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Part 0: Exceptionality and fiber products

http://math.uci.edu/~mfried → §1.a. Articles and Talks: → • Finite fields, Exceptional covers and

motivic Poincare series

An Fq cover ϕ : X → Z of absolutely irreducible

normal varieties is exceptional if ϕ one-one on Fqt

points for infinitely many t.

For a # field: ϕ has infinitely many exceptional

residue class field reductions. We use the Davenport-

Lewis name exceptional because, equivalently, a

version of their geometric property holds for ϕ.
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Using fiber products

Assume ϕi : Xi → Z, i = 1, 2, are two covers

(of normal varieties) over K. The set theoretic fiber

product has geometric points

{(x1, x2) | xi ∈ Xi(K̄), i = 1, 2, ϕ1(x1) = ϕ2(x2)} :
x ∈ X(F̄q) is a point in X with coordinates in F̄q.

Won’t be normal at (x1, x2) if x1 and x2 both

ramify over Z. The categorical fiber product here is

normalization of the result: components are disjoint,

normal varieties, X1 ×Z X2.
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Galois closure of a cover

Denote X ×Z X minus the diagonal by X2
Z \ Δ.

Xk
Z \Δ: kth iterate of the fiber product minus the

fat diagonal ; empty if k > n = deg(ϕ).
Any K component X̂ of Xn

Z \ Δ is a K Galois

closure of ϕ: unique up to K isomorphism of Galois

covers of Z.

Sn action on Xn
Z \ Δ gives the Galois group

G(X̂/Z) def= Ĝϕ: subgroup fixing X̂. Without ,̂

Gϕ, denotes absolute Galois closure.
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Part I: Exceptional rational functions over # fields

Cyclic polynomials have the form x → xn. RSA

code scheme uses these. Fewer people know about

Chebychev polynomials. Yet, these also have their

cryptography use, as do compositions of these types.

Proposition 1. If (n, p − 1) = 1, then we can use
xn to scramble data into Z/p. If n is odd, there are
infinitely many such primes p.
Proof. Euler’s Theorem: Powers of a single integer

α fill out Z/p \ {0} def= Z/p∗.
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Residue Primes that work for (odd) n
Take p ∈ {k + m · n|m ∈ Z} where k satisfies:

• (k, n) = 1 (apply Dirichlet’s Theorem); and

• (k − 1, n) = 1 ((p − 1 = k − 1 + m · n, n) = 1).

Example: k = 2 works; other integers may too.
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Tchebychev polynomials of odd degree n

Tn(1
2(x + 1/x)) = 1

2(x
n + 1/xn),

Tn : {∞,±1} �→ {∞,±1}.

Proposition 2. If (n, 6) = 1, then Tn : Z/p → Z/p

maps one-one for infinitely many p. Exactly those
primes p with (p2 − 1, n) = 1.

Proof: Use finite fields Fp2 ⊃ Z/p: F∗
p2 cyclic.
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2. Schur’s Conjecture:

Cryptography we recognize in modern algebra goes back to

the middle of the 1800s. They used finite fields as the place to

encode a message.

Conjecture 3 (Schur 1921).Only compositions of

cyclic, Tchebychev and degree 1 (x �→ ax + b) give

polynomials mapping 1-1 on Z/p for ∞-ly many p.

Problem 4.How to check if an f(x) is a composition

of the correct polynomials? If so, how to check if it

is 1-1 for ∞ of p (notation: 1−1∞)?
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Points toward proving Schur’s conjecture:

Step 1: If f = f1 ◦ f2 (fi ∈ Fq[x]), then f is 1−1∞
if and only f1 and f2 are 1−1∞.

Subtle reduction: If f decomposes over C then

it decomposes over Q (not automatic for rational

functions). So, to prove Schur’s conjecture we

consider f indecomposable over K̄.

Step 2: Consider 1−1∞f with f : Z/p → Z/p 1-1.

Then, the polynomial expression

(∗) ϕ(x, y) =
f(x) − f(y)

x − y
= 0

has no solutions (x0, y0) ∈ Z/p × Z/p, x0 	= y0.
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Cover characterization of exceptionality

Proposition 5 (Weil). If ϕ(x, y) has u absolutely
irreducible factors (over Fp), then (*) has at least
u · p + A

√
p solutions (some A constant in p).

