Iteration Dynamics from Cryptology on Exceptional Covers Mike Fried, UCI 05/20/08

- Part 0: Exceptionality and fiber products
- Part I: Generalization of Davenport-Lewis Criterion
- Part II: The exceptional tower $\mathcal{T}_{Z,\mathbb{F}_q}$ of any variety Z over \mathbb{F}_q
- Part III: Subtowers generated by Serre's O(pen) I(mage) T(heorem):

 CM part or GL part.
- Part IV: (Chow) motives from exceptional covers and Davenport pairs: Diophantine category of Poincare series over (Z, \mathbb{F}_q)
- Part V: Generalizing: Pr-exceptionality and Davenport pairs

Part 0: Exceptionality and fiber products

http://math.uci.edu/~mfried \rightarrow §1.a. Articles and Talks: \rightarrow • Finite fields, Exceptional covers and

motivic Poincare series

With p prime, $q=p^u$, an \mathbb{F}_q cover $\varphi:X\to Z$ of absolutely irreducible normal varieties is exceptional if φ one-one on \mathbb{F}_{q^t} points for infinitely many t.

For a # field: φ has infinitely many exceptional residue class field reductions. Use $n_{\varphi} = n$ for $\deg(\varphi)$.

Definition 1. φ is *indecomposable* or *primitive* if φ does not factor through a lower degree (≥ 2) cover of Z over \mathbb{F}_q .

Using fiber products

Assume $\varphi_i: X_i \to Z$, i=1,2, are two covers (of normal varieties) over K. The set theoretic fiber product has geometric points

 $\{(x_1,x_2)\mid x_i\in X_i(\bar K), i=1,2,\ \varphi_1(x_1)=\varphi_2(x_2)\}: x\in X(\bar{\mathbb F}_q) \text{ is a point in } X \text{ with coordinates in } \bar{\mathbb F}_q.$ It won't be normal at (x_1,x_2) if x_1 and x_2 both ramify over Z.

The *categorical* fiber product here is the *normalization* of the result: components are disjoint, normal varieties, $X_1 \times_Z X_2$.

Galois closure of a cover

Denote $X \times_Z X$ minus the diagonal by $X_Z^2 \setminus \Delta$.

 $X_Z^{n_{\varphi}} \setminus \Delta$: n_{φ} th iterate of the fiber product minus the *fat diagonal*.

Galois closure of φ over K: Any K component, \hat{X} , of $X_Z^n \setminus \Delta$. Galois group $G(\hat{X}/Z) \stackrel{\text{def}}{=} \hat{G}_{\varphi}$: subgroup of S_n fixing \hat{X} .

Group Fact: φ primitive $\Leftrightarrow \hat{G}_{\varphi}$ primitive. Stabilizer:

$$\hat{G}_{\varphi}(1) = \{g \in \hat{G}_{\varphi} | g(1) = 1\} : \text{acts on } \{2, \dots, n\}.$$

Without $\hat{}$, G_{φ} , denotes absolute Galois closure.

Part I: Generalization of Davenport-Lewis Exceptionality Criterion

Cyclic polynomials: $x \to x^n$ as in RSA coding.

Proposition 2. If (n, p - 1) = 1, can use x^n to scramble data into \mathbb{Z}/p . For n odd, ∞ -ly many such primes p.

Proof. Euler's Theorem: Powers of a single integer α fill out $\mathbb{Z}/p\setminus\{0\}\stackrel{\mathrm{def}}{=}\mathbb{Z}/p^*$. \square Take $p\in\{k+m\cdot n|m\in\mathbb{Z}\}$ where k satisfies:

- (k, n) = 1 (Dirichlet's Thm. gives ∞ -ly many p);
- $(k-1,n) = 1 ((p-1 = k-1 + m \cdot n, n) = 1).$

Tchebychev polynomials of odd degree n

$$T_n(\frac{1}{2}(x+1/x)) = \frac{1}{2}(x^n+1/x^n),$$

 $T_n: \{\infty, \pm 1\} \mapsto \{\infty, \pm 1\}.$

Proposition 3. If (n,6) = 1, then $T_n : \mathbb{Z}/p \to \mathbb{Z}/p$ is exceptional mod p for those p with $(p^2 - 1, n) = 1$.

