Poincaré series from Cryptology and Exceptional Towers Mike Fried, UCI and MSU-B 03/26/07

- Part 0: Exceptionality and fiber products
- Part I: Exceptional rational functions over number fields
- Part II: The exceptional tower $\mathcal{T}_{Z,\mathbb{F}_q}$ of any variety Z over \mathbb{F}_q
- Part III: Generalizing Exceptionality: Pr-exceptional covers and Davenport pairs
- Part IV: (Chow) motives from exceptional covers and Davenport pairs: Diophantine category of Poincare series over (Z, \mathbb{F}_q)
- Part V: Comparing $\mathcal{T}_{\mathbb{P}^1,\mathbb{F}_q}$ with various subtowers: Generated by Serre's Open Image Theorem, **CM** part; By Serre's Open Image Theorem, **GL** part; By Wildly ramified polynomials.

Part 0: Exceptionality and fiber products

 $\texttt{http://math.uci.edu/~mfried} \rightarrow \S1.a. \text{ Articles and Talks:} \rightarrow \bullet \text{ Finite fields, Exceptional covers and}$

motivic Poincare series

An \mathbb{F}_q cover $\varphi : X \to Z$ of absolutely irreducible normal varieties is exceptional if φ one-one on \mathbb{F}_{q^t} points for infinitely many t.

For a # field: φ has infinitely many exceptional residue class field reductions. We use the Davenport-Lewis name exceptional because, equivalently, a version of their geometric property holds for φ .

Using fiber products

Assume $\varphi_i : X_i \to Z$, i = 1, 2, are two covers (of normal varieties) over K. The set theoretic fiber product has geometric points

 $\{(x_1, x_2) \mid x_i \in X_i(\bar{K}), i = 1, 2, \varphi_1(x_1) = \varphi_2(x_2)\} : x \in X(\bar{\mathbb{F}}_q) \text{ is a point in } X \text{ with coordinates in } \bar{\mathbb{F}}_q.$ Won't be normal at (x_1, x_2) if x_1 and x_2 both ramify over Z. The *categorical* fiber product here is *normalization* of the result: components are disjoint, normal varieties, $X_1 \times_Z X_2$.

Galois closure of a cover

Denote $X \times_Z X$ minus the diagonal by $X_Z^2 \setminus \Delta$. $X_Z^k \setminus \Delta$: kth iterate of the fiber product minus the fat diagonal; empty if $k > n = \deg(\varphi)$.

Any K component \hat{X} of $X_Z^n \setminus \Delta$ is a K Galois closure of φ : unique up to K isomorphism of Galois covers of Z.

 S_n action on $X_Z^n \setminus \Delta$ gives the Galois group $G(\hat{X}/Z) \stackrel{\text{def}}{=} \hat{G}_{\varphi}$: subgroup fixing \hat{X} . Without \hat{A} , G_{φ} , denotes absolute Galois closure.

Part I: Exceptional rational functions over # fields

Cyclic polynomials have the form $x \to x^n$. RSA code scheme uses these. Fewer people know about Chebychev polynomials. Yet, these also have their cryptography use, as do compositions of these types. **Proposition 1.** If (n, p - 1) = 1, then we can use x^n to scramble data into \mathbb{Z}/p . If n is odd, there are infinitely many such primes p. *Proof.* Euler's Theorem: Powers of a single integer α fill out $\mathbb{Z}/p \setminus \{0\} \stackrel{\text{def}}{=} \mathbb{Z}/p^*$.

Residue Primes that work for (odd) nTake $p \in \{k + m \cdot n | m \in \mathbb{Z}\}$ where k satisfies: • (k, n) = 1 (apply Dirichlet's Theorem); and

•
$$(k-1,n) = 1$$
 $((p-1 = k - 1 + m \cdot n, n) = 1)$.
Example: $k = 2$ works; other integers may too.

Tchebychev polynomials of odd degree n

$$T_n(\frac{1}{2}(x+1/x)) = \frac{1}{2}(x^n+1/x^n),$$

$$T_n: \{\infty, \pm 1\} \mapsto \{\infty, \pm 1\}.$$

Proposition 2. If (n, 6) = 1, then $T_n : \mathbb{Z}/p \to \mathbb{Z}/p$ maps one-one for infinitely many p. Exactly those primes p with $(p^2 - 1, n) = 1$.

