Dihedral Groups: M(odular) T(ower) view of modular curve towers and their cusps
Mike Fried, UC Irvine: Versions from London, Ont. Oct. 2005, Istanbul, 06/17/08. References all talks: www.math.uci.edu/ mfried/talklist-mt/ucicoll05-22-08.pdf.

- §l. Abel and Dihedral functions: Explains that levels of a MT actually first appear in Calculus.
- §II. MT view of Modular curves: Modular curves systematically use cusps. We translate those cusps into MT language to show how modular curve questions and applications generalize to MTs.

\S I. Abel and Dihedral functions

1st year calculus uses $T_{p}(\cos (\theta))=\cos (p \theta)$, with $T_{p}(w)=z$ the p th Chebychev polynomial to express $\cos (\theta)^{p}$ as a sum of $\cos (k \theta)$ terms, $0 \leq k \leq p$.

Consider $T_{p}: \mathbb{P}_{w}^{1}=\mathbb{C}_{w} \cup\{\infty\} \rightarrow \mathbb{P}_{z}^{1}=\mathbb{C}_{z} \cup\{\infty\}$ as a map between complex spheres, branched over $\left\{z_{1}, z_{2}, z_{3}\right\}=\{-1,+1, \infty\}$.

The trick: Induct on p to find $T_{p}^{*}(w)=2 T_{p}(w / 2)$ so $T_{p}^{*}(x+1 / x)=x^{p}+1 / x^{p}$.
Then substitute $x \mapsto e^{2 \pi i \theta}$.
§I.A. The dihedral group with observations T_{p} (p odd) is a dihedral function: Attached to it is a b (ranch) c (ycle) d (escription):

$$
\begin{aligned}
g_{1} & =(2 p)(3 p-1) \cdots\left(\frac{p+1}{2} \frac{p+3}{2}\right) \\
g_{2} & =(1 p)(2 p-1) \cdots\left(\frac{p-1}{2} \frac{p+3}{2}\right) \\
g_{\infty} & =(p p-1 \cdots 1)
\end{aligned}
$$

- (generation) $\left\langle g_{1}, g_{2}\right\rangle=D_{p}=\left\{\left(\begin{array}{cc} \pm 1 & b \\ 0 & 1\end{array}\right)\right\}_{b \in \mathbb{Z} / p}$, order $2 p$ dihedral group; C_{2}, involution conjugacy class $\leftrightarrow-1$ in upper left matrix corner.
- (conjugacy classes) $g_{i}, i=1,2$, are in C_{2}.
- (product-one) $g_{1} g_{2} g_{\infty}=1$.

Two dihedral function questions

- Q_{1} : From whence the $\left(g_{1}, g_{2}, g_{\infty}\right)$?

Answer: Use App. A_{1} : With $r=3$.

- Q_{2} : If another function $f: \mathbb{P}_{w}^{1} \rightarrow \mathbb{P}_{z}^{1}$ with similar bcd, how related to T_{p} ?
Answer: \exists Möbius transforms. $\alpha_{1}, \alpha_{2} \in \mathrm{PGL}_{2}(\mathbb{C})$ with $f=\alpha_{2} \circ T_{p} \circ \alpha_{1}^{-1}(w): f \sim^{\text {Möbius }} T_{p}$.

Historical generalization: Abel used more general dihedral Möbius classes.

§I.B. $r=4$ (not 3) branch dihedral functions

Denote distinct elements of $\left(\mathbb{P}_{z}^{1}\right)^{4}$ by U^{4}. S_{4} (symmetries on $\{1,2,3,4\}$) permutes coordinates of U^{4}.