Proof: Use finite fields $\mathbb{F}_{p^2} \supset \mathbb{Z}/p$: $\mathbb{F}_{p^2}^*$ cyclic.

2. Schur's Conjecture:

Cryptography in modern algebra is from the middle of the 1800s. Used finite fields as the place to encode a message.

Conjecture 4 (Schur 1921). Only compositions of cyclic, Tchebychev and degree 1 ($x \mapsto ax + b$) give polynomials mapping 1-1 on \mathbb{Z}/p for ∞ -ly many p. (Solved [Fr69].)

Problem 5. How to check if an f(x) is a composition of the correct polynomials? If so, how to check if it is 1-1 for ∞ of p (notation: $1-1_{\infty}$)?

Cover characterization of exceptionality

Proposition 6. [DL63] \rightarrow [Mc67] \rightarrow [Fr74] \rightarrow [Fr05] \rightarrow [GLTZ07]: General \mathbb{F}_q cover of normal varieties: $\varphi: X \rightarrow Z$ exceptional over \mathbb{F}_{q^t} $\Leftrightarrow X_Z^2 \setminus \Delta$ has no \mathbb{F}_{q^t} abs. irred. components.

Equivalently: Each orbit of $\hat{G}_{\varphi}(1)$ on $\{2, \ldots, n_{\varphi}\}$ breaks into (strictly) smaller orbits of $G_{\varphi}(1)$.

Absolutely indecomposable: For $\varphi(x) \in K[x]$, $(\operatorname{char}(K), n_{\varphi}) = 1$, φ primitive over $K \Leftrightarrow \operatorname{over} \bar{K}$. This is *not* true for $\varphi(x) \in K(x)$.

Part II: Exceptional tower $\mathcal{T}_{Z,\mathbb{F}_q}$ of variety Z over \mathbb{F}_q

Let $\hat{K}_{\varphi}(k)$ be the minimal def. field of (geom.) \bar{K} components of $X_Z^k \setminus \Delta$, $1 \le k \le n_{\varphi}$:

$$\ker(\hat{G}_{\varphi} \to G(\hat{K}_{\varphi}(n_{\varphi})/K)) = G_{\varphi}.$$

Each $\hat{K}_{\varphi}(k)/K$ is Galois: kth ext. of constants field: $G(\hat{K}_{\varphi}(k)/K)$ permutes geom. components of $X_{Y}^{k} \setminus \Delta$. Denote perm. rep. by $T_{\varphi,k}$.

Characterize exceptional

There is a natural sequence of quotients

$$G(\hat{X}/Y) \to G(\hat{K}_{\varphi}(n_{\varphi})/K) \to \cdots \to G(\hat{K}_{\varphi}(k)/K) \to \cdots \to G(\hat{K}_{\varphi}(1)/K).$$

 $G(\hat{K}(1)/K)$ is trivial iff all K components of X are absolutely irreducible.

Theorem 7. For K a finite field, $G(\hat{K}_{\varphi}(2)/K)$ having no fixed points under $T_{\varphi,2}$ characterizes φ being exceptional ([Fr74], [Fr05], [GLTZ07]).

The tower $\mathcal{T}_{Z,\mathbb{F}_q}$ and its cryptology potential

Morphisms $(X,\varphi) \in \mathcal{T}_{Z,\mathbb{F}_q}$ to $(X',\varphi') \in \mathcal{T}_{Z,\mathbb{F}_q}$ are covers $\psi: X \to X'$ with $\varphi = \varphi' \circ \psi$. Partially order $\mathcal{T}_{Z,\mathbb{F}_q}$ by $(X,\varphi) > (X',\varphi')$ if there is an (\mathbb{F}_q) morphism ψ from (X,φ) to (X',φ') .