Proof: Use finite fields $\mathbb{F}_{p^2} \supset \mathbb{Z}/p$: $\mathbb{F}_{p^2}^*$ cyclic.

2. Schur's Conjecture:

Cryptography we recognize in modern algebra goes back to the middle of the 1800s. They used finite fields as the place to encode a message.

Conjecture 3 (Schur 1921). Only compositions of cyclic, Tchebychev and degree 1 $(x \mapsto ax + b)$ give polynomials mapping 1-1 on \mathbb{Z}/p for ∞ -ly many p. **Problem 4.** How to check if an f(x) is a composition of the correct polynomials? If so, how to check if it is 1-1 for ∞ of p (notation: $1-1_{\infty}$)? Points toward proving Schur's conjecture:

Step 1: If $f = f_1 \circ f_2$ ($f_i \in \mathbb{F}_q[x]$), then f is $1-1_{\infty}$ if and only f_1 and f_2 are $1-1_{\infty}$.

Subtle reduction: If f decomposes over \mathbb{C} then it decomposes over \mathbb{Q} (not automatic for *rational* functions). So, to prove Schur's conjecture we consider f indecomposable over \overline{K} .

Step 2: Consider $1-1_{\infty}f$ with $f: \mathbb{Z}/p \to \mathbb{Z}/p$ 1-1. Then, the polynomial expression

(*)
$$\varphi(x, y) = \frac{f(x) - f(y)}{x - y} = 0$$

has no solutions $(x_0, y_0) \in \mathbb{Z}/p \times \mathbb{Z}/p$, $x_0 \neq y_0$.

Cover characterization of exceptionality **Proposition 5 (Weil).** If $\varphi(x, y)$ has u absolutely irreducible factors (over \mathbb{F}_p), then (*) has at least $u \cdot p + A_{\sqrt{p}}$ solutions (some A constant in p). **Corollary 6.** If f is $1-1_{\infty}$, then $\varphi(x,y) \mod p$ has no absolutely irreducible factors (for p large). **Proposition 7.** $[DL63] \rightarrow [Mc67] \rightarrow [Fr74] \rightarrow$ $[Fr05] \rightarrow [GLTZ07]:$ General \mathbb{F}_a cover of normal varieties: $\varphi: X \to Z$ exceptional over \mathbb{F}_{q^t} $\Leftrightarrow X_Z^2 \setminus \Delta \text{ has no } \mathbb{F}_{q^t} \text{ abs. irred. components.}$

– Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

For $1-1_{\infty}$ $f: \mathbb{P}^1_r \to \mathbb{P}^1_r$, the groups G_f and G_f Consider f(x) - z = 0 with z a variable. Find n solutions x_1, \ldots, x_n in some algebraic closure F of $\mathbb{Q}(z)$: $f(x_i) = z$; they generate a field $\mathbb{Q}(x_1,\ldots,x_n,z) \stackrel{\text{def}}{=} L_f$. Then, $\hat{G}_f = G(L_f/\mathbb{Q}(z))$. **Proposition 8.** Then, $G_f \leq S_n$ is primitive, not doubly transitive, and contains an n-cycle. **Example 9.** Assume n > 2 is prime. The group D_n (Dihedral of degree n) with generators $g_1 = (1 n)(2 n - 1) \cdots (\frac{n-1}{2} \frac{n+3}{2})$ $g_2 = (2n)(3n-1)\cdots(\frac{n+1}{2}\frac{n+3}{2})$ is primitive, not double transitive, has an *n*-cycle.

Why primitive with an *n*-cycle? With $f(x) = x^n + a_1 x^{n-1} + \dots + a_n$ (exceptionality allows monic). Solve for x from f(x) = z. Solution: $x_1 = z^{1/n} + b_0 + b_1 z^{-1/n} + b_2 z^{-2/n} + \dots$.

Substitute $e^{\frac{2\pi i \cdot k}{n}} z^{\frac{1}{n}} \mapsto z^{1/n}$ for *n*-cycle in G_f .

