Poincaré series from Cryptology and Exceptional Towers Mike Fried, UCI and MSU-B 03/26/07

Part 0: Exceptionality and fiber products
Part I: Exceptional rational functions over number fields
Part II: The exceptional tower $\mathcal{T}_{Z, \mathbb{F}_{q}}$ of any variety Z over \mathbb{F}_{q}
Part III: Generalizing Exceptionality: Pr-exceptional covers and Davenport pairs
Part IV: (Chow) motives from exceptional covers and Davenport pairs: Diophantine category of Poincare series over $\left(Z, \mathbb{F}_{q}\right)$

Part V: Comparing $\mathcal{T}_{\mathbb{P}^{1}, \mathbb{F}_{q}}$ with various subtowers: Generated by Serre's Open Image Theorem, CM part; By Serre's Open Image Theorem, GL part; By Wildly ramified polynomials.

Part 0: Exceptionality and fiber products

http://math.uci.edu/~mfried $\rightarrow \S 1 . a$. Articles and Talks: \rightarrow • Finite fields, Exceptional covers and

An \mathbb{F}_{q} cover $\varphi: X \rightarrow Z$ of absolutely irreducible normal varieties is exceptional if φ one-one on $\mathbb{F}_{q^{t}}$ points for infinitely many t.

For a \# field: φ has infinitely many exceptional residue class field reductions. We use the DavenportLewis name exceptional because, equivalently, a version of their geometric property holds for φ.

Using fiber products

Assume $\varphi_{i}: X_{i} \rightarrow Z, i=1,2$, are two covers (of normal varieties) over K. The set theoretic fiber product has geometric points
$\left\{\left(x_{1}, x_{2}\right) \mid x_{i} \in X_{i}(\bar{K}), i=1,2, \varphi_{1}\left(x_{1}\right)=\varphi_{2}\left(x_{2}\right)\right\}:$
$x \in X\left(\overline{\mathbb{F}}_{q}\right)$ is a point in X with coordinates in $\overline{\mathbb{F}}_{q}$.
Won't be normal at $\left(x_{1}, x_{2}\right)$ if x_{1} and x_{2} both ramify over Z. The categorical fiber product here is normalization of the result: components are disjoint, normal varieties, $X_{1} \times{ }_{Z} X_{2}$.

Galois closure of a cover

Denote $X \times_{Z} X$ minus the diagonal by $X_{Z}^{2} \backslash \Delta$.
$X_{Z}^{k} \backslash \Delta$: k th iterate of the fiber product minus the fat diagonal; empty if $k>n=\operatorname{deg}(\varphi)$.

Any K component \hat{X} of $X_{Z}^{n} \backslash \Delta$ is a K Galois closure of φ : unique up to K isomorphism of Galois covers of Z.
S_{n} action on $X_{Z}^{n} \backslash \Delta$ gives the Galois group $G(\hat{X} / Z) \stackrel{\text { def }}{=} \hat{G}_{\varphi}$: subgroup fixing \hat{X}. Without ${ }^{\wedge}$, G_{φ}, denotes absolute Galois closure.

Part I: Exceptional rational functions over \# fields
Cyclic polynomials have the form $x \rightarrow x^{n}$. RSA code scheme uses these. Fewer people know about Chebychev polynomials. Yet, these also have their cryptography use, as do compositions of these types. Proposition 1. If $(n, p-1)=1$, then we can use x^{n} to scramble data into \mathbb{Z} / p. If n is odd, there are infinitely many such primes p.
Proof. Euler's Theorem: Powers of a single integer α fill out $\mathbb{Z} / p \backslash\{0\} \stackrel{\text { def }}{=} \mathbb{Z} / p^{*}$.

Residue Primes that work for (odd) n

Take $p \in\{k+m \cdot n \mid m \in \mathbb{Z}\}$ where k satisfies:

- $(k, n)=1$ (apply Dirichlet's Theorem); and
- $(k-1, n)=1((p-1=k-1+m \cdot n, n)=1)$.

Example: $k=2$ works; other integers may too.

Tchebychev polynomials of odd degree n

$$
\begin{aligned}
T_{n}\left(\frac{1}{2}(x+1 / x)\right)= & \frac{1}{2}\left(x^{n}+1 / x^{n}\right), \\
T_{n}: & \{\infty, \pm 1\} \mapsto\{\infty, \pm 1\} .
\end{aligned}
$$

Proposition 2. If $(n, 6)=1$, then $T_{n}: \mathbb{Z} / p \rightarrow \mathbb{Z} / p$ maps one-one for infinitely many p. Exactly those primes p with $\left(p^{2}-1, n\right)=1$.

Proof: Use finite fields $\mathbb{F}_{p^{2}} \supset \mathbb{Z} / p: \mathbb{F}_{p^{2}}^{*}$ cyclic.