Instead of $\left(g_{1}, g_{2}, g_{\infty}\right)$ take \sim Möbius classes of functions with bcds $\left(g_{1}, g_{1}^{-1}, g_{2}, g_{2}^{-1}\right) \in \mathbf{C}_{2^{4}}$, H (arbater)-M(umford) - or any 4-tuple in $\mathrm{C}_{2^{4}}$ with generation and product-one; the set $\mathrm{Ni}\left(D_{p}, \mathbf{C}_{2^{4}}\right)$ of Nielsen classes -branched over any

$$
z=\left\{z_{1}, \ldots, z_{4}\right\} \in U^{4} / S_{4} \stackrel{\text { def }}{=} U_{4} \stackrel{\text { def }}{=} U_{4, z} .
$$

$$
\text { Why such } f: \mathbb{P}_{w}^{1} \rightarrow \mathbb{P}_{z}^{1} \text { exists }
$$

- App. A_{1} gives compact surface cover $f: X \rightarrow \mathbb{P}_{z}^{1}$.
- Then apply R-H (App. B_{2}) to see X has genus 0 .
- Then apply $\mathrm{R}($ iemann $)-\mathrm{R}(o c h)$ to conclude X is analytically isomorphic to \mathbb{P}_{w}^{1}.
- Each z_{i} has a unique unramified $w_{i} \mapsto z_{i}$ (w_{i} corresponds to length 1 disjoint cycle in g_{i}):

$$
\begin{aligned}
f \leftrightarrow(\boldsymbol{w}, \boldsymbol{z}) \in U_{4, w} \times U_{4, z} & \mapsto\left[\sim_{\text {Möbius }}\right] \\
\mathrm{PGL}_{2}(\mathbb{C}) \backslash U_{4, w} \times U_{4, z} / \mathrm{PGL}_{2}(\mathbb{C}) & =\left(\mathbb{P}_{j_{w}}^{1} \backslash \infty\right) \times\left(\mathbb{P}_{j_{z}}^{1} \backslash \infty\right) .
\end{aligned}
$$

§I.C. Dragging a function by its branch points
Continuity on the space of such f s: You can drag the classical generators on $U_{z^{0}}=\mathbb{P}_{z}^{1} \backslash \boldsymbol{z}^{0}$ along any path $P(t), t \in[0,1]$ based at $z^{0} \in U_{r}$ to classical generators on $U_{P(t)}$.

Upshot: You can drag f_{0} to f_{t} by its branch points. If P is closed, representing $[P] \in \pi_{1}\left(U_{r}, z^{0}\right)$, then f_{1} (usually) has a different bcd, denoted $(\boldsymbol{g}) q_{[P]}$, (relative to the original classical generators).

Facts about $q_{[P]}$, for any $r \geq 4$

- $(\boldsymbol{g}) q_{[P]}$ is an r-tuple of words in the entries of \boldsymbol{g}.
- For $i=1, \ldots, r-1$, there is a $\left[P_{i}\right]$ so that,

$$
\begin{aligned}
& q_{i} \stackrel{\text { def }}{=} q_{\left[P_{i}\right]}:\left(g_{1}, \ldots, g_{r}\right) \\
& \mapsto\left(g_{1}, \ldots, g_{i-1}, g_{i} g_{i+1} g_{i}^{-1}, g_{i}, g_{i+2}, \ldots, g_{r}\right) .
\end{aligned}
$$

Add the shift: sh : $\left(g_{1}, \ldots, g_{r}\right) \mapsto\left(g_{2}, \ldots, g_{r}, g_{1}\right)$.
Two generatored Hurwitz monodromy $H_{r}: \pi_{1}\left(U_{r}, \boldsymbol{z}^{0}\right)=\left\langle q_{2}, \mathbf{s h}\right\rangle$
(For $r=4$ has normal subgroup, $\mathcal{Q}^{\prime \prime}=\left\langle q_{1} q_{3}^{-1}, \mathbf{s h}^{2}\right\rangle$.)
\S I.D. $\mathrm{PGL}_{2}(\mathbb{C})$ action; mapping class group \bar{M}_{r}
Denote the universal cover of a space X by \tilde{X}. Let $V_{r} \rightarrow U_{r}$ be the fibration with fiber U_{z} over $z \in U_{r}$.