Corollary 6. If f is 1−1∞, then ϕ(x, y) mod p has
no absolutely irreducible factors (for p large).
Proposition 7. [DL63] → [Mc67] → [Fr74] →
[Fr05] → [GLTZ07]: General Fq cover of normal
varieties: ϕ : X → Z exceptional over Fqt

⇔ X2
Z \ Δ has no Fqt abs. irred. components.
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For 1−1∞ f : P1
x → P1

z, the groups Ĝf and Gf

Consider f(x) − z = 0 with z a variable. Find

n solutions x1, . . . , xn in some algebraic closure

F of Q(z): f(xi) = z; they generate a field

Q(x1, . . . , xn, z) def= Lf . Then, Ĝf = G(Lf/Q(z)).
Proposition 8. Then, Gf ≤ Sn is primitive, not
doubly transitive, and contains an n-cycle.
Example 9.Assume n > 2 is prime. The group Dn

(Dihedral of degree n) with generators
g1 = (1n)(2 n−1) · · · (n−1

2
n+3

2 )
g2 = (2n)(3 n−1) · · · (n+1

2
n+3

2 )
is primitive,not double transitive, has an n-cycle.
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Why primitive with an n-cycle?
With f(x) = xn+a1x

n−1+ · · ·+an (exceptionality

allows monic). Solve for x from f(x) = z. Solution:
x1 = z1/n + b0 + b1z

−1/n + b2z
−2/n + · · · .

Substitute e
2πi·k

n z
1
n �→ z1/n for n-cycle in Gf .

Let Gf(x1) be the subgroup of Gf fixing x1.

Primitive means no proper group H with Gf(x1) <

H < Gf . Galois correspondence: Such an H would

mean a field L = Q(w) with Q(z) < L < Q(x1).
So, w = f2(x1), and z = f1(w). Contrary to

indecomposable f : f1(f2(x1)) = z.
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Concluding Schur’s Conjecture

Why Gf is not doubly transitive: Equivalent to

ϕ(x, y) (X2
Z \ Δ) has at least two factors over Q̄

(from no abs. irred. factors over Q).
Get Schur’s conjecture if 1−1∞ and indecomposable f is

variable change of cyclic or Chebychev polynomial. Chebychev

case: variable change, (z, x) → (az + b, a′x + b′) (a, b, a′, b′ ∈
K), allows f(±u) = ±u with u2 = a ∈ K.

Then, with �u : x �→ ux, f = �u ◦ Tn ◦ �u−1
def= Tn,a:

un−1Tn,a is what a large literature calls a Dickson polynomial

[LMT93].
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All exceptional prime degree rational f
Step 1: Show Gf is a cyclic or dihedral group.

Proposition 10 (Famous Group Results). If n is
a prime, then (Burnside):
Gf ≤

{( u v

0 1

)
| u ∈ (Z/n)∗, v ∈ Z/n

} def= Z/n×s(Z/n)∗.

For n not prime there is no such Gf: Schur.
Step 2: Show Gf dihedral (resp. cyclic) ⇐⇒

polynomial f is Chebychev (resp. cyclic) after

changing variables.

Best part: Monodromy method solves many other

problems (Schur’s conjecture the easiest).
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Step 2 cont: Apply Riemann’s Existence Theorem.

For g ∈ Sn, ind(g) def= n− # of disjoint cycles in g

(including length 1).

If f : Cx ∪ {∞} → Cz ∪ {∞}, with branch points

z1, . . . , zr =⇒ r elements g1, . . . , gr ∈ Gf (branch

cycles) with these properties:

• Gf = 〈g1, . . . , gr−1〉 (generation);

• ∏r
i=1 gi = 1 (product-one); and

• 2(n − 1) =
∑r

i=1 ind(gi) (genus 0).
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Finish Polynomial case

• gr
def= g∞ is an n-cycle; and

• n − 1 =
∑r−1

i=1 ind(gi) (genus 0).

Proposition 11.Combine with
g1, . . . , gr−1, g∞ ∈ Z/n ×s(Z/n)∗.

Polynomial Result:
• {g1, . . . , gr−1} = {g1, g2} as in Ex. 9 modulo

conjugation in Sn, g∞ = (1 2 . . . n)−1; or

• r = 2 and g1 = (1 2 . . . n).
Tchebychev/cyclic polynomial branch cycles.
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Dominant rational (not polynomial) function case

Branch cycles are (g1, g2, g3, g4), gi s conjugate to
( −1 0

0 1

)
∈ Z/n ×s{±1}. Most new functions from

Weierstrass ℘-functions through this diagram:

C{±w} ∪ {∞} f−→ C{±z} ∪ {∞}
mod {±1}

�
⏐
⏐

�
⏐
⏐ mod {±1}

Cw/Lw
mod Lz/Lw≡Z/n−−−−−−−−−−−→ Cz/Lz.