2. Schur's Conjecture:

Cryptography we recognize in modern algebra goes back to the middle of the 1800 s. They used finite fields as the place to encode a message.
Conjecture 3 (Schur 1921). Only compositions of cyclic, Tchebychev and degree $1(x \mapsto a x+b)$ give polynomials mapping 1 - 1 on \mathbb{Z} / p for ∞-ly many p. Problem 4. How to check if an $f(x)$ is a composition of the correct polynomials? If so, how to check if it is $1-1$ for ∞ of p (notation: $1-1_{\infty}$)?

Points toward proving Schur's conjecture:

Step 1: If $f=f_{1} \circ f_{2}\left(f_{i} \in \mathbb{F}_{q}[x]\right)$, then f is $1-1_{\infty}$ if and only f_{1} and f_{2} are $1-1_{\infty}$.

Subtle reduction: If f decomposes over \mathbb{C} then it decomposes over \mathbb{Q} (not automatic for rational functions). So, to prove Schur's conjecture we consider f indecomposable over \bar{K}.

Step 2: Consider $1-1_{\infty} f$ with $f: \mathbb{Z} / p \rightarrow \mathbb{Z} / p$ 1-1.
Then, the polynomial expression

$$
(*) \varphi(x, y)=\frac{f(x)-f(y)}{x-y}=0
$$

has no solutions $\left(x_{0}, y_{0}\right) \in \mathbb{Z} / p \times \mathbb{Z} / p, x_{0} \neq y_{0}$.

Cover characterization of exceptionality

Proposition 5 (Weil). If $\varphi(x, y)$ has u absolutely irreducible factors (over \mathbb{F}_{p}), then $\left({ }^{*}\right)$ has at least $u \cdot p+A \sqrt{p}$ solutions (some A constant in p).
Corollary 6. If f is $1-1_{\infty}$, then $\varphi(x, y) \bmod p$ has no absolutely irreducible factors (for p large). Proposition 7. [DL63] \rightarrow [Mc67] \rightarrow [Fr74] \rightarrow [Fr05] \rightarrow [GLTZ07]: General \mathbb{F}_{q} cover of normal varieties: $\varphi: X \rightarrow Z$ exceptional over $\mathbb{F}_{q^{t}}$ $\Leftrightarrow X_{Z}^{2} \backslash \Delta$ has no $\mathbb{F}_{q^{t}}$ abs. irred. components.

For $1-1_{\infty} f: \mathbb{P}_{x}^{1} \rightarrow \mathbb{P}_{z}^{1}$, the groups \hat{G}_{f} and G_{f}
Consider $f(x)-z=0$ with z a variable. Find n solutions x_{1}, \ldots, x_{n} in some algebraic closure F of $\mathbb{Q}(z)$: $\quad f\left(x_{i}\right)=z$; they generate a field $\mathbb{Q}\left(x_{1}, \ldots, x_{n}, z\right) \stackrel{\text { def }}{=} L_{f}$. Then, $\hat{G}_{f}=G\left(L_{f} / \mathbb{Q}(z)\right)$. Proposition 8. Then, $G_{f} \leq S_{n}$ is primitive, not doubly transitive, and contains an n-cycle.
Example 9. Assume $n>2$ is prime. The group D_{n} (Dihedral of degree n) with generators

$$
\begin{aligned}
& g_{1}=(1 n)(2 n-1) \cdots\left(\frac{n-1}{2} \frac{n+3}{2}\right) \\
& g_{2}=(2 n)(3 n-1) \cdots\left(\frac{n+1}{2} \frac{n+3}{2}\right)
\end{aligned}
$$

is primitive, not double transitive, has an n-cycle.

Why primitive with an n-cycle?

With $f(x)=x^{n}+a_{1} x^{n-1}+\cdots+a_{n}$ (exceptionality allows monic). Solve for x from $f(x)=z$. Solution:

$$
x_{1}=z^{1 / n}+b_{0}+b_{1} z^{-1 / n}+b_{2} z^{-2 / n}+\cdots .
$$

Substitute $e^{\frac{2 \pi i \cdot k}{n}} z^{\frac{1}{n}} \mapsto z^{1 / n}$ for n-cycle in G_{f}.
Let $G_{f}\left(x_{1}\right)$ be the subgroup of G_{f} fixing x_{1}. Primitive means no proper group H with $G_{f}\left(x_{1}\right)<$ $H<G_{f}$. Galois correspondence: Such an H would mean a field $L=\mathbb{Q}(w)$ with $\mathbb{Q}(z)<L<\mathbb{Q}\left(x_{1}\right)$. So, $w=f_{2}\left(x_{1}\right)$, and $z=f_{1}(w)$. Contrary to indecomposable f : $f_{1}\left(f_{2}\left(x_{1}\right)\right)=z$.

Concluding Schur's Conjecture

Why G_{f} is not doubly transitive: Equivalent to $\varphi(x, y)\left(X_{Z}^{2} \backslash \Delta\right)$ has at least two factors over $\overline{\mathbb{Q}}$ (from no abs. irred. factors over \mathbb{Q}).

