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• §I. Abel and Dihedral functions: Explains that

levels of a MT actually first appear in Calculus.

• §II. MT view of Modular curves: Modular curves

systematically use cusps. We translate those cusps

into MT language to show how modular curve

questions and applications generalize to MTs.
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§I. Abel and Dihedral functions

1st year calculus uses Tp(cos(θ)) = cos(pθ), with

Tp(w) = z the pth Chebychev polynomial to express

cos(θ)p as a sum of cos(kθ) terms, 0 ≤ k ≤ p.

Consider Tp : P1
w = Cw ∪ {∞} → P1

z = Cz ∪ {∞}
as a map between complex spheres, branched over

{z1, z2, z3} = {−1,+1,∞}.
The trick: Induct on p to find T ∗

p (w) = 2Tp(w/2)
so T ∗

p (x+1/x) = xp+1/xp.

Then substitute x �→ e2πiθ.
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§I.A. The dihedral group with observations

Tp (p odd) is a dihedral function: Attached to it

is a b(ranch) c(ycle) d(escription):

g1 = (2 p)(3 p−1) · · · (p+1
2

p+3
2 )

g2 = (1 p)(2 p−1) · · · (p−1
2

p+3
2 )

g∞ = (p p−1 · · · 1)
• (generation) 〈g1, g2〉= Dp = {

( ±1 b

0 1

)
}b∈Z/p, order

2p dihedral group; C2, involution conjugacy class

↔ −1 in upper left matrix corner.
• (conjugacy classes) gi, i = 1, 2, are in C2.

• (product-one) g1g2g∞ = 1.
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Two dihedral function questions

• Q1: From whence the (g1, g2, g∞)?
Answer: Use App. A1: With r = 3.

• Q2: If another function f : P1
w → P1

z with similar

bcd, how related to Tp?

Answer: ∃ Möbius transforms. α1, α2 ∈ PGL2(C)
with f = α2 ◦ Tp ◦ α−1

1 (w): f ∼Möbius Tp.

Historical generalization: Abel used more general

dihedral Möbius classes.
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§I.B. r = 4 (not 3) branch dihedral functions

Denote distinct elements of (P1
z)

4 by U 4. S4 (sym-

metries on {1, 2, 3, 4}) permutes coordinates of U 4.

Instead of (g1, g2, g∞) take ∼Möbius classes

of functions with bcds (g1, g
−1
1 , g2, g

−1
2 ) ∈ C24,

H(arbater)-M(umford) — or any 4-tuple in C24 with

generation and product-one; the set Ni(Dp,C24) of

Nielsen classes — branched over any

zzz = {z1, . . . , z4} ∈ U 4/S4
def= U4

def= U4,z.
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Why such f : P1
w → P1

z exists

• App. A1 gives compact surface cover f : X → P1
z.

• Then apply R-H (App. B2) to see X has genus 0.

• Then apply R(iemann)-R(och) to conclude X is

analytically isomorphic to P1
w.

• Each zi has a unique unramified wi �→ zi

(wi corresponds to length 1 disjoint cycle in gi):

f ↔ (www,zzz) ∈ U4,w × U4,z �→ [∼Möbius]
PGL2(C)\U4,w × U4,z/PGL2(C) = (P1

jw
\∞) × (P1

jz
\∞).
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§I.C. Dragging a function by its branch points

Continuity on the space of such f s: You can drag

the classical generators on Uzzz0 = P1
z \ zzz0 along any

path P (t), t ∈ [0, 1] based at zzz0 ∈ Ur to classical

generators on UP (t).

Upshot: You can drag f0 to ft by its branch

points. If P is closed, representing [P ] ∈ π1(Ur,zzz
0),

then f1 (usually) has a different bcd, denoted (ggg)q[P ],

(relative to the original classical generators).
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Facts about q[P ], for any r ≥ 4

• (ggg)q[P ] is an r-tuple of words in the entries of ggg.

• For i = 1, . . . , r−1, there is a [Pi] so that,

qi
def= q[Pi] : (g1, . . . , gr)

�→ (g1, . . . , gi−1, gigi+1g
−1
i , gi, gi+2, . . . , gr).

Add the shift: sh : (g1, . . . , gr) �→ (g2, . . . , gr, g1).
Two generatored Hurwitz monodromy Hr: π1(Ur, zzz

0)=〈q2, sh〉
(For r = 4 has normal subgroup, Q′′=〈q1q

−1
3 ,sh2〉.)
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§I.D. PGL2(C) action; mapping class group M̄r

Denote the universal cover of a space X by X̃. Let

Vr → Ur be the fibration with fiber Uzzz over zzz ∈ Ur.

Now add α ∈ PGL2(C) action, starting from

(z1, . . . , zr) ∈ Ur �→ ((z1)α, . . . , (zr)α).

