C(onway)F(ried)P(arker)V(oelklein) connectedness results
Istanbul 06/19/08, revised for U. Wisconsin 10/08/09

Finite group G, collection of distinct (nonidentity) generating

conjugacy classes C' = {C/,...,CL} of G: seed classes.
Basic Topic: Deciphering Hurwitz space components defined

by G and conjugacy classes C subject to:

(*) C is supported in the seed classes: It has C'-support.

Nielsen Class Interpretation: Find orbits of sh and ¢; on
Ni(G,C) ={(g91,..-,9-) | (9) =G, g€ G"NC,g1---g, = 1}:

sh : g — (927 s 797“791)7 qi1 : g — (919291_17917937 s 797“)'
An extra condition appears in the most general results:

(*2) Eachseed class has high multiplicity inC: HighC’-support.
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The cases of consideration
Modular curves: " = 1, C' is involution class C;,, in dihedral

groups { D k+1}72g, C= G, 4. We compare 4 other cases.
[Cn1] Moduli space of curves of genus g: Connectedness of Hurwitz

spaces defined by Co = 2-cycles in .S,, (Clebsch, 1872).
[Cns] Hurwitz space components defined by C3 = 3-cycles and the

parity of a particular linear system (Fried, 1990, [Fr09a]).
[Cngz] Spaces of genus 0 pure-cycle covers (Liu-Osserman,

2007,[LOs09]).
[Cny4] Hurwitz spaces for Nielsen classes with all conjugacy classes

appearing sufficiently often (CFPV, 1991, [FrV91]).

§l. 3-cycle Hurwitz spaces and Spin Invariants
gll. Lessons from Alternating Group Hurwitz spaces
8lll. The sh-incidence cusp pairing for (A4, C_32)
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3l. 3-cycle Hurwitz spaces and Spin Invariants

Topic [Cns]:  Components of Hurwitz spaces
defined by the Nielsen class G = A,, and C = Cj»
(conjugacy classes of ) r > n—1 3-cycles.

Note: When n = 4 (or 3) there are two conjugacy
classes of 3-cycles, so Csr is ambiguous.

Describing the (A,,Csr) Hurwitz space
components generalizes Serre's Stiefel-Whitney
approach to Spin covers [Ser90].
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3l.A. Quick start on Schur Multipliers

Frattini cover G' — G: Group cover with
restriction to any proper subgroup of G’ not a cover.
Get small lifting invariant from any central Frattini
extension ¢ : R — G:ker(R — G) is a quotient of
the Schur multiplier, SMg, of G.

Def: C is |R/G/|: For Nielsen class Ni(G, C),
elements of C have order prime to | ker(R — G)|.

When ker(v) is p-part of Schur multiplier, ¢ is a
p-representation Cover — maximal central p-Frattini

extension of G (unique if G is p-perfect).
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Special case: R/G is Spin, /A,

Spin' is (unique) nonsplit degree 2 cover of the
connected component O, (of I,) of orthogonal
group. Regard S, as < O, (orthogonal group);
A, < O, kernel of the determinant map.

Spin,,: Pullback of A,, to Spin :
ker(Spin,, — A,) = {+1}.

Odd order elements of S,, are in A,,. We get much
information from this case: C is |Spin, /A,| = 2"

C consists of odd order elements of A,,.
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8l.B. R/G Lifting Invariant if C is |R/G|

Small Schur-Zassenhaus: Each g € C has a unique

same-order lift g € R. For g € Ni(G, C),

~ def /. A r
g:(gl,...,gr)ER N C.

sp/q: 9 € Ni(G,C) —

~y def . A
sp/c(g) =1I(g) = g1--- g € ker(R — G).

It G < A,, v, : Spin, — A,,, and C has only odd
order elements, lifting g € Ni(G, C) to CN (¢, 1(G))"
still makes sense. If ¢ 1(G) — G splits, then

Sy—1(q)/c9) is always trivial.
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3l.C. A Formula for the Spin-Lift Invariant

For odd order g € A,, let w(g) be the number
disjoint cycles of length [ in g with l2§1 =1 mod 2.
Theorem 1 (Fried-Serre).If ¢ : X — P! is in
Nielsen class Ni(A,, C3n-1)", then deg(p) = n,
X has genus 0, and s(p) = (—=1)""1.