Get Schur's conjecture if $1-1_{\infty}$ and indecomposable f is variable change of cyclic or Chebychev polynomial. Chebychev case: variable change, $(z, x) \rightarrow\left(a z+b, a^{\prime} x+b^{\prime}\right)\left(a, b, a^{\prime}, b^{\prime} \in\right.$ K), allows $f(\pm u)= \pm u$ with $u^{2}=a \in K$.

Then, with $\ell_{u}: x \mapsto u x, f=\ell_{u} \circ T_{n} \circ \ell_{u^{-1}} \stackrel{\text { def }}{=} T_{n, a}$: $u^{n-1} T_{n, a}$ is what a large literature calls a Dickson polynomial [LMT93].

All exceptional prime degree rational f
Step 1: Show G_{f} is a cyclic or dihedral group.
Proposition 10 (Famous Group Results). If n is
a prime, then (Burnside):
$G_{f} \leq\left\{\left.\left(\begin{array}{cc}u & v \\ 0 & 1\end{array}\right) \right\rvert\, u \in(\mathbb{Z} / n)^{*}, v \in \mathbb{Z} / n\right\} \stackrel{\text { def }}{=} \mathbb{Z} / n \times^{s}(\mathbb{Z} / n)^{*}$.
For n not prime there is no such G_{f} : Schur.
Step 2: Show G_{f} dihedral (resp. cyclic) \qquad polynomial f is Chebychev (resp. cyclic) after changing variables.

Best part: Monodromy method solves many other problems (Schur's conjecture the easiest).

Step 2 cont: Apply Riemann's Existence Theorem.

For $g \in S_{n}, \operatorname{ind}(g) \stackrel{\text { def }}{=} n-\#$ of disjoint cycles in g (including length 1).

If $f: \mathbb{C}_{x} \cup\{\infty\} \rightarrow \mathbb{C}_{z} \cup\{\infty\}$, with branch points $z_{1}, \ldots, z_{r} \Longrightarrow r$ elements $g_{1}, \ldots, g_{r} \in G_{f}$ (branch cycles) with these properties:

- $G_{f}=\left\langle g_{1}, \ldots, g_{r-1}\right\rangle$ (generation);
- $\prod_{i=1}^{r} g_{i}=1$ (product-one); and
- $2(n-1)=\sum_{i=1}^{r} \operatorname{ind}\left(g_{i}\right)($ genus 0$)$.

Finish Polynomial case

- $g_{r} \stackrel{\text { def }}{=} g_{\infty}$ is an n-cycle; and
- $n-1=\sum_{i=1}^{r-1} \operatorname{ind}\left(g_{i}\right)$ (genus 0$)$.

Proposition 11. Combine with

$$
g_{1}, \ldots, g_{r-1}, g_{\infty} \in \mathbb{Z} / n \times^{s}(\mathbb{Z} / n)^{*} .
$$

Polynomial Result:

- $\left\{g_{1}, \ldots, g_{r-1}\right\}=\left\{g_{1}, g_{2}\right\}$ as in Ex. 9 modulo conjugation in $S_{n}, g_{\infty}=(12 \ldots n)^{-1}$; or
- $r=2$ and $g_{1}=(12 \ldots n)$.

Tchebychev/cyclic polynomial branch cycles.

Dominant rational (not polynomial) function case

 Branch cycles are $\left(g_{1}, g_{2}, g_{3}, g_{4}\right), g_{i}$ s conjugate to $\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right) \in \mathbb{Z} / n \times \times^{s}\{ \pm 1\}$. Most new functions from Weierstrass \wp-functions through this diagram:$$
\begin{array}{ccc}
\mathbb{C}_{\{ \pm w\}} \cup\{\infty\} & \stackrel{f}{\longrightarrow} & \mathbb{C}_{\{ \pm z\}} \cup\{\infty\} \\
\bmod \{ \pm 1\} \uparrow & & \\
& & \\
\mathbb{C}_{w} / L_{w} & \xrightarrow{\bmod L_{z} / L_{w} \equiv \mathbb{Z} / n}\{ & \\
\mathbb{C}_{z} / L_{z} .
\end{array}
$$

Here $L_{w} \leq L_{z}$ both generated over \mathbb{Z} by two linearly independent (over \mathbb{R}) complex numbers.

Part II: Exceptional tower $\mathcal{I}_{Z, \mathbb{F}_{q}}$ of variety Z over \mathbb{F}_{q} Extension of constants series
Let $\hat{K}_{\varphi}(k)$ be the minimal def. field of (geom.) \bar{K} components of $X_{Z}^{k} \backslash \Delta, 1 \leq k \leq n$:

$$
\operatorname{ker}\left(\hat{G}_{\varphi} \rightarrow G\left(\hat{K}_{\varphi}(n) / K\right)\right)=G_{\varphi}
$$

Each $\hat{K}_{\varphi}(k) / K$ is Galois: k th ext. of constants field: $G\left(\hat{K}_{\varphi}(k) / K\right)$ permutes geom. components of $X_{Y}^{k} \backslash \Delta$. Denote perm. rep. by $T_{\varphi, k}$.