Let $G_f(x_1)$ be the subgroup of G_f fixing x_1 . Primitive means no proper group H with $G_f(x_1) < H < G_f$. Galois correspondence: Such an H would mean a field $L = \mathbb{Q}(w)$ with $\mathbb{Q}(z) < L < \mathbb{Q}(x_1)$. So, $w = f_2(x_1)$, and $z = f_1(w)$. Contrary to indecomposable f: $f_1(f_2(x_1)) = z$.

Concluding Schur's Conjecture

Why G_f is not doubly transitive: Equivalent to $\varphi(x,y)$ $(X_Z^2 \setminus \Delta)$ has at least two factors over $\overline{\mathbb{Q}}$ (from no abs. irred. factors over \mathbb{Q}).

Get Schur's conjecture if $1-1_{\infty}$ and indecomposable f is variable change of cyclic or Chebychev polynomial. Chebychev case: variable change, $(z, x) \rightarrow (az + b, a'x + b')$ $(a, b, a', b' \in K)$, allows $f(\pm u) = \pm u$ with $u^2 = a \in K$.

Then, with $\ell_u : x \mapsto ux$, $f = \ell_u \circ T_n \circ \ell_{u^{-1}} \stackrel{\text{def}}{=} T_{n,a}$: $u^{n-1}T_{n,a}$ is what a large literature calls a *Dickson polynomial* [LMT93].

All exceptional prime degree rational fStep 1: Show G_f is a cyclic or dihedral group. **Proposition 10 (Famous Group Results).** If n is a prime, then (Burnside): $G_f \leq \left\{ \begin{pmatrix} u & v \\ 0 & 1 \end{pmatrix} \mid u \in (\mathbb{Z}/n)^*, v \in \mathbb{Z}/n \right\} \stackrel{\text{def}}{=} \mathbb{Z}/n \times {}^s (\mathbb{Z}/n)^*.$

For n not prime there is no such G_f : Schur. Step 2: Show G_f dihedral (resp. cyclic) \iff polynomial f is Chebychev (resp. cyclic) after changing variables.

Best part: *Monodromy method* solves many other problems (Schur's conjecture the easiest).

Step 2 cont: Apply Riemann's Existence Theorem. For $g \in S_n$, $ind(g) \stackrel{\text{def}}{=} n - \#$ of disjoint cycles in g (including length 1).

If $f : \mathbb{C}_x \cup \{\infty\} \to \mathbb{C}_z \cup \{\infty\}$, with branch points $z_1, \ldots, z_r \implies r$ elements $g_1, \ldots, g_r \in G_f$ (branch cycles) with these properties:

- $G_f = \langle g_1, \ldots, g_{r-1} \rangle$ (generation);
- $\prod_{i=1}^{r} g_i = 1$ (product-one); and
- $2(n-1) = \sum_{i=1}^{r} \operatorname{ind}(g_i)$ (genus 0).

Finish Polynomial case

•
$$g_r \stackrel{\text{def}}{=} g_\infty$$
 is an *n*-cycle; and

•
$$n - 1 = \sum_{i=1}^{r-1} \operatorname{ind}(g_i)$$
 (genus 0).

Proposition 11. Combine with

$$g_1,\ldots,g_{r-1},g_\infty\in\mathbb{Z}/n\times^s(\mathbb{Z}/n)^*.$$

Polynomial Result:

- $\{g_1, \ldots, g_{r-1}\} = \{g_1, g_2\}$ as in Ex. 9 modulo conjugation in $S_n, g_{\infty} = (1 \ 2 \ \ldots \ n)^{-1};$ or
- r = 2 and $g_1 = (1 \ 2 \ \dots \ n)$. Tchebychev/cyclic polynomial branch cycles.

– Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

Dominant rational (not polynomial) function case Branch cycles are (g_1, g_2, g_3, g_4) , g_i s conjugate to $\binom{-1 \ 0}{0 \ 1} \in \mathbb{Z}/n \times^s \{\pm 1\}$. Most new functions from Weierstrass \wp -functions through this diagram:

Part II: Exceptional tower $\mathcal{T}_{Z,\mathbb{F}_q}$ of variety Z over \mathbb{F}_q Extension of constants series

Let $\hat{K}_{\varphi}(k)$ be the minimal def. field of (geom.) \bar{K} components of $X_Z^k \setminus \Delta$, $1 \le k \le n$:

$$\ker(\hat{G}_{\varphi} \to G(\hat{K}_{\varphi}(n)/K)) = G_{\varphi}.$$

Each $\hat{K}_{\varphi}(k)/K$ is Galois: *kth ext. of constants* field: $G(\hat{K}_{\varphi}(k)/K)$ permutes geom. components of $X_Y^k \setminus \Delta$. Denote perm. rep. by $T_{\varphi,k}$.

