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Finite group G, collection of distinct (nonidentity) generating

conjugacy classes C′ = {C′
1, . . . ,C

′
r′} of G: seed classes.

Basic Topic: Deciphering Hurwitz space components defined

by G and conjugacy classes C subject to:

(*) C is supported in the seed classes: It has C′-support.

Nielsen Class Interpretation: Find orbits of sh and q1 on

Ni(G,C) = {(g1, . . . , gr) | 〈ggg〉 = G,ggg ∈ Gr ∩ C, g1 · · · gr = 1}:
sh : ggg �→ (g2, . . . , gr, g1), q1 : ggg �→ (g1g2g

−1
1 , g1, g3, . . . , gr).

An extra condition appears in the most general results:

(*2) Eachseed class has high multiplicity inC: HighC′-support.
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The cases of consideration
Modular curves: r′ = 1, C′ is involution class Cinv in dihedral

groups {Dpk+1}∞k=0, C = Cinv4. We compare 4 other cases.

[Cn1] Moduli space of curves of genus g: Connectedness of Hurwitz

spaces defined by C2 = 2-cycles in Sn (Clebsch, 1872).
[Cn2] Hurwitz space components defined by C3 = 3-cycles and the

parity of a particular linear system (Fried, 1990, [Fr09a]).
[Cn3] Spaces of genus 0 pure-cycle covers (Liu-Osserman,

2007,[LOs09]).
[Cn4] Hurwitz spaces for Nielsen classes with all conjugacy classes

appearing sufficiently often (CFPV, 1991, [FrV91]).

§I. 3-cycle Hurwitz spaces and Spin Invariants

§II. Lessons from Alternating Group Hurwitz spaces

§III. The sh-incidence cusp pairing for (A4,C±32)
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§I. 3-cycle Hurwitz spaces and Spin Invariants

Topic [Cn2]: Components of Hurwitz spaces

defined by the Nielsen class G = An and C = C3r

(conjugacy classes of) r ≥ n−1 3-cycles.

Note: When n = 4 (or 3) there are two conjugacy

classes of 3-cycles, so C3r is ambiguous.

Describing the (An,C3r) Hurwitz space

components generalizes Serre’s Stiefel-Whitney

approach to Spin covers [Ser90].
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§I.A. Quick start on Schur Multipliers

Frattini cover G′ → G: Group cover with

restriction to any proper subgroup of G′ not a cover.

Get small lifting invariant from any central Frattini

extension ψ : R → G: ker(R → G) is a quotient of

the Schur multiplier, SMG, of G.

Def: C is |R/G|′: For Nielsen class Ni(G,C),
elements of C have order prime to | ker(R → G)|.

When ker(ψ) is p-part of Schur multiplier, ψ is a

p-representation Cover — maximal central p-Frattini

extension of G (unique if G is p-perfect).
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Special case: R/G is Spinn/An

Spin+
n is (unique) nonsplit degree 2 cover of the

connected component O+
n (of In) of orthogonal

group. Regard Sn as < On (orthogonal group);

An < O+
n , kernel of the determinant map.

Spinn: Pullback of An to Spin+
n :

ker(Spinn → An) = {±1}.
Odd order elements of Sn are in An. We get much

information from this case: C is |Spinn/An|′ = 2′:

C consists of odd order elements of An.
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§I.B. R/G Lifting Invariant if C is |R/G|′

Small Schur-Zassenhaus: Each g ∈ C has a unique

same-order lift ĝ ∈ R. For ggg ∈ Ni(G,C),
ĝgg

def= (ĝ1, . . . , ĝr) ∈ Rr ∩ C.

sR/G: ggg ∈ Ni(G,C) �→

sR/G(ggg) = Π(ĝgg) def= ĝ1 · · · ĝr ∈ ker(R → G).
If G ≤ An, ϕn : Spinn → An, and C has only odd

order elements, lifting ggg ∈ Ni(G,C) to C∩(ψ−1
n (G))r

still makes sense. If ψ−1
n (G) → G splits, then

sψ−1
n (G)/G(ggg) is always trivial.
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§I.C. A Formula for the Spin-Lift Invariant

For odd order g ∈ An, let w(g) be the number

disjoint cycles of length l in g with l2−1
8 ≡ 1 mod 2.