Characterize exceptional

There is a natural sequence of quotients

$$
\begin{aligned}
G(\hat{X} / Y) \rightarrow G\left(\hat{K}_{\varphi}(n) / K\right) & \rightarrow \cdots \rightarrow G\left(\hat{K}_{\varphi}(k) / K\right) \\
& \rightarrow \cdots \rightarrow G\left(\hat{K}_{\varphi}(1) / K\right) .
\end{aligned}
$$

$G(\hat{K}(1) / K)$ is trivial iff all K components of X are absolutely irreducible.
Theorem 12. For K a finite field, $G\left(\hat{K}_{\varphi}(2) / K\right)$ having no fixed points under $T_{\varphi, 2}$ characterizes φ being exceptional ([Fr74], [Fr05], [GLTZ07]).

The tower $\mathcal{T}_{Z, \mathbb{F}_{q}}$ and its cryptology potential
Morphisms $(X, \varphi) \in \mathcal{T}_{Z, \mathbb{F}_{q}}$ to $\left(X^{\prime}, \varphi^{\prime}\right) \in \mathcal{I}_{Z, \mathbb{F}_{q}}$ are covers $\psi: X \rightarrow X^{\prime}$ with $\varphi=\varphi^{\prime} \circ \psi$. Partially order $\mathcal{T}_{Z, \mathbb{F}_{q}}$ by $(X, \varphi)>\left(X^{\prime}, \varphi^{\prime}\right)$ if there is an $\left(\mathbb{F}_{q}\right)$ morphism ψ from (X, φ) to ($X^{\prime}, \varphi^{\prime}$).

Then ψ induces:

- a homomorphism $G\left(\hat{X}_{\varphi} / X_{\varphi}\right)$ to $G\left(\hat{X}_{\varphi^{\prime}} / X_{\varphi^{\prime}}\right)$; and
- canonical map from cosets of $G\left(X_{\varphi} / X_{\varphi}\right)$ in $G\left(\hat{X}_{\varphi} / Z\right)$ to the corresponding cosets for X^{\prime}.

Note: (X, ψ) is automatically in $\mathcal{T}_{X^{\prime}, \mathbb{F}_{q}}$.

Forming the exceptional tower
Nub of an exceptional tower of $\left(Z, \mathbb{F}_{q}\right): \exists$ unique minimal exceptional cover X - the fiber product dominating exceptional covers $\varphi_{i}: X_{i} \rightarrow Z, i=1,2$. Note: Everything depends on \mathbb{F}_{q}.

For $(X, \varphi) \in \mathcal{T}_{Z, \mathbb{F}_{q}}$ denote cosets of $G\left(\hat{X}_{\varphi} / X_{\varphi}\right)$ in $G\left(\hat{X}_{\varphi} / Z\right)=\hat{G}_{\varphi}$ by V_{φ}; coset of 1 by v_{φ} and the rep. of \hat{G}_{φ} on these cosets by $T_{\varphi}: \hat{G}_{\varphi} \rightarrow S_{V_{\varphi}}$. Write $G\left(\hat{K}_{\varphi_{i}}(2) / \mathbb{F}_{q}\right)$ as $\mathbb{Z} / d\left(\varphi_{i}\right), i=1,2$.

Why $X_{1} \times_{Z} X_{2}$ has exactly one abs. irred. comp.
Do $\frac{1}{2}$, suppose none! Let $\mathbb{F}_{q} t_{0}$ contain coefficients of all absolutely irred. $X_{1} \times{ }_{Z} X_{2}$ comps. Then, if $\left(t, t_{0}\right)=1, X_{1} \times{ }_{Z} X_{2}$ has no abs. irr. com. over $\mathbb{F}_{q^{t}}$. Normality $\Longrightarrow X_{1} \times_{Z} X_{2}\left(\mathbb{F}_{q^{t}}\right)=\emptyset$.

D-L criterion allows assuming $\varphi_{i} s$ are étale. Then, $t \in\left(\mathbb{Z} / d\left(\varphi_{i}\right)\right)^{*}, i=1,2, \Longrightarrow \varphi_{i}$ is 1-1 and onto (over $\mathbb{F}_{q^{t}}$), $i=1,2$. For t large, $\exists z \in Z\left(\mathbb{F}_{q^{t}}\right)$
$\Longrightarrow \exists x_{i} \in X_{i}\left(\mathbb{F}_{q^{t}}\right) \mapsto z, i=1,2$.
So $\left(x_{1}, x_{2}\right) \in X_{1} \times_{Z} X_{2}\left(\mathbb{F}_{q^{t}}\right)$.