Now add $\alpha \in \mathrm{PGL}_{2}(\mathbb{C})$ action, starting from

$$
\left(z_{1}, \ldots, z_{r}\right) \in U^{r} \mapsto\left(\left(z_{1}\right) \alpha, \ldots,\left(z_{r}\right) \alpha\right)
$$

Induces Galois (group \bar{M}_{r}, r-branch point mapping class group), but ramified,

$$
V_{r} / \mathrm{PGL}_{2}(\mathbb{C}) \rightarrow U_{r} / \mathrm{PGL}_{2}(\mathbb{C}) \stackrel{\text { def }}{=} J_{r}\left(J_{4}=\mathbb{P}_{j}^{1} \backslash \infty\right)
$$

§II. MT view of modular curves
$\Gamma \leq \mathrm{PSL}_{2}(\mathbb{Z})=\left\langle\gamma_{0}, \gamma_{1}\right\rangle$ of finite index: γ_{0} and γ_{1} of resp. orders 3 and 2. Act on upper half-plane \mathbb{H}. MTs recognizes $\mathrm{PSL}_{2}(\mathbb{Z})$ as \bar{M}_{4} with generators $q_{1} q_{2}=\gamma_{0}, \mathbf{s h}=\gamma_{1} \bmod \left\langle q_{1} q_{3}^{-1}, \mathbf{s h}^{2}\right\rangle$.

- $\Gamma \mapsto X_{\Gamma}^{0}$, ramified cover of $U_{j}=\mathbb{P}_{j}^{1} \backslash\{\infty\}$.
- Orbits of $\gamma_{\infty}=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ on the cosets of Γ in $\mathrm{PSL}_{2}(\mathbb{Z})$ correspond to the cusps over ∞.
II.A. Classical cusp description for $\Gamma_{0}\left(p^{k+1}\right)$.

Count $\Gamma_{0}\left(p^{k+1}\right) \stackrel{\text { def }}{=}\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \equiv\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right) \bmod p^{k+1}\right\}$ cusps: Select coset reps \Rightarrow compute their γ_{∞} orbits. This is the procedure of $[S h 71, \S 1.6]$, but that has no sh-incidence cusp pairing as in App. E_{1}.
II.B. Dihedral Nielsen classes; q_{2} action.

Assume p is odd. Order $2 \cdot p^{k+1}$ dihedral group (resp. its normalizer in $S_{p^{k+1}}$):

$$
G_{k}=D_{p^{k+1}} \stackrel{\stackrel{\text { def }}{=}}{=}\left\{\left(\begin{array}{cc}
\pm 1 & b \\
0 & 1
\end{array}\right)\right\}_{b \in \mathbb{Z} / p^{k+1}}
$$

$$
\text { (resp. } \left.N_{k} \stackrel{\text { def }}{=}\left\{\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right)\right\}_{a \in\left(\mathbb{Z} / p^{k+1}\right)^{*}, b \in \mathbb{Z} / p^{k+1}}\right) .
$$

> Defining $\operatorname{Ni}\left(G_{k}, \mathbf{C}_{2^{4}}\right)$
> $\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right) \in N_{k}$ acts on $\left\{\left(b^{\prime}, 1\right) \mid b^{\prime} \in \mathbb{Z} / p^{k+1}\right\}:$
$\left(b^{\prime}, 1\right) \mapsto\left(a \cdot b^{\prime}+b, 1\right)$. With $\mathrm{C}_{2}=\left\{\left(\begin{array}{cc}-1 & b \\ 0 & 1\end{array}\right)\right\}_{b \in \mathbb{Z} / p^{k+1}}$, use this [] notation for Nielsen class elements:
$\boldsymbol{g} \in \mathrm{Ni}\left(G_{k}, \mathbf{C}_{2^{4}}\right) \mapsto\left[b_{1}, b_{2}, b_{3}, b_{4}\right] \in\left(\mathbb{Z} / p^{k+1}\right)^{4}$.
Absolute Nielsen classes $\mathrm{Ni}\left(G_{k}, \mathbf{C}_{2^{4}}\right)^{\text {abs }}$:
$\left\{\boldsymbol{g}=\left(g_{1}, \ldots, g_{4}\right) \in \mathbf{C}_{2^{4}} \mid(\mathrm{G})\right.$ some $b_{i} \neq b_{j} \bmod p ;$ and $\left.(\mathrm{P}-\mathrm{O}) b_{1}-b_{2}+b_{3}-b_{4} \equiv 0 \bmod p^{k+1}\right\} / N_{k}$. (for inner classes replace N_{k} by G_{k}).