Characterize exceptional There is a natural sequence of quotients $G(\hat{X}/Y) \rightarrow G(\hat{K}_{\varphi}(n)/K) \rightarrow \cdots \rightarrow G(\hat{K}_{\varphi}(k)/K)$ $\rightarrow \cdots \rightarrow G(\hat{K}_{\varphi}(1)/K).$

 $G(\hat{K}(1)/K)$ is trivial iff all K components of X are absolutely irreducible.

Theorem 12. For K a finite field, $G(\hat{K}_{\varphi}(2)/K)$ having no fixed points under $T_{\varphi,2}$ characterizes φ being exceptional ([Fr74], [Fr05], [GLTZ07]).

The tower $\mathcal{T}_{Z,\mathbb{F}_q}$ and its cryptology potential Morphisms $(X,\varphi) \in \mathcal{T}_{Z,\mathbb{F}_q}$ to $(X',\varphi') \in \mathcal{T}_{Z,\mathbb{F}_q}$ are covers $\psi : X \to X'$ with $\varphi = \varphi' \circ \psi$. Partially order $\mathcal{T}_{Z,\mathbb{F}_q}$ by $(X,\varphi) > (X',\varphi')$ if there is an (\mathbb{F}_q) morphism ψ from (X,φ) to (X',φ') .

Then ψ induces:

- a homomorphism $G(\hat{X}_{\varphi}/X_{\varphi})$ to $G(\hat{X}_{\varphi'}/X_{\varphi'})$; and
- canonical map from cosets of $G(X_{\varphi}/X_{\varphi})$ in $G(\hat{X}_{\varphi}/Z)$ to the corresponding cosets for X'.

Note: (X, ψ) is automatically in $\mathcal{T}_{X', \mathbb{F}_q}$.

Forming the exceptional tower

Nub of an exceptional tower of (Z, \mathbb{F}_q) : \exists unique minimal exceptional cover X — the *fiber product* dominating exceptional covers $\varphi_i : X_i \to Z$, i = 1, 2. Note: Everything depends on \mathbb{F}_q .

For $(X, \varphi) \in \mathcal{T}_{Z,\mathbb{F}_q}$ denote cosets of $G(\hat{X}_{\varphi}/X_{\varphi})$ in $G(\hat{X}_{\varphi}/Z) = \hat{G}_{\varphi}$ by V_{φ} ; coset of 1 by v_{φ} and the rep. of \hat{G}_{φ} on these cosets by $T_{\varphi} : \hat{G}_{\varphi} \to S_{V_{\varphi}}$. Write $G(\hat{K}_{\varphi_i}(2)/\mathbb{F}_q)$ as $\mathbb{Z}/d(\varphi_i)$, i = 1, 2.

Why $X_1 \times_Z X_2$ has exactly one abs. irred. comp.

Do $\frac{1}{2}$, suppose none! Let $\mathbb{F}_{q^{t_0}}$ contain coefficients of all absolutely irred. $X_1 \times_Z X_2$ comps. Then, if $(t, t_0) = 1$, $X_1 \times_Z X_2$ has no abs. irr. com. over \mathbb{F}_{q^t} . Normality $\implies X_1 \times_Z X_2(\mathbb{F}_{q^t}) = \emptyset$.

D-L criterion allows assuming φ_i s are étale. Then, $t \in (\mathbb{Z}/d(\varphi_i))^*$, i = 1, 2, $\implies \varphi_i$ is 1-1 and onto (over \mathbb{F}_{q^t}), i = 1, 2. For t large, $\exists z \in Z(\mathbb{F}_{q^t})$ $\implies \exists x_i \in X_i(\mathbb{F}_{q^t}) \mapsto z$, i = 1, 2. So $(x_1, x_2) \in X_1 \times_Z X_2(\mathbb{F}_{q^t})$.