Here Lw ≤ Lz both generated over Z by two

linearly independent (over R) complex numbers.
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Part II: Exceptional tower TZ,Fq of variety Z over Fq

Extension of constants series

Let K̂ϕ(k) be the minimal def. field of (geom.) K̄

components of Xk
Z \ Δ, 1 ≤ k ≤ n:

ker(Ĝϕ → G(K̂ϕ(n)/K)) = Gϕ.

Each K̂ϕ(k)/K is Galois: kth ext. of constants

field : G(K̂ϕ(k)/K) permutes geom. components of

Xk
Y \ Δ. Denote perm. rep. by Tϕ,k.
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Characterize exceptional

There is a natural sequence of quotients

G(X̂/Y ) → G(K̂ϕ(n)/K) → · · · → G(K̂ϕ(k)/K)
→ · · · → G(K̂ϕ(1)/K).

G(K̂(1)/K) is trivial iff all K components of X

are absolutely irreducible.

Theorem 12. For K a finite field, G(K̂ϕ(2)/K)
having no fixed points under Tϕ,2 characterizes ϕ

being exceptional ([Fr74], [Fr05], [GLTZ07]).
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The tower TZ,Fq and its cryptology potential

Morphisms (X, ϕ) ∈ TZ,Fq to (X ′, ϕ′) ∈ TZ,Fq are

covers ψ : X → X ′ with ϕ = ϕ′ ◦ ψ. Partially

order TZ,Fq by (X, ϕ) > (X ′, ϕ′) if there is an (Fq)

morphism ψ from (X, ϕ) to (X ′, ϕ′).
Then ψ induces:

• a homomorphism G(X̂ϕ/Xϕ) to G(X̂ϕ′/Xϕ′); and
• canonical map from cosets of G(X̂ϕ/Xϕ) in

G(X̂ϕ/Z) to the corresponding cosets for X ′.

Note: (X, ψ) is automatically in TX′,Fq.
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Forming the exceptional tower

Nub of an exceptional tower of (Z, Fq): ∃ unique

minimal exceptional cover X — the fiber product —

dominating exceptional covers ϕi : Xi → Z, i = 1, 2.

Note: Everything depends on Fq.

For (X, ϕ) ∈ TZ,Fq denote cosets of G(X̂ϕ/Xϕ) in

G(X̂ϕ/Z) = Ĝϕ by Vϕ; coset of 1 by vϕ and the

rep. of Ĝϕ on these cosets by Tϕ : Ĝϕ → SVϕ. Write

G(K̂ϕi
(2)/Fq) as Z/d(ϕi), i = 1, 2.
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Why X1 ×Z X2 has exactly one abs. irred. comp.

Do 1
2, suppose none! Let Fqt0 contain coefficients

of all absolutely irred. X1 ×Z X2 comps. Then, if

(t, t0) = 1, X1 ×Z X2 has no abs. irr. com. over Fqt.

Normality =⇒ X1 ×Z X2(Fqt) = ∅.
D-L criterion allows assuming ϕi s are étale.

Then, t ∈ (Z/d(ϕi))∗, i = 1, 2, =⇒ ϕi is 1-1 and

onto (over Fqt), i = 1, 2. For t large, ∃z ∈ Z(Fqt)
=⇒ ∃xi ∈ Xi(Fqt) �→ z, i = 1, 2.

So (x1, x2) ∈ X1 ×Z X2(Fqt).
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TZ,Fq is a very rigid category

Proposition 13. In TZ,Fq there is at most one (Fq)
morphism between any two objects. So, ϕ : X → Z

has no Fq automorphisms: CenSVϕ
(Ĝϕ) = {1}.

Then, {(Ĝϕ, Tϕ, vϕ)}(X,ϕ)∈TZ,Fq
canonically defines

a compatible system of permutation representations;
it has a projective limit (ĜZ, TZ).

Value of the Tower: It now makes sense to form the

subtower generated by special exceptional covers: The minimal

tower including all covers in the set. Examples: Tamely

ramified subtower; Schur-Dickson subtower of TP1
z,Fq

; Subtower

generated by CM (or GL2) covers from Serre’s OIT (Part V).
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Exceptional scrambling

For any t let TZ,Fq(t) be those covers with t in

their exceptionality set.