Then ψ induces:

- ullet a homomorphism $G(\hat{X}_{arphi}/X_{arphi})$ to $G(\hat{X}_{arphi'}/X_{arphi'})$; and
- ullet canonical map from cosets of $G(X_{arphi}/X_{arphi})$ in $G(\hat{X}_{arphi}/Z)$ to the corresponding cosets for X'.

Note: (X, ψ) is automatically in $\mathcal{T}_{X', \mathbb{F}_q}$.

Forming the exceptional tower

Nub of an exceptional tower of (Z, \mathbb{F}_q) : \exists unique minimal exceptional cover X — the fiber product — dominating exceptional covers $\varphi_i: X_i \to Z$, i=1,2. Note: Everything depends on \mathbb{F}_q .

For $(X,\varphi)\in \mathcal{T}_{Z,\mathbb{F}_q}$ denote cosets of $G(\hat{X}_{\varphi}/X_{\varphi})$ in $G(\hat{X}_{\varphi}/Z)=\hat{G}_{\varphi}$ by V_{φ} ; coset of 1 by v_{φ} and the rep. of \hat{G}_{φ} on these cosets by $T_{\varphi}:\hat{G}_{\varphi}\to S_{V_{\varphi}}$. Write $G(\hat{K}_{\varphi_i}(2)/\mathbb{F}_q)$ as $\mathbb{Z}/d(\varphi_i)$, i=1,2.

Why $X_1 \times_Z X_2$ has exactly one abs. irred. comp.

Do $\frac{1}{2}$, suppose none! Let $\mathbb{F}_{q^{t_0}}$ contain coefficients of all abs. irred. $X_1 \times_Z X_2$ comps.

Assume $(t, t_0) = 1$: $\Rightarrow X_1 \times_Z X_2$ has no abs. irr.

comps. over \mathbb{F}_{q^t} . Normality $\Longrightarrow X_1 \times_Z X_2(\mathbb{F}_{q^t}) = \emptyset$.

Then, $t \in (\mathbb{Z}/d(\varphi_i))^*$, i=1,2, $\Longrightarrow \varphi_i$ is 1-1 and onto over \mathbb{F}_{q^t} , i=1,2. Weil: For t large \Longrightarrow

 $\exists z \in Z(\mathbb{F}_{q^t}) \text{ and } \exists x_i \in X_i(\mathbb{F}_{q^t}) \mapsto z, i = 1, 2.$

Dav-Lew Crit. \Longrightarrow May assume φ_i s are étale. Contradiction: $(x_1, x_2) \in X_1 \times_Z X_2(\mathbb{F}_{q^t})$.

$\mathcal{T}_{Z,\mathbb{F}_q}$ is a very rigid category

Proposition 8. In $\mathcal{T}_{Z,\mathbb{F}_q}$ there is at most one (\mathbb{F}_q) morphism between any two objects. So, $\varphi: X \to Z$ has no \mathbb{F}_q automorphisms: $\operatorname{Cen}_{S_{V_{\omega}}}(\hat{G}_{\varphi}) = \{1\}.$

Then, $\{(\hat{G}_{\varphi}, T_{\varphi}, v_{\varphi})\}_{(X,\varphi) \in \mathcal{T}_{Z,\mathbb{F}_{q}}}$ canonically defines a compatible system of permutation representations; it has a projective limit (\hat{G}_{Z}, T_{Z}) .

Value of the Tower: It now makes sense to form the subtower generated by special exceptional covers: The minimal tower including all covers in the set. Examples: Tamely ramified subtower; Schur-Dickson subtower of $\mathcal{T}_{\mathbb{P}^1_z,\mathbb{F}_q}$; Subtower generated by **CM** (or **GL**₂) covers from Serre's OIT (Part V).