Theorem 1 (Fried-Serre). If ϕ : X → P1 is in
Nielsen class Ni(An,C3n−1)abs, then deg(ϕ) = n,
X has genus 0, and s(ϕ) = (−1)n−1.

Generally, for any genus 0 Nielsen class of odd
order elements, and representing ggg = (g1, . . . , gr),
sSpinn/An(ggg) is constant, equal to (−1)

∑r
i=1 w(gi).

Serre asked me in 1989 about 3-cycle case for genus 0 in

1989. [Ser90] proved general case. Short proof [Fr09a, Cor. 2.3]

shows how general case follows from 3-cycle case.
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Meaning of Spin lifting invariant

Assume ϕ : X → P1
z has odd order branching; ϕ̂ :

X̂ → P1
z (its geometric Galois closure of ) with group

An. Then, sSpinn/An(ϕ) = 1 =⇒ ∃μ : Y → X̂

unramified: ϕ ◦ μ is Galois with group Spinn.

Exercise:Genus 0 assumption doesn’t apply to

ggg1 = ((1 2 3)(3), (1 4 5)(3)), or to

ggg2 = ((1 2 3)(3), (1 3 4), (1 4 5), (1 5 3)),
but you can easily compute s(ggg1) = 1, s(ggg2) = −1.
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§I.D. Main Theorem: Hr orbits on Ni(An,C3r), r ≥ n− 1 ≥ 3

There are either 1 or 2 components, each determined by its

Spin (lift) invariant value [Fr09a].

Example: Let G = A4 and C±32 two repetitions of the two

conjugacy classes C±3 (with respective representatives (1 2 3)
and (3 2 1)) of 3-cycles in A4. Then, Ni(A4,C±32) contains

ggg4,+ = ((1 3 4), (1 4 3), (1 2 3), (1 3 2)) and

ggg4,− = ((1 2 3), (1 3 4), (1 2 4), (1 2 4)).

s(ggg4,+) = +1 and s(ggg4,−) = −1: Can’t braid ggg4,+ to ggg4,−!

General Braid Principle: Lift invariants are constant on

covers representing points on each component.

– Typeset by FoilTEX – 9



I.E. Constellation of spaces H(An,C3r)∗, *=abs/in.

Label each component H+(An,C3r)∗ (resp. H−(An,C3r)∗)
at locus for (n, r) with a symbol ⊕ (resp. �) for

lift invariant +1 (resp. -1). Next page explains the diagram.

g≥1−→ �⊕ �⊕ . . . �⊕ �⊕ 1≤g←−

g=0−→ � ⊕ . . . � ⊕ 0=g←−

n ≥ 4 n = 4 n = 5 . . . n even n odd 4 ≤ n
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Theorem 2. Generalizing Fried-Serre: For r = n− 1, n ≥ 5,
H(An,C3n−1)in has exactly one connected component and
Ψin

abs :H(An,C3n−1)in→ H(An,C3n−1)abs has degree 2.

Row of tag
g≥1−→ illustrates that Nielsen class + lift invariant

determines Hurwitz space component.

Theorem 3. For r ≥ n ≥ 5, H(An,C3r)in has two connected
components, symbols ⊕ �. Denote images in H(An,C3r)abs

by H±(An,C3r)abs:

Ψin,±
abs :H±(An,C3r)in→H±(An,C3r)abs (degree 2).

Each of H+(An,C3r)in and H−(An,C3r)in has definition

field Q, and a dense subset of H±(An,C3r)abs give

(An, Sn,C3r) geometric/arithmetic monodromy realizations.
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§I.F. Braiding 3-cycle Nielsen classes to Normal Form

Aim braiding general ggg ∈ Ni(An,C3r) to (g, g−1, g3, . . . , gr).
Proof inducts on lengths of d(isappearing) s(equence)s:

A ds for 1 in ggg is a chain of 3-cycles with this effect:

1 �→ i1 �→ i2 �→ · · · �→ ik−1 �→ 1.

Can always braid cycles i1, . . . , ik to 1st k positions of ggg.

Coalescing Lemma of [Fr09a] says: If n ≥ 4 can braid to

1. (g1, g
−1
1 , . . . ); or 2. ((1 2 3), (1 3 4), (1 4 2), . . . ); or

3.((1 2 3)(3), . . . )(Strong Coelescing says, don’t need #3.)