$\mathcal{T}_{Z, \mathbb{F}_{q}}$ is a very rigid category

Proposition 13. In $\mathcal{T}_{Z, \mathbb{F}_{q}}$ there is at most one $\left(\mathbb{F}_{q}\right)$ morphism between any two objects. So, $\varphi: X \rightarrow Z$ has no \mathbb{F}_{q} automorphisms: $\operatorname{Cen}_{S_{V_{\varphi}}}\left(\hat{G}_{\varphi}\right)=\{1\}$.

Then, $\left\{\left(\hat{G}_{\varphi}, T_{\varphi}, v_{\varphi}\right)\right\}_{(X, \varphi) \in \mathcal{T}_{Z, \mathbb{F}_{q}}}$ canonically defines a compatible system of permutation representations; it has a projective limit $\left(\hat{G}_{Z}, T_{Z}\right)$.

Value of the Tower: It now makes sense to form the subtower generated by special exceptional covers: The minimal tower including all covers in the set. Examples: Tamely ramified subtower; Schur-Dickson subtower of $\mathcal{T}_{\mathbb{P}_{z}^{2}, \mathbb{F} q} ;$ Subtower generated by CM (or $\mathbf{G L}_{2}$) covers from Serre's OIT (Part V).

Exceptional scrambling

For any t let $\mathcal{T}_{Z, \mathbb{F}_{q}}(t)$ be those covers with t in their exceptionality set.

Cryptology starts by encoding a message into a set. For t large our message encodes in \mathbb{F}_{q}. Then, select $(X, \varphi) \in \mathcal{I}_{Z, \mathbb{F}_{q}}(t)$. Embed our message as $x_{0} \in X\left(\mathbb{F}_{q^{t}}\right)$. Use φ as a one-one function to pass x_{0} to $\varphi\left(x_{0}\right)=z_{0} \in Z\left(\mathbb{F}_{q^{t}}\right)$ for "publication." You and everyone else who can understand "message" x_{0} can see z_{0} below it. To find out what is x_{0} from z_{0}, need an inverting function $\varphi_{t}^{-1}: Z\left(\mathbb{F}_{q^{t}}\right) \rightarrow X\left(\mathbb{F}_{q^{t}}\right)$.

Inverting the scrambling map

Question 14 (Periods). With $X=\mathbb{P}_{x}^{1}$ and $Z=\mathbb{P}_{z}^{1}$, identify them to regard φ on $\mathbb{F}_{q^{t}}$ as φ_{t}, permuting $\mathbb{F}_{q^{t}} \cup\{\infty\}$. Label the order of φ_{t} as $m_{\varphi, t}=m_{t}$. Then, $\varphi_{t}^{m_{t}-1}$ inverts φ_{t}. How does $m_{\varphi, t}$ vary, for genus 0 exceptional φ, as t varies?

Standard RSA inverts $x \mapsto x^{n}$ by inverting the nth power map on $\mathbb{F}_{q^{t}}^{*}$ (mult. by n on $\mathbb{Z} /\left(q^{t}-1\right)$ —Euler's Theorem). Works for all covers in the Schur Sub-Tower of $\left(\mathbb{P}_{y}^{1}, \mathbb{F}_{q}\right)$ generated by $x^{n} \mathrm{~s}$ and $T_{n} \mathrm{~s}$. (For $T_{n} \mathrm{~s}$, "invert mult. by n " on $\mathbb{Z} /\left(q^{2 t}-1\right)$.)

Part III: pr-exceptional covers and Davenport pairs

Definition 15. $\varphi: X \rightarrow Z$ is p (ossibly)r(educible)-exceptional: $\varphi: X\left(\mathbb{F}_{q^{t}}\right) \rightarrow Z\left(\mathbb{F}_{q^{t}}\right)$ surjective for ∞-ly many t.

Then, φ is exceptional iff X is abs. irreducible. We even allow X to have no abs. irred. comps.

Form $\hat{X} \rightarrow Z$ (with its canonical rep. T_{φ}), the Galois closure with group \hat{G}_{φ}, and get an extension of constants field with $G\left(\hat{\mathbb{F}}_{\varphi} / \mathbb{F}_{q}\right)=\mathbb{Z} / \hat{d}(\varphi)$.

D-L generalization; pr-exceptional characterization

 For $t \in \mathbb{Z} / \hat{d}(\varphi)$:$$
\hat{G}_{\varphi, t} \stackrel{\text { def }}{=}\left\{g \in \hat{G}_{\varphi} \mid \text { restricts to } t \in \mathbb{Z} / \hat{d}(\varphi)\right\} .
$$

Exceptionality set E_{φ} of a pr-exceptional cover: $\left\{t \in \mathbb{Z} / \hat{d}(\varphi) \mid \forall g \in \hat{G}_{\varphi, t}\right.$ fixes ≥ 1 letter of $\left.T_{\varphi}\right\}$.
pr-exceptional correspondences: $W \subset X_{1} \times X_{2}$ with projections $W \rightarrow X_{i}$ s pr-exceptional.

