Limit groups: Mapping class orbits and

 maximal Frattini quotients of dim. 2 p-Poincaré dual groups
All those Frattini p-extensions

Group theorists consider it unlikely there will ever be a classification of all finite groups. Why?

The unknowable collection of p-groups because of all their non-split extensions. Worse still are nonsplit extensions of p-perfect $G(p||G|$, but no $G \rightarrow \mathbb{Z} / p \rightarrow 1$) by a p-group.

Yet, algebraic equations in the 20th century faced nonsplit abelian p-group extensions, from moduli of abelian varieties through torsion points.

Goal: Explain a moduli approach to melding all p-group extensions into arithmetic geometry, and why it is necessary.

Universal p-Frattini cover of a p-perfect G

Are there many nonsplit finite group extensions of an arbitrary finite group? Answer: You bet! Consider them all $F_{G}=\{\varphi: H \rightarrow G \rightarrow 1\}$. For G of rank t, let \tilde{F}_{t} be the pro-free group of rank t. Fix $\psi: \widetilde{F}_{t} \rightarrow G \rightarrow 1$.

Take all closed $\left\{\tilde{H} \leq \tilde{F}_{t}\right\}$ with $\psi: \tilde{H} \rightarrow G \rightarrow 1$. Let \tilde{G} be a minimal such \tilde{H}. (Existence from Zorn's Lemma; use \tilde{F}_{t} is complete.) So, \tilde{G} of rank t, is unique up to isomorphism. Further:

- Versality: $\psi: \tilde{G} \rightarrow G$ is a Frattini cover that factors through any $\varphi \in F_{G}$.
- Projectivity: In category of profinite groups.
- Prime Factorization: \tilde{G} is the fiber product over G of $\{p \widetilde{G}\}_{p \| G \mid}$ (p.3) [FrJ04, Chap. 22.11].

Universal p-Frattini cover ${ }_{p} \widetilde{G}$ of G

- p-Projectivity: $\psi:{ }_{p} \widetilde{G} \rightarrow G$ is maximal subquotient of $\widetilde{G} \rightarrow G$ having p-group as kernel.
- Pro-free kernel:

$$
\operatorname{ker}_{0} \stackrel{\text { def }}{=} \operatorname{ker}_{G, p, 0}=\operatorname{ker}(p \widetilde{G} \rightarrow G)
$$

is pro-free pro-p of finite rank.

- Split case: If $G=P \times{ }^{s} H$ with P a (normal) p-Sylow of rank t^{\prime}, then $p \widetilde{G}={ }_{p} \widetilde{F}_{t^{\prime}} \times{ }^{s} H$.

Comments on Split case: How to extend H to ${ }_{p} \widetilde{F}_{t^{\prime}}$ is non-obvious, and hard to find explicitly. Also, Examples \# and \# 2 of Talk \#1 (p. 12) show the "easy" split case doesn't simplify understanding MT components and their cusps.

Characteristic module sequence:

$$
\begin{gathered}
\operatorname{ker}_{1}=\Phi\left(\operatorname{ker}_{0}\right) \stackrel{\text { def }}{=} \operatorname{ker}_{0}^{p} \cdot\left(\operatorname{ker}_{0}, \operatorname{ker}_{0}\right), \\
\operatorname{ker}_{i}=\Phi\left(\operatorname{ker}_{i-1}\right), \ldots \text { and } G_{i}={ }_{p} \widetilde{G} / \operatorname{ker}_{i} .
\end{gathered}
$$

Then, $M_{i} \stackrel{\text { def }}{=} \operatorname{ker}_{i} / \operatorname{ker}_{i+1}$ is a $\mathbb{Z} / p\left[G_{i}\right]$ module.