Cryptology starts by encoding a message into a

set. For t large our message encodes in Fqt. Then,

select (X, ϕ) ∈ TZ,Fq(t). Embed our message as

x0 ∈ X(Fqt). Use ϕ as a one-one function to pass x0

to ϕ(x0) = z0 ∈ Z(Fqt) for “publication.” You and

everyone else who can understand “message” x0 can

see z0 below it. To find out what is x0 from z0, need

an inverting function ϕ−1
t : Z(Fqt) → X(Fqt).
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Inverting the scrambling map
Question 14 (Periods).With X = P1

x and Z = P1
z,

identify them to regard ϕ on Fqt as ϕt, permuting

Fqt ∪ {∞}. Label the order of ϕt as mϕ,t = mt.

Then, ϕmt−1
t inverts ϕt. How does mϕ,t vary, for

genus 0 exceptional ϕ, as t varies?

Standard RSA inverts x �→ xn by inverting the

nth power map on F∗
qt (mult. by n on Z/(qt − 1)

— Euler’s Theorem). Works for all covers in the

Schur Sub-Tower of (P1
y, Fq) generated by xn s and

Tn s. (For Tn s, “invert mult. by n” on Z/(q2t − 1).)
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Part III: pr-exceptional covers and Davenport pairs
Definition 15. ϕ : X → Z is p(ossibly)r(educible)-exceptional :

ϕ : X(Fqt) → Z(Fqt) surjective for ∞-ly many t.

Then, ϕ is exceptional iff X is abs. irreducible. We even

allow X to have no abs. irred. comps.

Form X̂ → Z (with its canonical rep. Tϕ), the

Galois closure with group Ĝϕ, and get an extension

of constants field with G(F̂ϕ/Fq) = Z/d̂(ϕ).
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D-L generalization; pr-exceptional characterization

For t ∈ Z/d̂(ϕ):

Ĝϕ,t
def= {g ∈ Ĝϕ | restricts to t ∈ Z/d̂(ϕ)}.

Exceptionality set Eϕ of a pr-exceptional cover:

{t ∈ Z/d̂(ϕ) | ∀g ∈ Ĝϕ,t fixes ≥ 1 letter of Tϕ}.
pr-exceptional correspondences: W ⊂ X1 × X2

with projections W → Xi s pr-exceptional.

Exceptional correspondence between X1 and X2

=⇒ |X1(Fqt)| = |X2(Fqt)| for ∞-ly many t.

If X2 = P1
z, then

∑∞
t=1(an

def= |X1(Fqt)|)ut has an =
qt + 1 for ∞-ly many t.
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A zoo of high genus except. correspondences

between P1
x1

and P1
x2

If ϕi : P1
xi

→ P1
z, i = 1, 2 is exceptional, then

P1
x1

×P1
z

P1
x2

has a unique absolutely irreducible

component, an exceptional cover of P1
xi
, i = 1, 2.

Suppose ϕi : Xi → Z, i = 1, 2, are abs. irreducible

covers. The minimal (Fq) Galois closure X̂ of both

is any Fq component of X̂1 ×Z X̂2. Attached group,

Ĝ = Ĝ(ϕ1,ϕ2) = G(X̂/Z): Fiber product of G(X̂1/Z)
and G(X̂2/Z) over maximal H through which they

both factor.
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D(avenport)Pairs: new pr-except. correspondences
Definition 16. (ϕ1, ϕ2) is a DP (resp. i(sovalent)DP) if

ϕ1(X1(Fqt)) = ϕ2(X2(Fqt)) for ∞-ly many t (resp. ranges

assumed with same multiplicity; T. Bluer’s name).

Equivalent to being a DP:

X1 ×Z X2
prXi−→Xi, is pr-exceptional, and the

exceptionality sets Epri(Fq), i = 1, 2, have nonempty

(so infinite) intersection

Epr1(Fq) ∩ Epr2(Fq)
def= Eϕ1,ϕ2(Fq).
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Part IV: (Chow) motives: Diophantine category of

Poincare series over (Z, Fq)
Let WD,Fq(u) =

∑∞
t=1 ND(t)ut be a Poincaré series

for a diophantine problem D over a finite field Fq. We

call these Weil vectors. Example: F (xxx,zzz) ∈ Fq[xxx,zzz],
ND(t) = |{zzz ∈ F

mzzz
qt | ∃xxx ∈ F

mxxx
qt , F (xxx,zzz) = 0}|.