Exceptional correspondence between X_{1} and X_{2} $\Longrightarrow\left|X_{1}\left(\mathbb{F}_{q^{t}}\right)\right|=\left|X_{2}\left(\mathbb{F}_{q^{t}}\right)\right|$ for ∞-ly many t. If $X_{2}=\mathbb{P}_{z}^{1}$, then $\sum_{t=1}^{\infty}\left(a_{n} \stackrel{\text { def }}{=}\left|X_{1}\left(\mathbb{F}_{q^{t}}\right)\right|\right) u^{t}$ has $a_{n}=$ $q^{t}+1$ for ∞-ly many t.

A zoo of high genus except. correspondences between $\mathbb{P}_{x_{1}}^{1}$ and $\mathbb{P}_{x_{2}}^{1}$
If $\varphi_{i}: \mathbb{P}_{x_{i}}^{1} \rightarrow \mathbb{P}_{z}^{1}, i=1,2$ is exceptional, then $\mathbb{P}_{x_{1}}^{1} \times_{\mathbb{P}_{z}^{1}} \mathbb{P}_{x_{2}}^{1}$ has a unique absolutely irreducible component, an exceptional cover of $\mathbb{P}_{x_{i}}^{1}, i=1,2$.

Suppose $\varphi_{i}: X_{i} \rightarrow Z, i=1,2$, are abs. irreducible covers. The minimal $\left(\mathbb{F}_{q}\right)$ Galois closure \hat{X} of both is any \mathbb{F}_{q} component of $\hat{X}_{1} \times{ }_{Z} \hat{X}_{2}$. Attached group, $\hat{G}=\hat{G}_{\left(\varphi_{1}, \varphi_{2}\right)}=G(\hat{X} / Z)$: Fiber product of $G\left(\hat{X}_{1} / Z\right)$ and $G\left(\hat{X}_{2} / Z\right)$ over maximal H through which they both factor.

D(avenport)Pairs: new pr-except. correspondences Definition 16. $\left(\varphi_{1}, \varphi_{2}\right)$ is a DP (resp. i(sovalent)DP) if $\varphi_{1}\left(X_{1}\left(\mathbb{F}_{q^{t}}\right)\right)=\varphi_{2}\left(X_{2}\left(\mathbb{F}_{q^{t}}\right)\right)$ for ∞-ly many t (resp. ranges assumed with same multiplicity; T. Bluer's name).

Equivalent to being a DP:
$X_{1} \times_{Z} \quad X_{2} \xrightarrow{{ }^{\mathrm{pr}} X_{i}} X_{i}, \quad$ is pr-exceptional, and the exceptionality sets $E_{\operatorname{pr}_{i}}\left(\mathbb{F}_{q}\right), i=1,2$, have nonempty (so infinite) intersection

$$
E_{\mathrm{pr}_{1}}\left(\mathbb{F}_{q}\right) \cap E_{\mathrm{pr}_{2}}\left(\mathbb{F}_{q}\right) \stackrel{\text { def }}{=} E_{\varphi_{1}, \varphi_{2}}\left(\mathbb{F}_{q}\right)
$$

Part IV: (Chow) motives: Diophantine category of Poincare series over $\left(Z, \mathbb{F}_{q}\right)$
Let $W_{D, \mathbb{F}_{q}}(u)=\sum_{t=1}^{\infty} N_{D}(t) u^{t}$ be a Poincaré series for a diophantine problem D over a finite field \mathbb{F}_{q}. We call these Weil vectors. Example: $F(\boldsymbol{x}, \boldsymbol{z}) \in \mathbb{F}_{q}[\boldsymbol{x}, \boldsymbol{z}]$,

$$
N_{D}(t)=\left|\left\{\boldsymbol{z} \in \mathbb{F}_{q^{t}}^{m_{z}} \mid \exists \boldsymbol{x} \in \mathbb{F}_{q^{t}}^{m_{\boldsymbol{x}}}, F(\boldsymbol{x}, \boldsymbol{z})=0\right\}\right| .
$$

Weil Relation between $W_{D_{1}, \mathbb{F}_{q}}(u)$ and $W_{D_{2}, \mathbb{F}_{q}}(u)$: ∞-ly many coefficients of $W_{D_{1}, \mathbb{F}_{q}}(u)-W_{D_{2}, \mathbb{F}_{q}}(u)$ equal 0. Effectiveness result: For any Weil vector, the support set of $t \in \mathbb{Z}$ of 0 coefficients differs by a finite set from a union of full Frobenius progressions.

Motivic formulation

Question 17. If Poincare series of X over \mathbb{F}_{q} has t-th coefficient equal $q^{t}+1$ for ∞-ly many t, is there a chain of except. correspondences from X to \mathbb{P}^{1} ?

