalent to a degree p rational (Redyi) function ramified (of

order p) at two points.

Proof. Everything in this proposition is already in [Fr06a, §5] except the
observation showing the impossibility of dk+1,k = 1 for all large k. Assume it is 1
for all k ≥ k0. Then, let ppprd ∈ Hrd

k0
be any point defined over some number field K

that is the image of ppp ∈ Hk0
(K) (a K point of the non-reduced space).

Since G is p-perfect and its center is p′, [BF02, §2.2.2] shows all the Gk s
have the same p′ center. First assume (holding for all our examples): G has no
center at all. Then, the non-reduced spaces, given as fiber products [BF02, §2.2.2],
{Hk = Hrd

k ×Jr Ur}∞k=0, all have fine moduli [FV91, Cor. 1]. The degree 1 maps
between the reduced spaces induce degree 1 maps Hk+1 → Hk, identifying them as
the same cover of Ur. So, the points on each space identified to ppp give a projective
sequence of covers Xk → P1

z realizing each Gk as a Galois group over K. This
contradicts [BF02, Prop. 6.8]: No such projective sequence can exist over a number
field K. This implies lim sup←k dk+1,k > 1 if G has no center.

Suppose, G0 does have a nontrivial p′ center Z. Then, we see we can’t imme-
diately assume the conclusion above. While ppp has coordinates in K, since the Hk
don’t have fine moduli, there may be no Galois cover of P1

z associated to ppp defined
(with its automorphisms) over K. App. §C completes this case. �

2.3.2. p ramification growth with k. Princ. 2.14 says the power of p manifesting
a p-cusp increases with the level for each cusp over a given p-cusp. Then, Cor. 2.16
concludes the p contribution to ramification also grows with rising level for those
same cusps. Denote the power of p dividing (ggg)mp by µp(ggg) (Def. 2.3).

Principle 2.14 (F(rattini) Princ. 1). [Fr06a, Princ. 3.5]: Let O = {Ok}∞k=0 be
a projective system of braid orbits on MT. Assume {kggg}∞k=0 is a projective system
of Nielsen class elements on these orbits. If k0

ggg represents a p-cusp, then

µp(kggg) = k−k0 + µp(k0
ggg).

Assume r = 4 and a MT for inner, reduced equivalence. As in Princ. 2.14, let

k0
ggg = (k0

g1, . . . , k0
g4) represent a p-cusp, with corresponding geometric cusp pppk0

.
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Denote the center of a group G by Z(G). While the next lemma is easy, I thought
to show a reader new to braidings how they work on projective systems.

Lemma 2.15. The length, α(kggg), of the K4 orbits in (2.10b) on (kggg)〈q2〉 depends
only on the braid orbit Ok of kggg. Its values (1,2, or 4) are nondecreasing in k.

Proof. That the length of the orbits of K4 on Ok is constant follows from K4

being normal in H4/〈sh2〉. That is if q ∈ H4, then the collections (ggg)K4 and

((ggg)q)K4 = ((ggg)q)K4(q−1q = ((ggg)K4)q

have the same cardinality.
That the K4 orbit lengths are nondecreasing with k follows from the map Ok+1

to Ok having constant fibers and commuting with the K4 action. �

Combine notation of Lem. 2.15 on Princ. 2.14. The following is a special case
of [BF02, Lem. 8.2].

Corollary 2.16. Suppose Z(0g2, 0g3) ∩ 〈0g20g3〉 is trivial. For p odd and
k ≥ k0, pµp(kggg) exactly divides the ramification index of pppk over the j-line. For
p = 2, replace 2µ2(kggg) by 2µ2(kggg)/α(kggg) for the exact 2-power index divisor.

The following problem is very close to the Main Conjecture when r = 4. We
suspect a more refined statement is close to the Geometric MCab for all r ≥ 4.

Problem 2.17 (Goal 2). Given a MT, {Ok ⊂ Ni(Gk,C)in}∞k=0, classify when
there is a p-cusp on Ok for k >> 0.

Conjecture 2.18. p-Cusp Presence: If a MT O has no projective system of
p-cusps (a p-cusp branch), then high levels are relatively unramified, and they have
no uniform defining number field.

Remark 2.19. Conj. 2.18 implies a MT, O, over a number field has p-cusps
at high levels. Then, we expect, for k >> 0, the relative monodromy groups
G(Ok+1/Ok) to be p groups, generated by the relative p-cusp monodromy groups.

Remark 2.20. This section assumed a MT of inner (vs absolute) braid orbits.
§B.1 uses modular curve cusps to show what happens with absolute classes.

2.3.3. Finding p-cusps and using g-p′ cusps. Finding p-cusps, and labeling the
components on which they lie is the main technical ingredient in this paper. §3.1.2
identifies certain cusps as H(arbater)-M(umford) because the MT braid orbits all
have specific so-named Nielsen class representatives (§2.2.2).

That the same components also have 2-cusps at level k ≥ 1 is a property shared
with modular curves (as noted in §1.1.3), and from it we get the Main Conjecture.
The complication is that o-p′ cusps (as in (2.7b)) can occur, too. These have no
analog on modular curves.

The proof combines works of the author, Serre [Ser90] and Weigel [Wei05],
for which a special case is Prop. 2.26. Its special ingredient is that the Poincaré
extension in (1.7d), denoted Mggg instead of Mϕ below, satisfies p-Poincaré duality.

It comes through interpreting the Main MT conjecture as a problem of com-
puting braid equivalence classes of extensions of the groups Mggg. We make these
definitions explicit in applying them to groups generated by odd pure-cycle Nielsen
classes, to which results of Liu-Osserman [LOs06] apply.
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We prove the MT Main Conjecture in many of their cases. Comparing their
result with [Fr11, Thms. A and B] indicates ingredients for a likely proof of the
Main Conjecture in general for r = 4. §6.3.3 uses the Spin-lift invariant of (2.14)
for a conjectured umbrella to the combined Liu-Osserman and Fried results on
connected pure-cycle Nielsen classes.

Remark 2.21. The production of full (not abelianized) MTs, with all compo-
nents over Q, has only come about so far through Prop. 2.4 using g-p′ cusps (see
(2.7a)). There are many examples of abelianized MTs (like (A4,C±32 , p = 2) of
§ E.3) with braid orbits having no g-p′ cusps. We don’t, however, know if their
components are uniformly defined over a number field.

2.4. The Spin lift invariant. I’ll denote the universal central extension of
An by Spinn. It happens that ker(Spinn → An) is Z/2 (n ≥ 4). To present it,
embed An in the determinant 1 elements SOn(R) of the orthogonal group. The
fundamental group of SOn(R) (n ≥ 4) is Z/2, so SOn(R) has a 2-sheeted cover,
Spinn(R). Then, Spinn is the pullback of An in Spinn(R). It arises in practice
often. For example, A5 = PSL2(Z/5) — 2× 2 matrices of determinant 1, mod ±I2
— and Spin5 is just SL2(Z/5).

2.4.1. Universal central extensions. Examples of Schur multipliers in this paper
occur when G is a subgroup of An (often it will be An). Then, consider the pullback

Ĝ to Spinn. (It depends on the embedding in An, but that will be clear from the

context.) If Ĝ → G is a nonsplit extension, then ker(Ĝ → G) is a Z/2 quotient of
the Schur multiplier of G.

In this situation, assume C consisting of odd (2′) conjugacy classes in G. Then,
we attach to ggg ∈ Ni(G,C) a lift invariant, sĜ/G(ggg) mod 2, defined from the fol-

lowing. Take the unique 2′ lift ĝi ∈ Ĝ lying over gi, i = 1, . . . , r. Then,

(2.14) (−1)sĜ/G(ggg) def
= ĝ1, . . . , ĝr ∈ {±1}.

These definitions easily generalize to arbitrary groups and arbitrary primes.
This paper concentrates, in our special case, on the meaning of the lifting invariant
and our ability (often) to compute it explicitly thanks to [Ser90] and [Fr11].

Remark 2.22 (Well-definedness of the lift invariant). Though the covers in
an absolute Nielsen class (§2.1.5) such as Ni(An,C3n−1)abs are not Galois, the
lifting invariant still makes sense. The lift invariant is trivial if and only if there is
an unramified cover of the Galois closure so that the total cover down to P1

z has
automorphism group Spinn. The Galois closure cover is only canonical up to an
inner isomorphism of the Galois group with G. So, that requires knowing the lifting
invariant doesn’t depend on changing that isomorphism. That is because any inner
isomorphism of G lifts to a canonical inner isomorphism of Ĝ→ G.

2.4.2. Using the lift invariant. It makes sense to replace Ni(G,C) under the

hypotheses of §2.4 with Ni(Ĝ,C): replace G by its nonsplit degree two to extension.

This gives a natural one-one (often not onto) map Ni(Ĝ,C)→ Ni(G,C). The lifting
invariant is a braid invariant. Conway-Fried-Parker-Völklein (C-F-P-V, §E.2) here
says that if each class in C appears “suitably often,” then there are exactly two
braid orbits on Ni(G,C). The values of the lift invariant separate them.

We often use Prop. 2.23 ([Ser90] or [Fr11, Cor. 2.3]). For odd order g ∈ An,
let w(g) count length l disjoint cycles in g with (l − 1)/2 ≡ 1 or 2 mod 4.
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Proposition 2.23 (Invariance). Let n ≥ 3. If ϕ : X → P1 is in the Nielsen
class Ni(An,C3n−1)abs, then deg(ϕ) = n, X has genus 0, and s(ϕ) = n−1 mod 2.

Generally, for any genus 0 Nielsen class of odd order elements, and representing
ggg = (g1, . . . , gr), s(ggg) is constant, equal to sumr

i=1w(gi) mod 2.

Examples 2.24 and 2.25 show the significance of the phrase “suitably often.”
In Ex. 2.24 the covers in the Nielsen class have genus 0. Prop. 2.23 shows they
only achieve one value of the lift invariant. In fact, there is just one braid orbit
[LOs06]. In Ex. 2.25 the covering group is G1(A4), the 1st 2-Frattini extension of
A4. It has a Schur multiplier of order 4, and correspondingly, there are four braid
orbits, each corresponding to a different value of the lift invariant.

2.4.3. Pure cycles and the invariance Corollary. Our chief source of examples
is from pure-cycle Nielsen classes: C consists of pure-cycles (§1.3.2).

Let d1, . . . , dr be the disjoint cycle lengths. We often use d1 · · · dr, often with
exponents to indicate repetitions. R-H: A cover in this Nielsen class has genus

(2.15) g = gd1···dr
def
=

∑r
i=1 di−1

2 − (n− 1), a non-negative integer.
Suppose G ≤ Sn and ggg ∈ Ni(G,C), a pure cycle Nielsen class Ni(G,C). Denote

the image of C in Sn by CSn def
= Cd1···dr . Choose branch points, and classical

generators (§1.3), so ϕ : X → P1
z corresponds to ggg in this Nielsen class. Here is a

case of computing the lift invariant that shows what we mean by “explicit.”

Example 2.24 (Genus 0 pure-cycles). When the Nielsen class is odd pure-

cycle, and the genus is 0, the lift invariant is
∑r
i=1

d2
i−1
8 mod 2. Example: r = 3,

n ≡ 1 mod 4, d1 = d2 = n+1
2 and d3 = n. Then, G = 〈g1, g2〉 = An, and

(2.16) sSpinn/An
(ggg) =

n2 − 1

8
mod 2 =

{
0 if n ≡ 1 mod 8

1 if n ≡ 5 mod 8
.

Example 2.25 reappears in §E.3. Details for it are in [BF02, Ex. 9.2]. It
illustrates many of this section’s points about braid orbits. It also gives expectations
beyond the case gd1···dr = 0 in (2.15). As in Def. 2.1.2, G1(A4) denotes (with p = 2
implicit) the universal exponent 2-Frattini cover of A4.

Example 2.25. Take G = G1(A4), a centerless extension of A4 with kernel of
order 25. Its Schur multiplier (for p = 2) is (Z/2)2. Then, there are exactly six
braid orbits on Ni(G1(A4),C±32). As with n ≡ 1 mod 8 in Lem. 4.4, two of those
are orbits of H-M reps. Each, however, of the other four orbits have a non-trivial
lift invariant associated to at least one Z/2 quotient of the Schur multiplier.

2.4.4. Inductive criterion for existence of a non-empty MT. We can check that
a braid orbit at level k has above it (a nonempty) braid orbit at level k+ 1. §1.3.1
says this is equivalent to extending a given Mggg → Gk to Mggg → Gk+1.

In the abelianized case, the inductive procedure simplifies to just one test to
see if Mggg → G extends to Mggg → Gk,ab for all k. The first statement is from [BF02,
Prop. 3.21]. The last two are from [Fr06a, Cor. 4.19] (using results of [Wei05]).

Recall (§2.1.2) the representation cover R∗G,p → G: Its kernel – a finite abelian

group – is the maximal p quotient of the Schur multiplier of G. So ker(R∗G,p → G)
has a finite exponent pu0 . Drop p in the notation above, as in R∗G,p 7→ R∗G.

We extract two groups from this for Prop. 2.26. Denote the smallest quotient
of R∗Gk whose map to Gk has exponent p by Rk. Then, denote the ker(R∗G → G)

subgroup generated by all elements of exponent larger than pt (t ≤ u0) by Ut.
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Proposition 2.26. If G has p′ center (as in (2.12)), then so does Gk, k ≥ 1.
A braid orbit O ⊂ Ni(Gk,C)in is in the image of Ni(Gk+1,C)in if and only if

O is in the image of Ni(Rk,C).
Also, the braid orbit O ⊂ Ni(G,C) is in the image of Ni(Gk,ab,C) if and only

if it is in the image of Ni(R∗G/Uk,C). If k ≥ u0, the conclusion holds exactly when
O is in the image of Ni(R∗G,C).

The following example works because we know precisely the Schur multiplier
of alternating groups. The idea works for other groups, though there is as yet no
Invariance Cor. 2.23 to calculate the lift invariant for other simple groups.

Example 2.27. Suppose G = An, n ≥ 4, with p = 2 and C has only classes of
odd order elements. Then, for ggg ∈ Ni(G,C), there is an extension of ψḡgg : Mggg → G

to pG̃ab if and only if sSpinn/An
(ggg) is trivial. If p 6= 2 (where C are p′) then there

is always an extension to pG̃ab.

2.5. Our choice of MTs. Our examples show how connectedness helps us
compute when MTs have p-cusps. Prop. 2.13 shows we have only to compute that
the genus of a MT level exceeds 0, and if it is 1 then it has at least 1 p-cusp. In
our examples we will precisely exceed these modest goals.

2.5.1. Pure-cycle Nielsen classes. Return to pure-cycle Nielsen classes (all con-
jugacy classes have one disjoint cycle; §2.4.2). We will do the case p = 2.

All the Liu-Osserman examples stand out because there are no 2-cusps at level
0, but they do appear at level 1. Reminder: When r = 4, then there are two places
were genus 0 may come up: the inner reduced Hurwitz spaces may have genus 0;
and for a given space, its points may represent P1

z covers of genus 0.
Recall: As Sn is not 2-perfect, it doesn’t enter into the Main Conjecture for

p = 2. Here are our general assumptions (see §2.2.2 on the slight ambiguity in
conjugacy classes when all pure-cycle cusps are odd, because G = An, not Sn).

(2.17a) We have a pure-cycle Nielsen class Ni(G,Cddd), r ≥ 3, of odd order
elements, G ≤ An a transitive subgroup and p = 2; and

(2.17b) covers in the absolute Nielsen class all have genus 0:
∑r
i=1 di−1 = n−1.

Since Nielsen classes can, significantly (as in the Prop. 3.11 criterion), be empty,
for convenience we state separately this is not the case here.

Lemma 2.28. When (2.17) holds, then G = An and Ni(G,Cddd) is nonempty.

Proof. For why G = An see Prop. 3.11. For nonemptiness of Ni(G,Cddd),
Princ. 3.1 gives them all for r = 3. Princ. 3.7 not only constructs them for r = 4, it
notes their easy construction when the di s are equal in pairs through H-M reps., and
outside that case it constructs split-cycle cusps. Inductive arguments are instructive
in constructing special cusp types for higher values of r. �

We can often conclude genus growth of the reduced Hurwitz spaces in a MT
(and the Main Conjecture) for other primes when (2.17) holds, not just p = 2.

2.5.2. Cases to compare with Liu-Osserman. A few genus 0 Nielsen class collec-
tions have long been known to give connected spaces. The first such is the space of
simple-branched (2-cycle) covers. the argument for that is so simple, that Clebsch
used it 140 years ago, for all genuses , to show the connectedness of the genus g
moduli of curves. Less obvious, yet more relevant for today, are modular curves.
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We assume p is odd. Recall: The dihedral group isDpk+1 = Z/pk+1×s(Z/pk+1)∗

and C24 is four repetitions of the involution conjugacy, represented by multiplica-
tion by −1 on Z/p. We already have a MT with its kth level the Nielsen class
Ni(Gk = Dpk+1 ,C24 , p) with Gk = Gk(Dp) in the notation of §2.1.2. We use the

absolute Nielsen class: The representation of Gk has degree pk+1.
Note: (pk+1 − 1)/2 is the number of length two orbits from multiplying by −1

on Z/pk+1. From this, (2.17b) holds: R-H gives the genus of covers representing
the absolute Nielsen classes as g = 0 satisfying 2(pk+1 +g−1) = 4(pk+1−1)/2. For
p ≥ 5, these conjugacy classes aren’t pure-cycle. This is the elementary modular

curve case identifying H̄abs,rd
0 with X0(pk+1). Also, H̄in,rd

0 identifies with X1(pk+1).
Though [Fr78, §2] is now old, this is not the traditional look of these spaces.

Now consider cases that are like the Clebsch case. In Ex. 2.29 you fix a group
G and one conjugacy class C within it. Then, you vary the multiplicity of that
conjugacy class to consider different Nielsen classes. In both cases denote the
collection of absolutely irreducible components by I, and consider the natural map
from i ∈ I to the conjugacy class collection for that component. The listing of
components for absolute classes and inner classes is the same in these cases.

Example 2.29 (Dihedral and Alternating cases). If Gk = Dpk+1 with p odd,
and C∗ = {C2} (conjugacy class of an involution), then i 7→ C2ri is one-one and
onto, with the ri s running over all even integers ≥ 4. Also, Hrd

i identifies with the
space of cyclic pk+1 covers of hyperelliptic jacobians of genus ri−2

2 [DFr94, §5].
If G = An with C∗ = {C3}, class of a 3-cycle, then i 7→ C3ri with ri ≥ n is two-

one [Fr11, Main Result]. Denote indices mapping to r by i±r . Covers in Hi±r are

Galois closures of degree n covers ϕ : X → P1
z with 3-cycles for local monodromy.

Write the divisor (dϕ) of the differential of ϕ as 2Dϕ. Then, ϕ ∈ Hi+r (resp. Hi−r )

if the linear system of Dϕ has even (resp. odd) dimension; it is an even (resp. odd)
θ characteristic. For ri = n− 1 the map i 7→ C3ri is one-one.

3. Cusp Principles

We assume the Liu-Osserman conditions (2.17) hold from this point through
§5. §3.1 nails the description of pure-cycle Nielsen classes when r = 3.

For r = 4, §3.2 is a basic tool kit for this the contribution of the cusps to the
genus of the reduced spaces. Its three principles detect when we have p-cusps.

Princ. 3.7 says we get only pure-cycle cusps — (ggg)mp is pure-cycle (or trivial)
for all ggg in the Nielsen class — precisely when the Nielsen class is Ni(n+1

2 )4 . That

implies there are no 2-cusps at level 0. Yet, applying [Fr06a, Fratt. Princ. 3], §3.3
gives some 2-cusps at level 1, proving the Main Conjecture.

3.1. Detecting p-cusps in the cusp tree. For r ≥ 4, all reduced spaces have
well-defined cusps. Their combinatorial definition (§2.2.1) applied to an element ggg
in the Nielsen class starts by imposing a grouping on the entries of ggg. When r = 4,
we inspect the ordered pairs (g2, g3) and (g4, g1) both for their products and the
groups they generate. This coalescing definition forces the case r = 3 on us.