Induces Galois (group M̄r,r-branch point mapping

class group), but ramified,

Vr/PGL2(C) → Ur/PGL2(C) def= Jr (J4 = P
1
j \∞).
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§II. MT view of modular curves

Γ ≤ PSL2(Z) = 〈γ0, γ1〉 of finite index: γ0 and γ1

of resp. orders 3 and 2. Act on upper half-plane H.

MTs recognizes PSL2(Z) as M̄4 with generators

q1q2 = γ0, sh = γ1 mod 〈q1q
−1
3 , sh2〉.

• Γ �→ X0
Γ, ramified cover of Uj = P1

j \ {∞}.
• Orbits of γ∞ =

( 1 1

0 1

)
on the cosets of Γ in

PSL2(Z) correspond to the cusps over ∞.
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II.A. Classical cusp description for Γ0(pk+1).
Count Γ0(pk+1) def= {

( a b

c d

)
≡

( a b

0 d

)
mod pk+1}

cusps: Select coset reps ⇒ compute their γ∞ orbits.

This is the procedure of [Sh71, §1.6], but that has

no sh-incidence cusp pairing as in App. E1.

II.B. Dihedral Nielsen classes; q2 action.

Assume p is odd. Order 2 · pk+1 dihedral group

(resp. its normalizer in Spk+1):

Gk = Dpk+1
def= {

( ±1 b

0 1

)
}b∈Z/pk+1

(resp. Nk
def= {

( a b

0 1

)
}a∈(Z/pk+1)∗,b∈Z/pk+1).
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Defining Ni(Gk,C24)( a b

0 1

)
∈ Nk acts on {(b′, 1) | b′ ∈ Z/pk+1}:

(b′, 1) �→ (a ·b′+b, 1). With C2 = {
( −1 b

0 1

)
}b∈Z/pk+1,

use this [] notation for Nielsen class elements:

ggg ∈ Ni(Gk,C24) �→ [b1, b2, b3, b4] ∈ (Z/pk+1)4.

AbsoluteNielsen classes Ni(Gk,C24)abs :
{ggg = (g1, . . . , g4) ∈ C24 | (G) some bi �= bj mod p;
and (P-O) b1−b2+b3−b4 ≡ 0 mod pk+1}/Nk.

(for inner classes replace Nk by Gk).
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II.C. Cusps as Cu4 = 〈Q′′,q2〉 orbits and p-cusps

G(eneration) is a Frattini property: It holds in G0,

so it holds in the Frattini cover Gk → G0 for any k.

P(roduct)-O(ne) is a translation of g1g2g3g4 = 1
in this dihedral case. It descends from classical

generators of π1(Uzzz, z0) being paths whose ordered

product is homotopic to one.

WithQ′′=〈q1q
−1
3 ,sh2〉, cusps ⇔ Cu4 orbits.
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Trivial Q′′ action

Princ. 1: Denote the braid orbit of ggg ∈ Ni(G,C)∗

(*=in or abs) by Oggg. If Nielsen class of ggg fixed by

q1q
−1
3 and sh, then Q′′ fixes class of any ggg′ ∈ Oggg.

Apply Princ. 1 to ggg = gggH−M �→ [0, 0, 1, 1]. This is

the unique absolute Harbater-Mumford rep.:

ggg = (g1, g
−1
1 , g2, g

−1
2 ). Later see: Just one braid orbit.

Middle Product:For ggg∈Ni(G,C), mprggg =ord(g2g3).
Cu4(ggg) is p-cusp: p divides mprggg.

Frattini property: Multiply by p to get width of next

level cusps over p-cusps.
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II.D. Cusp width principle

Princ. 2: If G centerless, either the q2 orbit on gggin

has width 2 · mprggg or mprggg is odd, and

(g2g3)
mprggg−1

2 g2 has order 2 mod CenG(〈g1, g4〉).
If ggg ∈ Ni(Dpk+1,C24) �→ [b1, . . . , b4], then

mprggg = order of bggg
def= b3−b2 in Z/pk+1.

Product of an odd (resp. even) number of elements

from C2 is in C2 (resp. translat. by some b ∈ Z/pk+1).

Princ. 2 gives this list of cusp reps.:

{[b1, b2+mbggg, b3+mbggg, b4]}
mprggg−1
m=0 .
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II.E. Normalizations for listing all cusps

Norm1: Conjugate [b1, . . . , b4] by 〈
( 1 1

0 1

)
〉 to assume

b1 = 0 and b2 − b3 + b4 = 0.

Norm2: For Niabs, if b2−b3 = apu, a ∈ Z/pk+1−u and

(a, p) = 1, conjugate by
( a−1 0

0 1

)
so a = 1.