Equivalent to characterizing X for which $\sum_{t=1}^{\infty} \operatorname{tr}_{\mathrm{Fr}_{q}}\left[\sum_{0}^{2}(-1)^{i} H_{\ell}^{i}(X)\right] u^{t}$ has a relation with the series with $X=\mathbb{P}^{1}$: Chow motive coefficients.

There are p-adic versions: Replace $\mathbb{F}_{q^{t}}$ by higher residue fields with the Witt vectors R_{t} with residue class \mathbb{F}_{q}; and use integration instead of counting.

Result of Denef-Loeser [Fr77], [DL01], [Ni04]

Consider a number field version, by R_{p} the completion the integers of K with respect to prime \boldsymbol{p}. Then, $W_{D, R_{p}}(u) \stackrel{\text { def }}{=} \sum_{v=1}^{\infty} N_{D, R_{p}}(v) u^{v}$ with $N_{D, R_{p}}(v)$ using values in R_{p} / p^{v} that lift to values in R_{p}. To make this useful motivically requires doing this for those D with a map to a fixed space Z / K.

Given D, There is a string of - relative to Z -Chow motives (over K) $\left\{\left[M_{v}\right]\right\}_{v=0}^{\infty}$, so for almost all $\boldsymbol{p}, W_{D, R_{p}}(u)=\sum_{t=1}^{\infty} \operatorname{tr}_{\operatorname{Fr}_{p}}\left[M_{t}\right] u^{t}$.

Role of iDPs

Given Weil Vector $W\left(D, \mathbb{F}_{q}\right)$ over $\left(Z, \mathbb{F}_{q}\right)$ and φ : $X \rightarrow Z$ can define pullback $W^{\varphi}\left(D, \mathbb{F}_{q}\right)$ over $\left(X, \mathbb{F}_{q}\right)$.

Assume $\varphi_{i}: X_{i} \rightarrow Z, i=1,2$, is an iDP over \mathbb{F}_{q}, $X_{1}=X_{2}$ and D has a map to Z. Then, $\left(\varphi_{1}, \varphi_{2}\right)$ produces new Weil vectors $W_{D, \mathbb{F}_{q}}^{\varphi_{i}} i=1,2$, and a relation between $W_{D, \mathbb{F}_{q}}^{\varphi_{1}}(u)$ and $W_{D, \mathbb{F}_{q}}^{\varphi_{2}}(u)$: ∞-ly many coefficients of $W_{D, \mathbb{F}_{q}}^{\varphi_{1}}(u)-W_{D, \mathbb{F}_{q}}^{\varphi_{2}}(u)$ equal 0 .

Part V: CM and GL_{2} exceptional genus 0 covers

Test for a cover $\varphi: X \rightarrow Z$ decomposing. Check $X \times{ }_{Z} X \backslash \Delta$ for irreducible components Z of form $X^{\prime} \times_{Z} X^{\prime}$. If none, then φ is indecomposable. Otherwise, φ factors through $X^{\prime} \rightarrow Z$ (Gutierrez, et.al. from [FrM69]).

Denote the minimal Galois extension of K over which φ decomposes into absolutely indecomposable covers by K_{φ} (ind): The indecomposability field of φ. Proposition 18. For any cover $\varphi: X \rightarrow Z$ over a field $K, K_{\varphi}($ ind $) \subset \hat{K}_{\varphi}(2)$.

Most of rest of genus 0 except. covers/ \mathbb{Q}

[Fr78], [GSM04]: From Weierstrass $\wp-$-functions.

$$
\begin{array}{cc}
\mathbb{P}_{ \pm w}^{1} & \xrightarrow{f} \quad \mathbb{P}_{\{ \pm z\}}^{1} \\
\bmod \{ \pm 1\} & \bigcap_{\bmod \{ \pm 1\}} \\
\mathbb{C}_{w} / L_{w} & \xrightarrow{\bmod L_{z} / L_{w}} \\
\mathbb{C}_{z} / L_{z} .
\end{array}
$$