3.1.1. The case r = 3. Assume r = 3 and the genus of the cover genus in the
Nielsen class is 0. By applying a braid from H3, as previously (§1.2.1) assume
d1 ≤ d2 ≤ d3. Write g1 as in (3.1) for some integer 1 ≤ u ≤ d1−1. With no loss,
assume the segment xd1−u+1,d1

(§1.3.2) disappears in g1g2. Use that all integers
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appear in the g1 and g2, and their product is a pure-cycle. Form:

(3.1)
g1 = (1 . . . d1−u d1−u+1 . . . d1)
g2 = (d1 d1−1 . . . d1−u+1n . . . d1+1), and
g3 = (1 . . . d1−u+1n . . . d1+1)−1.

Easily check: (g1, g2, g3) has product-one and the genus, gggg is 0. Up to conju-
gation by Sn and reordering, we have the unique element in the Nielsen class.

Principle 3.1. For r = 3 and gd1·d2·d3
= 0, there is a unique

ggg ∈ Ni(G,Cd1·d2·d3)abs with ord(gi) = di, i = 1, 2, 3.

3.1.2. p-cusps and Main MT Conjecture. The projective system of cusp orbits
forms a directed tree. A cusp branch is the Cu4 orbit of a projective system of
representatives g̃gg = {kggg ∈ Ni(Gk,C)in,rd}∞k=0. If all are H-M reps., call it an H-M
branch. Its system of braid orbits defines an H-M MT, or an H-M component
branch. Assume, with no loss (start of [Fr06a, §5]), that the p-part of the center
of all the Gk s is trivial. So, the Gk centers identify as the same p′ group.

It will simplify some expressions to use a short-hand, [g1, g2], for the H-M
rep. ggg = (g1, g

−1
1 , g2, g

−1
2 ).

Principle 3.2. We have the following formulas:

([g1, g2])q1 = [g−1
1 , g2], ([g1, g2])q3 = [g1, g

−1
2 ] and ([g1, g2])q1q2 = [g−1

1 , g−1
2 ].

Among them is a p-cusp if and only if one of p|ord(g±1
1 g2).

Proof. The display repeats the definition of q1 and q2 action. By definition,
these give p-cusps if and only if p divides the middle product order of one of g±1

1 g±1
2 .

Notice, the inner equivalent H-M rep. g1[g1, g2]g−1
1 has middle product

g−1
1 g1g2g

−1
1 = g2g

−1
1 = (g1g

−1
2 )−1.

So, the middle product order of g1g
−1
2 is among ord(g±1

1 g2), etc. �

Assume {kggg}∞k=0 defines an H-M cusp branch.
(3.2) Non-Weigel cusp branch: Suppose for k >> 0, {kggg}∞k=0 does not define

an o-p′ cusp branch (as in (2.7b)).
It is significant to figure out when condition (3.2) is automatic.
Assuming (3.2), I now show we can spin off low ramification p-cusps for general

p. For notational simplicity (adjustments are easy), assume the cusp branch starts
with an H-M rep. (g1, g

−1
1 , g2, g

−1
2 ) = [g1, g2] = ggg0 with middle product d·pu, u ≥ 1.

Further simplify by taking u = 1. Now let k+1ggg be the level k+ 1 representative in
our projective sequence. With ok the middle product order of kggg,

c̄k = (k+1g
−1
1 k+1g2)ok ∈ ker(Gk+1,ab → Gk,ab), and, so

k+1ggg
′ = (k+1ggg)q2ok

2 = (k+1g1, c̄k(k+1g
−1
1 )c̄−1

k , c̄k(k+1g2)c̄−1
k , k+1g

−1
2 ).

Further, for product-one to hold, c̄k must centralize k+1g
−1
1 k+1g2. Now use

that 〈k+1g1, k+1g1k+1g2〉 = Gk+1,ab and this group’s center has no p-part. As c̄k
commutes with the second generator, it can’t commute with the first. Conclude:

(3.3) k+1ggg
′ 6= k+1ggg.

Now form (k+1ggg
′)sh, whose 2nd and 3rd entries are (c̄k(k+1g2)c̄−1

k , k+1g
−1
2 ). Exactly

one power of p divides their product.



22 M. FRIED

Principle 3.3. As above, (k+1ggg
′)sh is a new p-cusp. So, Princ. 3.2 combined

with (3.2) for the H-M cusp branch of g̃gg implies the main conjecture for its H-M
component branch.

Proof. Prin. 2.14 gives k0, so that for k ≥ k0, pk−k0+1||(kggg)mp. The first
paragraph [Fr06a, Prop. 5.5] proof shows how spinning new p-cusps grows the
number of p-cusps with k: p cusps at level k so produced have above them only
cusps with middle product divisible by one more power of p. So, this new cusp
cannot equal any p cusps from the induction production of previous cusps.

The Main Conjecture counterexample towers have at most two p-cusps at each
level [Fr06a, Thm. 5.1] (or Prop. 2.13). This concludes the proposition. �

Example 3.4. In A5, consider g1 = (1 2 3 4 5) and g2 = (1 2 3). They generate
A5, and ([g1, g2])mp is (5 4 3) while ([g1, g

−1
2 ])mp is (3 1 2 5 4). This shows middle

products of H-M reps. are not a braid orbit invariant.

3.2. Two cusp Principles. Princ. 3.5, a version of [BF02, Prop. 2.17], makes
transparent the width of most cusps. Princ. 3.7 smooths the way between r = 3
and r = 4 for pure-cycle Nielsen classes. It is a version of [LOs06, §4], the hardest
combinatorial part of their paper, where r = 4. Our simplification results from
using cusps to improve the efficiency in computing braid orbits.

3.2.1. The Twisting Principal. For (g, g′) ∈ G×G, denote (g, g′) 7→ (gg′g−1, g)
by tw. It is just the q2 operator restricted to 2-tuples, instead of 4-tuples. As such
the iterated action of tw starting from (g, g′) has an orbit in G×G.

Principle 3.5. Given (g, g′), denote gg′ by g′′. Assume g−1 6= g′ and for
simplicity that Z(〈g, g′〉) ∩ 〈g′′〉 is trivial (see Rem. 3.9). Then, the tw orbit length
is 2 · ord(g′′) unless

(3.4) ord(g′′) = o is odd, and ord((g′′)
o−1

2 g) = 2.
In turn, (3.4) is equivalent to

(3.5) (g, g′)tw = (g′′)
o+1

2 (g, g′)(g′′)−
o+1

2 .

More generally, suppose ggg ∈ Ni(G,C)in and oggg is the order of (ggg)mp. Then,

the orbit of q2 on gggin has length 2 · oggg unless oggg is odd, and (g2g3)
oggg−1

2 g2 has order
2 mod CenG(〈g1, g4〉), in which case the orbit length is oggg.

Proof. The first paragraph is [BF02, Prop. 2.17]. Now assume o is odd and

let j = o+1
2 . If (3.5) holds, then gg′g−1 = (g′′)jg(g′′)−j , or g′ = (g′′)

o−1
2 g(g′′)−

o−1
2

=⇒ g′(g′′)
o−1

2 = (g′′)
o−1

2 g.

This is reversible; the last restates (3.4) that (g′′)
o−1

2 g has order 2.
For ggg ∈ Ni(G,C)in, assume α ∈ CenG(〈g1, g4〉). So α commutes with g′′ = g2g3

and satisfies

α(g′′)
o−1

2 g(g′′)−
o−1

2 α−1 = g′.

Then, the inner class of (ggg)q2 contains conjugation of the middle pair by (g′′)
o+1

2 ,
and the argument above works again. �
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3.2.2. The Pure-Cycle Cusp Principle. Princ. 3.7 shows exactly why, among
the Liu-Osserman cases, the Nielsen classes Ni(n+1

2 )4 (§4.1) stand out. It is these

for which all cusps are pure-cycle (or have trivial middle product; Def. 3.8). Ex. 3.10
does a split-cycle case in detail to assure the reader of the notation.

As previously consider an element ggg = (g1, . . . , gr) in a Liu-Osserman genus 0

pure cycle (genus 0) Nielsen class Ni(An,Cd1···dr )
def
= Niddd.

Lemma 3.6. Product one and transitivity (§1.3.1) imply each j ∈ {1, . . . , n} is
in the support of at least 2 of the gi s. Let kj be the number of gi s containing j in
their support, and let ki − 2 = k′i ≥ 0. So,

∑
k′j = r − 2. If r = 4, conclude, each

integer is in the support of exactly two of the gi s modulo one of two possibilities:

(3.6a) Either there is an i0 in the support of all four gi s; or
(3.6b) There are two integers i0 and k0 in the support of exactly three gi s.

Proof. Each support appearance of j adds 1 to
∑r
i=1 di in R-H as in (2.15).

From gggg = 0, there are only n+r−2 total appearances. For r = 4, there can be only
two total, beyond 2, appearances of integers; (3.6) splits that into two cases. �

Principle 3.7. Consider the common support of (g2, g3). With no loss, unless
it is empty, take it to be {1, . . . , k}. Then, consider the overlap, U(ggg), of that with
(ggg)mp. This consists of at most two integers.

If |U(ggg)| = 1 (with no loss take it to be k) then (g2, g3) has the form

((k . . . 1vvv), (1 . . . kwww)) with vvv, www and {1, . . . , k} mutually disjoint.

Here, (ggg)mp = (kwwwvvv), is an odd pure-cycle.
If |U(ggg)| = 2, then there is no common support in the 3-tuple (g4, g1, g4g1).

Further, (g2, g3) has the form

(3.7) ((k . . . i0+1vvv1 i0 . . . 1vvv2), (1 . . . i0www1 i0+1 . . . kwww2)),

with the sets vvv1,vvv2, www1, www2 and {1, . . . , k} pairwise disjoint and

(3.8) (ggg)mp = (kwww2 vvv2)(i0www1 vvv1), a split-cycle.

The two disjoint cycles are the inverses of g1 and g4, giving conditions (see (3.9))
on the lengths (orders) of vvvi and wwwi, i = 1, 2, so the ggg entries have the right orders.

The condition |U(ggg)| = 2 happens for some rep. in each allowed Nielsen class
if and only if it is not Ni(n+1

2 )4 for some n ≥ 4.

Proof. We characterize each case of (3.6). For a segment labeled vvv (or www) in
the calculations, compatible with previous notation, denote its length o(vvv).

If U(ggg) is empty, then g2 and g3 are disjoint. Otherwise, assume k ∈ U(ggg). If
no other letter is in U(ggg), then consider the effect of g2g3 to see that by reordering
1, . . . , k, we may assume g3 maps i 7→ i+1, and g2 reverses this, for i = 1, . . . , k−1.
So, these integers disappear in the support of the product, and (g2, g3) has the
shape given in the proposition statement. The length of (ggg)mp is 1 + o(vvv) + o(www),
and 2k+o(vvv) +o(www) = d2 +d3. Since d2 and d3 are both odd, conclude o(vvv) +o(www)
is even, and the length of (ggg)mp is odd.

It is similar for |U(ggg)| = 2. Now consider, by cases, what happens with the
complementary pair (g4, g1).

Suppose |U(ggg)| = 2. Then, two integers having three supports among the
entries of ggg appear in (ggg)mp. Apply the argument to (g4, g1, g4g1 = (g2g3)−1) that
we used on (g2, g3, g2g3). If there were further integers in the common support
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of (g4, g1, g4g1) and (g4, g1), that would give at least three integers appearing in
the common support of three entries of ggg. So, that can’t happen. Similarly, if
|U(ggg)| = 1, then the common support for (g4, g1, (g4g1)−1) has also cardinality 1,
different from the integer in U(ggg).

For ggg ∈ Ni(n+1
2 )4 , all pairs of ggg entries have overlapping support. So there can

be no split-cycle cusps. Given ddd 6= (n+1
2 )4, we now produce split-cycle cusps.

With d1 ≤ d2 ≤ d3 ≤ d4, apply a braid to produce ggg′ with o(g′i) = di+1,
i = 1, . . . , 4 mod 4. This assures the two smallest lengths are at positions 1 and 4.
From genus 0,

∑4
i=1 di = n+2 implies d1 + d2 ≤ n. Here are equations expressing

the respective segment lengths of g′4, g
′
1, g
′
2, g
′
3 using vvv and www:

(3.9)
1 + o(vvv1) + o(www1) = d1, 1 + o(vvv2) + o(www2) = d2,
k + o(vvv1) + o(vvv2) = d3, k + o(www1) + o(www2) = d4.

Solve the equations, as in Ex. 3.10, to canonically, up to absolute equivalence,
produce a split-cycle cusp. For example, d1−1+d2−1 = d3−k+d4−k, determines
k. This concludes the proposition. �

Suppose ggg ∈ Nid1·d2·d3·d4
. Then, consider the cusp Cu4(ggg) it generates.

Definition 3.8. Assume ggg is not the shift of an H-M rep. (so (ggg)mp is not
trivial). Corresponding to the cases in Princ. 3.7, Cu4(ggg) is a pure-cycle (resp. split-
cycle) cusp if |U(ggg)| = 1 (resp. |U(ggg)| = 2 or 0).

Remark 3.9. In our applications here the triviality of H = Z(〈g, g′〉) ∩ 〈g′′〉
assumption in Princ. 3.5 holds. As in [BF02, Prop. 2.17], modding out by H gives
a completely general result.

Example 3.10 (Split-cycle cusp). Let n = 9 and (d1, d2, d3, d4) = (3, 5, 5, 7),
so Ni(A9,C3·52·7) satisfies the genus 0 assumption. Make a split-cycle cusp Cu4(ggg)
where (o1, o2, o3, o4) = (3, 5, 7, 5) by assigning values to i0, k,vvv1, vvv2,www1www2 in the
formula in Princ. 3.7. As in (3.9), 1 + o(vvv1) + o(www1) = 3, 1 + o(vvv2) + o(www2) = 5,
k + o(vvv1) + o(vvv2) = 5 and k + o(www1) + o(www2) = 7.

So, 2 + 4 = 5− k + 7− k, or k = 3 and o(vvv1) = o(vvv2) = o(www1) = 1, o(www2) = 3.
With no loss:

(3.10) vvv1 = |4|, vvv2 = |5|,www2 = |6 7 8|,www1 = |9|.

Fill in g′2, g
′
3 (resp. g′4, q

′
1) from (3.7) (resp. (3.8)). For i0 = 1, g′2 = (3 2 4 1 5) and

g′3 = (1 9 2 3 6 7 8) ((ggg′)mp = (3 6 7 8 5)(1 9 4));. For i0 = 2 g′2 = (3 4 2 1 5) and
g′3 = (1 2 9 3 6 7 8) (middle product (3 6 7 8 5)(2 9 4)).

3.3. 2-cusps and Liu-Osserman examples. Prop. 3.11 assumes the genus
0, pure-cycle hypotheses of (2.17). For r ≥ 3 it characterizes when an abelianized

MT lies over Ni(An,Cddd)
def
= Niddd. It says there are no 2-cusps at (MT) level 0 for

r = 4, yet shows how to find 2-cusps at level 1. Denote the order of g ∈ G by o(g).
Cusp notation is from §2.2.2. Though Prop. 3.11 doesn’t use it, [LOs06, Cor. 4.11]

says there is only one braid orbit on Niabs
ddd . Also, when there are two braid orbits

on Niinddd (as in Prop. 4.1), any element of Sn \An conjugates between them.

Proposition 3.11. Let ddd = d1, . . . , dr, r ≥ 3, with Niabs
ddd a Nielsen class of odd

pure-cycle genus 0 covers. Then, G = An, n ≥ 4. For p = 2 there is a (nonempty)
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abelianized MT above any component of H(An,Cddd)
in if and only if

(3.11)

r∑
i=1

o(gi)
2 − 1

8
≡ 0 mod 2.

For p 6= 2, there is always an abelianized MT above any component of H(An,Cddd)
in.

If the di s are equal in pairs, there is always (irrespective of p) a (full — not
abelianized) MT over any component of H(An,Cddd)

in.

Proof. All appearances of alternating groups come directly from [Wm73],
whose hypotheses (Rem. 2.5 and Rem. 3.14 add to [LOs06, Thm. 5.3]) imply a
noncyclic, transitive subgroup G of An, generated by odd pure-cycles must be An,
n ≥ 4. If we can exclude that G is cyclic, then G = An, n ≥ 4, in any such Nielsen
class. If, however, G = 〈h〉, then transitivity implies h is an n-cycle. Apply the
pure-cycle and genus 0 conditions. Conclude: all the gi s are invertible powers of
h. So, by R-H: 2(n− 1) = r(n− 1) and r = 2, contrary to hypothesis.

Lem. 2.28 notes the level 0 Nielsen classes are nonempty. Consider, then, (3.11).
Inv. Prop. 2.23 says this is precise for when Ni(Spinn,Cddd) has a nonempty Hr orbit
over any Hr orbit of Ni(An,Cddd). The representation cover of An is Spinn. So,
Prop. 2.26 says this is exactly when there is an abelianized MT for p = 2 over any
braid orbit of Ni(An,Cddd). Also, this always holds when p 6= 2. �

From here on assume (3.11) holds (Ex. 3.13 has examples when it doesn’t) so
there is a MT over any braid orbit of Niddd. §2.2.2 defines U2,3 and U1,4.

Proposition 3.12. For r = 4, all cusps in Niddd are either g-2′ or o-2′. Also:

(3.12a) All g-2’ cusps are shifts of H-M reps; and
(3.12b) all H-M reps are o-2′ cusps.

Let Cu4(ggg) be an o-2′ pure-cycle cusp. Then, U2,3(ggg) = Au and U1,4(ggg) = Av
for some u, v ≥ 4. All level 1 cusps above it are 2-cusps if and only if

(3.13)
o(g2)2 − 1

8
+
o(g3)2 − 1

8
+
o(g2g3)2 − 1

8
≡ 1 mod 2.

Let Cu4(ggg) be a split-cycle (Def. 3.8) cusp with |U(ggg)| = 2 and gcd(d1, d4) = d′.
Then, U2,3(ggg) = An and U1,4(ggg) = Z/d1 ×Z/d′ Z/d4. There are both 2-cusps and
o-2′ cusps at level 1 of any MT over Cu4(ggg).

Proof. Apply Princ. 3.7 to consider cases for Cu4(ggg). First assume it is a
g-2′ cusp: both U2,3(ggg) and U1,4(ggg), each generated by odd pure-cycles, have orders
prime to 2. From Prop. 3.11 (see the 1st sentence of the proof), this implies they
are both cyclic groups. Therefore, (ggg)mp generates a common normal subgroup
of these two groups. This would be a normal subgroup of An, so is n = 3 or 4.
In both cases, however, the entries of ggg would have to be 3-cycles. Apply R-H to
see this gives 2(n − 1) = 4 · 2, which works for neither n = 3 or 4. So, the middle
product is trivial. Apply the shift to conclude (ggg)sh is an H-M rep.

Now suppose Cu4(ggg) is a pure-cycle cusp. (This includes the H-M rep. case.).
First exclude that U2,3(ggg) is cyclic. That would, however, imply that g2 and g3

commute, contrary to an explicit calculation from their shape given in Princ. 3.7.
Thus, U2,3(ggg) and U1,4(ggg) are both alternating groups of degree exceeding 3.

Let G1 be the 1st 2-Frattini extension of An (Def. 2.1.2). The exact condition
that only 2-cusps in Ni(G1,Cddd) lie over Cu4(ggg) is that there are no o-2′ cusps over



26 M. FRIED

Cu4(ggg). First we show, if ggg′ ∈ Ni(G1,Cddd) (G1 = G1(An)) lying over ggg gives an o-2′

cusp, then 3.13 does not hold.
Let h = (ggg)mp, denoting its (2′) order by d. Then, the image ggg∗ ∈ Ni(Spinn,Cddd)

is also o-2′. As ggg is o-2′, with 〈g2, g3〉 = U2,3(ggg) = Au, Invariance Prop. 2.23 applies
to (g2, g3, h

−1), and the left side of (3.13) is ≡ 0 mod 2.
Now consider the converse: Given that the left side of (3.13) is ≡ 0 mod 2,

we construct an o-2′ cusp ggg′ over ggg. Consider 〈g1, g4〉 = U1,4(ggg) = Av and the
analogous condition for (g4, g1, h) being lifted to an element of Ni(Spinv,Cd1,d4,d).
Combine (3.11) and the negation of (3.13) to see this is now automatic. A special
case of [Fr06a, Princ. 4.24] (F(rattini) Princ. 3), says these respective Nielsen class
elements give an o-2′ cusp of Ni(G1(An),Cddd) over Cu4(ggg). This concludes the
desired outcome of (3.13) not holding.