Modular Tower for (G, \mathbf{C}, p) with p^{\prime} set \mathbf{C}
Take any p^{\prime} conjugacy classes \mathbf{C} of G. Form $\mathrm{Ni}\left(G_{k}, \mathbf{C}\right) /\left\langle\mathcal{Q}^{\prime \prime}, G_{k}\right\rangle$ and

$$
\mathcal{H}\left(G_{k}, \mathbf{C}\right)^{\mathrm{in}, \mathrm{rd}}=\mathcal{H}_{k}^{\mathrm{in}, \mathrm{rd}}=\mathcal{H}_{k}
$$

When $r=4$: gives a diagram of j-line covers

$$
\begin{equation*}
\cdots \rightarrow \overline{\mathcal{H}}_{k+1} \rightarrow \overline{\mathcal{H}}_{k} \rightarrow \cdots \rightarrow \mathbb{P}_{j}^{1} \tag{1}
\end{equation*}
$$

MT levels are moduli spaces: Galois covers with group G in $\mathrm{Ni}(G, \mathbf{C})^{\text {in }}$ equivalencing

$$
\left(\varphi_{i}: X \rightarrow \mathbb{P}_{z}^{1}, \operatorname{Aut}\left(X / \mathbb{P}_{z}^{1}\right)\right), i=1,2,
$$

if there is $\left(\psi: X_{1} \rightarrow X_{2}, \alpha \in \mathrm{PGL}_{2}(\mathbb{C})\right)$ with $\alpha \circ \varphi_{1}=\varphi_{2} \circ \psi$ inducing inner automorphism on $G \Leftrightarrow \boldsymbol{p} \in \mathcal{H}(G, \mathbf{C})^{\text {in }, \text { rd }}$.
Discrete objects of a MT (1):

- Projective systems of $\left(q_{2} \mapsto\right) \gamma_{\infty}$ orbits (cusps).
- Projective systems of $\left\langle\gamma_{1}, \gamma_{\infty}\right\rangle$ orbits.

The Shift: $q_{1} q_{2} q_{3} \mapsto \gamma_{1}$ acts as the shift:

$$
\left(g_{1}, g_{2}, g_{3}, g_{4}\right) \mapsto\left(g_{2}, g_{3}, g_{4}, g_{1}\right)
$$

MTs and Greatest Hopes for the RIGP
Hope for $[K: \mathbb{Q}]<\infty$: Get all finite quotients of ${ }_{p} \tilde{G}$ over K_{ℓ} and even over K, at one time. Data for any regular realization of G_{k} is $\left(G_{k}, \mathbf{C}_{k}\right)$ (r_{k} conjugacy classes in G_{k}).

Simplest if \mathbf{C}_{k} doesn't change too much.

1. Maybe has r_{k} bounded.
2. Maybe has r_{k} fixed at some value r.
3. Maybe has branch points $z^{k}=\boldsymbol{z}$ (all k).
[FK97, Using Branch Cycle Lemma]: For a number field $\# 1 \Longrightarrow \# 2$, and \exists MT with a K point at each level.
$\# 3 \Longrightarrow \exists$ projective sequence of realizations: equivalent to K points on a MT. No such projective sequence if $[K: \mathbb{Q}]<\infty$.

Main Conjecture of MTs: If $[K: \mathbb{Q}]<\infty$, $\mathcal{H}\left(G_{k}, \mathbf{C}\right)^{\text {in }, \text { rd }}(K)=\emptyset$ if k is large.

First step: Decide if \exists a(n infinite) projective sequence of components on a given MT Geometric Conjecture [Fr04c]: \exists projective sequence of components (PSC) is equivalent to existence of a $g-p^{\prime}$ rep. (at level 0). Established Facts on $9-p^{\prime}$ cusps: $[K: \mathbb{Q}]<\infty$.

- p. 8-9 of Alternating Groups Talk: $g-p^{\prime}$ rep. sufficient for PSC.
- [Fr95, Part III] When \exists Harbater-Mumford (H-M) cusps, there is an effective sufficient criterion for PSC over K.
- With condition [Fr95, Part III], there is a K_{ℓ} point on the MT ([DDe04] and [DEm04]).