If n ≥ 5, can braid to where #1 holds. Special cases: Braid

6-tuples with n ≤ 7 to a normal form.

Example: Braid ggg1 on p. 8 to a H(arbater)-M(umford) rep.:

(g1, g
−1
1 , . . . , gs, g

−1
s ).
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§II. Lessons from Alternating Group Hurwitz spaces

[AL1] Each H+(An,C3r) ⇔ braid orbit of a special rep. ggg (g(roup)-

2′ rep; §II.E), sometimes H-M, but for r odd, definitely not.

[AL2] For R → G a p-representation cover (p. 3) and C is |R/G|′,
at least as many braid orbits as

SR/G,C = |{sR/G(ggg) ∈ R/G}|ggg∈Ni(G,C).

[AL3] SR/G,C = |R/G| if C has high C′ support.

[AL4] ∃r0 so that if r ≥ r0, ggg ∈ Ni(An,C3r) braids to (ggg∗, UH-M,n):
ggg∗ ∈ Ni(An∗,C3r∗), r∗ ≤ r0, UH-M,n a generating H-M rep.

[AL5] All UH-M,n s are braid equivalent: Thm. 2 (p. 10). [AL3] plus

[AL4] means high C′ support =⇒ exactly two braid orbits.
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§II.A. Dropping the |R/G|′ condition

Clue from oldest connectedness result, [Cn1] (p. 1): There is

one braid orbit on Ni(Sn,C2r), r ≥ (n−1): nonempty iff r is

even ([BiF86, App.], same proof in [Vo95, Lem. 10.15]).

Nontrivial Schur-multiplier: SMSn, n ≥ 4, is (Z/2)2. If [AL3]

held, we might guess there are 4 Hurwitz space components

(at least for r large), not 1 as given by Clebcsh.

Explanation for one component: No way to specify unique

lift of 2-cycle g ∈ Sn to representation cover Rn → Sn.

For lift ĝ of g and ĥ of any h ∈ Sn, though g−1hgh−1 = 1,

ĝ−1ĥĝĥ−1 ∈ ker(Rn → Sn) may not be 1 (App. B).
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§II.B. Combine 2-cycle and 3-cycle cases for CFPV

Pick a representative g ∈ C′ for each C′ in C′. Pick any lift ĝ

of it to R. Let MC′ be the subgroup of ker(R → G) generated

by {ĥĝĥ−1ĝ−1}, h ∈ G and 1 ≤ i ≤ r, with hgh−1g−1 = 1.

General version of [AL3]: Define SR/G,C to be |R/G|/|MC′|.
Without sufficiently high C′ support these may happen.

Reason 1: Since R/MC′ → G is Frattini, replacing the

entries of ggg ∈ Ni(G,C) by the lifted entries ĝgg ∈ (R/MC′)r

assigned above, gives 〈ĝgg〉 = R/MC′. Still, {s(R/MC′)/G(ggg)}ggg∈Ni

might not achieve all of |R/G|/|MC′|.
Reason 2: With m ∈ (R/G)/MC

def= SM∗
G,C′, there may be

more than one braid orbit on {ggg ∈ Ni | s(R/MC′)/G(ggg) = m}.
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§II.C. Geometric Branch-Generation (CFPV)

For Nielsen classes Ni(G,C), with C of high C′ support, there

are exactly SM∗
G,C′| braid orbits (so, geometric components of

corresponding Hurwitz spaces).

Common 2-cycle and 3-cycle results: Each 2-cycle (resp. 3-

cycle) Nielsen element braids to a H-M rep. (resp. a tuple list

– mildly dependent on n – juxtaposed with an H-M rep.).

Akin to this, Conway and Parker used something similar:

UG = (. . . , gord(g), . . . )g∈G\{1}. As in [AL5] (p. 12), up to

braid equivalence, the order of juxtaposition is irrelevant. [AL4]

implies a semigroup equivalence on two arrays ggg,ggg∗ running

over all allowable C: (U (j)
H-M,n, ggg) braids to (U (j∗)

H-M,n, ggg∗).
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Conway-Parker observation

For UH-M,n (or for UG) the semigroup equivalence gives a

group structure on the union of arrays running over all classes

supported in C′. Following their rough outline, and correcting

some points, [FrV91, App.] does the case when C′ includes all

non-trivial conjugacy classes of G.