Now we establish the analog for a split-cycle cusp. Then, g1 and g4 have disjoint
support and the analogous expression to the left side of (3.11) is just the left side of
(3.13). Given that the former holds then, the latter reads as its negation. So, the
previous argument — the lift invariant does not need pure-cycle elements to apply
— gives that there are both 2-cusps and o-2′ cusps above ggg. �

Example 3.13 (Empty MTs over Liu-Osserman Nielsen classes). We check,

for r = 4, how to get ddd, satisfying 2(n − 1) ≡
∑4
i=1 di − 1 (genus zero), for which

there is no abelianized MT over Niddd. This is equivalent to the failure of (3.11)
⇔an odd number of di s are ≡ ±3 mod 8.

If G = An, n ≡ 1 mod 4, genus 0 gives
∑4
i=1 di−1 ≡ 0 mod 8. This implies

an even number of di s equal +3 or −3. So, (3.11) is automatic. For, however,
n ≡ 3 mod 4, (3.11) won’t hold with these unordered mod 8 entries for ddd :

1, 1, 1,−3;−1,−1,−1, 3; 1,−3,−3,−3.

For example, ddd = (5, 9, 9, 9) with n = 15. The case n is even can also happen.

Remark 3.14. [Comments on [Wm73]] Excluding monodromy associated to
dihedral, cyclic, alternating and symmetric groups, the remaining groups of degree
n genus 0 covers form a finite set (the genus 0 program; see [Fr05, §7.2.3]). [Wm73]
can neatly separate Nielsen classes Ni(G,C) where G = An or G = Sn —Sn/An-
result — from others. Williamson’s statement [Wm73]: The Sn/An-result holds if
G is primitive, non-cyclic, and it contains a degree d > 1 pure-cycle with d ≤ (n−d)!.
Note: n = 5 and C34 (n = 5 in §4.1) doesn’t satisfy this. Yet, the Sn/An-result is
well-known for G primitive having a 3-cycle. We easily detect conjugacy classes in
An. So, one pure cycle class of length d may assure the Sn/An-conclusion. Example:
(d, n) = 1 and d > n/p for p the minimal prime dividing n.

4. The Liu-Osserman case Ni(n+1
2 )4

This section shows the cusp structure of the reduced spaces in the subcase
of Liu-Osserman from §2.5.1. We denote this case Ni(n+1

2 )4 with G = An: the

conjugacy classes are four repetitions of n+1
2 -cycles. The sh-incidence matrices

memorably collects information coming from cusps. Most conjugations of pure-
cycles by pure-cycles in this section fit the notation of translations of a segment
from §1.3.2. Comparing Table 3 and Table 7 shows that, while the case n = 5 is
overly simple, n = 13 captures almost all cusp phenomena of the general case.
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4.1. Ni(n+1
2 )4 cusps. We list absolute and inner cusps using §1.3.2 notation.

The proof of Prop. 4.1 takes up most of this section. Subsections do the respective
cases of absolute and inner cusps.

4.1.1. Fixing the 1st and 4th entries in pure-cycle reps. Prop. 3.12 says all g-2′

cusps are sh applied to H-M cusps (g1, g
−1
1 , g2, g

−1
2 ). Also, all remaining cusps are

pure-cycle. With xi,j = (i i+1 · · · j), inner H-M class have one of two reps:

H-M1
def
= (xn+1

2 ,1, x1,n+1
2
, xn+1

2 ,n, xn,n+1
2

)

H-M2 = (H-M1)q1
def
= (x1,n+1

2
, xn+1

2 ,1, xn+1
2 ,n, xn,n+1

2
)

Proposition 4.1. For n ≡ 5 mod 8, H-M1 and H-M2 are not inner equivalent.
So, there is one braid orbit on Ni(An,C(n+1

2 )4)in.

For n ≡ 1 mod 8, if h ∈ Sn \ An, there is no braid between ggg and hgggh−1. So,
there are two braid orbits on Ni(An,C(n+1

2 )4)in.

For U ≤ {1, . . . , n}, SU is the set of permutations of U . We first show how sh
applied to the cusp of H-M1 gives representatives of all the absolute cusps. Table
1 consists of sh applied to elements of Cu4(H-M1), the cusp orbit of H-M1:

{H-M1,t = (xn+1
2 ,1, x1+t,n+1

2 +t, xn+1
2 +t,n+t, xn,n+1

2
)}n−1
t=0 .

The expression [k]1 or [k]2 heading a Table 1 row indicates the order k of the middle
product, and also the actual inner Nielsen class given by the representative.

Table 1. sh applied to elements of Cu4(H-M1)

[1]1 (H-M1,0)sh = (x1,n+1
2
, xn+1

2 ,n, xn,n+1
2
, xn+1

2 ,1)

[3]1 (H-M1,1)sh = (x2,n+3
2
, (xn+3

2 ,n 1), xn,n+1
2
, xn+1

2 ,1)

[5]1 (H-M1,2)sh = (x3,n+5
2
, (xn+5

2 ,n x1,2), xn,n+1
2
, xn+1

2 ,1)
· · ·

[n]1 (H-M1,n−1
2

)sh = (xn+1
2 ,n, (nx1,n−1

2
), xn,n+1

2
, xn+1

2 ,1)

[n]2 (H-M1,n+1
2

)sh = ((xn+3
2 ,n 1), x1,n+1

2
, xn,n+1

2
, xn+1

2 ,1)
· · ·

[5]2 (H-M1,n−2)sh = ((xn−1,n x1,n−3
2

), xn−3
2 ,n−2, xn,n+1

2
, xn+1

2 ,1)

[3]2 (H-M1,n−1)sh = ((nx1,n−1
2

), xn−1
2 ,n−1, xn,n+1

2
, xn+1

2 ,1)

Lem. 4.2 comes from noting the centralizer of an n-cycle h ∈ Sn is just 〈h〉.

Lemma 4.2. For 3 ≤ k ≤ n (odd), let g′1, g
′
4 denote, respectively the 1st and 4th

entries of [k]j in Table 1. Let V be the union of the supports of g′1 and g′4. Then,
the centralizer of 〈g′1, g′4〉 in SV is trivial. So, with h = ([k]j)mp, a complete list of
elements in the Nielsen class having respective 1st and 4th entries g′1, g

′
4 is

{β−1(g1, h
−ug2h

u, h−ug3h
u, g4)β}β∈SV ′ , V

′ = {1, . . . , n} \ V.
In particular, if ggg ∈ Ni(An,C(n+1

2 )4)in has the same 1st and 4th entries as [n]1

(resp. [n−2]1), then ggg ∈ Cusp[n]1 (resp. Cusp[n−2]1). Conjugation of [n]2 by x−1

1,n+1
2

and [n]1 have the same 1st and 4th entries, Cusp[n]1 = Cusp[n]2 .

Proof. For the first part use 〈g′1〉 ∩ 〈g′4〉 = {1}. For the rest apply Lem. 4.3
and that for, respectively, [n]1 or [n−2]1, the set |V ′| is 0 or 1. �
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4.1.2. Cusps of Niabs,rd

(n+1
2 )4

. First we take care of absolute cusps.

Lemma 4.3. For 1 ≤ k ≤ n odd, [k]1 gives a complete list of reps for cusp
orbits in Ni(An,C(n+1

2
)4)abs,rd. The middle product ([k]1)mp (resp. ([k]2)mp) is

αk,1 = (x1, k−1
2
xn+k

2
,n+1

2
),

(resp. αk,2 = (xn−k+2
2 ,n+1

2
xn,n− k−3

2
)).

The order of the mp of the cusp rep. equals the cusp width. In particular,

|Ni(An,C(n+1
2

)4)abs,rd| = (
n+1

2
)2.

Proof. We want to know when the list above gives a complete set of represen-
tatives of all absolute cusps. Given ggg = (g1, g2, g3, g4) in the Nielsen class, denote
the centralizer (in Sn) of the pure cycle g2g3 (from Prop. 3.12) by Cen(ggg)mp. As-
sume ord(g2g3) = k. Princ. 3.1 shows anything in the cusp of ggg (since it has middle
product k) has an absolute Nielsen class rep. in

Tggg
def
= {gggα

def
= (g1, αg2α

−1, αg3α
−1, g4)}α∈Cen(ggg)mp, with 〈gggα〉 transitive.

We show absolute equivalence classes of elements in Tggg is just the unique absolute
cusp with middle product k.

Look at [k]1 = ggg. Then, Cen([k]1)mp = 〈αk,1, S k+1
2 ,n−1

2
, Sn+k+2

2 ,n〉. Also,

S k+1
2 ,n−1

2
= Cen〈g2,g3〉 and Sn+k+2

2 ,n = Cen〈g1,g4〉. Since g2 and g3 have no sup-

port in {k+1
2 . . . n−1

2 }, gggα won’t be transitive if α moves one of n+k+2
2 , . . . , n to one

of k+1
2 , . . . , n−1

2 . Finally:

(4.1a) Given gggα ∈ Tggg, u2,3 ∈ Cen〈g2,g3〉 and u1,4 ∈ Cen〈g1,g4〉, then gggα and
gggu1,4αu2,3

represent the same Nielsen class.

(4.1b) For gggα′ ∈ Tggg the cusp Cu4(gggα′) consists of {gggabs
α }α∈〈αk,1〉α′ .

The cusp of [k]1
abs

in (4.1b) includes all elements with middle product k. �

4.1.3. Cusps of Niin,rd
(n+1

2 )4
. Now we adjust Lem. 4.3 for inner cusps. There are

either two inner cusps for each absolute cusp, or one inner cusp of twice the absolute
cusp width. Lem. 4.4 inspects Table 1 to distinguish these cases.

Lemma 4.4. For n ≡ 5 mod 8, Niin,rd
(n+1

2 )4
has one braid orbit. We list the cusps

in this orbit using a parameter ` in the range 0 ≤ ` ≤ n−1
2 .

(4.2a) There is a just one cusp of width 2 · (n−2`) represented by [n−2`]1 if
both ` and `−1

2 are odd; or if 2||`.
(4.2b) There are exactly two inner width n−2` cusps if ` is odd and `−1

2 is
even; or if 4|`. In the former case [n−2`]1 and [n−2`]2 represent the
two cusps, but in the latter case they represent the same cusp.

For n ≡ 1 mod 8, there are two braid orbits O1 and O2 on Niin,rd
(n+1

2 )4
. These

have cusp width 1 representatives H-M1 and βH-M1β
−1, (any) β ∈ Sn \ An. For

j = 1, 2, and odd k, 1 ≤ k ≤ n, there is one inner cusp of width k in Oj.

Proof. Use [BiF82, Lem. 3.8]: For each h ∈ G there is a braid that goes from
ggg ∈ Ni(G,C) to hgggh−1. When G = An, for any h ∈ Sn, there is a braid from ggg to
hgggh−1 if and only if there is such a braid for one case of h ∈ Sn \An.



NIELSEN CLASS COMPONENTS 29

Now replace H-M1 with H-M2. The analogous table of absolute cusps for H-M2

must, from above, be exactly the same as that for H-M1. Apply q1 to H-M2 to get
H-M1. This braid is equivalent to conjugation by

β′ = (2 n+1
2

)(3 n−1
2

) · · · (n−1
4

n+1
4

).

We have listed every absolute class that comes from applying M̄4 to H-M1 in

Table 1. So, we get one (resp. 2) M̄4 orbits on Niin,rd
(n+1

2 )4
, if and only if β is (resp. is

not) in Sn \An. These cases occur, respectively, for n ≡ 5 mod 8 (resp. 1 mod 8),
and in these cases H-M1 represents an inner cusp of width 2 (resp. 1).

Now consider n ≡ 5 mod 8. The 2nd and 3rd entries of [n−2`]1 are

g′′2 = (xn−`,n x1,n−1
2 −`

) and g′′3 = xn,n+1
2
.

Also, ([n−2`]1)mp = αn−2`,1 = (x1,n−1
2 −u

xn−u,n+1
2

). We determine the element γ

for which ([n−2`]1)q2 — whose 3rd term is g′′2 — has 2nd and 3rd terms equal to
γ(g′′2 , g

′′
3 )γ−1. From the proof of Lem. 4.3, this must be a power of αn−2`,1 times

an element, γ′, centralizing 〈g′′1 , g′′4 〉. We see this directly.
Determine γ ∈ Sn+3

2 ,n from γ(g′′3 )γ−1 = g′′2 . A power of αn−2`,1 translates

|x1,n−1
2 −`

n−`| to |xn−`,n+1
2
|. So, γ′ inverts |xn−`+1,n|. Iterations of q2 give further

conjugations by γ. Therefore, the cusp width is n−2` exactly when (γ′)n−2` = γ′

has parity 1. Otherwise, the cusp of [n−2`]1 will have width 2 · (n−2`). The list of
(4.2) translates the parity statement of Lem. 1.8 to conclude the result.

The computation for when [n−2`]j represent the same cusp — when ` is even
— is similar, so we outline it. Let V be the support of the 1st and 4th entries of
[n−2`]2. A forced conjugation from SV on [n−2`]2 yields [n−2`]′2 having its 1st
and 4th entries the same as [n−2`]1.

The conjugation is a composition of a power of x1,n+1
2

and a permutation

consisting of n−2`−1
2 disjoint cycles so of parity (−1)`. Then, the cusp of [n−2`]′2

has a representative conjugate by (xn−`+1,n)
n−2`−1

2 (of parity (−1)(`−1)·` = 1).
The case n ≡ 1 mod 8 follows from the absolute pattern. �

Remark 4.5 (k = n in Lem. 4.4). Though k = n is not special, it has a special

role and a special proof. Write out ([n]1)
n−1

2 x1,n+1
2

. You get (1 n+3
2 ) · · · (n+1

2 n), of

order 2. Princ. 3.5 gives the width of the cusp of [n]1 as n.

4.1.4. Naming the cusps. When n ≡ 1 mod 8, Lem. 4.4 gives two braid or-
bits, so two components H̄i(An,C(n+1

2 )4)in,rd, i = 1, 2. Each maps one-one to

H̄(An,C(n+1
2 )4)abs,rd, identifying its cusps with those on each H̄i(An,C(n+1

2 )4)in,rd.

Denote the cusps simply as cOn−2`
def
= Cuspn−2` for `, with 0 ≤ l ≤ n−1

2 .
Even as a moduli space (structure beyond being an algebraic variety; App. C)
H̄(An,C(n+1

2 )4)abs,rd has definition field Q. Yet, H̄i(An,C(n+1
2 )4)in,rd, i = 1, 2, are

conjugate over Q (Prop. 6.13).
For n ≡ 5 mod 8, Lem. 4.4 says H̄(An,C(n+1

2 )4)in,rd → H̄(An,C(n+1
2 )4)abs,rd

is a degree 2 cover of absolutely irreducible Q varieties. Inner cusps need more
intricate notation.

Definition 4.6. For n ≡ 5 mod 8 denote the unique cusp of middle product
1 and width 2 by cO1,2 ( ` = n−1

2 in Lem. 4.4 notation):

cO1,2 = Cusp(H-M1)sh = Cusp(H-M2)sh = ((H-M1)sh)in,rd ∪ ((H-M2)sh)in,rd.
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Similarly, for the other values of k when there is one (inner) cusp of width 2k – say,
when n = 13 and k = 7, ` = 3 or k = 9, ` = 2 – denote this cOk,2k.

Finally, for those k with two cusps of width k, say for

n = 13 : (k, l) respectively (3, 5), (5, 4), (11, 1), (13, 0),

use this notation. If k ≡ 1 mod 4 denote the cusp represented by [k]1 by

cO
′
k;1 = Cuspk,1 = Cusp(H-M

1, k−1
2

)sh, ([k]2 represents the same cusp).

Similarly, Cusp(H-M
2, k−1

2
)sh = cO

′
k;2 = Cuspk,2. For k ≡ 3 mod 4 denote the cusp

of [k]i by cOk,k;i
def
= cO

′
k;i, i = 1, 2.

4.2. sh-incidence for Niin,rd
(n+1

2 )4
. Def. 2.7 has the sh-incidence matrix. Com-

bining the naming from §4.1.4 with Def. 4.6 fills in the pairings of cO1,2 with all
cusps (Table 2) from the sum of the entries in the column being the cusp width (2
in this case). Pairing of cO1,2 with Cusp(H-Mi) is 1, fulfilled by ((H-Mi)sh)in,rd.

Table 3 displays the matrix for Ni(A5,C34)in,rd; n = 5, is easier having none
of the cusps labeled Ok,2k, k > 1 odd. §5 completes the sh-incidence matrix for all

the Niin,rd
(n+1

2 )4
, n ≡ 5 mod 8. Identify cO

′
n;1, represented by (both) [n]i, i = 1, 2 (as

in (4.2b), with CuspH-M2
:

(4.3) (H-M2)sh2 = (xn+1
2 ,n, xn,n+1

2
, x1,n+1

2
, xn+1

2 ,1) = ([n]1)q−1
2 .

We augment Def. 4.6 for the cusps cOk,2k, k > 1, by splitting those cusps in
Def. 4.7 into two pieces. Consider again the entries (g′′1 , g

′′
2 , g
′′
3 , g
′′
4 ) = [k]1. The

Lem. 4.4 proof has an odd parity element γ′ commuting with αk,1 = (g′′2 , g
′′
3 )mp.

Then, inner reps. of elements in cOk,2k have two forms:

(4.4)
R′k,1 = {(g′′1 , αtk,1g′′2α

−t
k,1, α

t
k,1g

′′
3α
−t
k,1, g

′′
4 )}k−1

t=0 ; and;

R′k,2 = {(g′′1 , γ′αtk,1g′′2α
−t
k,1(γ′)−1, γ′αtk,1g

′′
3α
−t
k,1(γ′)−1, g′′4 )}k−1

t=0 .

Definition 4.7 (Splitting cOk,2k). For k = n−2`, ` as in (4.2a), let cO
′
k;1

(resp. cO
′
k;2) be all inner (reduced also from Lem. D.3) classes in R′k,1 (resp. R′k,2).

We call these ηcusps. The concept p-ηcusps (extending p-cusps) makes sense.

Lemma 4.8. From (4.3) or (4.2b), both [n]i s are in CuspH-M2
= cO

′
n;1. So, the

sh-incidence entry for (cO
′
n;1, cO

′
n;2) is 2. The n fulfilling elements for nontrivial in-

tersections with (cO
′
n;2)sh are in Table 1. With 0 ≤ u ≤ n−3

2 , [n−2u]1 ∈ (cO
′
n;2)sh,

and [n−2u]2 ∈ (cO
′
n;1)sh (resp. (cO

′
n;2)sh) for u odd (resp. even).

Table 2 records each cOk,2k with two columns corresponding to ηcusps. For the
sh-incidence matrix (so Lem. 2.11 applies, Rem. 4.10), sum the two row entries.
Example: If n = 13, Table 2 has a 1×2 matrix entry |0 2| (resp. |1 1|) for pairing

cO
′
13;1 with |cO′9;1 cO

′
9;2| (resp. |cO′7;1 cO

′
7;2|). Instead, replace that by a 1 × 1

entry of 2 for the pairing of cO
′
13;1 with cO9,18 (resp. cO7,14).

With the symmetry of Table 3, and that column entries sum to the cusp width,
Prop. 5.1 finishes the table for n = 5 by concluding the (cO

′
3;1, cO

′
3;2) entry is 1.

Proposition 4.9. The genus g34 of H̄(A5,C34)in,rd is 0.
There are no 2-cusps at level 0. Yet, every cusp at level 1 over each of the

non H-M cusps, is a 2-cusp. So, there are at least four 2-cusps on every level 1
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Table 2. ηcusp sh-incidence Matrix: Rows for cO
′
n;j , j = 1, 2

cusp

orbit
cO
′
n−2u;1

u

even
cO
′
n−2u;2

u

even
cO
′
n−2u;1

u

odd
cO
′
n−2u;2

u

odd
. . . cO1,2

cO
′
n;1 0 2 1 1 . . . 1

cO
′
n;2 2 0 1 1 . . . 1

Table 3. sh-incidence Matrix: r = 4 and Niin,rd34

Cusp orbit cO
′
5;1 cO

′
5;2 cO

′
3;1 cO

′
3;2 cO1,2

cO
′
5;1 0 2 1 1 1

cO
′
5;2 2 0 1 1 1

cO
′
3;1 1 1 0 1 0

cO
′
3;2 1 1 1 0 0

cO1,2 1 1 0 0 0

component of the MT for p = 2. In particular, the Main Conjecture holds for p = 2
and all component branches.

The only other prime of consideration is p = 5, and the Main Conjecture holds
for this prime, too, for all H-M component branches.