$\mathcal{T}_{Z,\mathbb{F}_q}$ is a very rigid category

Proposition 13. In $\mathcal{T}_{Z,\mathbb{F}_q}$ there is at most one (\mathbb{F}_q) morphism between any two objects. So, $\varphi : X \to Z$ has no \mathbb{F}_q automorphisms: $\operatorname{Cen}_{S_{V_{\varphi}}}(\hat{G}_{\varphi}) = \{1\}.$

Then, $\{(\hat{G}_{\varphi}, T_{\varphi}, v_{\varphi})\}_{(X,\varphi)\in \mathcal{T}_{Z,\mathbb{F}_{q}}}$ canonically defines a compatible system of permutation representations; it has a projective limit (\hat{G}_{Z}, T_{Z}) .

Value of the Tower: It now makes sense to form the subtower generated by special exceptional covers: The minimal tower including all covers in the set. Examples: Tamely ramified subtower; Schur-Dickson subtower of $\mathcal{T}_{\mathbb{P}^1_z,\mathbb{F}_q}$; Subtower generated by **CM** (or **GL**₂) covers from Serre's OIT (Part V).

Exceptional scrambling

For any t let $\mathcal{T}_{Z,\mathbb{F}_q}(t)$ be those covers with t in their exceptionality set.

Cryptology starts by encoding a message into a set. For t large our message encodes in \mathbb{F}_{q^t} . Then, select $(X, \varphi) \in \mathcal{T}_{Z,\mathbb{F}_q}(t)$. Embed our message as $x_0 \in X(\mathbb{F}_{q^t})$. Use φ as a one-one function to pass x_0 to $\varphi(x_0) = z_0 \in Z(\mathbb{F}_{q^t})$ for "publication." You and everyone else who can understand "message" x_0 can see z_0 below it. To find out what is x_0 from z_0 , need an *inverting function* $\varphi_t^{-1} : Z(\mathbb{F}_{q^t}) \to X(\mathbb{F}_{q^t})$.

– Typeset by Foil $T_{\!E\!} X$ –

Inverting the scrambling map

Question 14 (Periods). With $X = \mathbb{P}^1_x$ and $Z = \mathbb{P}^1_z$, identify them to regard φ on \mathbb{F}_{q^t} as φ_t , permuting $\mathbb{F}_{q^t} \cup \{\infty\}$. Label the order of φ_t as $m_{\varphi,t} = m_t$. Then, $\varphi_t^{m_t-1}$ inverts φ_t . How does $m_{\varphi,t}$ vary, for genus 0 exceptional φ , as t varies?

Standard RSA inverts $x \mapsto x^n$ by inverting the *n*th power map on $\mathbb{F}_{q^t}^*$ (mult. by *n* on $\mathbb{Z}/(q^t - 1)$ —Euler's Theorem). Works for all covers in the *Schur Sub-Tower* of $(\mathbb{P}_y^1, \mathbb{F}_q)$ generated by x^n 's and T_n 's. (For T_n 's, "invert mult. by *n*" on $\mathbb{Z}/(q^{2t} - 1)$.) Part III: pr-exceptional covers and Davenport pairs Definition 15. $\varphi : X \to Z$ is p(ossibly)r(educible)-exceptional: $\varphi : X(\mathbb{F}_{q^t}) \to Z(\mathbb{F}_{q^t})$ surjective for ∞ -ly many t.

Then, φ is exceptional iff X is abs. irreducible. We even allow X to have no abs. irred. comps.

Form $\hat{X} \to Z$ (with its canonical rep. T_{φ}), the Galois closure with group \hat{G}_{φ} , and get an extension of constants field with $G(\hat{\mathbb{F}}_{\varphi}/\mathbb{F}_q) = \mathbb{Z}/\hat{d}(\varphi)$.

D-L generalization; pr-exceptional characterization For $t \in \mathbb{Z}/\hat{d}(\varphi)$:

 $\hat{G}_{\varphi,t} \stackrel{\text{def}}{=} \{g \in \hat{G}_{\varphi} \mid \text{ restricts to } t \in \mathbb{Z}/\hat{d}(\varphi)\}.$ *Exceptionality set* E_{φ} of a pr-exceptional cover: $\{t \in \mathbb{Z}/\hat{d}(\varphi) \mid \forall g \in \hat{G}_{\varphi,t} \text{ fixes } \geq 1 \text{ letter of } T_{\varphi}\}.$ pr-exceptional correspondences: $W \subset X_1 \times X_2$ with projections $W \to X_i$ s pr-exceptional.