II.C. Cusps as $\mathrm{Cu}_{4}=\left\langle\mathcal{Q}^{\prime \prime}, q_{2}\right\rangle$ orbits and p-cusps

G (eneration) is a Frattini property: It holds in G_{0}, so it holds in the Frattini cover $G_{k} \rightarrow G_{0}$ for any k. P (roduct)- O (ne) is a translation of $g_{1} g_{2} g_{3} g_{4}=1$ in this dihedral case. It descends from classical generators of $\pi_{1}\left(U_{z}, z_{0}\right)$ being paths whose ordered product is homotopic to one.
With $\mathcal{Q}^{\prime \prime}=\left\langle q_{1} q_{3}^{-1}, \mathbf{s h}^{2}\right\rangle$, cusps $\Leftrightarrow \mathrm{Cu}_{4}$ orbits.

Trivial $\mathcal{Q}^{\prime \prime}$ action

Princ. 1: Denote the braid orbit of $\boldsymbol{g} \in \mathrm{Ni}(G, \mathbf{C})^{*}$ ($*=$ in or abs) by O_{g}. If Nielsen class of \boldsymbol{g} fixed by $q_{1} q_{3}^{-1}$ and $\mathbf{s h}$, then $\mathcal{Q}^{\prime \prime}$ fixes class of any $\boldsymbol{g}^{\prime} \in O_{\boldsymbol{g}}$.

Apply Princ. 1 to $\boldsymbol{g}=\boldsymbol{g}_{\mathrm{H}-\mathrm{M}} \mapsto[0,0,1,1]$. This is the unique absolute Harbater-Mumford rep.:
$\boldsymbol{g}=\left(g_{1}, g_{1}^{-1}, g_{2}, g_{2}^{-1}\right)$. Later see: Just one braid orbit. Middle Product: For $\boldsymbol{g} \in \mathrm{Ni}(G, \mathbf{C}), \mathbf{m p r}_{g}=\operatorname{ord}\left(g_{2} g_{3}\right)$.
$\mathrm{Cu}_{4}(\boldsymbol{g})$ is p-cusp: p divides $\mathbf{m p r}_{g}$.
Frattini property: Multiply by p to get width of next level cusps over p-cusps.

II.D. Cusp width principle

Princ. 2: If G centerless, either the q_{2} orbit on $\boldsymbol{g}^{\text {in }}$ has width $2 \cdot \mathbf{m p r}_{g}$ or $\mathbf{m p r}_{\boldsymbol{g}}$ is odd, and

$$
\left(g_{2} g_{3}\right)^{\frac{\mathrm{mpr} r_{g}-1}{2}} g_{2} \text { has order } 2 \bmod \operatorname{Cen}_{G}\left(\left\langle g_{1}, g_{4}\right\rangle\right)
$$

$$
\text { If } \boldsymbol{g} \in \operatorname{Ni}\left(D_{p^{k+1}}, \mathbf{C}_{2^{4}}\right) \mapsto\left[b_{1}, \ldots, b_{4}\right] \text {, then }
$$

$$
\mathbf{m p r}_{\boldsymbol{g}}=\text { order of } b_{g} \stackrel{\text { def }}{=} b_{3}-b_{2} \text { in } \mathbb{Z} / p^{k+1} .
$$

Product of an odd (resp. even) number of elements from C_{2} is in C_{2} (resp. translat. by some $b \in \mathbb{Z} / p^{k+1}$). Princ. 2 gives this list of cusp reps.:

$$
\left\{\left[b_{1}, b_{2}+m b_{\boldsymbol{g}}, b_{3}+m b_{\boldsymbol{g}}, b_{4}\right]\right\}_{m=0}^{\mathbf{m p r}}-1
$$