Proof. Apply (2.11) to get γ′0, γ
′
1, γ
′
∞ acting on the unique braid orbit on

(A5,C34). The diagonal entries of the sh-incidence matrix has only 0’s. Lem. 2.11
implies neither γ′0 nor γ′1 has a fixed point. So, we have a degree 18 cover of the
j-line. R-H gives its genus g34 through

(4.5)
2(18 + g34 − 1) = ind(γ′0) + ind(γ′1) + ind(γ′∞) =

2(18/3) + 18/2 + (1 + 2(2 + 4)) : g34 = 0.

Apply Prop. 3.12 to the cusps of width 3 and 5. Respectively, since 32−1
8 and

52−1
8 are ≡ 1 mod 2, all cusps above these are 2-cusps. In particular, any level 1

component has at least four 2-cusps. Therefore, the Main Conjecture is automatic
for any component branch for p = 2 (Prop. 2.13).

The two H-M rep. cusps are already 5-cusps at level 0. Princ. 3.3 therefore
shows, there are at least three 5-cusps on every H-M level 1 component. So, the
Main Conjecture holds for any component branch through a level 1 H-M component.
Still, if a component is not H-M at level 1, we only can guarantee two 5-cusps. �

Remark 4.10 (cOk,2k cusps and Lem. 2.11). Suppose — Def. 4.7 — we have

an cOk,2k cusp, k > 1. Applying q2 shifts between its ηcusps, cO
′
k;1 and cO

′
k;2. So,

the proof of Lem. 2.11 fails unless we combine the rows (and columns) for cO
′
k;1

and cO
′
k;2. This isn’t, however, necessary for sh-incidence symmetry (when r = 4).

Remark 4.11 (Distinction between non-H-M and H-M level 1 components).
An H-M component — a Hurwitz component containing an H-M cusp (§3.1.2) —
figures in properties of GQ (as in §E.2). Even if level 0 of a MT over H̄(A5,C34)in,rd

is an H-M component, that may not hold for some level 1 components over it. For
example, H̄(G1(A4),C34)in,rd (A4, not A5; §E.3.2) with p = 2 has six components.
Three are level 1 of a MT over H(A4,C34)in,rd; but just two are H-M components.
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Also, to show there are p-cusps at some level for all allowable primes in just
those Nielsen classes of Prop. 4.9 requires new ideas to avoid detailed calculations
about non-H-M components. §6.2.2 completes Prop. 4.9 by showing all level 1
components for a p = 5 MT over H̄(A5,C34)in,rd have at least three 5-cusps. A
general braid orbit principle likely applies, though we used [GAP00].

5. Ni(An,C(n+1
2 )4) sh-incidence and genus computation

Prop. 5.1 reduces computing the inner, reduced sh-incidence matrix to deciding
if conjugations between length n+1

2 pure-cycles are in An+1
2

. §5.2 has the actual sh-

incidence display. Table 3 (n = 5) doesn’t tackle all cusp matters. So, Table 7 has
n = 13, the next case for n ≡ 5 mod 8, to show the concise abs-inn sh-incidence
form. This includes how the genus of reduced spaces comes from these matters.

5.1. Organizing conjugation parities. §5.1.1 decorates the xi,j notation to
precisely label the shift of an ηcusp (Def. 4.7). §5.1.2 displays the shifted Nielsen
class representatives (denoted k,uggg

′) that dominate the rest of the computation.
5.1.1. Additions to xi,j notation. We use special notation for Prop. 5.1. For

V = {n+m
2 , . . . , n}, m ≥ 3 denote the alternating (resp. symmetric) group acting

on V by An+m
2 ,n (resp. Sn+m

2 ,n). Also, k−1− |2u− (k−1)| def
= mk,u and

([k]1)mp = (xn+k
2
,n+1

2
x1, k−1

2
)

def
= αk,1 (as in Lem. 4.3).

The cycle αk,1 maps n+1
2 7→ 1. Yet, sometimes we group n+1

2 with {1, . . . , k−1
2 }.

As i runs from n+1
2 toward k−1

2 , use x′i,j to mean the segment from i to j, including

interpreting x′n+1
2 ,j

(i = n+1
2 ) as (n+1

2 1 . . . j). Example:

αk,1 = (xn+k
2 ,n+3

2
x′n+1

2 , k−1
2

).

Also, the end points of the list for k,uggg as u varies include cases where we mean
to indicate xi,j is empty. Example: xn+k−2u

2
,n+3

2
appears as the 2nd segment of the

first entry of (5.2), with 0 ≤ u ≤ k−1
2 . In all terms except u = k−1

2 , n+k−2u
2 ≥ n+3

2 .
So, denote it x′′n+k−2u

2
,n+3

2

to mean x′′n+1
2
,n+3

2

is empty.

Similarly, for x′′n+k
2 ,n+k+2−2u

2

appearing in the 2nd segment of the 2nd entry of

(5.2): When u = 0 take it to mean x′′n+k
2 ,n+k+2

2

is empty.

5.1.2. Finding conjugating elements. Use the cO
′
k;j convention of §4.2, and the

splitting of cOk,2k into ηcusps (Def. 4.7), to include these, too. We could have

denoted cO
′
k;1 by cO

′
[k]1;1, and similarly formed cO

′
ggg;1 for Nielsen class rep. ggg.

Explicit asides on the sh-incidence column for the cusp of [3]1 help follow nota-
tion. The [3]1 row of Table 1 is (x2,n+3

2
, (n+3

2 . . . n 1), xn,n+1
2
, xn+1

2 ,1), with middle

product α3,1 = (1 n+3
2

n+1
2 ). Conjugate the 2nd and 3rd positions of [3]1 by αu3,1,

then shift. Here are the 1st and 2nd positions of the result for u = 1, 2:

(5.1) 3,1hhh = ((xn,n+5
2

n+1
2 1), xn+1

2 ,1) 3,2hhh = ((xn,n+5
2

1 n+3
2 ), xn+1

2 ,1).

The respective products of entries of 3,1hhh and 3,2hhh are

(xn,n+5
2
xn+1

2 ,2) and (xn,n+5
2

1xn+1
2 ,2

n+3
2

).

Key to Prop. 5.1: Apply q−1
1 q3, leaving the reduced Nielsen class unchanged.

Once ` is given in Prop. 5.1, denote the entries of [`]2 by (g′′1 , g
′′
2 , xn,n+1

2
, xn+1

2 ,1).
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Proposition 5.1. Each cO
′
n;1, cO

′
n;2 and cO

′
n−2;2 intersect once with (cO

′
3,1)sh

giving all nonzero sh-incidence entries in the column (or row) of cO
′
3;j, j = 1, 2

(Table 5). Elements of (cO
′
k;1)sh have reps. of form

k,uggg
def
= (αuk,1xn,n+1

2
α−uk,1, α

u
k,1(x′n+1

2
, k−1

2
xn+k+2

2
,n)α−uk,1, •, xn+1

2 ,1)

in cO
′
`;1 ∪ cO

′
`;2, ` = n−mk,u with mk,u = 2u (resp. 2(k−1− u)) for 0 ≤ u ≤ k−1

2

(resp. k+1
2 ≤ u ≤ k−1). For 0 ≤ u ≤ k−1

2 , k,uggg is inner equivalent to some k,uggg
′

with 4th entry xn+1
2 ,1 and with respective 1st and 2nd entries

(5.2) (xn,n+k+2
2

x′′n+k−2u
2

,n+3
2

x1,1+u), (x1+u, k+1
2
x′′n+k

2 ,n+k+2−2u
2

xn+k+2
2 ,n).

Conclude: k,uggg ∈ cO
′
`;2 (resp. cO

′
`;1) if `−1

2 is odd (resp. even), if and only if for
some β′ ∈ An+3

2 ,n and j,

(5.3) β′g′2(β′)−1 = αj`,2g
′′
2α
−j
`,2, with g′2 the 2nd entry of k,uggg

′.

Here is the analog of expression (5.2) for k+1
2 ≤ u ≤ k−1, with k−1− u = u′:

(5.4) (xn,n+k+2
2

x1,1+u′ xn+k
2
,n+3+2u′

2

), (xn+3+2u′
2 ,n+3

2

xn+1
2 −( k−3−2u′

2 ),n+1
2

xn+k+2
2

,n).

Proof. Three distinct sets of form gggin,rd comprise (cO
′
3;1)sh. From Table 2,

cO
′
n;j , j = 1, 2, gives two. Then, ggg∗ = ((xn+1

2 ,n
n+3

2 ),hhh3,1, x2,n+3
2

) is the 3rd, and it

is in the cusp of one of cO
′
n−2;j , j = 1, 2. Apply q−1

1 q3 to ggg∗ to get the 4th entry
xn+1

2 ,1. Conjugating (§1.3.2) by x1,n+1
2

gives:

3,1ggg
′ def

= ((xn,n+5
2
x1,2), (2xn+3

2 ,n), •, xn+1
2 ,1).

Now conjugate the first entry of 3,1ggg
′ to the first entry of

[n−2]2 = ((xn+5
2 ,n x1,2), x2,n+3

2
, xn,n+1

2
, xn+1

2 ,1).

The conjugation is by β′3,1: It inverts |xn,n+5
2
| (parity +1 from Lem. 1.8). The result

ggg† has the same 1st and 4th entries as [n−2]2. Lem. 4.2 now says Cuspggg∗ = cO
′
n−2;2.

Rem. 5.2 shows k = 3 matches the general case.
That accounts for the column in the ηcusp sh-incidence (comment following

Lem. 4.8) for the cusp of [3]1. Analogously, for [3]2: one intersection with each of
the cusps for H-M1 and H-M2; one intersection with the cusp of [n−2]1.

Now we extend the pattern above for computing into which ηcusp does the
shift of inner, reduced elements fall in the columns of the other cO

′
k;1. (It is then

automatic to deduce the same for cO
′
k;2.) With αk

def
= αk,1, as in the statement,

apply Princ. 3.5 and q−1
1 q3 as above to get

k,uggg
def
= (αukxn,n+1

2
α−uk , αuk(n+1

2
x1, k−1

2
xn+k+2

2 ,n)α−uk , •, xn+1
2 ,1).

The following steps give the sh-incidence matrix:

(5.5a) As (k, u) varies, 3 ≤ k ≤ n odd and 0 ≤ u ≤ k−1, compute

` = ord((k,uggg)mp) = ord(xn+1
2 ,1 · α

u
kxn,n+1

2
α−uk ).

(5.5b) Conjugate k,uggg by some power x1,n+1
2

to get k,uggg
′ with 1st entry having

the same segment from {1, . . . , n+1
2 } as does g′′1 .

(5.5c) Conjugate k,uggg
′ by βk,u ∈ Sn+3

2 ,n to get ggg† with 1st entry g′′1 .
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(5.5d) Find β′k,u centralizing 〈g′′1 , xn+1
2 ,1〉 so β′g†(β′)−1 ∈ cO

′
[`]2;1.

To help with notation (5.6) gives an example of “translate segment” §1.3.2. For
k = 7 and 0 ≤ u ≤ 6, it has the 1st (col. 1) and 2nd (col. 2) entries of k,uggg: That
is of the shift of the ηcusp cO7,1. Here α7 = (n+7

2
n+5

2
n+3

2
n+1

2 1 2 3) (k = 7).
The value of ` = ord((k,uggg)mp) heads each row. Here ` is n minus two numbers:

the cardinality of the subset of {n+k
2 , . . . , n+3

2 } (resp. of {1, 2, . . . , n+1
2 }) missing

from αukxn,n+1
2
α−uk (resp. moved by αukxn,n+1

2
α−uk as in x1,n+1

2
).

(5.6)

n : xn,n+1
2

(n+1
2
x1,3 xn+9

2
,n)

n−2 : (xn,n+9
2
xn+5

2 ,n+1
2

1) (x1,3
n+7

2
xn+9

2 ,n)

n−4 : (xn,n+9
2
xn+3

2 ,n+1
2
x1,2) (x2,3 xn+7

2
,n+5

2
xn+9

2
,n)

n−6 : (xn,n+9
2

n+1
2
x1,3) (3xn+7

2
,n+3

2
xn+9

2
,n)

n−4 : (xn,n+9
2
x1,3

n+7
2

) (xn+7
2
,n+1

2
xn+9

2
,n)

n−2 : (xn,n+9
2
x2,3 xn+7

2 ,n+5
2

) (xn+5
2
,n+1

2
1xn+9

2
,n)

n : (xn,n+9
2

3xn+7
2 ,n+3

2
) (xn+3

2
,n+1

2
x1,2 xn+9

2
,n).

The pattern is clear. For a general k the g1 term has xn,n+k+2
2

on its left side,

and the g2 term has xn+k+2
2 ,n on its right side. For each i in the support of αk,

going in the direction n+1
2 → 1, start with n+1

2 . Then, the rest of g1 (resp. g2) is

the k+1
2 integers including i and immediately to the left (resp. right) of i in αk.

Then, u = 0↔ i = n+1
2 , u = 1↔ i = 1, etc. Also, for u from 0 to k−1

2 (resp. k+1
2

to k−1), mk,u is u (resp. k−1− u). This concludes step (5.5a).

Here is the analog for 0 ≤ u ≤ k−1
2 for u (or i) of (5.6) for a general (n, k):

(5.7) (xn,n+k+2
2

x′′n+k−2u
2

,n+3
2

x′n+1
2 ,u

), (x′
u, k−1

2

x′′n+k
2 ,n+k+2−2u

2

xn+k+2
2 ,n).

Conjugating k,uggg by xn+1
2 ,1 (leaving its 4th entry unchanged) shows k,uggg

′, with

entries expressed by (5.2), is inner equivalent to k,uggg; (5.4) similarly.
Now turn to the proposition’s last paragraph. The first entries of both [`]2 and

u,kggg
′ (as in (5.2)) each have as support the segment |x1,1+u|, and no other integers

of {1, . . . , n+1
2 }. This concludes showing that k,uggg

′ satisfies (5.5a) and (5.5b). The
conclusion is an interpretation of (5.5c) and (5.5d). �

Remark 5.2. Prop. 5.1 starts with k = 3. Lem. 4.2 says the conclusion
about [n−2]2 didn’t need the 2nd term in ggg† = β′3,1(3,1ggg

′)(β′3,1)−1. Still, a pat-

tern emerges. Conjugating by 〈([n−2]2)mp〉 def
= 〈(x2,n+1

2
xn,n+5

2
)〉 on the 2nd term

g†2 = (2 n+3
2 xn,n+5

2
) of ggg† contains x2,n+3

2
, the second entry of [n−2]2.

5.1.3. sh-incidence for absolute Liu-Osserman spaces. The 2nd paragraph of
Prop. 5.1 lets us fill in the absolute sh-incidence table for all n ≡ 1 mod 4.

(5.8a) For odd k, 1 ≤ k ≤ u and 1 ≤ u < k−1
2 , (cOk, cOn−2u) = 2.

(5.8b) (cOk, cOn−(k−1)) = 1 and, modulo symmetry, all other entries are 0.

We list cusps in descending width along the rows and columns, as in Table
4. The case n = 13 (Table 7) shows how we build the abs-inn form of the inner
sh-incidence matrix along a(nti)-(sub)d(iagonal)s. A less intricate version is in the
absolute sh-incidence matrix: the 1-1 a-d is n+1

2 1’s, the 3-3 a-d is n−1
2 2’s, etc.
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Table 4. sh-incidence Matrix: r = 4 and Niabs,rd
34

Cusp orbit cO5 cO3 cO1

cO5 2 2 1

cO3 2 1 0

cO1 1 0 0

Prop. 4.9 says H̄(A5,C34)in,rd has genus gin,rd
34 = 0. So, its degree 9 image over

P1
j , H̄(A5,C34)abs,rd, does too. Then, γ′0 has at most 3 orbits of length 3, and γ′1

has at most 4 orbits of length 2. Apply R-H: the maxima are necessary so that

2(9 + gabs,rd
34 − 1) = ind(γ′0) + ind(γ′1) + ind(γ′∞) gives gabs,rd

34 = 0

since ind(γ′∞) = (1 − 1) + (3 − 1) + (5 − 1) = 6. This shows ind(γ′0) = 6, and
ind(γ′1) = 4. So, γ′1 has one fixed point, γ′0 none.

In general, then, the sh-incidence matrix for Ni(An,C(n+1
2 )4)abs,rd has 1’s along

the anti-diagonal, 2’s above that, and 0’s below that.

Remark 5.3. Prop. 4.9 shows that for n = 5, Lem. 5.12 accounts for all the
ramification from H̄(An,C(n+1

2 )4)abs,rd to H̄(An,C(n+1
2 )4)in,rd.

Remark 5.4. To save space, Prop. 5.1 left a • for the 3rd term of k,uggg and

k,uggg
′. We fill them for Prop. 5.15: (x k−1

2 ,n−1
2
xn+3

2 ,n+k
2

) and x k+1
2 ,n+k

2
in (5.2).

5.2. Completing inner sh-incidence entries. The absolute sh-incidence
entries are in (5.8). This section produces the inner ηcusp sh-incidence matrix for
which we have only to find βk,u (resp. β′k,u) from (5.5c) (resp. (5.5d)).

§5.2.1 does this when u ≤ k−1
2 . §5.2.2 completes the rest and §5.2.3 combines

them for the inner ηcusp sh-incidence display using the §5.1.3 absolute display.
5.2.1. sh-incidence parities — 1st half. Start with 0 < u < k−1

2 : Table 2 han-

dled u = 0 and u = k−1
2 appears in Cor. 5.6. This gives the 1st (resp. 2nd) entry

of (5.2) as g′1
def
= k,ug

′
1 = (xn,n+k+2

2
xn+k−2u

2 ,n+3
2
x1,1+u) (resp. g′2).

As in (5.5c), for such (k, u) (with ` = n−2u), find βk,u ∈ Sn+3
2 ,n conjugating

g′1 to (xn+2u+3
2 ,n x1,1+u), the 1st entry g′′1 of [`]2.

The element βk,u = βk,u,1β
u
k,u,2 that works comes from these two (Lem. 5.5):

(5.9) βk,u,2 = xn+3
2 ,n+k

2
(shifts |xn+k−2u

2 ,n+3
2
| to |xn+k−2(u−1)

2 ,n+5
2
|); and

βk,u,1 inverting |xn+2u+3
2 ,n| (Lem. 1.8).

Finally, consider u = k−1
2 . In the previous notation, we drop the x′′ segment

in g′1 = (xn,n+k+2
2
|x1, k+1

2
), while g′2 = ( k+1

2
xn+k

2 ,n+3
2
|xn+k+2

2 ,n) retains its previous

form. Then, the resulting βk, k−1
2

is just βk, k−1
2 ,1: invert |xn+k+2

2 ,n|.
Take a2 = (−1)u·(

k−3
2 ). With u = k−1

2 , a2 is (−1)
k−1

2 ·(
k−3

2 ) = 1 shows the

general computation for βk,u even works for u = k−1
2 .

Lemma 5.5. If β = (i1 i2 . . . ik) (parity (−1)k−1) and U = |i1 i2 . . . ij |,
1 ≤ j < k, is in pure-cycle α, then, βαβ−1 substitutes |i2 i3 . . . ij+1| (right β-shift)

for U . So, βuk,u,2 has parity a2. Also, βk,u,1 has parity (−1)
n−2u−3

4 = (−1)
1−u

2

(resp. (−1)
n−2u−1

4 = (−1)1−u2 ) if u is odd (resp. even).

Conclude: βk,u has parity (−1)
1−u

2 + k−3
2 (resp. (−1)1−u2 ) if u is odd (resp. even).
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With k,uggg
† def

= βk,u(k,uggg
′)β−1

k,u (even for u = k−1
2 ), consider g†2

(5.10)

= βk,u(x1+u, k+1
2
xn+k

2 ,n+k+2−2u
2

xn+k+2
2 ,n)β−1

k,u

= βk,u,1(x1+u, k+1
2
xn+2u+1

2 ,n+3
2
xn+k+2

2 ,n)β−1
k,u,1

= (x1+u, k+1
2
xn+2u+1

2 ,n+3
2
xn− k−1−2u

2 ,n+2u+3
2

).

Recall αn−2u,2 = (x1+u,n+1
2
xn,n+2u+3

2
) (Lem. 4.3), and g′′2 = (x1+u,n+2u+1

2
), the 2nd

entry of [n−2u]2. By inspection, β′k,u
def
= β′ that inverts |xn+2u+1

2 ,n+3
2
| conjugates

the orbit of 〈αn−2u,2〉 to contain g′′2 . Combine this with Lem. 5.5 for 1 ≤ u ≤ k−1
2 .