Exceptional correspondence between X_1 and X_2 $\implies |X_1(\mathbb{F}_{q^t})| = |X_2(\mathbb{F}_{q^t})|$ for ∞ -ly many t. If $X_2 = \mathbb{P}_z^1$, then $\sum_{t=1}^{\infty} (a_n \stackrel{\text{def}}{=} |X_1(\mathbb{F}_{q^t})|) u^t$ has $a_n = q^t + 1$ for ∞ -ly many t.

A zoo of high genus except. correspondences between $\mathbb{P}^1_{x_1}$ and $\mathbb{P}^1_{x_2}$

If $\varphi_i : \mathbb{P}^1_{x_i} \to \mathbb{P}^1_z$, i = 1, 2 is exceptional, then $\mathbb{P}^1_{x_1} \times_{\mathbb{P}^1_z} \mathbb{P}^1_{x_2}$ has a unique absolutely irreducible component, an exceptional cover of $\mathbb{P}^1_{x_i}$, i = 1, 2.

Suppose $\varphi_i : X_i \to Z$, i = 1, 2, are abs. irreducible covers. The minimal (\mathbb{F}_q) Galois closure \hat{X} of both is any \mathbb{F}_q component of $\hat{X}_1 \times_Z \hat{X}_2$. Attached group, $\hat{G} = \hat{G}_{(\varphi_1,\varphi_2)} = G(\hat{X}/Z)$: Fiber product of $G(\hat{X}_1/Z)$ and $G(\hat{X}_2/Z)$ over maximal H through which they both factor.

D(avenport)Pairs: new pr-except. correspondences Definition 16. (φ_1, φ_2) is a DP (resp. i(sovalent)DP) if $\varphi_1(X_1(\mathbb{F}_{q^t})) = \varphi_2(X_2(\mathbb{F}_{q^t}))$ for ∞ -ly many t (resp. ranges assumed with same multiplicity; T. Bluer's name).

Equivalent to being a DP: $X_1 \times_Z X_2 \xrightarrow{\operatorname{pr}_{X_i}} X_i$, is pr-exceptional, and the exceptionality sets $E_{\operatorname{pr}_i}(\mathbb{F}_q)$, i = 1, 2, have nonempty (so infinite) intersection

$$E_{\mathrm{pr}_1}(\mathbb{F}_q) \cap E_{\mathrm{pr}_2}(\mathbb{F}_q) \stackrel{\mathrm{def}}{=} E_{\varphi_1,\varphi_2}(\mathbb{F}_q).$$

Part IV: (Chow) motives: Diophantine category of Poincare series over (Z, \mathbb{F}_q)

Let $W_{D,\mathbb{F}_q}(u) = \sum_{t=1}^{\infty} N_D(t)u^t$ be a Poincaré series for a diophantine problem D over a finite field \mathbb{F}_q . We call these *Weil vectors*. Example: $F(\boldsymbol{x}, \boldsymbol{z}) \in \mathbb{F}_q[\boldsymbol{x}, \boldsymbol{z}]$, $N_D(t) = |\{\boldsymbol{z} \in \mathbb{F}_{q^t}^{m_{\boldsymbol{z}}} \mid \exists \boldsymbol{x} \in \mathbb{F}_{q^t}^{m_{\boldsymbol{x}}}, F(\boldsymbol{x}, \boldsymbol{z}) = 0\}|.$

Weil Relation between $W_{D_1,\mathbb{F}_q}(u)$ and $W_{D_2,\mathbb{F}_q}(u)$: ∞ -ly many coefficients of $W_{D_1,\mathbb{F}_q}(u) - W_{D_2,\mathbb{F}_q}(u)$ equal 0. Effectiveness result: For any Weil vector, the support set of $t \in \mathbb{Z}$ of 0 coefficients differs by a finite set from a union of full Frobenius progressions.

Motivic formulation

Question 17. If Poincare series of X over \mathbb{F}_q has t-th coefficient equal $q^t + 1$ for ∞ -ly many t, is there a chain of except. correspondences from X to \mathbb{P}^1 ?