II.E. Normalizations for listing all cusps

Norm $_{1}$: Conjugate $\left[b_{1}, \ldots, b_{4}\right]$ by $\left\langle\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\right\rangle$ to assume $b_{1}=0$ and $b_{2}-b_{3}+b_{4}=0$.
Norm ${ }_{2}$: For $\mathrm{Ni}^{\mathrm{abs}}$, if $b_{2}-b_{3}=a p^{u}, a \in \mathbb{Z} / p^{k+1-u}$ and (a, p) $=1$, conjugate by $\left(\begin{array}{cc}a^{-1} & 0 \\ 0 & 1\end{array}\right)$ so $a=1$.
Norm $_{3}$: Allows further conjugation by

$$
H_{u}=\left\{\alpha=1+b p^{k+1-u} \in \mathbb{Z} / p^{k+1} \bmod p^{u}, b \in \mathbb{Z} / p^{u}\right\}
$$

All are p-cusps or g - p^{\prime} cusps

Take $c=b_{2}, b_{3}=c-p^{u}$ (u is a parameter).
$u=0:\left(b_{2}, b_{3}\right)=(c, c-1)$ has q_{2} orbit of width p^{k+1} containing $\boldsymbol{g}_{\mathrm{H}-\mathrm{M}} \mapsto[0,0,1,1]$.
$u>0:\langle\boldsymbol{g}\rangle=D_{p^{k+1}} \Longrightarrow(c, p)=1$. Conjugate by H_{u} to assume $c \in \mathbb{Z} / p^{k+1-u}$ is p^{\prime} :
Width $=\mid$ residues $\bmod p^{k+1-u}$ differing by multiplies of $p^{u} \mid$.
Conclude: $\varphi\left(p^{k+1-u}\right)$ Nielsen classes in Cu_{4} orbits of width $p^{k+1-2 u}$ (resp. 1) if $k+1-2 u \geq 0$ (resp. $k+1-2 u<0$). $u=k+1$, a g-p cusp: $\left(b_{2}, b_{3}\right)=(1,1):\left(\boldsymbol{g}_{\text {H-m }}\right)$ sh (width 1$)$, $H_{2,3}=\left\langle g_{2}, g_{3}\right\rangle, H_{1,4}=\left\langle g_{1}, g_{4}\right\rangle$, both p^{\prime} groups (here cyclic).

II.F. MT account for one H_{4} orbit

Absolute case: $(\boldsymbol{g}) \mathbf{s h} \mapsto\left[c, c-p^{u},-p^{u}, 0\right]$. As $(c, p)=1$, from above, cusp orbit contains $[c, c, 0,0]$. sh-incidence pairing (App. E_{1}) has H-M cusp intersect all other cusps (matrix has one block).

Conclude: $\mathrm{Ni}^{\text {abs }}$ gives a degree $p^{k+1}+p^{k}$ cover $\overline{\mathcal{H}}\left(D_{p^{k+1}}, \mathbf{C}_{2^{4}}\right)^{\text {abs,rd }} \rightarrow \mathbb{P}_{j}^{1}$. Respective result for $\mathrm{Ni}^{\text {in }}$ is degree $\frac{\varphi\left(p^{k+1}\right)}{2}\left(p^{k+1}+p^{k}\right)$.

MT account for one inner H_{4} orbit
From absolute case, need only braid between inner classes of H-M reps: $\{[0,0, c, c]\}_{c \in\left(\mathbb{Z} / p^{k+1}\right)^{*}}$.

Shift $[0,1,1+c, c]$ (in Cu_{4} orbit of $[0,0, c, c]$) to get $[1,1+c, c, 0]=g^{\prime}$. Then, $[1,1,0,0]$ is in cusp of g^{\prime} which is (above) inner equivalent to $\boldsymbol{g}_{\mathrm{H}-\mathrm{M}}$.