Corollary 5.6. For u odd (resp. even), β′ has parity (−1)
u−1

2 (resp. (−1)
u
2 ).

So, for u odd, (5.2) is in cO
′
n−2u,2 if and only if k ≡ 3 mod 4. Otherwise, it is in

cO
′
n−2u,1. For u even, (5.2) is in cO

′
n−2u,2.

Proof. Apply Lem. 1.8 for the 1st sentence parities. If u is odd (resp. even),
then Lem. 4.4 says cO

′
[n−2u]2 = cO

′
n−2,2 (resp. cO

′
n−2,1). Then, from Lem. 5.5, the

parity of βk,uβ
′ is +1 iff either u is even or u is odd and k ≡ 3 mod 4. �

5.2.2. sh-incidence parities — 2nd half. Now consider k+1
2 ≤ u ≤ k−1. With

u′ = k−1−u, compare 1st and 2nd entries of [n−2u′]2 with corresponding entries
g′1, g

′
2 of (5.4). 1st conjugate (5.4) by βk,u′ ∈ Sn+3

2 ,n × 〈xn+1
2 ,1〉 to get k,u′ggg

† whose

1st and 4th entries match those of [n−2u′]2. A βk,u′ inverting both segments
|xn+k

2 ,n+3+2u′
2

| and |xn,n+k+2
2
| does it. An induction computes its parity.

Lemma 5.7. With t odd, the conjugation αt,j ∈ St that inverts both segments

|x1,j | and |xj+1,t|, 1 ≤ j ≤ t−1 has — independent of j — parity (−1)
t−1

2 . With t

even, the analogous result is that αt,j has parity (−1)
t−2j

2 .

Apply t = n−1−2u′

2 to βk,u′ : For u′ odd (resp. even), βk,u′ has parity

(−1)
n−3−2u′

4 = (−1)
1−u′

2 (resp. (−1)1−u′2 if k ≡ 1 mod 4, (−1)
u′
2 if k ≡ 3 mod 4).

Proof. The 1st paragraph is easy. For the 2nd, we do the toughest case,

when u′, so t, is even. The lengths of the two segments are n−k
2 and k−1−2u′

2 .
These are even (resp. odd) if k ≡ 1 mod 4 (resp. k ≡ 3 mod 4). According to the
1st paragraph, the parity in each of these cases will be the same as for the case

when the seqments have length 2 and n−5−2u′

2 (resp. 1 and n−3−2u′

2 ). �

We insert dividers in the relevant permutations to see the effect of a middle
product translation. Denote the 2nd entry (as previously) of [n−2u′]2 by

g′′2 = x1+u′,n+1
2 +u′ = (x1+u′,n+1

2
|xn+3

2 ,n+1
2 +u′).

Denote the parity for (k, u′) in Lem. 5.7 by bk,u′,1. Note: αn−2u′,2 translates the

segment |xn+1
2 −( k−3−2u′

2 ),n+1
2

xn,n+k
2
| of g†2 in (5.11) into |x1+u′,n+1

2
| of g′′2 .

Lemma 5.8. Assume u′ > 0. So, for β′ inverting xn+3
2 ,n+1

2 +u′ and some j:

(5.11)
with g†2 = (xn+1

2 −( k−3−2u′
2 ),n+1

2

xn,n+k
2
|xn+1

2 +u′,n+3
2

),

(β′)g†2(β′)−1 = αjn−2u′,2g
′′
2α
−j
n−2u′,2

Then, for u′ odd (resp. even), β′ has parity bk,u′,2 = (−1)
u′−1

2 (resp. (−1)
u′
2 ).
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Conclude: (5.4) is in cO
′
[n−2u′]2,1 if and only if bk,u′,1bk,u′,2 = 1. For u′ odd, (5.4)

is in cO
′
n−2u′,2. For u′ even, (5.4) is in cO

′
n−2u′,2 if and only if k ≡ 1 mod 4.

Now combine Cor. 5.6 and Lem. 5.8, with 0 < u = u′ < k−1
2 , where u (resp. u′)

corresponds to k,uggg
′ ∈ (cO

′
k,1)sh (resp. k,uggg

∗ ∈ (cO
′
k,1)sh) in (5.2) (resp. (5.4)).

Corollary 5.9. For u even: k,uggg
′ ∈ cO

′
n−2u,2; and k,uggg

∗ ∈ cO
′
n−2u,2

(resp. cO
′
n−2u,1) if and only if k ≡ 1 mod 4 (resp. k ≡ 3 mod 4).

For u odd: k,uggg
∗ ∈ Cuspn−2u,2; and k,uggg

′ ∈ cO
′
n−2u,2 (resp. cO

′
n−2u,1) if and

only if k ≡ 3 mod 4 (resp. k ≡ 1 mod 4). Always: k, k−1
2
ggg′ ∈ cO

′
n−k+1,2.

Remark 5.10 (u′ = 0 in Lem. 5.8). The case u′ = 0 for inverting x x+3
2 ,1+u′

differs from the others: the range is descending, not ascending. The final parity
value (−1)u

′
is also wrong, but Table 2 already handled that case.

5.2.3. sh-incidence display. Use Defs. 4.6 and 4.7 (as in Table 2), for n ≡ 5
mod 8 to label columns/rows of the general ηcusp sh-incidence matrix as follows:

cO
′
n;1, cO

′
n;2, cO

′
n−2;1, cO

′
n−2;2, . . . , cO

′
3;1, cO

′
3;2, cO1,2.

Use the subscripts of the symbols to label its entries as ((`; j), (`′; j′)). By
shortening this to (¯̀, ¯̀′), we can throw in the (1,2) subscript as another ¯̀.
§4.1.4 lists cusps and their widths. Conclude: 2 · (n+1

2 )2 is the cover degree of

ψ̄(n+1
2 )4 : H̄in,rd

(n+1
2 )4

def
= H(An,C(n+1

2 )4)in,rd → P1
j .

Principle 5.11. For n ≡ 5 mod 8, the (¯̀, ¯̀′) are all 0, 1 or 2. Also:

(5.12a) Symmetry: (¯̀, ¯̀′) = (¯̀′, ¯̀).
(5.12b) Width sum: Entries in the row for cO

′
`;j (resp. cO1,2) sum to ` (resp. 2).

(5.12c) With 0 ≤ u < k−1
2 or (resp. u = k−1

2 ), ((`; 1), (`′; 1))+((`; 1), (`′; 2)) = 2
(resp. 1) if `′ = n−2u; and 0 otherwise.

To describe the ηcusp sh-incidence matrix of Niin,rd
(n+1

2 )4
use §5.1.3 for Niabs,rd

(n+1
2 )4

.

You get the former from the latter using symmetry and these two rules.
Rule 1: At an entry (`, `′) (odd integers) with 3 ≤ ` ≤ `′ ≤ n: Replace 2

(resp. 1; resp. 0) by one of these matrices(
2 0
0 2

)
,
(

0 2
2 0

)
,
(

1 1
1 1

)
; ( resp.

(
1 0
0 1

)
,
(

0 1
1 0

)
; resp.

(
0 0
0 0

)
).

In each case, you determine the replacing matrix from just one of its entries.
Rule 2: At the entry (1, n) (resp. (1, `), ` odd, between 3 and n−2; resp. (1, 1)):

Replace 1 by (1 1) (resp. (0 0); resp. 0).
Use symbols such as 2

0+
0
2 ,

0
2+

2
0 ,

1
1+

1
1 , etc. to substitute for the 2 × 2 matrices, and

1|1, 0|0 (resp. 1

1̄
, 0

0̄
) for the 2× 1 (resp. 1× 2) matrices. Refer to the matrix of such

substitutions as abs-inn form.
We already know the last three sh-incidence rows (and from Table 2 the first

two), including all the data of Rule 2. The first two rows of Table 5 are from the
opening paragraph of Prop. 5.1, with the last from the first line of Prop. 4.1. Table
6 renders this with even more detail in the abbreviated abs-inn form:

Use the anti-subdiagonal notation of §5.1.3. For n = 13, Table 7 gives the
abs-inn form of the matrix. For example, the 1-1 a-d (read from lower left to upper
right) consists of 1|1, then five 0

1+
1
0 ’s, followed by 1

1̄
. Below the 1-1 a-d are 0

0+
0
0 ’s
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Table 5. Rows for cO
′
3,1, cO

′
3,2 and cO1,2

Cusp orbit cO
′
n;1 cO

′
n;2 cO

′
n−2;1 cO

′
n−2;2 . . . cO

′
3;1 cO

′
3;2 cO1,2

cO
′
3;1 1 1 0 1 . . . 0 0 0

cO
′
3;2 1 1 1 0 . . . 0 0 0

cO1,2 1 1 0 0 . . . 0 0 0

Table 6. Abs-inn form of the rows cO3 and cO1

Cusp orbit cOn cOn−2 cOn−4 . . . cO3 cO1

cO3
1
1+

1
1

0
1+

1
0

0
0+

0
0 . . . 0

0+
0
0

0

0̄

cO1 1|1 0|0 0|0 . . . 0|0 0

Table 7. Abs-inn ηcusp form for n = 13

Cusp orbit cO13 cO11 cO9 cO7 cO5 cO3 cO1

cO13
0
2+

2
0

1
1+

1
1

0
2+

2
0

1
1+

1
1

0
2+

2
0

1
1+

1
1

1

1̄

cO11
1
1+

1
1

0
2+

2
0

1
1+

1
1

0
2+

2
0

1
1+

1
1

0
1+

1
0

0

0̄

cO9
0
2+

2
0

1
1+

1
1

0
2+

2
0
0 1

1+
1
1

0
1+

1
0

0
0+

0
0

0

0̄

cO7
1
1+

1
1

0
2+

2
0

1
1+

1
1

0
1+

1
0
1 0

0+
0
0

0
0+

0
0

0

0̄

cO5
0
2+

2
0

1
1+

1
1

0
1+

1
0

0
0+

0
0

0
0+

0
0

0
0+

0
0

0

0̄

cO3
1
1+

1
1

0
1+

1
0

0
0+

0
0

0
0+

0
0

0
0+

0
0

0
0+

0
0

0

0̄

cO1 1|1 0|0 0|0 0|0 0|0 0|0 0

Table 8. Abs-inn ηcusp form for n = 13

Cusp orbit cO13 cO11 cO9 cO7 cO5 cO3 cO1

cO
−
9 2|2 2|2 4 2|2 1|1 0|0 0

cO
−
7 2|2 2|2 2|2 2 0|0 0|0 0

except at the right edge ( 0

0̄
), bottom edge (0|0), or lower right corner (0). Table 2

says column cOn fills down as 0
2+

2
0 → n−3

2
1
1+

1
1 ’s → 1|1. Superscripts 0 and 1 along

the diagonal indicate fixed points for γ′0 and γ′1 a la Prop. 5.12 and Prop. 5.15.
The distinction for the sh-incidence matrix for n = 13 requires replacing the

rows and columns respectively for cO7 and cO9. The process, say in the columns
is to add the contributions for cO

′
k,1 and cO

′
k,2 across the rows, but since you also

do this with rows replacing columns, that adds extra at the diagonal terms. Table
8 gives the row result, using the notation cO

−
k for the collapsed form:

5.3. Elliptic fixed points. Thm. 2.9 outlines the absolute and inner sh-
incidence matrices for the Nielsen classes Ni(An,C(n+1

2 )4). While related through

Lem. 2.11, we need more to complete finding the fixed points of γ′0 and γ′1 on Nielsen
classes. We do that here to compute the absolute and reduced space genuses.

5.3.1. An absolute γ′1 fixed point. Lem. 5.12 locates a γ′1 fixed point that ram-
ifies in the cover from the absolute space to the inner space.

Lemma 5.12. For n ≡ 1 mod 4, the 1-1 a-d diagonal term in the absolute sh-
incidence corresponds to (cO n+1

2
, cO n+1

2
). À la Lem. 2.11, this arises from a fixed
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point ppp′1 ∈ H̄(An,C(n+1
2 )4)abs,rd of γ′1 (lying over j = 1). The only n-n a-d term (a

2, on the diagonal) does not correspond to points fixed by γ′v, v = 0 or 1.
For n ≡ 5 mod 8, the inner sh-incidence diagonal terms above the 1 in the ab-

solute sh-incidence are both 0. This means γ′1 fixes no point of H̄(An,C(n+1
2 )4)in,rd

over ppp′1. So, this and the width 1 cusp give two known points of H̄(An,C(n+1
2 )4)abs,rd

that ramify to H̄(An,C(n+1
2 )4)in,rd.

Proof. For any n ≡ 1 mod 4, Prop. 5.1 says a unique absolute (reduced)
class (represented by n+1

2 ,n−1
4
ggg′) of the cusp cO n+1

2
shifts into cO n+1

2
. Since the

sh-incidence entry is 1, Lem. 2.11 says this corresponds to a fixed point of γ′1.
Now consider the n-n a-d. Table 1 explains the 2: [n]j , j = 1, 2 represent the

two reduced classes in cOn ∩ (cOn)sh. We show neither γ0 nor γ1 fixes either. In

M̄4, the shift represents γ1, and that sends [n]abs,rd
1 to H-Mabs,rd

1,n−1
2

.

Lem. 2.11 says this either fixes [n]abs,rd
1 or it sends it to [n]abs,rd

2 . It is the latter:
Conjugate ([n]1)sh by (n 1)(n 2) · · · (n+3

2
n−1

2 ) followed by (n n+3
2 )(n−1 n+3

2 ) · · · .
The resulting 3rd and 4th terms are xn,n+1

2
, xn+1

2 ,1 (same as [n]2). Check: The

resulting 1st term is also the same as that of [n]2.

Characterize that γ0 fixes [n]1: (([n]1)q−1
2 )sh ∈ [n]abs,rd

1 . From Prin. 3.5, q−1
2

has the effect of conjugating the 2nd and 3rd terms of [n]1 by ([n]1)mp
n−1

2 . The
combined effect is to send [n]1 back to the shift of the H-M rep. it came from in
Table 1. So, it has the wrong middle product to be fixed by γ0.

For n ≡ 5 mod 8, the symbol (as in §5.2.3) for what lies above the diagonal
1-1 a-d in the inner sh-incidence matrix is 0

1+
1
0 , the last sentence of Cor. 5.9. At the

diagonal position, it means there are no fixed points of γ′1 (or γ′0) over ppp′1. �

5.3.2. γ′0 fixed points. For n ≡ 5 mod 8, the degree 2 cover (Prop. 4.4)

Ψ̄in,abs
n : H̄(An,C(n+1

2 )4)in,rd → H̄(An,C(n+1
2 )4)abs,rd

maps γ′0 fixed points on the upper surface 2-1 (on)to γ′0 fixed points to the lower.
Consider the reduced class of k,uggg = (g1, g2, g3, g4) (from Prop. 5.1), and denote the

common support cardinality of the pair (g1g2g
−1
1 , g4) by νk,u. Recall (Lem. 4.3):

The degree of Ψ̄abs
n : H̄(An,C(n+1

2 )4)abs,rd → P1
j is (n+1

2 )2.

Proposition 5.13. Inner sh-incidence diagonal positions correspond to (k, u)
with u = n−k

2 or 3k−n−2
2 (subject to the latter being ≥ 0 and 0 ≤ u ≤ k). For such

a (k, u), if the reduced absolute class of k,uggg = (g1, g2, g3, g4) is a fixed point of γ′0,
νk,u equals the common support cardinality of the pair (g1, g4). Then:

(5.13a) For 0 ≤ u ≤ k−1
2 : νk,u = k−1

2 − u.

(5.13b) For k+1
2 ≤ u ≤ k−1 and u′ = k−1−u: νk,u = k−1−2u′

2 + 1.

If 3|n (resp. n ≡ 1 mod 3), then k,n−k2
ggg (resp. k, 3k−n−2

2
ggg) with 3k = 2n + 3

(resp. 2n + 1 = 3k) represents the only possible absolute diagonal fixed point of
γ′0. If n ≡ 0 or 1 mod 3, then deg(Ψ̄abs

n ) ≡ 1 mod 3, and this is the one absolute
fixed point of γ′0. There are none if n ≡ −1 mod 3.

Proof. From Prop. 5.1, among values of u ≤ k−1
2 one diagonal position is

from (k, u0) with n−2u0 = k, or u0 = n−k
2 . A 2nd from u1 = u0 + 2(k−1

2 −u0),
giving the other u value in the lemma statement.



40 M. FRIED

For ggg ∈ Ni(An,C(n+1
2 )4), Princ. 3.7 says if there are t integers of common

support in gi and gj , 1 ≤ i 6= j ≤ 4, then ord(gigj) = 2(n+1
2 )−2t+1. That is,

ord(gigj) determines the common support of gi, gj .
Now suppose the reduced (absolute or inner) class of k,uggg is fixed by q1q2 (that

is by γ0). Then, (k,uggg)mp = ((k,uggg)q1q2)mp. Applying q2 doesn’t change the

middle product. So, ord((k,uggg)q1)mp) = ord(g1g3) = ord(g4g1g2g
−1
1 ), computed

again by a cardinality of overlap. Since the common support of (g1, g4) is the same
as the common support of (g2, g3), that completes the statement before (5.13).

We have fixed g4 to be xn+1
2 ,1. As in Prop. 5.1, denote k−1−u by u′. With

αk,1 = (x1, k−1
2
xn+k

2 ,n+1
2

) (Lem. 4.3), for a given (k, u) we figure the cardinality,

vk,u, of the support in {1, . . . , n+1
2 } of g1g2g

−1
1

def
=

(5.14)

αuk,1(xn,n+1
2

(x′n+1
2
, k−1

2

xn+k+2
2

,n)xn+1
2 ,n)α−uk,1 =αuk,1(xn+k

2
,n x1, k−1

2
)α−uk,1

=
{ (xn+k

2 ,n+k−2u
2

xn+k+2
2 ,n x1+u, k−1

2
) for 0 ≤ u < k−1

2

(xn+2u′+1
2 ,n+3

2

x′n+1
2 , k−1−2u′

2

xn+k+2
2 ,n) for k+1

2 ≤ u ≤ k−1.

To see the 2nd case, substitute αu
′+1
k,1 for α−uk,1. Clearly, vk,u has the values in (5.13).

The conclusion on the possible representatives of fixed points follows by equat-
ing k and 2(n+1

2 )− 2νk,u + 1 for values of u at the diagonal positions. For (5.13a),

νk,n−k2
= k−1

2 −
n−k

2 . For (5.13b), with u′ = (k−1)− 3k−n−2
2 ,

νk, 3k−n−2
2

= 1 + k−1−2u′
2

= 2k−n+1
2

.

Then, k = 2(n+1
2 )−(2k−n+1)+1 completes the condition in the statement. �

Example 5.14 (γ0 fixed point, n = 13). Use Cor. 5.9 notation. Prop. 5.13 says
γ0 fixes (9,2ggg

∗)in when n = 13. Apply q1q2, and conjugate by x2
7,1 to get

((x9,8 x2,4 x12,13), (x10,11 x
′
7,1 x8,9 13), (x13,12 x2,4 x11,10), x7,1).

Conjugate in order by β3 = x2
11,8, β2 = x12,13 and β1 = x2

13,10 to get

((x13,12 x2,4 x11,10), (x8,9 x
′
7,1 x12,13 10), •, x7,1)

Then, conjugate by β′ = (8 9), with β′β1β2β3 of parity +1 to get back to 9,2ggg
∗.

This shows γ0 fixes (9,2ggg
∗)in. It also fixes (β′9,2ggg

∗(β′)−1)in. This works on γ′0 fixed
points for all n ≡ 5 mod 8.

5.3.3. Genuses of the inner and absolute spaces. Prop. 5.15 finishes the elliptic
fixed point analysis, giving absolute/inner reduced space genuses for n ≡ 5 mod 8.
(Also for n ≡ 1 mod 8 for the absolute case; as in Lem. 4.4, inner components have
the same genus.) Note: For t an integer, [(3t+m)/3] is t, for m = 0 or 1.

Proposition 5.15. Let v = [n/5]. Then, γ′1 has only one absolute fixed point
and no inner fixed points. Exactly 2v + 2 points of H̄(An,C(n+1

2 )4)abs,rd ramify in

Ψ̄in,abs
n : The width 1 cusp, the point over j = 1 indicated in Lem. 5.12, and the 2v

cusps cO7+8m, cO9+8m, m = 0, . . . , v−1.
Conclude the following formulas for the respective genuses, gabs,rd and gin,rd,

of H̄(An,C(n+1
2 )4)abs,rd and H̄(An,C(n+1

2 )4)in,rd.