Equivalent to characterizing X for which $\sum_{t=1}^{\infty} \operatorname{tr}_{\operatorname{Fr}_{q^t}} [\sum_{0}^{2} (-1)^i H_{\ell}^i(X)] u^t$ has a relation with the series with $X = \mathbb{P}^1$: *Chow motive* coefficients.

There are *p*-adic versions: Replace \mathbb{F}_{q^t} by higher residue fields with the Witt vectors R_t with residue class \mathbb{F}_{q^t} ; and use integration instead of counting. Result of Denef-Loeser [Fr77], [DL01], [Ni04]

Consider a number field version, by R_p the completion the integers of K with respect to prime p. Then, $W_{D,R_p}(u) \stackrel{\text{def}}{=} \sum_{v=1}^{\infty} N_{D,R_p}(v) u^v$ with $N_{D,R_p}(v)$ using values in R_p/p^v that lift to values in R_p . To make this useful motivically requires doing this for those D with a map to a fixed space Z/K.

Given D, There is a string of — relative to Z— Chow motives (over K) $\{[M_v]\}_{v=0}^{\infty}$, so for almost all p, $W_{D,R_p}(u) = \sum_{t=1}^{\infty} \operatorname{tr}_{\operatorname{Fr}_p}[M_t]u^t$.

Role of iDPs

Given Weil Vector $W(D, \mathbb{F}_q)$ over (Z, \mathbb{F}_q) and φ : $X \to Z$ can define *pullback* $W^{\varphi}(D, \mathbb{F}_q)$ over (X, \mathbb{F}_q) . Assume $\varphi_i : X_i \to Z$, i = 1, 2, is an iDP over \mathbb{F}_q , $X_1 = X_2$ and D has a map to Z. Then, (φ_1, φ_2) produces new Weil vectors $W_{D,\mathbb{F}_q}^{\varphi_i}$, i = 1, 2, and a *relation* between $W_{D,\mathbb{F}_q}^{\varphi_1}(u)$ and $W_{D,\mathbb{F}_q}^{\varphi_2}(u)$: ∞ -ly many coefficients of $W_{D,\mathbb{F}_q}^{\varphi_1}(u) - W_{D,\mathbb{F}_q}^{\varphi_2}(u)$ equal 0.

Part V: CM and GL_2 exceptional genus 0 covers

Test for a cover $\varphi : X \to Z$ decomposing. Check $X \times_Z X \setminus \Delta$ for irreducible components Z of form $X' \times_Z X'$. If none, then φ is indecomposable. Otherwise, φ factors through $X' \to Z$ (Gutierrez, et.al. from [FrM69]).

Denote the minimal Galois extension of K over which φ decomposes into absolutely indecomposable covers by $K_{\varphi}(\text{ind})$: The indecomposability field of φ . **Proposition 18.** For any cover $\varphi : X \to Z$ over a field K, $K_{\varphi}(\text{ind}) \subset \hat{K}_{\varphi}(2)$. Most of rest of genus 0 except. covers/ \mathbb{Q} [Fr78], [GSM04]: From Weierstrass \wp -functions.

Case GL₂: deg(f) = r², a prime squared
[O67], [Se68], [Se81], [R90], [Se03] ⇔ case of Serre's
O(pen)I(mage)T(heorem). CM case can describe inversion
period from "Euler's Theorem," essentially equivalent to the
theory of complex multiplication.

– Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

\textbf{GL}_2 gist [Fr05, $\S 6.1\text{-}.2$], Serre's \textbf{GL}_2 OIT [Se68, etc]

• $[f] \mapsto \mathbb{P}^1_j$ by the *j*-invariant of the 4 branch points;

•
$$G_f = (\mathbb{Z}/r)^2 \times^s {\pm 1};$$
 yet

• for a non-CM *j*-invariant (say in \mathbb{Q}), then for a.a. r, then for $f \stackrel{\text{def}}{=} f_{j,r}$, $\hat{G}_f = (\mathbb{Z}/r)^2 \times^s \text{GL}_2(\mathbb{Z}/r)$.