Problem: Use App. C_{1} with MT description to compute the genus of $X_{0}\left(p^{k+1}\right)$ and $X_{1}\left(p^{k+1}\right)$.
I.G. Summary: Modular curve vs all MT level cusps

When $r=4$, MT levels (start from level 0) are upper half-plane quotients covering classical j-line. Rarely are they modular curves.

With $\boldsymbol{g} \in \mathrm{Ni}(G, \mathbf{C})^{\mathrm{in}}$, denote: $\left\langle g_{2}, g_{3}\right\rangle=H_{2,3}(\boldsymbol{g})$ and $\left\langle g_{1}, g_{4}\right\rangle=H_{1,4}(\boldsymbol{g})$.

Modular curves have

- p-cusps: p divides $\mathbf{m p r}_{\boldsymbol{g}}$; and
- g- p^{\prime} cusps: both $H_{2,3}$ and $H_{1,4}$ are p^{\prime} groups.

Don't have: o(nly)-p' cusps neither p nor $\mathrm{g}-p^{\prime}$.

App. A_{1} : Classical Generators: see next 2 pages

Pieces in the figure
Ordered closed paths $\delta_{i} \sigma_{i} \delta_{i}^{-1}=\bar{\sigma}_{i}, i=1, \ldots, r$, are classical generators of $\pi_{1}\left(U_{z}, z_{0}\right)$.

Discs, $i=1, \ldots, r$: D_{i} with center z_{i}; all disjoint, each excludes $z_{0} ; b_{i}$ be on the boundary of D_{i}.

Clockwise orientation: Boundary of D_{i} is a path σ_{i} with initial and end point $b_{i} ; \delta_{i}$ a simple simplicial path: initial point z_{0} and end point b_{i}. Assume δ_{i} meets none of $\sigma_{1}, \ldots, \sigma_{i-1}, \sigma_{i+1}, \ldots, \sigma_{r}$, and it meets σ_{i} only at its endpoint.

Meeting Boundary of D_{0}

D_{0} intersections: D_{0} with center z_{0}; disjoint from each D_{1}, \ldots, D_{r}. Consider a_{i}, first intersection of δ_{i} and boundary σ_{0} of D_{0}.

Crucial ordering: Conditions on $\delta_{1}, \ldots, \delta_{r}$:

- pairwise nonintersecting, except at z_{0}; and
- a_{1}, \ldots, a_{r} are in order clockwise around σ_{0}.

Since paths are simplicial, last condition is independent of D_{0}, for D_{0} sufficiently small.

App. B_{1} : R(iemann)-H(urwitz)

$\mathrm{R}-\mathrm{H}$: Computes the genus g_{X} of a degree n cover $\varphi: X \rightarrow \mathbb{P}_{z}^{1}$ from these ingredients.

- \boldsymbol{z}_{φ} are the branch points, and $\left(\bar{\sigma}_{1}, \ldots, \bar{\sigma}_{r}\right)$ are classical generators (App. A_{1}) of $\pi_{1}\left(U_{z_{\varphi}}\right)$.
- $X^{0}=\varphi^{-1}\left(U_{z_{\varphi}}\right)$. So, $\varphi^{0}: X^{0} \rightarrow U_{z}$ is unramified, giving $\varphi_{*}: \pi_{1}\left(U_{z_{\varphi}}\right) \rightarrow S_{n}$.
- $\varphi_{*}\left(\bar{\sigma}_{1}, \ldots, \bar{\sigma}_{r}\right)=\left(g_{1}, \ldots, g_{r}\right)$.