Generally, for any genus 0 Nielsen class of odd
order elements, and representing ¢ = (g1,...,9r),
Sspin,, /A, (g) 18 constant, equal to (—1)2i=1w(90),

Serre asked me in 1989 about 3-cycle case for genus 0 in
1989. [Ser90] proved general case. Short proof [Fr09a, Cor. 2.3]

shows how general case follows from 3-cycle case.
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Meaning of Spin lifting invariant

Assume ¢ : X — P! has odd order branching; ¢ :
X — P! (its geometric Galois closure of ) with group
A, Then, sgpin ja,(p) =1 = du:Y — X
unramified: @ o u is Galois with group Spin,,.

Exercise:Genus 0 assumption doesn't apply to
g, = ((123)®),(145)®), or to

g, = ((123)%,(134),(145),(153)),
but you can easily compute s(g,) =1, s(g,) = —1.
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31.D. Main Theorem: H, orbits on Ni(A4,,,Csr), r>n—12>3

There are either 1 or 2 components, each determined by its
Spin (lift) invariant value [FrQ9a].

Example: Let G = A4 and C, 52 two repetitions of the two

conjugacy classes C13 (with respective representatives (12 3)
and (321)) of 3-cycles in A4. Then, Ni(A4, C_32) contains

9, =1((134),(143),(123),(132)) and

s(94,)=+1and s(g, )= —1: Can't braid g, , to g, !

General Braid Principle: Lift invariants are constant on

covers representing points on each component.
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|.LE. Constellation of spaces H(A,, Csr)*, *=abs/in.

Label each component H_ (A, Csr)”" (resp. H_(A,,Cs)")
at locus for (n,r) with a symbol & (resp. ©) for
lift invariant +1 (resp. -1). Next page explains the diagram.

g=>1 1<g
— SIS SIS SIS SIS =
= 1 s ® o o | &L
n>4|n=4|n=>5 neven | nodd | 4<n
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Theorem 2. Generalizing Fried-Serre: Forr =n—1,n =5,
H(A,,Csn1)" has exactly one connected component and

U H (A, Cana1)™ — H(An, Cano1)™ has degree 2.

>1 . . - .
Row of tag 2= illustrates that Nielsen class + lift invariant
determines Hurwitz space component.

Theorem 3. Forr > n > 5, H(A,, Cgr)in has two connected

components, symbols & ©. Denote images in H(A,, Cgr)a’bS
by H:l:(A’I’Lj Cgr)abs:

;rtsi H(A,, C3r)—H(A,, C3r)2Ps (degree 2).

Each of H,(A,,Cs)™ and H_(A,,Cs)™ has definition
field @, and a dense subset of Hi(A,,Cs)2P% give
(A, Sy, Csr) geometric/arithmetic monodromy realizations.
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3l.F. Braiding 3-cycle Nielsen classes to Normal Form

Aim braiding general g € Ni(A,,,Csr) to (9,971, 93,...,0,).
Proof inducts on lengths of d(isappearing) s(equence)s:
A ds for 1 in g is a chain of 3-cycles with this effect:

l—11— 09— =1 +— 1.

Can always braid cycles i1,...,7; to 1st k£ positions of g.
Coalescing Lemma of [Fr09a] says: If n > 4 can braid to

1. (g1,97 % ... );0r2. ((123),(134),(142),...); or

3.((123)®),...)(Strong Coelescing says, don't need #3.)
If n > 5, can braid to where #1 holds. Special cases: Braid
0-tuples with n < 7 to a normal form.

Example: Braid g; on p. 8 to a H(arbater)-M(umford) rep.:
(91791_17 R 798798_1)'
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3ll. Lessons from Alternating Group Hurwitz spaces

|[AL:] Each H(A,, Csr) < braid orbit of a special rep. g (g(roup)-
2" rep; §ll.E), sometimes H-M, but for r odd, definitely not.

[AL;] For R — G a p-representation cover (p. 3) and Cis |R/G/,
at least as many braid orbits as

Sr/c.c = 1sr/c(9) € R/G}geni(a,0)-
[ALs] Sr/c.c = |R/G]| if C has high C’ support.
|[AL4] Jrg so that if » > rg, g € Ni(A,,, Csr) braids to (g%, Un-m.n):
g* € Ni(Ay+, Cgox), 7" <19, Un.m,n a generating H-M rep.

|[ALs] All Uy.m.n s are braid equivalent: Thm. 2 (p. 10). [AL3] plus
[AL4] means high C’ support = exactly two braid orbits.
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slI.A. Dropping the |R/G|" condition

Clue from oldest connectedness result, [Cny] (p. 1): There is
one braid orbit on Ni(S,,, Cor), » > (n—1): nonempty iff r is
even ([BiF86, App.|, same proof in [V095, Lem. 10.15]).