(5.15)
2((n+1

2
)2+gabs,rd−1) = ((n+1

2
)2 − 1)/2 + 2[(n+1

2
)2/3] + (n−1

2
)(n+1

2
)

2(2(n+1
2

)2+gin,rd−1) = (n+1
2

)2 + 4[(n+1
2

)2/3] + 2(n−1
2

)(n+1
2

) + 1 + v.
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Proof. To check for fixed points of γ′1 consider first the absolute case. For
each odd k between 3 and n−2 (1 and n are already done), and u = n−k

2 < k−1
2 ,

we are asking if k,uggg
† def

= ((k,uggg
′)sh)q−1

1 q3 (as in (5.2)) is conjugate by some β ∈
Sn+3

2 ,n × 〈xn+1
2 ,1〉 to k,uggg

′. The point of applying q−1
1 q3 is to assure – without

changing the reduced class – that they both have xn+1
2 ,1 as their 4th entry.

With g†1 = (x 2k−n−1
2 , k−1

2
xn+3

2 ,n+k
2

), use Rem. (5.4) to fill in k,n−k2
ggg†:

(g†1, (g
†
1)−1(x′n+1

2 , 2k−n−1
2

xn+k
2 ,k+1 xn+k+2

2 ,n)g†1, •, xn+1
2 ,1).

The assumption on β means it conjugates g†1 to g′1. So, the power of xn+1
2 ,1

in it would translate the segment |x 2k−n−1
2 , k−1

2
| to |x k+1

2 ,n+1
2
|. That is, you add

n−k+2
2 to the subscripts. That means a conjugation in the second position of

the form g′′′ = (x k+1
2 ,n+1

2
. . . )−1(xn−k+2

2 , k+1
2
. . . )(x k+1

2 ,n+1
2
. . . ) would end up as

(x′n+1
2 , 2k−n−1

2

. . . ). In each case “. . . ” means integers in {n+3
2 , . . . , n}.

So, it seems g′′′ maps n+1
2 7→ 1 for k in the allowed range. Yet, the constituents

of g′′′ don’t even have 1 in their supports. Conclude: no appropriate β gives even
an absolute fixed point.

Now we compute the genuses. Lem. 4.3 gives (n+1
2 )2 as the degree of

Ψ̄abs
n : H̄(An,C(n+1

2 )4)abs,rd → P1
j

and the lengths of the disjoint cycles of the absolute γ′0 as all the odd integers from
1 to n with multiplicity 1. So γ′∞ has index n+1

2 (n+1
2 − 1). Write 1 + 4t = n.

According to Prop. 5.15, ind(γ′0) is 2 · ((n+1
2 )2 − 1)/3 (resp. 2 · (n+1

2 )2/3) if t ≡ 0

or −1 mod 3 (resp. 1 mod 3). Similarly, from the above ind(γ′1) is ((n+1
2 )2− 1)/2

(indicating one fixed point).
The degree doubles in going to the inner case (Lem. 4.4). Above we’ve com-

puted the indices from the contributions of γ′0 and γ′1 in the inner case, leaving the
contribution of γ′∞ (in (2.11)). The cusps O1,O7+m8,O9+m8 ramify of index 2 in
the cover. So, if we denote the width of one of these by k, then its index is k−1
and the index of the cusp above it is 2k−1 = 2(k−1) + 1. For all the other absolute
cusps, there there are exactly two inner cusps of the same width above it. The
calculations come directly from this. �

Example 5.16 (No converse to Lem. 2.11). Assume n ≡ 1 mod 4; as in (5.8)
or Table 4. Then, sh-incidence matrices for Ni(An,C(n+1

2 )4)abs,rd have a 1 and
n−1

2 2’s as diagonal entries. Lem. 5.12 shows the diagonal term 1 in the 1-1 a(nti)-
(sub)d(iagonal) corresponds to a fixed point of γ′1. While the 2 in the n-n a-d
corresponds to no fixed points of either γ′0 or γ′1.

In the inner case: Table 8, for the sh-incidence matrix labeled Ni+0 , has a
nonzero diagonal entry, though neither γ′0 nor γ′1 has a fixed point.

6. Modular towers over Ni(An,C(n+1
2 )4)in,rd

Shimura varieties are moduli spaces renown for having attached `-adic repre-
sentations to each of their points. There are – no matter how you do the division –
two very different types of Shimura varieties. The type we relate to here are those
modeled on Siegel space generalizations of modular curve towers.
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Abelianized Modular Towers give a related generalization – we refer to these
as `-adic support spaces – of modular curves towers. §6.1 gives the general context
for these particular MTs, especially the two properties that we expect of them
appropriate for generalizing Serre’s Open Image Theorem. We refer to the two
types coming from our An examples as pure-split and pure-Frattini in (6.2). Our
`-adic support spaces arise from the results of the previous section. The examples
are so sweeping, yet structured, I decided not to make the treatment axiomatic.

The `-adic support spaces have dimension 1 (upper half-plane quotients, and
j-line covers). Yet they are non-trivial generalizations of the modular curve case.
That is, they aren’t pullback of some modular curve tower over a single upper-half
plane cover X → P1

j of the j-line with X as a parameter space (Prop. 6.4).
§6.1.3 gets explicit on the pure-Frattini type by considering G1,2(An), the 1st

universal 2-Frattini extension of An – a centerless 2-perfect group – replacing An.
The main result here is that there is a modular curve-like structure to the tree of
cusps in this tower, despite level 0 having most of its cusps quite alien to those of
modular curves. §6.1.4 produces the simplest modular curve system – involving all
primes p. By combining §6.1.3 and §6.1.4 is now natural to see the scope of simply
stated modular curve generalizing problems, some solved by the previous results.
We especially call attention to a problem generalizing one from modular curves; in
the ball-park of Mazur-Meryl, (Prob. 6.10) but not answered by them.
§6.2 considers what we need to generalize p = 2 in §6.1.3. Then, §6.3 finishes

some topics related to the Liu-Osserman examples. For example, the definition field
of the components attached to Ni(An,C(n+1

2 )4) for n ≡ 1 mod 8. Also, formulating

the “umbrella”result over all results of [Fr11, Main Thms.] and the remaining Liu-
Osserman examples (not included in the previous sections).

6.1. Production of `-adic support families. Suppose we have an abso-
lutely irreducible quasi-projective algebraic variety P defined over a number field
K. Typically such a parameter space might produce a family of `-adic representa-
tions if P is the parameters for a smooth, projective, family of algebraic varieties.
Then, the `-adic representations might come from locally constant variation of some
‘piece’ of an `-adic cohomology group of the vareties in the fibers of the family. We’ll
refer to the family as having rank u if the `-adic modules have rank u.

6.1.1. Frattini monodromy. Typically for Shimura varieties it is the 1st `-adic
cohomology of a classical family of abelian varieties. This defines a sequence of va-
rieties P = {Pk}∞k=0 starting from P0 = P with corresponding maps between them.
For the Shimura variety case, the initial data right up front gives the geometric
monodromy of the cover Pk → P0, identifying it with the quotient of a classical
arithmetic group (like Sp2n(Z)) by a congruence subgroup.

Among difficulties in analyzing data from cusps is that P (excluding the mod-
ular curve case) has dimension exceeding 1.

The cases of MTs derived from our previous sections have a dimension 1 pa-
rameter space and cusps we understand very well. (Rem. 6.9 notes we also get
higher dimensional parameter spaces by increasing the number conjugacy classes.
Yet, here our dimension 1 cases suffice to give myriad significantly new examples.)
Our goal is just to list some illustrative MTs, along with what properties we need
for them. The monodromy action is through a quotient of M̄4. So, it is extremely
explicit. Here are the properties we need.
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(6.1a) The geometric monodromy group Uk of Pk → P0 is transitive in the
natural permutation representation, for each k ≥ 0.

(6.1b) For some k0 and k ≥ k0, Uk → Uk0 is an `-Frattini extension (in
particular, the kernel is an `-group).

The Uk s, however, appear directly, not by a classical congruence subgroup. Ex-
ample: That (6.1a) holds for modular curve towers (or Siegel towers) is immediate
from their direct definition as upper-half plane quotients by a congruence subgroup.
That makes the space the image of a connected space. In general, we only know
that each component of spaces like those in our previous sections – say of the two
components in Lem. 4.4 for n ≡ 1 mod 8 – are images of the upper half-plane.

Is that a game-ender? Mathematically it is not, though it changes the way
you play the game. You will have more direct control on the `-adic module. For
example, you should (conjecturally as in [Fr06a, ]) have the ability to detect when
– on P – there are dense sets of points akin to complex multiplication points on the
j-line. Such points would correspond to (conjugacy classes of) Frattini extensions
in Gk of subgroups H ≤ G0 following [Fr06a, Lem. 2.5].

[Fr06a, Result 5.6] notes that you may require k0 > 0 in (6.1b). Even for
modular curve towers, for the primes p = 2 and 3, k0 = 1 (all other primes have
k0 = 0). Denote the projective limit of the Uk s by U , regarded as an `-adic group
through condition (6.1b). There is also the collection of arithmetic monodromy
groups arUk, and their projective limit arU . For Serre’s O(pen) I(mage) T(heorem),
the version considered in [Se68] – the special modular curve case of the reference
in Rem. 6.5 – suffices.

6.1.2. Specific An `-adic support families. As above, we stick with the Nielsen
classes from Prop. 5.15 because that proposition gives something substantive about
them. It also simplifies details to be able to use our present notation.

We have two very different types of families. The pure-split resemble modular
curves in construction. The Pure-Frattini cases resemble nothing you’ve seen before
unless you’ve followed the history of MTs. For both we can immediately phrase
problems that challenge the regular version of the Inverse Galois Problem, and that
generalize the famous results on modular curves.

To give these families, and their `-adic towers we have only to give the Nielsen
classes that produce their reduced inner Hurwitz spaces. Recall the standard n−1-
dimensional An module. Take the standard degree n representation of Sn, mod
out by the trivial representation generated by the sum xn of its standard basis
vectors. Denote the restriction of An to this by Vn. We will abbreviate Vn/p

k+1Vn
to Vn/p

k+1. Let V be an Z/p[An] module. We say it is irreducible if it has no
proper submodules. Since An, for n ≥ 4 acts doubly transitively on the standard
representation, it is well-known that we can write Vn/p as a direct sum of the
identity representation and an (absolutely) irreducible representation if (p, n!) = 1.
This practical application of Mashke’s Theorem [Is94, p. 214] can be done explicitly.
The next lemma improves on this.

Lemma 6.1. As above n ≥ 4. If p |n, then Vn/p has a unique – it is codimension
1– irreducible Z/p[An] submodule. If p6 |n, then Vn/p is irreducible.

Proof. The case where p|n is the more difficult, and is easily modified to give

the case p 6 |n. Denote by (Vn/p)
0 def

= V 0
aaa the submodule generated by elements
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(a1, . . . , an) ∈ Vn/p whose entries sum to 0 mod p. Since xn has its element sum
divisible by p, when p|n, (Vn/p)

0 is well-defined.

If (1,−1, 0, . . . , 0)
def
= www1 is in V 0

aaa , since it clearlys generate V 0 as a Z/p[An]
module, then V 0

aaa = V 0. By application of an element of An and multiplication by
an element of (Z/p)∗ we have only to aim for finding aaa′ representing an element of
V 0
aaa with exactly two nonzero entries.

Consider any (a1, . . . , an) representative of V 0 \ {000}. Denote the Z/p[An] sub-
module it generates by V 0

aaa . Take a representative, aaa′ = (a′1, . . . , a
′
k, 0, . . . , 0), of an

element of V 0
aaa with all the a′i s nonzero, 4 ≥ k < n having the minimal number of

nonzero entries of all such elements in V 0
aaa . This is possible using just the action of

An. We do three cases, in each forming aaa′′ so that aaa′−aaa′′ is nonzero and has fewer
nonzero entries to conclude the induction.

First: Assume two a′i s are the same and one is different from these. With no
loss take these as (a1, a2, a3 and apply the 3-cycle (1 2 3) to aaa′ to get aaa′′.

Second: Assume all the a′i s are the same. Then, shift all entries of aaa′ to the
right by 1: aaa′ − aaa′′ has exactly two nonzero entries.

Third: The only other possibility remaining is that all entries are distinct, with
1st entry 1. Apply (2 3 4) to get aaa′′. Finally, if V ′ is another proper submodule of
(Vn/p), then its intersection with V 0 would be a nontrivial submodule of V 0 unless
V ′ has dimension 1, a case easily eliminated. �

In each case, consider k ≥ 0 as generating a series of Nielsen classes and so of
spaces. Unlike §2.1.2, we don’t drop the p notation here.

For each n ≡ 5 mod 8, and classes C(n+1
2 )4 consider these Nielsen classes.

(6.2a) Pure-Frattini: With Gk,p(An) = Gp,k,ab, and for p prime dividing n!,
with (p, n+1

2 ) = 1,

{Ni(Gp,k,ab,C(n+1
2 )4)

def
= Nin,p,k,fr}∞k=0.

(6.2b) Pure-split: For each fixed prime p,

{Ni(Vn/p
k+1 ×sAn,C(n+1

2 )4)
def
= Nin,p,k,spl}∞k=0.

In Lem. 6.2 the phrase non-trivial sequence of covers means that the moduli
spaces form a sequence of increasingly higher degrees.

Lemma 6.2. For fixed n and p, in each case of (6.2), there is a projective
sequence, {H′H-M,k}∞k=0, of H-M components (§2.2.2) of the reduced Hurwitz spaces
corresponding to the Nielsen classes as a function of k. They form a nontrivial
sequence of j-line covers, with relative degrees exceeding 1. For each n, this produces
a natural family of `-adic representations.

Proof. Prop. 2.13 First we show that the Nielsen classes in each example
are non-empty. For (6.2a), §2.4.4 (especially Prop. 2.26) has an if and only cri-
terion for nonemptiness at all levels. But non-emptiness is especially easy here.
The single component at level 0 contains an H-M cusp (§2.2.2) with representa-
tive (g1, g

−1
1 , g2, g

−1
2 ). Since (p, n+1

2 ) = 1, we can lift each gi to a same order

element kgi in each Gp,k.ab, i = 1, 2. If (kg1, kg
−1
1 , kg2, kg

−1
2 ) satisfies genertion

(§1.3.1), then it is in the level k Nielsen class. But, generation is automatic because
Gp,k.ab → Gp,0,ab is a Frattini cover.
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For (6.2b), again use the starting H-M rep, and that the higher levels are given
by Frattini covers of the level 0 case. Except here, level 0 is given by Vn/p ×sAn,
which is a split (definitely, not Frattini) extension of An. So, it is not automatic
that level 0 is nonempty. Use the notation above.

We look for an H-M rep. in the Nielsen class for this group from g∗i = (vi, gi),
i = 1, 2, with the vi s in Vn/p. We are done so long as these g∗1 and g∗2 generate
Vn/p×sAn. Then, nonemptiness at all levels follows.

Denote the standard vectors in Vn/p by x1, . . . , xn (with
∑n
i=1 xi = 0). We

now use that

(vi, gi)
ordgi = ((vi)

ord(gi)−1∑
j=0

gji , 1)
def
= (v, 1).

Assume with no loss that g1 is the n+1
2 -cycle (1 . . . n+1

2 ). If you take v1 = x1,
then the resulting v is x1+ · · ·+xn+1

2
. We show that the nonzero v is contained in

no proper submodule of Vn/p. From Lem. 6.1 this is immediate, unless p|n where
there is a proper submodule to consider. Then, however, (p, n+1

2 ) = 1, so p 6 | n+1
2 ,

and v is not in that proper submodule. Therefore, the group generated by the g∗i s
will contain Vn/p. It must be Vn/p×sAn, since the gi s generate An.

Now we have the H-M rep. (g∗1 , (g
∗
1)−1, g∗2 , (g

∗
2)−1) in the Nielsen class Nin,0,k,spl.

�

Remark 6.3. Level 1 comps in pure-Frattini case

Proposition 6.4. Suppose a MT is a quotient of a pullback of a modular curve
tower for the prime ` over f : X → P1

j . Then the geometric monodromy groups of

the tower levels are a quotient of the push-forward of Gf and PSL2(Z/`k+1).
Suppose further, that Gf has no quotient that maps surjectively to PSL2(Z/`).

Then, Gf acts trivially on U1/U0. RETURN

Recall: For each cover X → Z, defined over a perfect field K, and for each ppp ∈
Z, there is naturally attached a conjugacy class of subgroups of the full arithmetic
covering group. Any group in that class is a decomposition group attached to ppp.

Remark 6.5. Conditions (6.1) are equivalent to a weak form of the OIT
[Fr11b, ]. That says, for a dense set of ppp ∈ P(Q̄), for Kppp = K(ppp): The action
of the absolute Galois group, GKppp (of K(ppp)) on any orbit of a projective system of
points is an open subset of arU . In fact, it holds for any ppp for which the decompo-
sition group attached to P1 → P0 is the full arithmetic monodromy of the cover.
Hilbert’s Irreducibility Theorem says this holds for s dense set of ppp. See [, ] for
details on that action.

Remark 6.6. Rem. 6.5 is a weak form because the modular curve version of the
OIT describes the arithmetic monodromy at the exceptional – complex multiplica-
tion points – as well. [, ] formulates the generalization of this for MTs. RETURN
as happening at those points for which

6.1.3. Spin assures 2-cusps at level 1. Let H̄′ be a reduced Hurwitz space com-
ponent corresponding to a braid orbit on Ni(An,C(n+1

2 )4)in,rd. For any odd integer

k, (k2 − 1)/8 is an integer. For any ggg ∈ Ni(An,C(n+1
2 )4)in,rd, the left side of (3.11)

is
(n+1

2 )2−1

2 , so Prop. 3.11 says Ni(G1(An),C(n+1
2 )4)in,rd is nonempty.
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Prop. 3.12, condition (3.13), tells precisely when all cusps (in all components
at level 1) above a specific cusp at level 0 must be 2-cusps. Indeed, for ggg ∈
Ni(An,C(n+1

2 )4) representing the cusp, the condition is that (m2−1)/8 ≡ 1 mod 2

with m = ord((ggg)mp). Conclusion: This holds precisely for those cusps that don’t
have the form Ok,2k for some odd k.

Corollary 6.7. For n = 5 + v8, there are at least 4v + 4 2-cusps on H̄′.

Corollary 6.8. That for the case n ≡ 5 mod 8, level one has a 2-Spire.

6.1.4. An analogy with modular curves. Considering when there is a p-Spire is
meaningful for any r ≥ 4. Considering when there is a p-Spire is meaningful for
any allowable primes p.

Remark 6.9 (Increase branch cycles).

6.1.5. Gk,p(An) analogy with modular curves.

Problem 6.10.

6.2. How to approach primes different from 2. §6.3 considers the rest of
the odd order pure-cycles cases of Liu-Osserman. Finally, §E.3 gives one example
from the list of Ex. 2.29. This shows issues involved in dropping the condition that
the absolute spaces represent genus 0 covers in (2.17b). Considering it may seem
slight, since G = A4 is such an “easy” group. Yet, it is our most important example
for using this paper to head toward a general proof of the Main Conjecture.

Much of the idea of this section is general. The missing general ingredient is a
purely modular representation step. We consider if there are non-H-M braid orbits
on Ni(G1(A5),C34 , p = 5). The Main Conjecture holds for any component branch
through them if there are at least three 5-cusps at level 1.

To prove the following result we look carefully at how to write out the level
1 sh-incidence matrix for Ni(PSL2(Z/52),C34 , p = 5)in,rd, recognizing the Hurwitz
components for this cover the unique component for Ni(A5,C34), and the level 1
components all factor through some one of these components.

Proposition 6.11. Each braid orbit on Ni(PSL2(Z/52),C34)in,rd has two rep-
resentives over H-M1. Therefore, the Main Conjecture holds for all MTs for
(A5,C34 , p = 5) and therefore for all MTs with level 0 equal to Ni(A5,C34)in,rd.

§6.2.1 shows why it suffices to consider Ni(PSL2(Z/52),C34)in,rd to conclude
Prop. 6.11. §6.2.2 considers how to compute the cusps of Ni(PSL2(Z/52),C34)in,rd,
and the corresponding sh-incidence matrix.