Exceptional scrambling

For any t let $\mathcal{T}_{Z,\mathbb{F}_q}(t)$ be those covers with t in their exceptionality set.

Cryptology starts by encoding a message into a set. For t large our message encodes in \mathbb{F}_{q^t} . Then, select $(X,\varphi)\in \mathcal{T}_{Z,\mathbb{F}_q}(t)$. Embed our message as $x_0\in X(\mathbb{F}_{q^t})$. Use φ as a one-one function to pass x_0 to $\varphi(x_0)=z_0\in Z(\mathbb{F}_{q^t})$ for "publication." You and everyone else who can understand "message" x_0 can see z_0 below it. To find out what is x_0 from z_0 , need an inverting function $\varphi_t^{-1}:Z(\mathbb{F}_{q^t})\to X(\mathbb{F}_{q^t})$.

Inverting the scrambling map

Question 9 (Periods). With $X=\mathbb{P}^1_x$ and $Z=\mathbb{P}^1_z$, identify them to regard φ on \mathbb{F}_{q^t} as φ_t , permuting $\mathbb{F}_{q^t}\cup\{\infty\}$. Label the order of φ_t as $m_{\varphi,t}=m_t$. Then, $\varphi_t^{m_t-1}$ inverts φ_t . How does $m_{\varphi,t}$ vary, for genus 0 exceptional φ , as t varies?

Standard RSA inverts $x \mapsto x^n$ by inverting the nth power map on $\mathbb{F}_{q^t}^*$ (mult. by n on $\mathbb{Z}/(q^t-1)$ —Euler's Theorem). Works for all covers in the Schur Sub-Tower of $(\mathbb{P}_y^1, \mathbb{F}_q)$ generated by x^n s and T_n s. (For T_n s, "invert mult. by n" on $\mathbb{Z}/(q^{2t}-1)$.)

Part III: Subtowers generated by Serre's O(pen) I(mage) T(heorem): **CM** part or **GL** part.

Test for $\varphi:X\to Z$ decomposing. Check $X\times_Z X\setminus \Delta$ for irr. comps. of form $Z=X'\times_Z X'$. None $\Rightarrow \varphi$ is indecomposable. Otherwise, φ factors through $X'\to Z$ (Gutierrez, et.al. from [FrM69]).

Indecomposability field, $K_{\varphi}(\text{ind})$, of φ : Minimal Galois L/K over which φ decomposes no further. **Proposition 10.** For any $cover \ \varphi : X \to Z \ over \ a$

field K, $K_{\varphi}(\text{ind}) \subset \hat{K}_{\varphi}(2)$.

Most of rest of genus 0 except. covers/Q

[Fr78], [GSM04]: From Weierstrass &-functions.

$$\begin{array}{ccc}
\mathbb{P}^1_{\pm w} & \xrightarrow{f} & \mathbb{P}^1_{\{\pm z\}} \\
\mod \{\pm 1\} & & & & \mod \{\pm 1\}
\end{array}$$

$$\mathbb{C}_w/L_w \xrightarrow{\mod L_z/L_w} \mathbb{C}_z/L_z.$$

- Case CM: deg(f) = r, a prime
- Case GL_2 : $\operatorname{deg}(f) = r^2$, a prime squared

[O67], [Se68], [Se81], [R90], [Se03] \Leftrightarrow case of Serre's O(pen)I(mage)T(heorem). CM case can describe inversion period from "Euler's Theorem," essentially equivalent to the theory of complex multiplication.

GL₂ gist [Fr05, §6.1-.2], Serre's **GL**₂ OIT [Se68, etc]

- $[f] \mapsto \mathbb{P}^1_j$ by the *j*-invariant of the 4 branch points;
- $G_f = (\mathbb{Z}/r)^2 \times^s \{\pm 1\}$; yet
- for a non-CM j-invariant (say in \mathbb{Q}), then for almost all r, and $f \stackrel{\text{def}}{=} f_{j,r}$, $\hat{G}_f = (\mathbb{Z}/r)^2 \times^s \mathrm{GL}_2(\mathbb{Z}/r)$.