Branch cycles and the genus

With $\operatorname{ind}\left(g_{i}\right)=n-\mid g_{i}$ orbits \mid,

$$
2\left(n+g_{X}-1\right)=\sum_{i=1}^{r} \operatorname{ind}\left(g_{i}\right)
$$

Then, $\left(g_{1}, \ldots, g_{r}\right)$ are branch cycles of φ.
Exercise:Compute genus of a cover with branch cycles $g \in \operatorname{Ni}\left(D_{p^{k+1}}, \mathbf{C}_{2^{4}}\right)^{\text {abs }}$ in \S I.B (p. 7). Same for $\boldsymbol{g} \in \mathrm{Ni}\left(D_{p^{k+1}}, \mathbf{C}_{2^{4}}\right)^{\text {in }}$.

App. C_{1} : Apply R-H to MT components $(r=4)$
O^{\prime} is a \bar{M}_{4} orbit on a reduced Nielsen class $\mathrm{Ni}(G, \mathbf{C})^{\text {abs }} / \mathcal{Q}^{\prime \prime}\left(\right.$ or $\left.\operatorname{Ni}(G, \mathbf{C})^{\text {in }} / \mathcal{Q}^{\prime \prime}\right)$. Denote action of $\left(\gamma_{0}=q_{1} q_{2}, \gamma_{1}=\mathbf{s h}, \gamma_{\infty}=\left(\gamma_{0} \gamma_{1}\right)^{-1}\right)$ on O^{\prime} by $\left(\gamma_{0}^{\prime}, \gamma_{1}^{\prime}, \gamma_{\infty}^{\prime}\right)$: Branch cycles for a cover $\overline{\mathcal{H}}^{\prime} \rightarrow \mathbb{P}_{j}^{1}$, R-H gives genus, $g_{\mathcal{\mathcal { H }}^{\prime}}$:
$2\left(\operatorname{deg}\left(\overline{\mathcal{H}}^{\prime} / \mathbb{P}_{j}^{1}\right)+g^{\prime}-1\right)=\operatorname{ind}\left(\gamma_{0}^{\prime}\right)+\operatorname{ind}\left(\gamma_{1}^{\prime}\right)+\operatorname{ind}\left(\gamma_{\infty}^{\prime}\right)$.

App. D_{1} : Branch Cycle Argument for (G, \mathbf{C})
$f \in \mathcal{E}\left(U_{z}, z_{0}\right)$ means f analytic around z_{0} is extensible along all paths in U_{z} with limits in $\mathbb{C} \cup\{\infty\}$ as it approaches any $z^{\prime} \in z$. Let $z_{0} \in \mathbb{Q}$.
Quest. A: Given $z, \exists \varphi_{g}: X_{g} \rightarrow \mathbb{P}_{z}^{1}$ over $\mathbb{Q}, g \in$ $\mathrm{Ni}(G, \mathbf{C})$ with branch points z ?
Quest. B: As above, but $\exists \varphi_{g}$, Galois, over \mathbb{Q} ?

Q. A or B requires that z is a \mathbb{Q} set

So, $\sigma \in G_{\mathbb{Q}}$ acts on $\gamma \in \pi_{1}\left(U_{z}, z_{0}\right)$ through what $\sigma^{-1} \circ \gamma \circ \sigma$ does to $f \in \mathcal{E}\left(U_{z}, z_{0}\right)^{\text {alg }}$:

$$
f \mapsto f_{\sigma^{-1} \text { o } \gamma \sigma \sigma} \stackrel{\text { def }}{=} f_{\gamma^{\sigma}} \in \pi_{1}\left(U_{z}, z_{0}\right)^{\text {alg }} .
$$

Profinite $\pi_{1}\left(U_{z}, z_{0}\right)^{\text {alg }}$ is free on r (topological) generators modulo a product-one relation.

Notation: $\sigma \in G_{K}$ maps to $n_{\sigma} \in \hat{\mathbb{Z}}^{*}=G\left(\mathbb{Q}^{\text {cyc }} / \mathbb{Q}\right)$.