6.2.1. Relation of Ni(G1(A5),C34 , p = 5) to Ni(PSL2(Z/52),C34). Make use of
PSL2(Z/5) = A5 using the notation 02 (resp. I2) for the 2× 2 zero (resp. identity)

matrix. Then, A1 =
(

0 1
−1 0

)
has order 2 mod {±I2}. We can see A4 in A5 as a

Klein 4-group with a Z/3 action. Nonzero representatives of the Klein 4-group are

order 2 matrices commuting with A1 mod ± I2: A2 =
(

0 2
2 0

)
and A3 =

(
3 0
0 2

)
are representatives of the two non-identity classes. Note: Traces of the involution
conjugacy class are 0.

A generator α ∈ Z/3 in A4 conjugates A1 to A2: αA1 = A2α: α =
(

2 −3
1 −1

)
is

a trace 1 representative. So, ±1 is the trace of all elements in the order 3 conjugacy
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PSL2(Z/5) class. To get A5, throw into this copy of A4 an element of order 5 by

finding a representative β ∈ SL2(Z/5) of trace 2 or 3: β =
(

2 1
1 1

)
will do. Note:

These representatives canonically lift to have determinant 1 in SL2(Z/52).
From [Fr95b, Rem. 2.10]:

(6.3a) ker(G1(A5) → A5) is a module with Loewy display U5 → U5 with U5

the trace 0 matrices in M2(Z/5); and
(6.3b) G1(A5)→ A5 factors through PSL2(Z/52)→ PSL2(Z/5).

Finally, we find in PSL2(Z/5) two H-M reps. with middle product order 5. As

αβ =
(

1 −1
1 0

)
= γ has trace 1, take H-M1 = (γ−1, γ, α, α−1) as one H-M rep. and

H-M2 = (γ, γ−1, α, α−1) as the other. Use the same integer entries of α and γ to
give representatives of all lifts of H-M1 to Ni(PSL2(Z/52),C34)in,rd:

gggAγ−1 ,Aγ ,Aα,Aα−1

def
= (γ−1(I2 + 5Aγ−1), γ(I2 + 5Aγ), α(I2 + 5Aα), α−1(I2 + 5Aα−1)),

modulo conjugation by ker(PSL2(Z/52)→ PSL2(Z/5)) subject to these conditions.

(6.4a) Entries in PSL2(Z/52): Entries of (Aγ−1 , Aγ , Aα, Aα−1) have trace 0.
(6.4b) Product-one: γ−1Aγ−1γ +Aγ + αAαα

−1 +Aα−1 = 02.

The effect of conjugation of U by I2 + 5B sends the former to

(I2 + 5B)(U)(I2 − 5B) = U + 5([B,U ]),

with [B,U ] = BU − UB.
With no loss, assume Aγ = 02, and consider the case Aα also is 02. Write

Aγ−1 =
(
a b
c −a

)
, so γ−1Aγ−1γ = −Aα−1 . With γ−1 =

(
0 −1
1 −1

)
,

Aα−1 = −
(

0 −1
1 −1

)(
a b
c −a

)(
1 −1
1 0

)
= −

(
a−c c

b−c+2a c−a

)
.

It is meaningful to have q ∈ M̄4 act on gggAγ−1 ,Aγ ,Aα,Aα−1
, by acting on its 4-

tuple. The Main Conjecture follows if for each q, so that its induced action mod 5
leaves (γ−1, γ, α, α−1) invariant, while not leaving gggAγ−1 ,Aγ ,Aα,Aα−1

invariant.

6.2.2. sh-incidence matrix for Ni(PSL2(Z/52),C34). §4.2 has the level 0 sh-
incidence matrix. For ggg in some Nielsen class Ni(G,C), denote the full collection of
elements in its reduced Nielsen class (its orbit under 〈G, 〈sh, q1q

−1
3 〉〉) by gggin,rd. The

cusp containing ggg (as a subset of Ni(G,C)) is the union of {((ggg)qj2)in,rd} running
over all integers j. Of course you only need at most the first 2 · (ggg)mp values of j.
We denote this set by Cuggg, the cusp of ggg.

Using this notation, Lem. 4.3 gives the five cusps of Ni(A5,C34) as Cu(H-M1)qj2sh
,

j = 0, 1, 2, 3, 4, with j = 0 the unique cusp of width 2, j = 1, 4 the cusps of
width 3, and j = 2, 3 the cusps of width 5. Now suppose H-M′1 lies over H-M1

in Ni(PSL2(Z/52),C34). Then, we get the complete set of representatives of cusps
for the spaces corresponding to braid orbits on Ni(PSL2(Z/52),C34) by considering
the collection Cu(H-M′1)qj2)sh, j = 0, 1, 2, 3, 4.

Let H-M′′1 denote another representative over H-M1. A contribution to the
sh-incidence matrix of Ni(PSL2(Z/52),C34)in,rd over the level 0 position of (i, j)

comes from (H-M′1)qj2sh)in,rd = (H-M′1)qi2)in,rd for some H-M′1 and H-M′′1 . So, to
find such contributions requires only looking at the cases where RETURN
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6.3. More on the Liu-Osserman Examples. Throughout this subsection
assume we are given an odd-cycle Liu-Osserman Nielsen class Ni(An,C).

6.3.1. Remaining odd-cycle Liu-Osserman examples for r = 4. Give What
changes if we don’t have the (n+1

2 )4 case?
6.3.2. What about general r ≥ 3?

Example 6.12. Give the alternating group obstructed components here.

6.3.3. Umbrella result.
6.3.4. Rational functions representing elements of Ni(An,C(n+1

2 )4)abs. For n ≡
1 mod 4 (and especially for n ≡ 1 mod 8) we consider rational functions repre-
senting Ni(An,C(n+1

2 )4 . Here’s the rubric.

Rational functions in Q with branch points in Q, of which (with no loss) we

take three to be {0, 1,∞} and the other as z′. So, we can write such an f
def
= fx′(x) :

P1
x → P1

z as h1(x)x
n+1

2 /h2(x) with h1, h2 of degree n−1
2 . This automatically puts 0

(resp. ∞) as the ramified point over 0 (resp. ∞). The following equations encode
the rest of the conditions at the branch points. These make 1 ∈ P1

x the ramified

point over z = 1, to determine f
def
= fx′(x) with x′ the ramified point over z′:

(6.5)
h1(x)x

n+1
2 − h2(x) = (x− 1)

n+1
2 m1(x)

h1(x)x
n+1

2 − z′h2(x) = (x− x′)n+1
2 m2(x).

We can solve for h1, h2 as a function of m1 and m2:

(6.6)
(a) (z′ − 1)h2 = (x− 1)

n+1
2 m1 − (x− x′)n+1

2 m2

(b) (z′ − 1)x
n+1

2 h1 = z′(x− 1)
n+1

2 m1 − (x− x′)n+1
2 m2.

So, we want coefficients (total of n+1 coefficients) on the degree n−1
2 polynomi-

als m1,m2 polynomials so that h1 and h2 both have degree n−1
2 , simultaneously

figuring x′ as a function of z′.

Proposition 6.13. As x′ varies in P1
x \ {0, 1,∞}, we run over the connected

set of fx′(x) in the Nielsen class of covers with ordered branch points by solving the
equations (6.6) according to the stipulations above. For x′ lying in a field K, the
solution for fx′(x) has coefficients also lying in K.

Consider the cover Ψin,abs
n : H(An,C(n+1

2 )4)in → H(An,C(n+1
2 )4)abs. The top

space has one (resp. 2) components, defined over Q (resp. the unique quadratic

extension Kn of Q in Q(e
n+1

2 )) when n ≡ 5 mod 8 (resp. n ≡ 1 mod 8).

Proof. What we actually need to know, as x′ runs over Q is is that the
discriminant of the cover fx′ : P1

x → P1
z is not locally a square in Q{{x′}. We will

show for n ≡ 5 mod 8, it has expression in the square root of x′, while for n ≡ 1
mod 8 you must extend the constants by

Expand the zeros of fx′(x) = z about z′. �

Appendix A. Riemann-Hurwitz and Classical π1(P1
z \ zzz0, z0) Generators

Consider compact Riemann surface covers, ϕi : Xi → P1
z, i = 1, 2. They are

in the same absolute equivalence class if there is a continuous ψ : X1 → X2 with
ϕ1 = ϕ2 ◦ ψ. Then ψ is automatically analytic.

If the covers are Galois (with respective monodromy groups Gi, i = 1, 2),
assume both Gi s come with an isomorphism to µi : Gi → G. Then, the ϕi s are
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inner equivalent if they are absolute equivalent, and in addition, the induced map
µ1 ◦ ψ∗ ◦ µ−1

2 : G→ G is an inner automorphism.
Finally, if there is α ∈ PGL2(C), the Möbius transformations, so that α ◦ϕ1 is

absolute (resp. inner) equivalent to ϕ1, we say the covers are absolute (resp. inner)
reduced equivalent.

Suppose given any Nielsen class Ni(G,C)∗ where * indicates absolute equiv-
alence. That corresponds to G ≤ Sn for some integer n: a faithful transitive
permutation representation of G (the regular representation of G when * is inner
equivalence). Then, given classical generators P0 = {P 0

1 , . . . , P
0
r } of π1(P1

z \zzz0, z0),
gives a homorphism µP,ggg : π1(P1

z, \zzz0, z0) → G by mapping Pi to gi, i = 1, . . . , r.

For any g ∈ Sn denote its index by ind(g)
def
= to n minus the number of orbits of g

on {1, . . . , n}. The homomorphism µP,ggg corresponds to a cover X0 → P1
z \ zzz0.

One direction of R(iemann’s)E(xistence)T(heorem) completes X0 uniquely to a
compact surface X covering P1

z. Conclusion: A set of classical generators uniquely
corresponds covers of P1

z (ramified over zzz0; up to *-equivalence) with elements of
Ni(G,C)∗. Indeed, RET goes in both directions. A cover of compact Riemann
surfaces ϕ : X → P1

z is an analytic function on X. So, the only extra element under
consideration is that X is algebraic (embeddable in some projective space). It is
elementary, too, to show that comes from producing one other analytic function
ϕ′ : X → P1

w, with ϕ′ restricted to ϕ−1(z0) having n distinct values. The one hard
point is the production of that second function w.

It is not even elementary when you know the genus of X is zero, unless you
accept the Riemann-Roch theorem for compact surfaces. The complete and ele-
mentary treatment of [Fr08a, Chap. 4] discusses all these points, though the last
hard point is relevant to this paper only for applications. Further, since the index
of an element depends only its conjugacy class in Sn, all covers in a given Nielsen
class have the same genus. That genus g is expressed as 2(n+g−1) =

∑r
i=1 ind(gi),

which is elementary, too, in that it expresses that the degree of the differential dϕ
is 2 · g − 2 and is independent of the choice of analytic function on X chosen to
compute this.

If you move along any path Γ in Ur from zzz0 to zzz′ ∈ Ur, you can deform the
given classical generators P0 to some others P ′ based around zzz′ by following Γ.
This gives a homomorphism of π1(Ur) into the Hurwitz monodromy group (§??),
canonically defined by P0. This, too, is explicit, and elementary, and it has been
explained several times in the literature starting with [Fr77, §4], [MM99], [Vo96]
and in complete detail in [Fr08a, Chap. 5].

Again, the one non-elementary aspect is that the cover of Ur so produced —
the space H(G,C)∗ — is algebraic (actually, in this case an affine variety). It’s
completion is not unique, true, though it has a unique normalization as a cover
of Pr. It is easy case from elimination theory, given affineness of H(G,C)∗, that
the reduced space H(G,C)∗/PGL2(C) — where you equivalence one cover ϕ with
any other cover β ◦ ϕ for each β ∈ PGL2 — is also affine. [BF02, §2] explains
this, and how this produces H(G,C)∗,rd as a cover of Ur/PGL2. When r = 4, it
explicitly identifies a quotient of H4 = 〈q1, q2, q3〉 with a group M̄4, via generators
that reveal the latter to be PSL2(Z), generated by the elements γ0, γ1 as indicated
in §2.11. The particular result, then shows that γ′0, γ

′
1, γ
′
∞ acting on the reduced

Nielsen class Ni(G,C)∗,rd are branch cycles for the cover H̄(G,C)∗,rd → P1
j .
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This allows computing the genus of H̄(G,C)∗,rd just as for covers in the Nielsen
class as it is done in Prop. 5.15.

Appendix B. Modular curve towers and g-p′ cusps for all r

Consider an upper half plane quotient H by Γ ≤ PSL2(Z) = 〈γ0, γ1〉 of finite
index; γ0 and γ1 have respective orders 3 and 2. Then, H/Γ is an affine curve X0

Γ

covering Uj = P1
j \ {∞} , branched over j = 0 and 1, ramified over with branch

points 0 and 1 in a normalized j-variable. Orbits of γ∞ =
(

1 1
0 1

)
on cosets of

Γ correspond to cusps (points over ∞). The MT approach sees PSL2(Z) as M̄4

(§2.3.1), to show how the §2.2.2 cusp classification works in the modular curve
case (§B.1). Then, §B.2 reminds of general g-p′ cusps, showing why connectedness
results seek their presence.

B.1. Modular curve cusps. The classical count of cusps for

Γ = Γ0(pk+1)
def
= {

(
a b
c d

)
≡
(
a b
0 d

)
mod pk+1

starts by selecting good coset representatives. Then compute γ∞ orbits on them.
We contrast this with representing X0(pk+1) cusps the MT way using .

B.1.1. Nielsen class description and q2 action. Assume p is odd and continue
the Nielsen class notation from §2.5.2. Write the order 2 · pk+1 dihedral group

(resp. its normalizer, NS
pk+1

(Gk)
def
= Nk, in Spk+1) as

Gk = Dpk+1
def
= {

( ±1 b
0 1

)
}b∈Z/pk+1(resp. {

(
a b
0 1

)
}a∈(Z/pk+1)∗,b∈Z/pk+1).

It acts on {(b′, 1) | b′ ∈ Z/pk+1} by
(
a b
0 1

)
: (b′, 1) 7→ (a · b′ + b, 1). Use b ⇔( −1 b

0 1

)
∈ Dpk+1 . With C2 = {

( −1 b
0 1

)
}b∈Z/pk+1 , use this [] notation for elements

in the Nielsen class: ggg ∈ Ni(Gk,C24) 7→ [b1, . . . , b4] ∈ (Z/pk+1)4.
Absolute Nielsen classes (§1.3.1), Ni(Gk,C24)abs :

(B.1)
{ggg = (g1, . . . , g4) ∈ C24 | bi 6= bj mod p for some i, j (generation);
and b1 − b2 + b3 − b4 ≡ 0 mod pk+1 (product-one)}/Nk.

For inner classes mod out by Gk instead of Nk. Generation (§1.3.1) is a Frattini
property: It holds in G0, so it holds in the Frattini cover Gk for any k.

Conjugate by a power of
(

1 1
0 1

)
to assume b1 = 0. Write b2−b3 = apu (u ≥ 0),

a ∈ Z/pk+1−u and (a, p) = 1. For Niabs, conjugate by
(
a−1 0

0 1

)
∈ Nk so a = 1.

This allows further conjugation by

Hu = {α = 1 + bpk+1−u ∈ Z/pk+1 mod pu, b ∈ Z/pu}.

Now write, c = b2, b3 = c−pu (u is a parameter). For u = 0: (b2, b3) = (c, c−1)
has q2 orbit of width pk+1 containing ggg = gggH-M = [0, 0, 1, 1]: a rep. for the unique
Harbater-Mumford absolute class.
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Table 9. sh-incidence for Ni(Dp2 ,C24)abs,rd (k = 1 above)

Cusp orbit cOp2 cOa,p, a ∈ (Z/p)∗ cO1

cOp2 p(p−1) 1 1

cOa,p, a ∈ (Z/p)∗ 1 0 0

cO1 1 0 0

Apply Lem. D.3. Clearly q1q
−1
3 is trivial on gggH-M, and so is sh2 which gives

[1, 1, 0, 0], conjugate by
( −1 −1

0 1

)
to gggH-M. So, K4 is trivial on all inner Nielsen

classes once we see — below — there is just one braid orbit.
B.1.2. One braid orbit of cusps. An odd (resp. even) number of elements from

C2 has product in C2 (resp. a translation by some b ∈ Z/pk+1). So, this Nielsen
class satisfies Princ. 3.5. For ggg 7→ [b1, b2, b3, b4], oggg = ord((ggg)mp) (Def. 2.3) is the

order of b′
def
= b3−b2 in Z/pk+1. Here is a list of inner class reps. for the cusp of ggg:

{[b1, b2+mb′, b3+mb′, b4]}oggg−1
m=0 .

First we list absolute cusps. For u > 0,
〈ggg〉 = Dpk+1 requires (c, p) = 1. Conjugate by Hu to assume c ∈ Z/pk+1−u is p′.
The width of the cusp of ggg is

|residues mod pk+1−u differing by multiplies of pu|.

Conclude: ϕ(pk+1−u) Nielsen class elements fall in Cu4 orbits of width pk+1−2u

(resp. 1) if k+1−2u ≥ 0 (resp. k+1−2u < 0). Note the other extreme, u = k+1:
(b2, b3) = (1, 1), the shift of an H-M rep. (orbit width 1).

To see there is one braid orbit, apply the shift: (ggg)sh 7→ [c, c − pu,−pu, 0].
From the above, in the cusp of this element is [c, c, 0, 0]. The sh-incidence pairing
shows the H-M cusp intersects every other cusp, so the matrix has one block.

Conclude: Niabs gives a degree pk+1 + pk cover H̄(Dpk+1 ,C24)abs,rd → P1
j . The

respective result for Niin is degree ϕ(pk+1)
2 (pk+1 + pk).

From the absolute case, there is one inner braid orbit if we can braid between
elements of {[0, 0, c, c]}c∈(Z/pk+1)∗ , the collection of inner classes of H-M reps. Shift
[0, 1, 1+c, c], an element in the cusp of [0, 0, c, c] to get [1, 1+c, c, 0] = ggg′. Now again,
in the cusp of ggg′ there is [1, 1, 0, 0] which we noted above is inner equivalent to gggH-M.
So, there is one inner braid orbit.

B.1.3. Summary of modular curve cusps. In either the inner or absolute case,
any cusp for which u 6= k+1 is a p-cusp — p divides the middle product order. For
u = k+1, ggg 7→ [0, c, c, 0], the shift of an H-M rep. and a width one cusp. In these
cases 〈g2, g3〉 = H2,3(ggg) and 〈g1, g4〉 = H1,4(ggg) are p′ groups; they are g-p′ cusps.

Finally: o(nly)-p′ is the phrase for those cusps neither p nor g-p′. Modular
curves have none.
u = 0↔ width p2 H-M rep. cusp, cOp2 ;
u = 1↔ cusps cOa,p, a ∈ (Z/p)∗ of width 1; and
u = 2↔ width 1 cusp cO1 of the shift of the H-M rep.

Adding to this data the fixed points of γ0 = q1q2 and γ1 = sh gives the genus
of the space (App. C1).

Adjustments for Ni(Dp2 ,C24)in,rd:
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u = 0↔ ϕ(p2)/2 = p(p−1)
2 H-M inner cusps over the unique absolute H-M cusp.

u = 2↔ Story the same as for u = 0, for shifts of H-M cusps (width 1).
u = 1↔ over each such absolute (width 1) cusp are ϕ(p)/2 = p−1

2 width p cusps.
Since the sh-incidence matrix remains the same if we replace γ1 = sh by γ0,

fixed points of either are represented on the diagonal.

Problem B.1. Compute which elements in the H-M absolute (resp. inner)
cusp(s) are fixed points of γi, i = 0, 1.

B.2. Seeking g-p′ cusps.

Appendix C. A p′ moduli argument

Prop. 2.13 considered the possibility that we have a projective sequence of
points {pppk}∞k=0 on an abelianized MT all defined over a number field K and it
showed this was impossible if G0 was centerless. It also reduced the general case to
showing it impossible if the center Z of G0 is p′, but nontrivial. [Fr06a, Rem. 3.4]

notes the universal p-Frattini cover pG̃ of G identifies with the fiber product over
G/Z of G and the universal p-Frattini cover of G/Z. Thus, Z is the exact center

of pG̃ and therefore also of the abelianized MT. Conclude: The (one-one) image

of Z by the map pG̃→ Gk,ab then identifies with the center of Gk,ab.
With no loss assume K large enough that some ϕ0 : X0 → P1

z in Ni(G0,C)in

defined over K (with all its automorphisms also over K) represents ppp0.