Analyzing cusps means representing objects \mapsto cusps (over \mathbb{R} or $W\left(\mathbb{F}_{q}\right)$). Like elliptic curves \mapsto modular curve cusp.
Big improvement over PSC over K to get small dimensional subvarieties on the tower levels over K. First substantial result is [Ca05a] (uses H-M cusps). [Iha86], [IM95] and [Na99] applies to see the Grothendieck-Teichmüller relations in $G_{\mathbb{Q}}$ along MT cusps. Generalizing to $g-p^{\prime}$ cusps is in cards, but not done yet.

p-Poincaré Duality Setup

Let $\varphi: X \rightarrow \mathbb{P}_{z}^{1}$, with branch points \boldsymbol{z}, a Galois cover in $\mathrm{Ni}(G, \mathbf{C})^{\text {in }}$: represents a braid orbit O. Use classical generators (App. $\left.\mathrm{A}_{1}\right)$ for $\pi_{1}\left(U_{z}, z_{0}\right)$. [BFr02, Prop. 4.15] produces a quotient M_{φ} of $\pi_{1}\left(U_{z}, z_{0}\right)$ so $\operatorname{ker}\left(M_{\varphi} \rightarrow G\right)$ identifies with the pro- p completion of the fundamental group of X. If $g \in \mathrm{Ni}(G, \mathbf{C})$ corresponds to these choices, denote M_{φ} by M_{g}.
p-Nielsen limit through O is a maximal quotient of M_{g} that is Frattini over G. Equivalence by conjugation braid action fixed on g (automatically includes conjugation by $\operatorname{ker}\left(M_{\boldsymbol{g}} \rightarrow G\right)$.

Extension Viewpoint: Projective systems

$$
\left\{\boldsymbol{p}_{k} \in \mathcal{H}\left(G_{k}, \mathbf{C}\right)^{\text {in,rd }}\right\}_{k=0}^{\infty} \text { over fixed } \boldsymbol{p}_{0} \Leftrightarrow
$$

extensions of $M_{g} \rightarrow G$ to $M_{g} \rightarrow p \widetilde{G} \rightarrow G$.
p-Poincaré duality groups [We05] (extending [Br82] and [Ser91])

Dimension 2 p-Poincaré duality [We05, (5.8)]. Expresses an exact cohomology pairing

$$
H^{k}\left(M_{\boldsymbol{g}}, U^{*}\right) \times H^{2-k}\left(M_{\boldsymbol{g}}, U\right) \rightarrow \mathbb{Q}_{p} / \mathbb{Z}_{p} \stackrel{\text { def }}{=} I_{G, p}
$$

where U is any abelian p-power group that is also a $\Gamma=M_{g}$ module, U^{*} is its dual with respect to $I_{G, p}$ and k is any integer. [Ser91, I.4.5] has the same definition, though that assumes M_{g} is a pro- p-group, while we have the p-perfect group G at its head.

Basic Idea: $M_{\boldsymbol{g}}$ has a finite index subgroup satisfying Poincaré duality: pro-pcompletion of $\pi_{1}(X)$.

Weak Orientability: When U is a $\mathbb{Z} / p[G]$ module, the pairing rt. side has trivial M_{g} action.

Test for going from MT Level k to Level $k+1$
[FrK97] Lift principle: If $G_{2}^{\prime} \rightarrow G_{1}^{\prime} \rightarrow G$ are p-Frattini covers, with $\operatorname{ker}\left(G_{2}^{\prime} \rightarrow G_{1}^{\prime}\right)=M$ an irreducible non-trivial G module, then $\boldsymbol{g}_{1} \in \mathrm{Ni}\left(G_{1}^{\prime}, \mathbf{C}\right)$ lifts to $\boldsymbol{g}_{2} \in \mathrm{Ni}\left(G_{2}^{\prime}, \mathbf{C}\right)$.

Test for going from braid orbit $O_{k} \leq \mathrm{Ni}\left(G_{k}\right.$, C $)$ to $O_{k+1} \leq \mathrm{Ni}\left(G_{k+1}, \mathrm{C}\right)$.

Let $R_{k} \rightarrow G_{k}$ be maximal among central, exponent p Frattini extensions of G_{k}. Then, $\operatorname{ker}\left(R_{k} \rightarrow G_{k}\right)=\mathrm{Sc}_{k}$ is the maximal exponent p quotient of $G_{k} \mathrm{~s}$ Schur multiplier.

Theorem 1 (W Test A). $s_{R_{k} / G_{k}}(O)=0$ is iff test for $\exists O_{k+1}$ (use $s_{R / G}$ lift inv., p. 3, Talk 2).