Branch Cycle Argument

For each $\sigma \in G_{\mathbb{Q}}$, let $\pi_{\sigma} \in S_{r}$ satisfy $z_{i}^{\sigma}=z_{(i) \pi}$. Affirmative to Q. B: Requires

$$
C_{(i) \pi_{\sigma}}^{n_{\sigma}}=C_{i}, i=1, \ldots, r .
$$

Affirmative for Q. A: Only requires some Galois closure group $G \leq \hat{G} \leq N_{S_{n}}(G, \mathbf{C})$: with

$$
g_{\sigma} C_{(i) \pi}^{n_{\sigma}} g_{\sigma}^{-1}=C_{i}, i=1, \ldots, r, \text { for some } g_{\sigma} \in \hat{G}
$$

Some Branch Cycle Argument Examples

Let $G=A_{5}, \mathrm{C}_{5}^{+}$the class of (12345), C_{5}^{-}the class of (13524), C_{3} the class of 3 -cycles.
"Yes" means for some z :

1. $\mathrm{C}_{5_{+}^{2} 3^{2}}$: No for Q. B, yes for Q. A.
2. $C_{5+5-3^{2}}$: Yes for Q. A and B.
3. $\mathrm{C}_{5_{+}^{2} 5_{-}^{2}}$: Yes for Q . A and B.

App. E_{1}. sh-incidence matrix: $\operatorname{Ni}\left(D_{p^{2}}, \mathbf{C}_{2^{4}}\right)^{*, r d}, *=a b s /$ in A Nielsen class gives a space. Since $r=4$, each component is -like modular curves -an upper half-plane quotient by a finite index subgroup of $\operatorname{PSL}_{2}(\mathbb{Z})=H_{4} / \mathcal{Q}^{\prime \prime}$, ramified over $\{0,1, \infty\} \subset \mathbb{P}_{j}^{1}$. sh-incidence pairing on cusps: Given ${ }_{\mathbf{c}} O_{1},{ }_{\mathrm{c}} \mathrm{O}_{2}$ two (inn. or abs.) cusp orbits:
$\left({ }_{\mathrm{c}} \mathrm{O}_{1}, \mathrm{c}^{\mathrm{c}} \mathrm{O}_{2}\right) \mapsto \mid$ distinct (inn. or abs.) Nielsen classes \mid from elements of ${ }_{\mathbf{c}} O_{1} \cap\left({ }_{\mathbf{c}} O_{2}\right) \mathbf{s h}$.
Symmetric, since $\mathbf{s h}^{2} \in \mathcal{Q}^{\prime \prime}$.
sh-incidence blocks \leftrightarrow components of the space.

$u=0 \leftrightarrow$ width p^{2} H-M rep. cusp, $\mathrm{c}_{p^{2}}$;
$u=1 \leftrightarrow$ cusps ${ }_{\mathrm{c}} O_{a, p}, a \in(\mathbb{Z} / p)^{*}$ of width 1
(even though absolute p-cusps); and
$u=2 \leftrightarrow$ width 1 cusp ${ }_{c} O_{1}$ of the shift of the H -M rep.
Adding to this data the fixed points of $\gamma_{0}=q_{1} q_{2}$ and $\gamma_{1}=$ sh gives the genus of the space (App. C_{1}).

Adjustments for $\mathrm{Ni}\left(D_{p^{2}}, \mathbf{C}_{2^{4}}\right)^{\text {in,rd }}$ ($k=1$ on pg. 17)
$u=0 \leftrightarrow \varphi\left(p^{2}\right) / 2=\frac{p(p-1)}{2} \mathrm{H}-\mathrm{M}$ inner cusps over the unique absolute $\mathrm{H}-\mathrm{M}$ cusp.
$u=2 \leftrightarrow$ Story the same for shifts of H-M cusps (width 1).
$u=1 \leftrightarrow$ over each such absolute (width 1) cusp are

$$
\varphi(p) / 2=\frac{p-1}{2} \text { width } p \text { cusps. }
$$

The sh-incidence matrix remains the same if we replace $\gamma_{1}=\mathbf{s h}$ by γ_{0} [Fr07b, Lem. 4.8]. So, fixed points of either are represented on the diagonal.

Problem: Use the MT method to compute which elements in H-M cusp are fixed points of $\gamma_{i}, i=0,1$.