Exceptionality versus indecomposability: Given $f_{j,r}$ and the set \mathcal{A} of $A \in \operatorname{GL}_2(\mathbb{Z}/r)/\{\pm 1\}$ for which A acts irreducibly on $(\mathbb{Z}/r)^2$. Consider $P_{f_{j,r},\mathcal{A}}$ those primes p with the Frobenius of $f_{j,r}: \mathbb{P}^1_w \to \mathbb{P}^1_z \mod p$ in \mathcal{A} . For such p

- $f_{j,r} \mod p$ is exceptional; and (equivalently)
- $f_{j,r} \mod p$ is indecomposable, but decomposes over $\overline{\mathbb{F}}_p$.

Two automorphic function questions

[Fr05,§6] poses an analog of [Se03] to find an automorphic funct. (should exist according to Langlands) for primes of except. for $j \leftrightarrow \text{Ogg's}$ curve 3^+ [Se81, extensive discuss]. Would give an explicit structure to the primes of exceptionality.

For any exceptional $f_{j,r} \mod p$, form a Poincaré series with the period of exceptionality its coefficients. Conjecture, this series is rational. This result would then remove from consideration the arbitrary identification of \mathbb{P}^1_w with \mathbb{P}^1_z .

Bibliography; Parts 0 and I:

- [DL63] H. Davenport and D.J. Lewis, Notes on Congruences (1), Quart. J. Math. Oxford (2) 14 (1963), 51 - 60.
- [Fr70] M.D. Fried, On a conjecture of Schur, Mich. Math. J. **17** (1970), 41–45. [Fr74] M. Fried, On a Theorem of MacCluer, Acta. Arith. **XXV** (1974), 122–127.
- [Fr78] M. Fried, Galois groups and Complex Multiplication, T.A.M.S. 235 (1978) 141–162.
- Fr05 M. Fried. The place of exceptional covers among all diophantine relations. J. Finite Fields 11 (2005) 367-433.
- [GMS03] R. Guralnick, P. Müller and J. Saxl, The rational function analogue of a guestion of Schur and exceptionality of permutations representations, Memoirs of AMS 162 773 (2003), ISBN 0065-9266.
- [LMT93] R. Lidl, G.L. Mullen and G. Turnwald, *Dickson Polynomials*, Pitman monographs, Surveys in pure and applied math, 65, Longman Scientific, 1993.
- [GLTZ07] R. Guralnick, T. Tučker and M. Zieve (behind the scenes Lenstra), Exceptional covers and bijections on Rational Points, to appear IRMN, 2007.
- [Mc67] C. MacCluer, On a conjecture of Davenport and Lewis concerning exceptional polynomials, Acta. Arith. 12 (1967), 289–299.
- [Sch23] I. Schur, Über den Zusammenhang zwischen einem Problem der Zahlentheorie and einem Satz über algebraische Functionen, S.-B. Preuss. Akad. Wiss., Phys.-Math. Klasse (1923), 123–134.

Bibliography; Parts II and V:

- [DL01] J. Denef and F. Loeser, *Definable sets, motives and p-adic integrals*, JAMS **14** (2001), 429–469.
- [Fr76] M. Fried, Solving diophantine problems over all residue class fields of a number field ..., Annals Math. 104 (1976), 203–233.
- [FGS93] M.D. Fried, R. Guralnick and J. Saxl, Schur covers and Carlitz's conjecture, Israel J. Math. 82 (1993). 157–225.
- [GTZ07] R. Guralnick, T. Tucker and M. Zieve, *Exceptional covers and bijections on rational points*, to appear in IRMN.
- [Le95] H.W. Lenstra Jr., Talk at Glasgow conference, Finite Fields III, (1995).
- [Ni04] J. Nicaise, Relative motives and the theory of pseudo-finite fields, to appear in IMRN.
- [O67] A.P. Ogg, Abelian curves of small conductor, Crelle's J **226** (1967), 204–215. [R90] K. Ribet, *Review of new edition of [Se68]*, BAMS **22** (1990), 214–218. [Se68] J.-P. Serre, Abelian ℓ-adic representations and elliptic curves, 1st ed., McGill University Lecture
- Notes, Benjamin, New York Amsterdam, 1968, in collaboration with Willem Kuyk and John Labute.
- [Se81] J.-P. Serre, Quelques Applications du

Théorème de Densité de Chebotarev, Publ. Math. IHES 54 (1981), 323–401.

[Se03] J.-P. Serre, On a Theorem of Jordan, BAMS **40** #4 (2003), 429–440.