Nontrivial Schur-multiplier: SMg _, n > 4, is (Z/2)?. If [AL3]
held, we might guess there are 4 Hurwitz space components
(at least for r large), not 1 as given by Clebcsh.

Explanation for one component: No way to specify unique
lift of 2-cycle g € S,, to representation cover R,, — 5,,.

For lift g of g and h of any h € S,,, though ¢ thgh™! =1,
G 1hgh™! € ker(R,, — S,) may not be 1 (App. B).
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3ll.B. Combine 2-cycle and 3-cycle cases for CFPV

Pick a representative g € C’ for each C" in C". Pick any lift §
of it to R. Let M be the subgroup of ker(R — G) generated
by {hgh= g7}, h€ Gand 1 <i <7, with hgh™ g7 =1.

General version of [AL3]: Define S, c to be |[R/G|/|Mc/|.

Without sufficiently high C" support these may happen.

Reason 1: Since R/M¢ — G is Frattini, replacing the
entries of g € Ni(G,C) by the lifted entries g € (R/M¢)"

assigned above, gives (§) = R/M¢. Still, {s(r/m,)/G(9) }geni
might not achieve all of |R/G|/|Mci|.

Reason 2: With m € (R/G)/Mc¢ Tef SMY, ¢, there may be

more than one braid orbit on {g € Ni | s(r/nm_)/c(9) = m}.
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811.C. Geometric Branch-Generation (CFPV)

For Nielsen classes Ni(G, C), with C of high C’ support, there
are exactly SM | braid orbits (so, geometric components of
corresponding Hurwitz spaces).

Common 2-cycle and 3-cycle results: Each 2-cycle (resp. 3-
cycle) Nielsen element braids to a H-M rep. (resp. a tuple list
— mildly dependent on n — juxtaposed with an H-M rep.).

Akin to this, Conway and Parker used something similar:
Ug = (...,gord(g),...)geg\{l}. As In [AL5] (p. 12), up to
braid equivalence, the order of juxtaposition is irrelevant. [AL4]
implies a semigroup equivalence on two arrays g,g* running
over all allowable C: (UI({])Mn,g) braids to (U}(ﬁ?d,n,g*).
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Conway-Parker observation

For Upm.n (or for Ug) the semigroup equivalence gives a
group structure on the union of arrays running over all classes
supported in C'. Following their rough outline, and correcting
some points, [FrV91, App.] does the case when C’ includes all
non-trivial conjugacy classes of G.

The length of Uz and mysteries behind SM/, ., make it
difficult to explicitly compute components. So, [FrV91, Lem. 4]
showed, if you replace G with a cover, and use all conjugacy

classes, then |SM, o/| =1 if C’ contains all nontrivial classes.
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811.D. Arithmetic Branch-Generation [FrV91, Prop. 1]

Assume G is centerless and C’ is a distinct rational union of
(nontrivial) classes in G. An infinite set I ¢ indexes distinct

absolutely irreducible Q varieties O ¢/ ¢ = {Hi}ier, o

e There is a finite-one map ¢ € I; ¢ — ;C (r; unordered
conjugacy classes of G supported in C'); and

e the R(egular) I(nverse) G(alois) P(roblem) holds for G' with
conjugacy classes C supported in C' <
31 € I ¢ with 'H; having a Q point.
The conjugacy class collections run over rational unions of

classes with high C’ support. Then, the component with lifting

invariant 1 will certainly have definition field Q.
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Using the result

The centerless condition assures fine moduli holds for the
Hurwitz space components. So, a Q point corresponds to an
actual regular realization of GG. For finite field results:

e So, long as the prime of reduction does not divide |G| then
reduction is good, and Hurwitz space components modulo
that prime correspond to characteristic zero components.

e Each Hurwitz space component is defined over a computable
cyclotomic field depending on the Nielsen class and the lifting
invariant value. From class field theory for cyclotomic fields
you can compute the definition fields of reductions.
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3l1.E. Identifying components using g-p’ reps.

Suppose you don't know the p part of the Schur multiplier.
Yet, can find a braid orbit O with p-lifting invariant 1, if g € O
is a g(roup)-p” rep. A 1st order g-p’ rep. partitions as
(h1 = {91,--, 9ty he = {gi 141,90 f), @ =7
satisfying:

1. (h;) = G, is a p’ group; and
2. (Il(h;),i =1,...,t) is also a p’ group.