- Case CM: $\operatorname{deg}(f)=r$, a prime
- Case $\mathrm{GL}_{2}: \operatorname{deg}(f)=r^{2}$, a prime squared
[O67], [Se68], [Se81], [R90], [Se03] \Leftrightarrow case of Serre's $\mathrm{O}($ pen $) 1$ (mage) $\mathrm{T}($ heorem $)$. CM case can describe inversion period from "Euler's Theorem,"essentially equivalent to the theory of complex multiplication.
GL_{2} gist [Fr05, §6.1-.2], Serre's GL_{2} OIT [Se68, etc]
- $[f] \mapsto \mathbb{P}_{j}^{1}$ by the j-invariant of the 4 branch points;
- $G_{f}=(\mathbb{Z} / r)^{2} \times^{s}\{ \pm 1\}$; yet
- for a non- $\mathrm{CM} j$-invariant (say in \mathbb{Q}), then for a.a. r, then for $f \stackrel{\text { def }}{=} f_{j, r}, \hat{G}_{f}=(\mathbb{Z} / r)^{2} \times{ }^{s} \mathrm{GL}_{2}(\mathbb{Z} / r)$.
Exceptionality versus indecomposability: Given $f_{j, r}$ and the set \mathcal{A} of $A \in \mathrm{GL}_{2}(\mathbb{Z} / r) /\{ \pm 1\}$ for which A acts irreducibly on $(\mathbb{Z} / r)^{2}$. Consider $P_{f_{j, r}, \mathcal{A}}$ those primes p with the Frobenius of $f_{j, r}: \mathbb{P}_{w}^{1} \rightarrow \mathbb{P}_{z}^{1} \bmod p$ in \mathcal{A}. For such p
- $f_{j, r} \bmod p$ is exceptional; and (equivalently)
- $f_{j, r} \bmod p$ is indecomposable, but decomposes over $\overline{\mathbb{F}}_{p}$.

Two automorphic function questions

[Fr05,§6] poses an analog of [Se03] to find an automorphic funct. (should exist according to Langlands) for primes of except. for $j \leftrightarrow$ Ogg's curve 3^{+}[Se81, extensive discuss]. Would give an explicit structure to the primes of exceptionality.

For any exceptional $f_{j, r} \bmod p$, form a Poincaré series with the period of exceptionality its coefficients. Conjecture, this series is rational. This result would then remove from consideration the arbitrary identification of \mathbb{P}_{w}^{1} with \mathbb{P}_{z}^{1}.

Bibliography; Parts 0 and I:

- [DL63] H. Davenport and D.J. Lewis, Notes on Congruences (I), Quart. J. Math. Oxford (2) 14 (1963), 51-60.
- [Fr70] M.D. Fried, On a conjecture of Schur, Mich. Math. J. 17 (1970), 41-45.
- Fr74 M. Fried, On a Theorem of MacCluer, Acta. Arith. XXV (1974), 122-127.
- Fr78 M. Fried, Galois groups and Complex Multiplication, T.A.M.S. 235 (1978) 141-162.
- [Fr05] M. Fried, The place of exceptional covers among all diophantine relations, J. Finite Fields 11 (2005) 367-433.
- [GMS03] R. Guralnick, P. Müller and J. Saxl, The rational function analoque of a question of Schur and exceptionality of permutations representations, Memoirs of AMS 162773 (2003),ISBN 0065-9266.
- [LMT93] R. Lidl, G.L. Mullen and G. Turnwald, Dickson Polynomials, Pitman monographs, Surveys in pure and applied math,65, Longman Scientific, 1993.
- [GLTZ07] R. Guralnick, T. Tucker and M. Zieve (behind the scenes Lenstra), Exceptional covers and bijections on Rational Points, to appear IRMN, 2007.
- [Mc67] C. MacCluer, On a conjecture of Davenport and Lewis concerning exceptional polynomials, Acta. Arith. 12 (1967), 289-299.
- [Sch23] I. Schur, Uber den Zusammenhang zwischen einem Problem der Zahlentheorie and einem Satz über algebraische Functionen, S.-B. Preuss. Akad. Wiss., Phys.-Math. Klasse (1923), 123-134.

Bibliography; Parts II and V:

- [DL01] J. Denef and F. Loeser, Definable sets, motives and p-adic integrals, JAMS 14 (2001), 429-469.
- [Fr76] M. Fried, Solving diophantine problems over all residue class fields of a number field, Annals Math. 104 (1976), 203-233.
- [FGS93] M.D. Fried, R. Guralnick and J. Saxl, Schur covers and Carlitz's conjecture, Israel J. Math. 82 (1993), 157-225.
- [GTZ07] R. Guralnick, T. Tucker and M. Zieve, Exceptional covers and bijections on rational points, to appear in IRMN.
- [Le95] H.W. Lenstra Jr., Talk at Glasgow conference, Finite Fields III, (1995).
- Ni04] J. Nicaise, Relative motives and the theory of pseudo-finite fields, to appear in IMRN.
- O67] A.P. Ogg, Abelian curves of small conductor, Crelle's J 226 (1967), 204-215.
- R90 K. Ribet, Review of new edition of [Se68], BAMS 22 (1990), 214-218.
- [Se68] J.-P. Serre, Abelian ℓ-adic representations and elliptic curves, 1st ed., McGill University Lecture Notes, Benjamin, New York • Amsterdam, 1968, in collaboration with Willem Kuyk and John Labute.
- [Se81] J.-P. Serre, Quelques Applications du

Théorème de Densité de Chebotarev, Publ. Math. IHES 54 (1981), 323-401.

- [Se03] J.-P. Serre, On a Theorem of Jordan, BAMS 40 \#4 (2003), 429-440.