Let Fr_p be the Frobenius of a prime p in $f_{j,r}: \mathbb{P}^1_w \to \mathbb{P}^1_z$ $\operatorname{mod} p$. Exceptionality versus indecomposability:

 $\mathcal{A}_r \stackrel{\text{def}}{=} \{A \in \operatorname{GL}_2(\mathbb{Z}/r)/\{\pm 1\} | A \text{ fixs no dim. 1 space in } (\mathbb{Z}/r)^2 \}.$ $P_{f_{j,r},\mathcal{A}_r} \stackrel{\text{def}}{=} \{p | \operatorname{Fr}_p \in \mathcal{A}_r \}. \text{ For } p \in P_{f_{j,r},\mathcal{A}_r}:$

- $f_{j,r} \mod p$ is exceptional; and (equivalently)
- $f_{j,r} \mod p$ is indecomposable, but decomposes over $\bar{\mathbb{F}}_p$.

Two automorphic function questions

[Fr05, \S 6] poses an analog of [Se03] to find an automorphic funct. (should exist according to Langlands) for primes of except. for $j \leftrightarrow Ogg$'s curve 3^+ [Se81, extensive discuss]. Would give an explicit structure to the primes of exceptionality.

For any exceptional $f_{j,r} \mod p$, form a Poincaré series with the period of exceptionality its coefficients. Conjecture, this series is rational. This result would then remove from consideration the arbitrary identification of \mathbb{P}^1_w with \mathbb{P}^1_z .

Part IV: (Chow) motives: Diophantine category of Poincare series over (Z, \mathbb{F}_q)

Let $W_{D,\mathbb{F}_q}(u) = \sum_{t=1}^{\infty} N_D(t) u^t$ be a Poincaré series for a diophantine problem D over a finite field \mathbb{F}_q . We call these Weil vectors. Example: $F(\boldsymbol{x}, \boldsymbol{z}) \in \mathbb{F}_q[\boldsymbol{x}, \boldsymbol{z}]$, $N_D(t) = |\{\boldsymbol{z} \in \mathbb{F}_{q^t}^{m_{\boldsymbol{z}}} \mid \exists \boldsymbol{x} \in \mathbb{F}_{q^t}^{m_{\boldsymbol{x}}}, F(\boldsymbol{x}, \boldsymbol{z}) = 0\}|$.

Weil Relation between $W_{D_1,\mathbb{F}_q}(u)$ and $W_{D_2,\mathbb{F}_q}(u)$: ∞ -ly many coefficients of $W_{D_1,\mathbb{F}_q}(u)-W_{D_2,\mathbb{F}_q}(u)$ equal 0. Effectiveness result: For any Weil vector, the support set of $t \in \mathbb{Z}$ of 0 coefficients differs by a finite set from a union of full Frobenius progressions.

Motivic formulation

Question 11. If Poincare series of X over \mathbb{F}_q has t-th coefficient equal $q^t + 1$ for ∞ -ly many t, is there a chain of except. correspondences from X to \mathbb{P}^1 ?

Equivalent to characterizing X for which $\sum_{t=1}^{\infty} \operatorname{tr}_{\operatorname{Fr}_{q^t}} [\sum_{0}^{2} (-1)^i H^i_\ell(X)] u^t$ has a relation with the series with $X = \mathbb{P}^1$: Chow motive coefficients.

There are p-adic versions: Replace \mathbb{F}_{q^t} by higher residue fields with the Witt vectors R_t with residue class \mathbb{F}_{q^t} ; and use integration instead of counting.