Higher order (inductive definition) of g-p’ cusp is in App. A.

g-p’ reps. are transparent to Schur multipliers [Fr06,Princ. 3.6]
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Proposition 4. With G* — G a p-Frattini cover, above a g-p’
rep. g € Ni(G, C) is a g-p’ rep. g € Ni(G*, C).

Proof: Use notation for g a g-p’ rep. By Schur-Zassenhaus,
each G; = (h;) lifts to G; < G*, uniquely up to conjugacy by
kerg« = ker(G* — G). Let h; be the corresponding lift of h;,

with II(h;) =, i.=1,...,t. ,
Now we choose h; to satlsfy product one: ]Hi:l n; = 1.
Schur-Zassenhaus: H = (mq,...,my) lifts to H < G*.

With m/ the corresponding lift of m; in H,
H§:1 m; =1 — H§:1 m; = 1.
1

The p’ m s lift uniquely up to conjugacy. With m; = u;m;u,; -,
u; € kerg, (wihiu;t, ... whuyb) lifts g to Ni(G*, C).

— Typeset by Foil TEX — 21



I1l. The sh-incidence cusp pairing for (A4, Cy32)

Goal:There are two components H~ (p. 10). We want their

branch cycle description (voi,vli,fyfo) as j-line covers.

First:  Nielsen class Ni(As, Cp32)™ = Ni(As, Cp32)2.
Elements < 6 arrangements of conjugacy classes. Outer
automorphism of A, (n = 3 or 4; conjugate by (12) € S,)
sends a conjugacy class arrangement to its complement.

List of the arrangements, and complements:
] +-+- 2|++—-—- [B|+——+
4 -+—-+ B ——++ 6] —++ —.
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Cusps in (A4, C 42) over [1]

Q' = (q1q§1,5h2> equates elements in this list with their
complements. So, inner reduced classes and absolute (not
reduced) classes are the same. Conclude:

H(As3, Cpq2)mrd — P} has degree three with branch cycles

(70,71 Yo0) = ((132),(23),(12)),
Map Ni(Ay,Cr52) — Ni(A3,Ci52): If g — [1] (with no
loss g1 = (123)), then either
g =917 =1(0123),(132),(134),(143)) or gig> has order

2.  Listing the 4 order 2 elements gives 5 elements in
Ni(Ayg, Cpq2)™ ™ lying over [1].
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II1.A. Effect of ¢o (middle twist)
g5 on g, ; conjugates middle two by (14)(23) to give
910 = ((123),(423),(421),(143)): length 4 cusp.
q5 fixes g1 5 = ((123),(124),(142),(132)) : length 2 cusp.

Similarly, g5 on g, 4 = ((123),(124),(123),(124))
conjugates middle pair by (13)(24) —

g15=((123),(124),(243),(143)) gives a length 4 cusp.
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I11.B. Effect of v, on g € (A4, C.52) over [3]

The H-M rep. g5, = ((123),(132),(143),(134)) maps
to [3] in As. Applying vso gives

932 = ((123),(124),(132),(134)),

the same as conjugating on the middle two by (243). The
result is a length 3 v, orbit.

On Nielsen elements over [3], 75 has one length 3 orbit
and two of length one. See by listing 2nd and 3rd positions
(g1 = (123)). Label as
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1/
3/
5/

(132),(143)),2' = ((124),(132)),
(124), (234)),4' = ((124), (124)
(124),(143)).

N——"

)

Effect of v: It fixes 4’ and maps 5’ to
((123),(234),(124),(312)) (conjugate by (123) to 5').

These computations establish the orbit lengths:

(91,1)700 = ((123),(142),(132),(143)) = (3')sh,
(g1.3)700 = ((123),(142),(124),(132)) = (1')sh.

There are cusps of width 2,3 and 4 (orbit of 1’ — 2/ — 3
cycle): Nij are Nielsen reps. in this M, orbit.
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I11.C. sh-incidence Matrix on Ni(A,, C_52)"*d

sh-incidence matrix of Nij comes from knowing
911,912,913 over [1] are permuted as a set by sh. They
map by V.o respectively to g, 1,95 2,92 3 over [2]. Under 7

these map resp. to g, 5,911,913, While g54,95 4,953 cycle
among each other. So, three v, orbits, 011, O13 and O3

on Niar named for the subscripts of a representing element.