Weil Relation between WD1,Fq(u) and WD2,Fq(u):
∞-ly many coefficients of WD1,Fq(u) − WD2,Fq(u)
equal 0. Effectiveness result: For any Weil vector,

the support set of t ∈ Z of 0 coefficients differs by a

finite set from a union of full Frobenius progressions.
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Motivic formulation

Question 17. If Poincare series of X over Fq has t-th

coefficient equal qt + 1 for ∞-ly many t, is there a

chain of except. correspondences from X to P1?

Equivalent to characterizing X for which∑∞
t=1 trFrqt[

∑2
0(−1)iHi

�(X)]ut has a relation with the

series with X = P1: Chow motive coefficients.

There are p-adic versions: Replace Fqt by higher

residue fields with the Witt vectors Rt with residue

class Fqt; and use integration instead of counting.
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Result of Denef-Loeser [Fr77], [DL01], [Ni04]

Consider a number field version, by Rppp the

completion the integers of K with respect to prime ppp.

Then, WD,Rppp(u) def=
∑∞

v=1 ND,Rppp(v)uv with ND,Rppp(v)
using values in Rppp/ppp

v that lift to values in Rppp. To

make this useful motivically requires doing this for

those D with a map to a fixed space Z/K.

Given D, There is a string of — relative to Z

— Chow motives (over K) {[Mv]}∞v=0, so for almost

all ppp, WD,Rppp(u) =
∑∞

t=1 trFrppp[Mt]ut.
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Role of iDPs

Given Weil Vector W (D, Fq) over (Z, Fq) and ϕ :
X → Z can define pullback Wϕ(D, Fq) over (X, Fq).

Assume ϕi : Xi → Z, i = 1, 2, is an iDP over Fq,

X1 = X2 and D has a map to Z. Then, (ϕ1, ϕ2)
produces new Weil vectors Wϕi

D,Fq
, i = 1, 2, and

a relation between Wϕ1
D,Fq

(u) and Wϕ2
D,Fq

(u): ∞-ly

many coefficients of Wϕ1
D,Fq

(u) − Wϕ2
D,Fq

(u) equal 0.
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Part V: CM and GL2 exceptional genus 0 covers

Test for a cover ϕ : X → Z decomposing. Check X×ZX\Δ
for irreducible components Z of form X ′ ×Z X ′. If none, then

ϕ is indecomposable. Otherwise, ϕ factors through X ′ → Z

(Gutierrez, et.al. from [FrM69]).

Denote the minimal Galois extension of K over

which ϕ decomposes into absolutely indecomposable

covers by Kϕ(ind): The indecomposability field of ϕ.

Proposition 18.For any cover ϕ : X → Z over a
field K, Kϕ(ind) ⊂ K̂ϕ(2).
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Most of rest of genus 0 except. covers/Q

[Fr78], [GSM04]: From Weierstrass ℘-functions.

P1
±w

f−→ P1
{±z}

mod {±1}
�
⏐
⏐

�
⏐
⏐ mod {±1}

Cw/Lw
mod Lz/Lw−−−−−−−−−→ Cz/Lz.

• Case CM: deg(f) = r, a prime

• Case GL2: deg(f) = r2, a prime squared

[O67], [Se68], [Se81], [R90], [Se03] ⇔ case of Serre’s

O(pen)I(mage)T(heorem). CM case can describe inversion

period from “Euler’s Theorem,”essentially equivalent to the

theory of complex multiplication.
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GL2 gist [Fr05, §6.1-.2], Serre’s GL2 OIT [Se68, etc]

• [f ] �→ P1
j by the j-invariant of the 4 branch points;

• Gf = (Z/r)2 ×s{±1}; yet

• for a non-CM j-invariant (say in Q), then for a.a. r, then

for f
def= fj,r, Ĝf = (Z/r)2 ×sGL2(Z/r).

Exceptionality versus indecomposability: Given fj,r and the

set A of A ∈ GL2(Z/r)/{±1} for which A acts irreducibly on

(Z/r)2. Consider Pfj,r,A those primes p with the Frobenius of

fj,r : P1
w → P1

z mod p in A. For such p

• fj,r mod p is exceptional; and (equivalently)

• fj,r mod p is indecomposable, but decomposes over F̄p.
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Two automorphic function questions

[Fr05,§6] poses an analog of [Se03] to find an automorphic

funct. (should exist according to Langlands) for primes of

except. for j ↔ Ogg’s curve 3+ [Se81, extensive discuss].

Would give an explicit structure to the primes of exceptionality.

For any exceptional fj,r mod p, form a Poincaré series

with the period of exceptionality its coefficients. Conjecture,

this series is rational. This result would then remove from

consideration the arbitrary identification of P1
w with P1

z.
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