Proof for [W Test A] [Fr05c, Cor. 4.12]

Proof. Let $\boldsymbol{g}_{k} \in O_{k} \Leftrightarrow \psi: M_{\boldsymbol{g}_{0}} \rightarrow G_{k}$. Need: If fiber of $\mathrm{Ni}\left(G_{k+1}, \mathbf{C}\right) \rightarrow \mathrm{Ni}\left(G_{k}, \mathbf{C}\right)$ over \boldsymbol{g}_{k} is empty, then $s_{R / G_{k}}(\boldsymbol{g}) \neq 0$ for $R_{k} \leq R \leq G_{k}$ with $\operatorname{ker}\left(R \rightarrow G_{k}\right)=\mathbb{Z} / p$. [Fr95, Prop. 2.7] says $H^{2}\left(G_{k}, M_{k}\right)=\mathbb{Z} / p$: It is 1 -dimensional.

Obstruction to lifting ψ to G_{k+1} is inflation of a generator of $H^{2}\left(G_{k}, M_{k}\right)$ to $H^{2}\left(M_{\boldsymbol{g}}, M_{k}\right)$. p-Poincaré duality says this is

$$
H_{0}\left(M_{\boldsymbol{g}}, D \otimes M_{k}\right) \simeq D \otimes_{\mathbb{Z} / p\left[M_{g}\right]} M_{k},
$$

with $D=\mathbb{Z} / p$ the duality module for $\mathbb{Z} / p\left[M_{g}\right]$ (on which it acts trivially). So, $D \otimes_{\mathbb{Z} / p\left[M_{g}\right]} M_{k}$ is the maximal quotient of M_{k} on which $M_{\boldsymbol{g}}$ (so G_{k}) acts trivially.

Limit Group Test and return to Modular Curves
Theorem 2 (F-K-W Test B). For $G^{*} \rightarrow G$ a limit group, there is a unique p-Frattini extension $G^{* *} \rightarrow G^{*}$ with $\operatorname{ker}\left(G^{* *} \rightarrow G^{*}\right)$ an irreducible module, and that module must be $\mathbf{1}_{G}$.

Examples p. 11-12, Talk 1:
Example 1: All modular curves.
Projectively complete

$$
F_{3}=\left\langle\sigma=\sigma_{1}, \ldots, \sigma_{4} \quad \bmod \sigma_{1} \sigma_{2} \sigma_{3} \sigma_{4}=1\right\rangle .
$$

Denote result by $\hat{F}_{\boldsymbol{\sigma}}$.
Proposition 3. Denote the quotient of $\hat{F}_{\boldsymbol{\sigma}}$ by

$$
\sigma_{i}^{2}=1, i=1,2,3,4\left(\text { so } \sigma_{1} \sigma_{2}=\sigma_{4} \sigma_{3}\right)
$$

by $\hat{D}_{\boldsymbol{\sigma}}$. Then, $\prod_{p \neq 2} \mathbb{Z}_{p}^{2} \times^{s} J_{2} \equiv \hat{D}_{\boldsymbol{\sigma}}$ and $\mathbb{Z}_{p}^{2} \times^{s} J_{2}$ is the unique \mathbf{C}_{24} p-Nielsen class limit.

Argument for Prop. 3 (more in [Fr05c, §6.1])

Goal: show $\hat{D}_{\boldsymbol{\sigma}}$ is $\widetilde{\mathbb{Z}}^{2} \times{ }^{s} J_{2}$ and $\sigma_{1} \sigma_{2}$ and $\sigma_{1} \sigma_{3}$ are independent generators of $\tilde{\mathbb{Z}}^{2}$. Then, σ_{1} acts on $\widetilde{\mathbb{Z}}^{2}$ by multiplication by -1 .

First: $\sigma_{1}\left(\sigma_{1} \sigma_{2}\right) \sigma_{1}=\sigma_{2} \sigma_{1}$ shows σ_{1} conjugates $\sigma_{1} \sigma_{2}$ to its inverse. Also,
$\left(\sigma_{1} \sigma_{2}\right)\left(\sigma_{1} \sigma_{3}\right)=\left(\sigma_{1} \sigma_{3}\right) \sigma_{3}\left(\sigma_{2} \sigma_{1}\right) \sigma_{3}=\left(\sigma_{1} \sigma_{3}\right)\left(\sigma_{1} \sigma_{2}\right)$
shows the said generators commute. The maximal possible quotient is $\mathbb{Z}_{p}^{2} \times^{s}\{ \pm 1\}$.