Norm3: Allows further conjugation by

Hu = {α = 1+bpk+1−u ∈ Z/pk+1 mod pu, b ∈ Z/pu}.
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All are p-cusps or g-p′ cusps

Take c = b2, b3 = c − pu (u is a parameter).

u = 0: (b2, b3) = (c, c− 1) has q2 orbit of width pk+1

containing gggH−M �→ [0, 0, 1, 1].
u > 0: 〈ggg〉 = Dpk+1 =⇒ (c, p) = 1. Conjugate by

Hu to assume c ∈ Z/pk+1−u is p′:
Width = |residues mod pk+1−u differing by multiplies of pu|.
Conclude: ϕ(pk+1−u) Nielsen classes in Cu4 orbits of width

pk+1−2u (resp. 1) if k + 1 − 2u ≥ 0 (resp. k + 1 − 2u < 0).

u = k+1, ag-p′ cusp: (b2, b3)=(1, 1): (gggH-M)sh (width1),

H2,3 = 〈g2, g3〉, H1,4 = 〈g1, g4〉, both p′ groups (here cyclic).
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II.F. MT account for one H4 orbit

Absolute case: (ggg)sh �→ [c, c − pu,−pu, 0]. As

(c, p) = 1, from above, cusp orbit contains [c, c, 0, 0].
sh-incidence pairing (App. E1) has H-M cusp

intersect all other cusps (matrix has one block).

Conclude: Niabs gives a degree pk+1 + pk cover

H̄(Dpk+1,C24)abs,rd → P1
j. Respective result for Niin

is degree ϕ(pk+1)
2 (pk+1 + pk).
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MT account for one inner H4 orbit

From absolute case, need only braid between inner

classes of H-M reps: {[0, 0, c, c]}c∈(Z/pk+1)∗.

Shift [0, 1, 1+c, c] (in Cu4 orbit of [0, 0, c, c]) to

get [1, 1+c, c, 0] = ggg′. Then, [1, 1, 0, 0] is in cusp of

ggg′ which is (above) inner equivalent to gggH-M.

Problem: Use App. C1 with MT description to

compute the genus of X0(pk+1) and X1(pk+1).
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I.G. Summary: Modular curve vs all MT level cusps

When r = 4, MT levels (start from level 0) are

upper half-plane quotients covering classical j-line.

Rarely are they modular curves.

With ggg ∈ Ni(G,C)in, denote:

〈g2, g3〉 = H2,3(ggg) and 〈g1, g4〉 = H1,4(ggg).
Modular curves have

• p-cusps: p divides mprggg; and

• g-p′ cusps: both H2,3 and H1,4 are p′ groups.

Don’t have: o(nly)-p′ cusps neither p nor g-p′.
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•
•
•

• •
•

z0

z1

zi

zr

•

•

•

•

σi ↗ σr↘

σ0
↗

σ1↘

δ1
↗

δi
↗ ←δr

b1
↗

bi
↗

←br

•

•

•

a1
↗

ai↘
←ar

•

•

•

App. A1: Classical Generators: see next 2 pages
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Pieces in the figure

Ordered closed paths δiσiδ
−1
i = σ̄i, i = 1, . . . , r,

are classical generators of π1(Uzzz, z0).
Discs, i = 1, . . . , r: Di with center zi; all disjoint,

each excludes z0; bi be on the boundary of Di.

Clockwise orientation: Boundary of Di is a path

σi with initial and end point bi; δi a simple simplicial

path: initial point z0 and end point bi. Assume δi

meets none of σ1, . . . , σi−1, σi+1, . . . , σr, and it meets

σi only at its endpoint.
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Meeting Boundary of D0

D0 intersections: D0 with center z0; disjoint from

each D1, . . . , Dr. Consider ai, first intersection of δi

and boundary σ0 of D0.

Crucial ordering: Conditions on δ1, . . . , δr:

• pairwise nonintersecting, except at z0; and

• a1, . . . , ar are in order clockwise around σ0.

Since paths are simplicial, last condition is

independent of D0, for D0 sufficiently small.
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App. B1: R(iemann)-H(urwitz)
R-H: Computes the genus gX of a degree n cover

ϕ : X → P1
z from these ingredients.

• zzzϕ are the branch points, and (σ̄1, . . . , σ̄r) are

classical generators (App.A1) of π1(Uzzzϕ).

• X0 = ϕ−1(Uzzzϕ). So, ϕ0 : X0 → Uzzz is unramified,

giving ϕ∗ : π1(Uzzzϕ) → Sn.

• ϕ∗(σ̄1, . . . , σ̄r) = (g1, . . . , gr).

– Typeset by FoilTEX – 24



Branch cycles and the genus

With ind(gi) = n − |gi orbits|,

2(n+gX−1)=
r∑

i=1

ind(gi).

Then, (g1, . . . , gr) are branch cycles of ϕ.