Result of Denef-Loeser [Fr77], [DL01], [Ni04]

Consider a number field version, by R_p the completion the integers of K with respect to prime p. Then, $W_{D,R_p}(u) \stackrel{\mathrm{def}}{=} \sum_{v=1}^\infty N_{D,R_p}(v) u^v$ with $N_{D,R_p}(v)$ using values in R_p/p^v that lift to values in R_p . To make this useful motivically requires doing this for those D with a map to a fixed space Z/K.

Given D, There is a string of — relative to Z — Chow motives (over K) $\{[M_v]\}_{v=0}^{\infty}$, so for almost all \boldsymbol{p} , $W_{D,R_{\boldsymbol{p}}}(u) = \sum_{t=1}^{\infty} \operatorname{tr}_{\operatorname{Fr}_{\boldsymbol{p}}}[M_t]u^t$.

Part V: Generalizing: Pr-exceptionality and Davenport pairs

Definition 12. $\varphi: X \to Z$ is p(ossibly)r(educible)-exceptional: $\varphi: X(\mathbb{F}_{q^t}) \to Z(\mathbb{F}_{q^t})$ surjective for ∞ -ly many t.

Then, φ is exceptional iff X is abs. irreducible. We even allow X to have no abs. irred. comps.

Form $\hat{X} \to Z$ (with its canonical rep. T_{φ}), the Galois closure with group \hat{G}_{φ} , and get an extension of constants field with $G(\hat{\mathbb{F}}_{\varphi}/\mathbb{F}_q) = \mathbb{Z}/\hat{d}(\varphi)$.

D-L generalization; pr-exceptional characterization

For $t \in \mathbb{Z}/\hat{d}(\varphi)$:

 $\hat{G}_{\varphi,t} \stackrel{\mathrm{def}}{=} \{g \in \hat{G}_{\varphi} \mid \text{ restricts to } t \in \mathbb{Z}/\hat{d}(\varphi)\}.$ Exceptionality set E_{φ} of a pr-exceptional cover: $\{t \in \mathbb{Z}/\hat{d}(\varphi) \mid \forall g \in \hat{G}_{\varphi,t} \text{ fixes } \geq 1 \text{ letter of } T_{\varphi}\}.$

pr-exceptional correspondences: $W \subset X_1 \times X_2$ with projections $W \to X_i$ s pr-exceptional.

Exceptional correspondence between X_1 and X_2 $\Longrightarrow |X_1(\mathbb{F}_{q^t})| = |X_2(\mathbb{F}_{q^t})|$ for ∞ -ly many t.

If $X_2=\mathbb{P}^1_z$, then $\sum_{t=1}^\infty (a_n\stackrel{\mathrm{def}}{=}|X_1(\mathbb{F}_{q^t})|)u^t$ has $a_n=q^t+1$ for ∞ -ly many t.

D(avenport)Pairs: new pr-except. correspondences

Definition 13. (φ_1, φ_2) is a DP (resp. i(sovalent)DP) if $\varphi_1(X_1(\mathbb{F}_{q^t})) = \varphi_2(X_2(\mathbb{F}_{q^t}))$ for ∞ -ly many t (resp. ranges assumed with same multiplicity; T. Bluer's name).

Equivalent to being a DP:

 $X_1 \times_Z X_2 \xrightarrow{\operatorname{pr}_{X_i}} X_i$, is pr-exceptional, and the exceptionality sets $E_{\operatorname{pr}_i}(\mathbb{F}_q)$, i=1,2, have nonempty (so infinite) intersection

$$E_{\operatorname{pr}_1}(\mathbb{F}_q) \cap E_{\operatorname{pr}_2}(\mathbb{F}_q) \stackrel{\mathrm{def}}{=} E_{\varphi_1,\varphi_2}(\mathbb{F}_q).$$

Role of iDPs

Given Weil Vector $W(D, \mathbb{F}_q)$ over (Z, \mathbb{F}_q) and $\varphi: X \to Z$ can define pullback $W^{\varphi}(D, \mathbb{F}_q)$ over (X, \mathbb{F}_q) .