Second: $G=V \times^{s} J_{2}, V$ a nontrivial quotient of \mathbb{Z}^{2}, gives nonempty Nielsen classes. Use a cofinal family of $V \mathrm{~s},\left(\mathbb{Z} / p^{k+1}\right)^{2}, p \neq 2$. Two proofs, one using elliptic curves and the other pure Nielsen class, appear in [Fr05a,§6.1.3]. That shows $\mathbb{Z}_{p}^{2} \times\{ \pm 1\}$ is a limit group. Uniqueness comes from Talk 1.

Heisenberg analysis of modular curve Nielsen classes [FrO5c, App. A.2]
Loewy layers (App. A_{4}) show Prop. 3 is an example of [F-K-W Test B].
First: $(\mathbb{Z} \times \mathbb{Z}) \times{ }^{s} \mathbb{Z} / 2$ is an orientable p-Poincaré duality group if p is odd: Finite-index subgroup $\mathbb{Z} \times \mathbb{Z}$ is fundamental group of the torus. Denote the matrix $\left(\begin{array}{lll}1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1\end{array}\right)$ by $M(x, y, z)$. Heisenberg group with entries in ring R :

$$
\mathbb{H}_{R, 3}=\{M(x, y, z)\}_{x, y, z \in R}
$$

Consider 1^{-}and $\mathbb{Z}_{p}^{-}: g \in S_{n} \mapsto$ mult. by $\operatorname{Det}(g)$. Proposition 4 ([Fr05c, App. B2]).

$$
\mathbb{H}_{\mathbb{Z} / p, 3} \rightarrow(\mathbb{Z} / p)^{2} \text { by } M(x, y, z) \mapsto(x, y)
$$

is Frattini. The p-Frattini module $M_{0}\left(G_{0}\right)$ of $G_{0}=(\mathbb{Z} / p)^{2} \times s \mathbb{Z} / 2$ has $\mathbf{1}_{G_{0}} \oplus \mathbf{1}_{G_{0}}^{-} \oplus \mathbf{1}_{G_{0}}$ at its head. Extension defined by $\mathbf{1}_{G_{0}}$ gives Heisenberg group, obstructing MT at level 1. Also gives infinite limit group

$$
\left(\mathbb{Z}_{p}\right)^{2} \times^{s} \mathbb{Z} / 2=\left(\mathbb{Z}_{p}^{-}\right)^{2} \times^{s} \mathbb{Z} / 2
$$

(G, \mathbf{C}) having many Limit Groups

Talk 5 does Example 2, p. 12 of Talk 1, with $H=\mathbb{Z} / 3=\langle\alpha\rangle$, considering limit groups of $\mathrm{Ni}\left((\mathbb{Z} / p)^{2} \times^{s} \mathbb{Z} / 3, \mathrm{C}_{ \pm 3^{2}}\right)=\mathrm{Ni}_{p}(p \neq 3)$. Note: $(\mathbb{Z} / 2)^{2} \times^{s} \mathbb{Z} / 3=A_{4}$.

1. $p \widetilde{F}_{2} \times{ }^{s} \mathbb{Z} / 3$ is a limit group because Ni_{p} contains an $\mathrm{H}-\mathrm{M}$ rep.
2. There are two braid orbits $O_{0,1}(\mathrm{H}-\mathrm{M})$ and $O_{0,2}\left(\mathrm{Spin}_{4} \rightarrow A_{4}\left(O_{0,2}\right)=-1\right)$ on Ni_{2}.
3. Ni_{2} has many limit groups, all so far, fitting into a pattern.
4. Six braid orbits on $\left.\mathrm{Ni}\left(G_{1}(\mathbb{Z} / p)^{2} \times \mathbb{Z} / 3\right), \mathrm{C}_{ \pm 3^{2}}\right)$:

- $O_{g=0,1}$ and $O_{g=0,2} \Leftrightarrow$ genus 0, complex conjugate curves $\overline{\mathcal{H}}_{g=0, i} \rightarrow \mathbb{P}^{1}, i=1,2$;
- $O_{H-M, 1}$ and $O_{H-M, 2}\left(\mathrm{H}_{-} \mathrm{M}^{j}\right.$ orbits) \Leftrightarrow genus 1 curves;
- $O_{g=3,1}$ and $O_{g=3,2} \Leftrightarrow$ genus 3 curves over \mathbb{Q} covering \mathbb{P}_{j}^{1}.