The length of UG and mysteries behind SM∗
G,C′ make it

difficult to explicitly compute components. So, [FrV91, Lem. 4]

showed, if you replace G with a cover, and use all conjugacy

classes, then |SM∗
G,C′| = 1 if C′ contains all nontrivial classes.
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§II.D.ArithmeticBranch-Generation [FrV91, Prop. 1]

Assume G is centerless and C′ is a distinct rational union of

(nontrivial) classes in G. An infinite set IG,C′ indexes distinct

absolutely irreducible Q varieties ΘG,C′,Q = {Hi}i∈IG,C′.

• There is a finite-one map i ∈ IG,C′ �→ iC (ri unordered

conjugacy classes of G supported in C′); and

• the R(egular) I(nverse) G(alois) P(roblem) holds for G with

conjugacy classes C supported in C′ ⇔
∃ i ∈ IG,C′ with Hi having a Q point.

The conjugacy class collections run over rational unions of

classes with high C′ support. Then, the component with lifting

invariant 1 will certainly have definition field Q.
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Using the result

The centerless condition assures fine moduli holds for the

Hurwitz space components. So, a Q point corresponds to an

actual regular realization of G. For finite field results:

• So, long as the prime of reduction does not divide |G| then

reduction is good, and Hurwitz space components modulo

that prime correspond to characteristic zero components.

• Each Hurwitz space component is defined over a computable

cyclotomic field depending on the Nielsen class and the lifting

invariant value. From class field theory for cyclotomic fields

you can compute the definition fields of reductions.
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§II.E. Identifying components using g-p′ reps.

Suppose you don’t know the p part of the Schur multiplier.

Yet, can find a braid orbit O with p-lifting invariant 1, if ggg ∈ O

is a g(roup)-p′ rep. A 1st order g-p′ rep. partitions as

(hhh1 = {g1, . . . , gi1}, . . . ,hhht = {git−1+1, . . . , git}), it = r

satisfying:

1. 〈hhhi〉 = Gi is a p′ group; and

2. 〈Π(hhhi), i = 1, . . . , t〉 is also a p′ group.

Higher order (inductive definition) of g-p′ cusp is in App. A.

g-p′ reps. are transparent to Schur multipliers [Fr06,Princ. 3.6]

– Typeset by FoilTEX – 20



Proposition 4. With G∗ → G a p-Frattini cover, above a g-p′

rep. ggg ∈ Ni(G,C) is a g-p′ rep. g̃gg ∈ Ni(G∗,C).

Proof: Use notation for ggg a g-p′ rep. By Schur-Zassenhaus,

each Gi = 〈hhhi〉 lifts to G̃i ≤ G∗, uniquely up to conjugacy by

kerG∗ = ker(G∗ → G). Let h̃hhi be the corresponding lift of hhhi,

with Π(h̃hhi) = m̃i, i = 1, . . . , t.
Now we choose h̃hhi to satisfy product-one:

∏t
i=1 m̃i = 1.

Schur-Zassenhaus: H = 〈m1, . . . , mt〉 lifts to H̃ ≤ G∗.
With m̃′

i the corresponding lift of mi in H,
∏t

i=1 mi = 1 =⇒ ∏t
i=1 m̃′

i = 1.

The p′ mj s lift uniquely up to conjugacy. With m̃′
i = uim̃iu

−1
i ,

ui ∈ ker0, (u1h̃hh1u
−1
t , . . . , uth̃hhtu

−1
t ) lifts ggg to Ni(G∗,C).
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III. The sh-incidence cusp pairing for (A4,C±32)

Goal:There are two components H̄± (p. 10). We want their

branch cycle description (γ±
0 , γ±

1 , γ±
∞) as j-line covers.

First: Nielsen class Ni(A3, C±32)in = Ni(A3, C±32)ab.
Elements ⇔ 6 arrangements of conjugacy classes. Outer

automorphism of An (n = 3 or 4; conjugate by (1 2) ∈ Sn)

sends a conjugacy class arrangement to its complement.

List of the arrangements, and complements:

[1] + − + − [2] + + −− [3] + −− +
[4] − + − + [5] −− + + [6] − + + −.
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Cusps in (A4,C±32) over [1]

Q′′ = 〈q1q
−1
3 , sh2〉 equates elements in this list with their

complements. So, inner reduced classes and absolute (not

reduced) classes are the same. Conclude:

H(A3,C±32)in,rd → P1
j has degree three with branch cycles

(γ∗
0 , γ∗

1 , γ∗
∞) = ((1 3 2), (2 3), (1 2)).