Assume $\varphi_i: X_i \to Z$, i=1,2, is an iDP over \mathbb{F}_q , $X_1 = X_2$ and D has a map to Z. Then, (φ_1, φ_2) produces new Weil vectors $W_{D,\mathbb{F}_q}^{\varphi_i}$, i=1,2, and a relation between $W_{D,\mathbb{F}_q}^{\varphi_1}(u)$ and $W_{D,\mathbb{F}_q}^{\varphi_2}(u)$: ∞ -ly many coefficients of $W_{D,\mathbb{F}_q}^{\varphi_1}(u) - W_{D,\mathbb{F}_q}^{\varphi_2}(u)$ equal 0.

Bibliography; Parts 0, I, II:

- [DL63] H. Davenport and D.J. Lewis, *Notes on Congruences (I)*, Quart. J. Math. Oxford **(2) 14** (1963), 51–60.
- [Fr70] M.D. Fried, On a conjecture of Schur, Mich. Math. J. 17 (1970), 41–45.

• [Fr74] M. Fried, On a Theorem of MacCluer, Acta. Arith. XXV (1974), 122–127.

- [Fr05] M. Fried, The place of exceptional covers among all diophantine relations, J. Finite Fields 11 (2005) 367–433.
- [LMT93] R. Lidl, G.L. Mullen and G. Turnwald, *Dickson Polynomials*, Pitman monographs, Surveys in pure and applied math, **65**, Longman Scientific, 1993.
- [GLTZ07] R. Guralnick, T. Tucker and M. Zieve (behind the scenes Lenstra), Exceptional covers and bijections on Rational Points, to appear IRMN, 2007.
- [Mc67] C. MacCluer, On a conjecture of Davenport and Lewis concerning exceptional polynomials,

Acta. Arith. 12 (1967), 289-299.

• [Sch23] I. Schur, Uber den Zusammenhang zwischen einem Problem der Zahlentheorie and einem Satz über algebraische Functionen, S.-B. Preuss. Akad. Wiss., Phys.-Math. Klasse (1923), 123–134.

Bibliography; Parts II and V:

[DL01] J. Denef and F. Loeser, Definable sets, motives and p-adic integrals, JAMS 14 (2001), 429–469.

[Fr76] M. Fried, Solving diophantine problems over all residue class fields of a number field ..., Annals Math. **104** (1976), 203–233.

[Fr78] M. Fried, Galois groups and Complex Multiplication, T.A.M.S. 235 (1978) 141–162.

[FGS93] M.D. Fried, R. Guralnick and J. Saxl, Schur covers and Carlitz's conjecture, Israel J. Math. 82 (1993), 157–225.

[GMS03] R. Guralnick, P. Müller and J. Saxl, The rational function analogue of a question of Schur and exceptionality of permutations representations, Memoirs of AMS **162** 773 (2003),ISBN 0065-9266.

• [GTZ07] R. Guralnick, T. Tucker and M. Zieve, Exceptional covers and bijections on rational points, to

appear in IRMN.

[Le95] H.W. Lenstra Jr., Talk at Glasgow conference, Finite Fields III, (1995).

[Ni04] J. Nicaise, Relative motives and the theory of pseudo-finite fields, to appear in IMRN.

[O67] A.P. Ogg, Abelian curves of small conductor, Crelle's J 226 (1967), 204–215.

[R90] K. Ribet, *Review of new edition of [Se68]*, BAMS **22** (1990), 214–218. [Se68] J.-P. Serre, *Abelian* ℓ -adic representations and elliptic curves, 1st ed., McGill University Lecture Notes, Benjamin, New York • Amsterdam, 1968, in collaboration with Willem Kuyk and John Labute.

• [Se81] J.-P. Serre, Quelques Applications du

Théorème de Densité de Chebotarev, Publ. Math. IHES 54 (1981), 323–401.

[Se03] J.-P. Serre, On a Theorem of Jordan, BAMS 40 #4 (2003), 429–440.