Proposition C.1. Under the assumptions above, the point pppk+1 has a rep-

resentative over K in Ni(Gk+1,ab,C)in that factors through a given representative
over K in Ni(Gk,ab,C)in. That is, there is a projective system of representatives
over K in Ni(Gk,ab,C)in, k ≥ 0. This, however, contradicts [BF02, Prop. 6.8].

Proof. Assume for a given k, we have found ϕk : Xk → P1
z over K in the

Nielsen class Ni(Gk,C)in representing pppk. Over some Galois extension L/K, there
is ϕ′k+1 : X ′k+1 → P1

z representing pppk+1, in Ni(Gk+1,ab,C)in and mapping through

ϕk : X0 → P1
z. Since pppk+1 has coordinates in K, that means for each σ ∈ G(L/K)

there is ψσ : Xk+1 → σXk+1 commuting with the maps to P1
z and inducing by its

action on Aut(Xk+1/P1
z) an isomorphism of Aut(σXk+1/P1

z) with Gk+1.
Recall Weil’s cocycle condition as formulated in [Fr77, §2]. From it, for

the first statement we have only to show that ψ−1
τσ

σψτψσ = βσ,τ , forced to be
in Z, is the identity on Xk+1. Apply these expressions after modding out by
ker(Gk+1,ab → Gk,ab) to induce similar expressions on Xk. Since Xk is already
a representative of the Nielsen class over K, the existence of such a represen-
tative forces the image of βσ,τ ∈ Aut(Xk/P1

z) to be the identity. As Z from
Aut(Xk+1/P1

z) to Aut(Xk/P1
z), conclude βσ,τ is also the identity. So, the cocy-

cle condition holds and the obstruction to giving a Nielsen class representative
in pppk+1 over K vanishes. Conclude there is ϕ′k+1 : X ′k+1 → P1

z in the Nielsen

class Ni(Gk+1,ab,C)in over K representing pppk+1. Then, ϕk+1 induces a cover

ϕ′k : X ′k+1/ ker(Gk+1,ab → Gk,ab)→ P1
z in Ni(Gk,ab,C)in over K.

Since we don’t have fine moduli, we can’t assert ϕ′k is K equivalent to ϕk. Still,
the full set of representatives in the Nielsen class over K representing pppk is then in
the cohomology set H1(GK , Z) (with trivial GK action on Z). This is a pointed set
for which we apply the cocycles to one representative (say, ϕ′k) to get any others. If
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the cocycle α ∈ H1(GK , Z) applied to ϕ′k gives ϕk. Then, the same cocycle applied
to ϕ′k+ gives a new cover ϕk+1 over K in Ni(Gk+1,ab,C)in that factors through ϕk.

This establishes an induction on k as in the statement of the proposition, to
conclude the final contradiction. �

Appendix D. Level 1 of an (An,C(n+1
2 )4 , p = 2) tower

For n ≡ 5 mod 8 (ditto n ≡ 1 mod 8, but we stick to the former), there are
many resemblances between all the MTs. This section, emulates [BF02] which
used the case n = 5 to show the theory in action. We list properties that generalize
those from n = 5.

D.1. Some help on the p-Frattini module in general. The prime here
is 2. §2.1.2 has the definition of an abelianized MT over Ni(An,C)in,rd: A pro-
jective system of braid orbits on {Ni(Gk,ab(An),C)in,ab}∞k=0. Given G1,ab(An) =
G1(An), then ker(Gk+1,ab(An) → Gk,ab(An)) = Mk,ab is the same An module as
ker(G1(An)→ An) = M0. As a function of n, there is no easy formula for precisely
what is ker(G1(An)→ An). Still, from [Fr02, Thm. 2.8], we get much information
on the module and its rank from the following procedure for computing the 0th
p-Frattini module MG,0 in the general case. Recall: The Frattini subgroup of G is
the intersection of all maximal proper (closed) subgroups of G. Denote it Φ(G).

Let P be a p-Sylow of G, and MP,0 the characteristic p-Frattini module of P .
If P∗ is a pro-free group of the same rank, rkP as P . Denote by ψP : P∗ → P a
corresponding surjective homomorphism. Then, the kernel, ker(ψP ) is also pro-free.
Its rank, by the Schreier Thm., is rkP,0 = |P |(rkP−1)+1. This is also the rank of
MP,0 = ker(ψP )/Φ(ker(ψP )), a Z/p[P ] module. Then, G1(P ) = P ∗/Φ(ker(ψP )) is
the universal exponent p-extension of P . It has the natural cover ψP,0 : G1(P )toP .

Now for the general finite group case. Let NP be the normalizer in G of P .
Then, consider the module induced from MP,0 in going from NP to G, IndGNP (MP,0).
[Fr02, Thm. 2.8] identifies MG,0 as the direct summand of this module whose
restriction to P contains MP,0.

Recall the main properties of MG,0:

(D.1a) It is an indecomposable Z/p[G] module (no nontrivial Z/p[G] module
summand).

(D.1b) It is the kernel of a covering group ψG,0 : G1 → G versal for all covers
H → G with kernel a Z/p[G] module.

(D.1c) The lift of any element of order p in G to G1 has order p2.

Given a clear understanding of P , this construction gives a handle on MG,0,
reasonably putting bounds on its rank. We can refine this construction of MG,0:
For each p-Sylow P , we have defined G1(P ) → P ⊂ G. Further, we can pull P
back in G1(G) = G1, to get ψ−1

G,0(P ) covering P . Applying the universal extension
property then induces an injection α : MP,0 →MG,0.

More generally, any conjugation by g ∈ G will map P to gPg−1, and induce
another map αg : MP,0 →MG,0. It often occurs that a subgroup of G, Nh

P , properly
larger than NP , acts to preserve MP,0.

Lemma D.1. The images of {αg}g∈G generate MG,0. Define Nh
P to be those

g ∈ G with the same image as α. If we replace NP in IndGNP (MP,0) by Nh
P , the

induced module gives precisely the module MP,0.
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D.2. Monodromy of Ψ̄∗n : H̄(An,C(n+1
2 )4)∗,rd → P1

j . Use the notation GΨ̄abs
n

(resp. ĜΨ̄in
n

) for the geometric (resp. arithmetic) monodromy of the cover Ψ̄abs
n , and

the analogous notation for inner equivalence.
When ∗ is absolute (reduced) equivalence, the geometric monodromy GΨ̄abs

n
has

degree N = (n+1
2 )2 generators γ′0 (of order 3, so in AN ) and γ′∞ given in Lem. 4.3

as a product of disjoint cycles, one of each odd length from 1 to n. The following
generalizes the case n = 5 in [BF02, Lem. 7.1] (see it for extra details). Recall:
The wreath product of two groups G ≤ Sn and H — denote this H oG is (H)n×sG,
where the action of G on (H)n is just to permute the n coordinates.

Proposition D.2. For n ≡ 5 mod 8 we have the following identification of
groups GΨ̄abs

n
= AN , ĜΨ̄abs

n
= AN , GΨ̄in

n
= Z/2 o AN and ĜΨ̄in

n
= Z/2 o SN . In the

case of the arithmetic monodromy groups, the constant extension of Q in which the
Galois closures have their definition field in a nontrivial quadratic extension Ln/Q
in Q(e2πi/M ) where M = lcm(3, 5, . . . , n−2, n).

Proof. Again, use [Wm73], whose hypotheses are a noncyclic, transitive sub-
group of An, generated by odd pure-cycles.

By Wilson’s Theorem on primes, there is a prime q between n+1
2 and n−1,

including the end points. By putting γ′∞ to an appropriate power there is a q-cycle
g(q) in GΨ̄abs

n
. Use transitivity of GΨ̄abs

n
to conjugate g(q) to a q-cycle containing any

particular letter of the representation. Since any two q-cycles will have overlapping
support, conclude that the set of q-cycles generates a non-cyclic transitive subgroup
of AN . So, Williamson’s Th. says GΨ̄abs

n
= AN .

Now we apply the B(ranch) C(ycle) L(emma) ([Fr77, §5] or [Fr08b, Item #1];
also find it in the books of Matzat-Malle and Völklein on the RIGP) to the cover

Ψ̄abs
n to conclude ĜΨ̄abs

n
= SN . Recall: This arithmetic monodromy is the group of

the minimal Galois closure cover (over Q, not over Q̄) of Ψ̄abs
n . It is automatic that

ĜΨ̄abs
n

is in the normalizer of GΨ̄abs
n

in SN , so it is either AN or SN .

The BCL says that a necessary condition for GΨ̄abs
n

= ĜΨ̄abs
n

is that the con-

jugacy classes of γ′0, γ
′
1, γ
′
∞ form a rational union. Since the conjugacy classes are

distinct, this means each is a rational conjugacy class. That means (γ′∞)u is con-
jugate to γ′∞ for all u prime to ord(γ′∞). The following facts come from [Fr95a,
Prop. 2.1] and the later Irrational Cycle Lemma in the same paper applied to the
disjoint cycle of γ′∞, whose cycle lengths in that notation are the distinct odd
integers m0 = 1, . . . ,mu = 2u+1, . . . ,mn−1

2
= n.

For each odd integer 2u + 1 between 1 and n, let (−1)tu be the parity of the
inversion given by Lem. For γ′∞ to be conjugate to (γ′∞)−1 the inversions (as in
Lem. 1.8) of parity (−1)u must multiply to 1. Their product, however, is −1 to the
exponent (n−1

2 )(n+1
2 )/2. For n ≡ 5 mod 8, this is odd, and so γ′∞ is not conjugate

to its inverse. So, the extension of constants Ln/Q in the proposition is nontrivial.
The wreath product statements for the inner covers are almost identical with

the argument of [BF02, Lem. 7.1]. The composition Ψ̄abs
n ◦ Ψ̄abs,in

n automatically
implies the monodromy group of the inner cover is in the wreath product, and the
critical fact is to produce an element (1, 0, . . . , 0) ∈ (Z/2)n = ker(Z/2 o Sn → Sn).
As for n = 5, the order two ramification in the inner cover of the width 1 cusp of
the absolute cover produces such an element. That concludes the proof.l �
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D.3. No fine moduli for Liu-Osserman. Take n ≡ 5 mod 8. Fine moduli
for an equivalence class of covers in a given Nielsen class means that there is a
universal family of such covers by which all such families are obtained by pullback
from the universal family. Given any such family of covers F → P × P1

z, there is a
natural map to P → Jr. The case r = 4 is special. [BF02, Prop. 4.7] gives if and
only if criteria for covers in a reduced Nielsen class to have either of two types of
fine moduli properties.

B(irational)-fine moduli means there is such a universal family for all families
where the natural map to J4 = P1

j misses the elliptic points 0 and 1. Let q1q
−1
3 = α1

and sh2 = α2. The criterion for this is that K4 = 〈α1, α2〉/〈sh4〉/H4/〈sh4〉 acts
faithfully. In our main examples, it is just the opposite.

Lemma D.3. Denote the braid orbit of ggg ∈ Ni(G,C)∗ by Oggg. If α1 and α2 fix
the Nielsen class of ggg, then K4 fixes the Nielsen class of any ggg′ ∈ Oggg.

For n ≡ 1 mod 4, K4 is trivial on Ni(An,C(n+1
2 )4)in (so on absolute Nielsen

classes, too). Thus, H(An,C(n+1
2 )4)in,rd does not (even) have b-fine moduli.

Proof. The essence of the first sentence is that K4 is a normal subgroup of
H4/〈sh4〉 [BF02, §2.6]. To complete the first sentence, consider any α ∈ K4, and

ggg′ = (ggg)q. Write qαq−1 def
= α′ ∈ K4. Compute:

(ggg)α = ((H-M2)q)α(q−1)q = ((H-M2)α′)q = h′(H-M2)q)(h′)−1 ∈ class of ggg.

[BF02, (2.17) on p. 104] does the case n = 5 by directly showing q1q
−1
3 acts

trivially on Ni(A5,C34)in. The general case works best by showing both αi s act
trivially on inner class of H-M2 = (g1, g

−1
1 , g2, g

−1
2 ) with g1 = x1,n+1

2
, g2 = xn+1

2 ,n.

Indeed, (H-M2)αi = hiH-M2h
−1
i , i = 1, 2, with

h1 = (1 n−1
2 )(2 n−3

2 ) . . . (n+3
2 n)(n+5

2 n−1) . . .
h2 = (1 n+3

2 )(2 n+5
2 ) . . . (n−1

2 n).

Clearly, h1 is even. Since n ≡ 1 mod 4, so is h2. As K4 = 〈α1, α2〉, K4 fixes H-Min
2 .

For n ≡ 5 mod 8, Lem. 4.4 says {(H-M2)q}q∈H4
= Ni(An,C(n+1

2 )4)in.

For n ≡ 1 mod 8, use that each of the two braid orbits contains an H-M
rep. and apply the same argument to each. �

Lemma D.4. But the space H(G1(An),C(n+1
2 )4)in,rd does. [BF02, Lem. 7.5]

does this for level k ≥ 1 for n = 5.

D.4. Level 1 for Liu-Osserman.

Remark D.5 (n = 5).

Remark D.6 (n = 13).

Appendix E. Connectedness Applications

Restricting to covers of the sphere by a compact Riemann surface of a given
type, do all such compose one connected family? Or failing that, do they fall into
easily discerned components? The answer has often been “Yes!,” figuring in such
topics as the connectedness of the moduli space of curves of genus g (geometry),
Davenport’s problem (arithmetic) and the genus 0 problem (group theory). One
consequence: We then know the definition field of the family components.
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Restricting to covers of the sphere by a compact Riemann surface of a given
type, do all such compose one connected family? Or failing that, do they fall into
easily discerned components? The answer has often been “Yes!,” figuring in such
topics as the connectedness of the moduli space of curves of genus g (geometry),
Davenport’s problem (arithmetic) and the genus 0 problem (group theory). One
consequence: We then know the definition field of the family components.

E.1. Self-contained expositions. The Regular Inverse Galois Problem (§1.2.2
§E.2) has an html definition file: http://www.math.uci.edu/˜ mfried → Sect. I.b.
→ Definitions: Arithmetic of covers and Hurwitz spaces → * R(egular) I(nverse)
G(alois) P(roblem): RIGP.html.

Similarly for an overview of MTs:
Outline of how Modular Towers generalizes modular curve towers:
http://www.math.uci.edu/˜ mfried→ Sect. I.a. → Articles: Generalizing modular
curve properties to Modular Towers → Item #1 mt-overview.html.

Example conclusion: In Davenport’s problem (§E), there are no nontrivial pairs
of indecomposable polynomials over Q with the same value sets modulo all but
finitely many primes. There are, however, close calls. For several Nielsen classes,
representing a finite number of possible degrees, there are families of polynomial
pairs (in particular, genus 0 covers) that do give the same values over a finite
extension of Q. These families have each more than one connected component,
with none defined over Q. A cover gives a bundle (in this case over P1

z). Then,
each Hurwitz space component attached to a given Nielsen class in Davenport’s
problem, defines the same family of bundles over Q.

E.2. Conway-Fried-Parker-Völklein. The following is the meaning of the
phrase:

The R(egular)I(nverse)G(alois)P(roblem) holds for G:

There is a geometric Galois cover of the sphere with group G, with all its automor-
phisms defined over Q. Such a regular realization of G corresponds to a rational
point on an inner Hurwitz space associated to some Nielsen class Ni(G,C) for some
rational union of conjugacy classes in G (§E.2). Part of the point of this theory
is that if a Hurwitz space has no rational points, then there will be no regular
realizations corresponding to those conjugacy classes.
§?? reminds that MTs result from a ramification restriction on the RIGP,

akin to, but far less restrictive than that used in number fields for the Fontaine-
Mazur Conjecture. The Main Conjecture thus says, for each p-perfect finite group,
there are p-perfect covers of it for which require increasingly unbounded numbers
of conjugacy classes to produce any regular realization of them.

Whatever is NG,p = | ker(R∗G,p → G)|, then the braid orbits on Ni(G,C) with C

a collection of p′ conjugacy classes realizing giving lift invariants can be as large as
NG,p. That certainly happens if the conjugacy classes in C are repeated sufficiently
often. The following example appears again in §E.3.1. It shows the .

Note the many uses of H-Mreps as in [FV91] or [?].
This big topic should be helpful on understanding the major issues in the

Conway-Fried-Parker-Völklein Thm. (§E.2) that still stands out as the most defin-
itive result on connectedness of Hurwitz spaces. The [, App.] result is roughly: If
you repeat all conjugacy classes sufficiently many times, then there is one connected
component of the Hurwitz space (absolute or inner) of covers of the sphere in a given
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Nielsen class Ni(G,C). We engage expectations from the word sufficiently . Also, of
necessity, we consider dropping the repetition of all classes. Not only doesn’t that
include the easy classical results, it defies making classical connections, including
the RIGP.

This applied to show how to find Nielsen classes for which the corresponding
inner Hurwitz space has a connected component with definition field Q. They must
exist, and some of them must have Q points, for each centerless group G if the RIGP
is correct. Still, the version of the Conway-Fried-Parker-Voelklein result in [FV92]
required unknown large values of r. It applied to create presentations of GQ, the
absolute Galois group of Q, the first, and still, only such proven presentations. The
version of CFPV in §E.2 allows us to state connnectedness problems very close to
the Liu-Osserman examples that reflect on all aspects of this paper, especially how
explicitly lift invariants tie to connectedness results.

E.3. Pure-cycle cases of non-genus zero covers. When r = 4, the re-
duced Hurwitz space of a pure-cycle Nielsen class has a birational embedding in
P1
j × P1

j . It doesn’t matter if the covers in the family have genus 0 or not. To see

that consider such a cover ϕ : X → P1
z. Then, map the four branch points ϕzzz to

their j invariant jϕzzz . Above each branch point zi is a unique ramified point xi.
So, that gives the j invariant of xxx, which we denote jϕxxx . The birational embedding
is ϕ 7→ (jϕzzz , jϕxxx). Notice this also holds for modular curves. There is a common
reason for both cases, though they do differ.

Lemma E.1. Suppose r = 4, and C has the property that each conjugacy class
is represented by elements with a disjoint cycle of distinguished length, and also the
gcd of all cycle lengths in the conjugacy class is 1. Then, the reduced space embeds
in P1

j × P1
j . This applies to the modular curves X0(p) because they are the Nielsen

class of (Dp,C24), and the conjugacy class of multiplication on Z/p fixes just 0.
Why doesn’t this work for (Dpk+1 ,C24)?

E.3.1. Start of the MT for (A4,C±32 , p = 2). Here there is only the prime 2
to consider. This is the “easiest” case of pure-cycle covers of genus exceeding 0.
[Fr06a, Prop. 6.12] considers this case to show that both level 0 components of
the reduced absolute spaces are nonmodular curves, despite — like modular curves
— that they embed in P1

j × P1
j just as do modular curves.

Table 10. sh-Incidence Matrix for Ni+0

Orbit cO1,1 cO1,3 cO3,1

cO1,1 1 1 2

cO1,3 1 0 1

cO3,1 2 1 0

Cusp representatives — 1st 3 for Ni+, 2nd 3 for Ni− — of the various cusp
orbits are in this list using the corresponding subscripts.

• ggg1,1 = ((1 2 3), (1 3 2), (1 3 4), (1 4 3))
• ggg1,3 = ((1 2 3), (1 2 4), (1 4 2), (1 3 2))
• ggg3,1 = ((1 2 3), (1 3 2), (1 4 3), (1 3 4))
• ggg1,4 = ((1 2 3), (1 2 4), (1 2 3), (1 2 4))
• ggg3,4 = ((1 2 3), (1 2 4), (1 2 4), (4 3 2))
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Table 11. sh-Incidence Matrix for Ni−0

Orbit cO1,4 cO3,4 cO3,5

cO1,4 2 1 1

cO3,4 1 0 0

cO3,5 1 0 0

• ggg3,5 = ((1 2 3), (1 2 4), (1 4 3), (2 3 1))

Some comments: ggg1,1 is an H-M rep, and a 2-cusp, while ggg1,3 is the shift of an
H-M rep. On the other hand, the cusp orbit of ggg3,5 has length three by Princ. ??.
From Princ. 3.3 we know immediately that the Main Conjecture holds for any H-M
cusp branch. Here, however, is a harder question.

Question E.2. FP 3 says there is at least one H-M component branch defining
a MT for (A4,C±32 , p = 2). Does the Main Conjecture hold for every component
branch?

Not much of a question if there is only one component branch, or slightly worse
there are several component branches, all H-M. Neither of these, however, holds.
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arithmétiques et différentiels, Séminaires et Congrès 13 (2006), 127–144.
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