Map Ni(A4,C±32) → Ni(A3,C±32): If ggg �→ [1] (with no

loss g1 = (1 2 3)), then either

ggg = ggg1,1 = ((1 2 3), (1 3 2), (1 3 4), (1 4 3)) or g1g2 has order

2. Listing the 4 order 2 elements gives 5 elements in

Ni(A4,C±32)in,rd lying over [1].
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III.A. Effect of q2 (middle twist)

q2
2 on ggg1,1 conjugates middle two by (1 4)(2 3) to give

ggg1,2 = ((1 2 3), (4 2 3), (4 2 1), (1 4 3)): length 4 cusp.

q2
2 fixes ggg1,3 = ((1 2 3), (1 2 4), (1 4 2), (1 3 2)) : length 2 cusp.

Similarly, q2
2 on ggg1,4 = ((1 2 3), (1 2 4), (1 2 3), (1 2 4))

conjugates middle pair by (1 3)(2 4) =⇒

ggg1,5 = ((1 2 3), (1 2 4), (2 4 3), (1 4 3)) gives a length 4 cusp.
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III.B. Effect of γ∞ on ggg ∈ (A4,C±32) over [3]

The H-M rep. ggg3,1 = ((1 2 3), (1 3 2), (1 4 3), (1 3 4)) maps

to [3] in A3. Applying γ∞ gives

ggg3,2 = ((1 2 3), (1 2 4), (1 3 2), (1 3 4)),

the same as conjugating on the middle two by (2 4 3). The

result is a length 3 γ∞ orbit.

On Nielsen elements over [3], γ∞ has one length 3 orbit

and two of length one. See by listing 2nd and 3rd positions

(g1 = (1 2 3)). Label as
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1′ = ((1 3 2), (1 4 3)), 2′ = ((1 2 4), (1 3 2)),
3′ = ((1 2 4), (2 3 4)), 4′ = ((1 2 4), (1 2 4)),
5′ = ((1 2 4), (1 4 3)).

Effect of γ∞: It fixes 4′ and maps 5′ to

((1 2 3), (2 3 4), (1 2 4), (3 1 2)) (conjugate by (1 2 3) to 5′).

These computations establish the orbit lengths:

(g1,1)γ∞ = ((1 2 3), (1 4 2), (1 3 2), (1 4 3)) = (3′)sh,

(g1,3)γ∞ = ((1 2 3), (1 4 2), (1 2 4), (1 3 2)) = (1′)sh.

There are cusps of width 2,3 and 4 (orbit of 1′ → 2′ → 3′

cycle): Ni+0 are Nielsen reps. in this M̄4 orbit.
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III.C. sh-incidence Matrix on Ni(A4,C±32)in,rd

sh-incidence matrix of Ni+0 comes from knowing

ggg1,1, ggg1,2, ggg1,3 over [1] are permuted as a set by sh. They

map by γ∞ respectively to ggg2,1, ggg2,2, ggg2,3 over [2]. Under γ∞
these map resp. to ggg1,2, ggg1,1, ggg1,3, while ggg3,1, ggg3,2, ggg3,3 cycle

among each other. So, three γ∞ orbits, O1,1, O1,3 and O3,1

on Ni+0 named for the subscripts of a representing element.

The data above shows

|O1,1∩ (O3,1)sh| = 2, |O1,3∩ (O3,1)sh| = 1. Compute: (ggg1,3)sh

is g1,1 so |O1,1∩(O1,3)sh| =1.
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sh-incidence Matrix for Ni+0
Remaining entries from symmetry of sh-incidence matrix

and sum in a row or col. is total in set labeling that row or col.

Orbit O1,1 O1,3 O3,1

O1,1 1 1 2

O1,3 1 0 1

O3,1 2 1 0

Similarly, the sh-incidence matrix of Ni−0 comes from the

following data. Elements ggg1,4, ggg1,5 over [1] map by γ∞
respectively to ggg2,4, ggg2,5 over [2], and these map respectively to

ggg1,5, ggg1,4, while γ∞ fixes both ggg3,4, ggg3,5.
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sh-incidence Matrix for Ni−0

So, there are three γ∞ orbits, O1,4, O3,4 and O3,5 on Ni−0 .