Talk 5 has \#4: $\mathrm{Ni}\left(G_{1}\left(A_{4}\right), \mathrm{C}_{ \pm 3^{2}}\right)$ braid orbits, applied to $\mathrm{Ni}\left(G_{1}\left(A_{5}\right), \mathrm{C}_{34}\right)$, level 1 MT components for $A_{5}, p=2$, any conjugacy classes.

App. A4: Loewy layers of modular curves

 Jacobson radical of $\mathbb{Z} / p[G] J_{G, p}=J$: Intersection of maximal left (or right) ideals of $\mathbb{Z} / p[G]$. Basic Lemma: $M / J_{G, p} M$, the first Loewy layer of G module M, is maximal semi-simple G quotient of M. For Loewy layers continue series inductively: $J \cdot M$ replaces M.Knowing M from its Loewy layers requires info on nonsplit subquotients M^{\prime} of M of this form:

$$
0 \rightarrow S_{1} \rightarrow M^{\prime} \rightarrow S_{2} \rightarrow 0
$$

(S_{1}, S_{2} irreducible in the $\ell+1$ st, ℓ th layer).
Let $F_{u}(G)=\left\{g \in G \mid g-1 \in J^{u}\right\}: F_{1}(G)=G$. Input for $H_{G}(t)$ is dimensions $n_{1}, n_{2}, \ldots, n_{u}, \ldots$ of graded pieces of Jenning's Lie algebra:

- u th graded piece is F_{u} / F_{u+1}; and
- commutators and p th powers from F s with lower subscripts generate F_{u}.

For G a p-group, and $M=\mathbb{Z} / p[G], J$ is the augmentation ideal: $\operatorname{ker}\left(\sum_{g \in G} a_{g} g \mapsto \sum_{g \in G} a_{g}\right)$.

Easiest non-trivial case of Loewy layers

Jenning's Thm. [Ben91, Thm. 3.14.6] gives Loewy layer dimensions as a Hilbert polynomial $H_{G}(t)$ (variable t). Only p-group irreducible is $\mathbf{1}_{G}$. Arrows from levels ℓ to $\ell-1$ give all. Conclude: For $G=(\mathbb{Z} / p)^{n}, n_{1}=n, F_{u} / F_{u+1}$ is trivial for $u \geq 2$: general case

$$
\prod_{u \geq 1}\left(\frac{1-t^{p u}}{1-t^{u}}\right)^{n_{u}} \Longrightarrow H_{(\mathbb{Z} / p)^{n}}(t)=\left(\frac{1-t^{p}}{1-t}\right)^{n} .
$$

Lemma 5. So: $H_{(\mathbb{Z} / p)^{2}}(t)=\left(1+t+\ldots+t^{p-1}\right)^{2}$; respective Loewy layers of $\mathbb{Z} / p\left[(\mathbb{Z} / p)^{2}\right]$ have the dimensions $1,2, \ldots, p, p-1, \ldots, 1$. With $(\mathbb{Z} / p)^{2}=\left\langle x_{1}, x_{2}\right\rangle$, symbols $x_{1}^{\alpha} x_{2}^{\ell-\alpha} 0 \leq \alpha, \ell-\alpha<$ p generate 1 s at Loewy layer ℓ. Arrows from $1 \leftrightarrow x_{1}^{\alpha} x_{2}^{\ell-\alpha}$ go to 1 s associated to $x_{1}^{\alpha} x_{2}^{\ell-1-\alpha}$ and to $x_{1}^{\alpha-1} x_{2}^{\ell-\alpha}$ under above constraints.

Proof. Loewy arrows come from subquotient $R=\mathbb{Z} / p[G]$ module extensions of 1 by $\mathbf{1}$. Use the Poincaré-Birkoff-Witt basis for the universal enveloping algebra of R [Ben91, p. 88].