Exercise:Compute genus of a cover with branch

cycles ggg ∈ Ni(Dpk+1,C24)abs in §I.B (p. 7). Same for

ggg ∈ Ni(Dpk+1,C24)in.
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App. C1: Apply R-H to MT components (r = 4)

O′ is a M̄4 orbit on a reduced Nielsen class

Ni(G,C)abs/Q′′ (or Ni(G,C)in/Q′′). Denote action

of (γ0 = q1q2, γ1 = sh, γ∞ = (γ0γ1)−1) on O′ by

(γ′
0, γ

′
1, γ

′
∞): Branch cycles for a cover H̄′ → P1

j,

R-H gives genus, gH̄′:

2(deg(H̄′/P1
j)+g′−1)=ind(γ′

0) + ind(γ′
1) + ind(γ′

∞).
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App. D1: Branch Cycle Argument for (G,C)
f ∈ E(Uzzz, z0) means f analytic around z0 is

extensible along all paths in Uzzz with limits in C∪{∞}
as it approaches any z′ ∈ zzz. Let z0 ∈ Q.

Quest. A: Given zzz, ∃ ϕggg : Xggg → P1
z over Q, ggg ∈

Ni(G,C) with branch pointszzz?

Quest. B: As above, but ∃ ϕggg, Galois, over Q?
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Q. A or B requires that zzz is a Q set

So, σ ∈ GQ acts on γ ∈ π1(Uzzz, z0) through what

σ−1 ◦ γ ◦ σ does to f ∈ E(Uzzz, z0)alg:

f �→ fσ−1◦γ◦σ
def= fγσ ∈ π1(Uzzz, z0)alg.

Profinite π1(Uzzz, z0)alg is free on r (topological)

generators modulo a product-one relation.

Notation: σ ∈ GK maps to nσ ∈ Ẑ∗ = G(Qcyc/Q).
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Branch Cycle Argument

For each σ ∈ GQ, let πσ ∈ Sr satisfy zσ
i = z(i)π.

Affirmative to Q. B: Requires

Cnσ
(i)πσ

= Ci, i = 1, . . . , r.

Affirmative for Q. A: Only requires some Galois

closure group G ≤ Ĝ ≤ NSn(G,C): with

gσC
nσ
(i)πg

−1
σ = Ci, i = 1, . . . , r, for some gσ ∈ Ĝ.
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Some Branch Cycle Argument Examples

Let G = A5, C+
5 the class of (1 2 3 4 5), C−

5 the

class of (1 3 5 2 4), C3 the class of 3-cycles.
“Yes” means for some zzz:

1. C52
+32: No for Q. B, yes for Q. A.

2. C5+5−32: Yes for Q. A and B.

3. C52
+52

−
: Yes for Q. A and B.
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App.E1.sh-incidence matrix: Ni(Dp2,C24)∗,rd, *=abs/in
A Nielsen class gives a space. Since r = 4, each

component is — like modular curves — an upper

half-plane quotient by a finite index subgroup of

PSL2(Z) = H4/Q′′ , ramified over {0, 1,∞} ⊂ P1
j.

sh-incidence pairing on cusps: Given cO1, cO2 two

(inn. or abs.) cusp orbits:

(cO1, cO2) �→ |distinct (inn. or abs.) Nielsen classes|
from elements of cO1 ∩ (cO2)sh.

Symmetric, since sh2 ∈ Q′′.
sh-incidence blocks ↔ components of the space.

– Typeset by FoilTEX – 31



sh-incidence for Ni(Dp2,C24)abs,rd (k = 1 on pg. 17)
Cusp orbit cOp2 cOa,p, a ∈ (Z/p)∗ cO1

cOp2 p(p−1) 1 1

cOa,p, a ∈ (Z/p)∗ 1 0 0

cO1 1 0 0

u = 0 ↔ width p2 H-M rep. cusp, cOp2;

u = 1 ↔ cusps cOa,p, a ∈ (Z/p)∗ of width 1

(even though absolute p-cusps); and

u = 2 ↔ width 1 cusp cO1 of the shift of the H-M rep.

Adding to this data the fixed points of γ0 = q1q2 and γ1 = sh
gives the genus of the space (App. C1).
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Adjustments for Ni(Dp2,C24)in,rd (k = 1 on pg. 17)

u = 0 ↔ ϕ(p2)/2 = p(p−1)
2 H-M inner cusps over the unique

absolute H-M cusp.

u = 2 ↔ Story the same for shifts of H-M cusps (width 1).

u = 1 ↔ over each such absolute (width 1) cusp are

ϕ(p)/2 = p−1
2 width p cusps.

The sh-incidence matrix remains the same if we replace

γ1 = sh by γ0 [Fr07b, Lem. 4.8]. So, fixed points of either are

represented on the diagonal.

Problem: Use the MT method to compute which elements

in H-M cusp are fixed points of γi, i = 0, 1.
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