Orbit O1,4 O3,4 O3,5

O1,4 2 1 1

O3,4 1 0 0

O3,5 1 0 0

Lemma 5. In general, sh-incidence matrix is same as matrix
from replacing sh = γ1 by γ0. Only possible elements fixed
by either lie in γ∞ orbits O with |O ∩ (O)sh �= 0|.

On Ni+0 (resp. Ni−0 ), γ1 fixes 1 (resp. no) element(s), while
γ0 fixes none.
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III.D. Wohlfahrt shows neither component is a modular curve

Label components of H̄(A4,C±32)abs,rd: H̄abs,rd
± .

Goal: Show H̄abs,rd
± are not modular curves. By Wohlfahrt,

if the degree nine cover of P1
j is modular, the group of the cover

is a quotient of PSL2(12). If the degree 6 cover is modular,

the group is a quotient of PSL2(4).

As PSL2(Z/4) has the λ-line as a quotient, with 2,2,2 as

the cusp lengths, these cusp lengths are wrong for second

orbit to correspond to λ-line. Similarly, for the other cover,

as PSL2(Z/12) has both PSL2(Z/4) and PSL2(Z/3) as a

quotient, so cusp lengths are wrong.
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App. A: Higher Order g-p′ representatives

Formulated by Darren Semmen: Some rooted planar tree,

has elements of G labeling its vertices, and these hold.

1. The root has label 1.

2. Leaves of the tree have labels g1, . . . , gr in clockwise order.

3. Vertex labels one level up and adjacent to vertex x generate

a p′-group with product (clockwise order) the label ofx.

Includes more than first order g-p′ reps., but harder to detect.
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App. B: Comments on Schur multiplier of Sn

Here is a representation cover (not unique, Sn is not 2-

perfect – it has Z/2 as a quotient by determinant): As a fiber

product over Z/2, Rn = Ŝn ×Z/2 Z/4 with Ŝn the pullback of

Sn to Spin+ (p. 4; see [Se92, §9.1.3] for more detail).

For g ∈ Sn a 2-cycle (resp. product of two disjoint 2-

cycles), lifts to Ŝn have order 2 (resp. order 4). Corresponding

statement for lift to Sn ×Z/2 Z/4 is order 4 (resp. order 2).

Problem: For a lift ĝ of g to Rn, show conjugacy class Cĝ

of ĝ in Rn has 4 elements over ĝ. Why does this say the lift

invariant value sRn/Sn(ggg) of ggg∈Ni(Sn,C2r) must be 1 (p. 6)?
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•
•
•

• •
•

z0

z1

zi

zr

•

•

•

•

σi ↗ σr↘

σ0
↗

σ1↘

δ1
↗

δi
↗ ←δr

b1
↗

bi
↗

←br

•

•

•

a1
↗

ai↘
←ar

•

•

•

App. D: Classical Generators (next 2 pages): By

running over all possible classical generators, a cover

defines a Nielsen class (p. 1).– Typeset by FoilTEX – 34



Paths/Pieces in the figure

Ordered closed paths δiσiδ
−1
i = σ̄i, i = 1, . . . , r, are classical

generators of π1(Uzzz, z0). Homomorphism π1(Uzzz, z0) → G

defines Nielsen class element by σ̄i �→ gi, i = 1, . . . , r.

Discs, i = 1, . . . , r: Di with center zi; all disjoint, each

excludes z0; bi be on the boundary of Di.

Clockwise orientation: Boundary of Di is a path σi with

initial and end point bi; δi a simple simplicial path: initial

point z0 and end point bi. Assume δi meets none of

σ1, . . . , σi−1, σi+1, . . . , σr, and it meets σi only at its endpoint.
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Meeting Boundary of D0:

Defining the Product-One Condition

D0 intersections: D0 with center z0; disjoint from each

D1, . . . , Dr. Consider ai, first intersection of δi and boundary

σ0 of D0.

Crucial ordering: Conditions on δ1, . . . , δr:

• pairwise nonintersecting, except at z0; and

• a1, . . . , ar are in order clockwise around σ0.

Since paths are simplicial, last condition is independent of D0,

for D0 sufficiently small.
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