The data above shows
\01,1ﬂ (03,1)Sh‘ — 2, ’01’3ﬂ(03’1)5h’ = 1. Compute: (gl’g)Sh
IS gi,1 SO ‘OLlﬂ(Ol’g)Sh‘ —=1.
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sh-incidence Matrix for Nij

Remaining entries from symmetry of sh-incidence matrix
and sum in a row or col. is total in set labeling that row or col.

Orbit 01,1 0173 03,1
O] 1 1 2
O] 1 0 1
O | 2 1 0

Similarly, the sh-incidence matrix of Ni; comes from the
following data. Elements g; 4,9, 5 over [1] map by v
respectively to g, 4,95 5 over [2], and these map respectively to

91591 4 while v, fixes both 934,93 5-
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sh-incidence Matrix for Niy

So, there are three v orbits, Oy 4, O3 4 and O3 5 on Ni; .

Orbit 01,4 0374 03,5
O.] 2 1 1
03,4 1 0 0
Oss| 1 0 0

Lemma 5. In general, sh-incidence matrix is same as matriz

from replacing sh = v1 by v9. Only possible elements fized
by either lie in Yo orbits O with |O N (O)sh # 0.

On Nij (resp. Niy ), y1 fizes 1 (resp. no) element(s), while
Yo fizes none.
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I11.D. Wohlfahrt shows neither component is a modular curve
Label components of H( Ay, Cq2)?Psrd: P51,

Goal: Show ﬂaibs’rd are not modular curves. By Wohlfahrt,
If the degree nine cover of IP); Is modular, the group of the cover
is a quotient of PSLy(12). If the degree 6 cover is modular,
the group is a quotient of PSLy(4).

As PSLy(Z/4) has the A-line as a quotient, with 2,2,2 as
the cusp lengths, these cusp lengths are wrong for second
orbit to correspond to A-line. Similarly, for the other cover,
as PSLy(Z/12) has both PSLy(Z/4) and PSLy(Z/3) as a

quotient, so cusp lengths are wrong.
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App. A: Higher Order g-p’ representatives

Formulated by Darren Semmen: Some rooted planar tree,
has elements of G labeling its vertices, and these hold.

1. The root has label 1.
2. Leaves of the tree have labels g1, ..., g, in clockwise order.

3. Vertex labels one level up and adjacent to vertex x generate
a p’-group with product (clockwise order) the label of x.

Includes more than first order g-p’ reps., but harder to detect.
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App. B: Comments on Schur multiplier of S,

Here is a representation cover (not unique, S, is not 2-
perfect — it has Z/2 as a quotient by determinant): As a fiber
product over Z/2, R, = S”n X7/ Z./4 with S’n the pullback of
S, to Spin™ (p. 4; see [Se92, §9.1.3] for more detail).

For g € S, a 2-cycle (resp. product of two disjoint 2-
cycles), lifts to .S,, have order 2 (resp. order 4). Corresponding
statement for lift to S, Xz/2 Z/4 is order 4 (resp. order 2).

Problem: For a lift g of g to R,, show conjugacy class Cj
of g in R,, has 4 elements over g. Why does this say the lift
invariant value sp, /g, (g) of g€ Ni(S,,, Cor) must be 1 (p. 6)7
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App. D: Classical Generators (next 2 pages): By
running over all possible classical generators, a cover

defines-a.Nielsen class (p. 1). y



Paths/Pieces in the figure

Ordered closed paths 51015;1 =0;,1=1,...,r, are classical
generators of w1 (Uy, zg). Homomorphism 71(U,, zg) — G
defines Nielsen class element by 6, — ¢;, 1 = 1,...,7.

Discs, ¢+ = 1,...,r: D; with center z;; all disjoint, each

excludes zp; b; be on the boundary of D;.

Clockwise orientation: Boundary of D; is a path o; with
initial and end point b;; 0; a simple simplicial path: initial
point zy and end point b;. Assume 0; meets none of
Oly--.,0;-1,0441,-..,0p, and it meets o; only at its endpoint.
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Meeting Boundary of Dy:
Defining the Product-One Condition

Dy intersections: Dy with center zy; disjoint from each

D+, ..., D,. Consider a;, first intersection of 9; and boundary
00 of DQ.
Crucial ordering: Conditions on 901, ..., 9d,:

e pairwise nonintersecting, except at zg; and

® a1,...,a, are in order clockwise around oy.

Since paths are simplicial, last condition is independent of Dy,

for Dg sufficiently small.
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