Limit groups: Mapping class orbits and maximal Frattini quotients of dim. 2 *p*-Poincaré dual groups

All those Frattini *p*-extensions

Group theorists consider it unlikely there will ever be a classification of all finite groups. Why?

The unknowable collection of *p*-groups because of all their non-split extensions. Worse still are nonsplit extensions of *p*-perfect *G* (p||G|, but no $G \to \mathbb{Z}/p \to 1$) by a *p*-group.

Yet, algebraic equations in the 20th century faced nonsplit abelian *p*-group extensions, from moduli of abelian varieties through torsion points.

Goal: Explain a moduli approach to melding *all p*-group extensions into arithmetic geometry, *and* why it is *necessary*.

Universal p-Frattini cover of a p-perfect G

Are there many nonsplit finite group extensions of an arbitrary finite group? Answer: You bet! Consider them all $F_G = \{\varphi : H \to G \to 1\}$. For G of rank t, let \tilde{F}_t be the pro-free group of rank t. Fix $\psi : \tilde{F}_t \to G \to 1$.

Take all closed $\{\tilde{H} \leq \tilde{F}_t\}$ with $\psi : \tilde{H} \rightarrow G \rightarrow 1$. Let \tilde{G} be a minimal such \tilde{H} . (Existence from Zorn's Lemma; use \tilde{F}_t is complete.) So, \tilde{G} of rank t, is unique up to isomorphism. Further:

- Versality: ψ : $\tilde{G} \to G$ is a Frattini cover that factors through any $\varphi \in F_G$.
- Projectivity: In category of profinite groups.
- Prime Factorization: \tilde{G} is the *fiber product* over G of $\{p\tilde{G}\}_{p||G|}$ (p. 3) [FrJ04, Chap. 22.11].

Universal *p*-Frattini cover $_{p}\tilde{G}$ of G

- *p*-Projectivity: $\psi : {}_{p}\tilde{G} \to G$ is maximal subquotient of $\tilde{G} \to G$ having *p*-group as kernel.
- Pro-free kernel:

$$\ker_0 \stackrel{\text{def}}{=} \ker_{G,p,0} = \ker(p\tilde{G} \to G)$$

is pro-free pro-p of finite rank.

• Split case: If $G = P \times^{s} H$ with P a (normal) *p*-Sylow of rank t', then ${}_{p}\tilde{G} = {}_{p}\tilde{F}_{t'} \times^{s} H$.

Comments on Split case: How to extend H to ${}_{p}\tilde{F}_{t'}$ is non-obvious, and hard to find explicitly. Also, Examples # and # 2 of Talk #1 (p. 12) show the "easy" split case doesn't simplify understanding MT components and their cusps.

Characteristic module sequence:

$$\ker_{1} = \Phi(\ker_{0}) \stackrel{\text{def}}{=} \ker_{0}^{p} \cdot (\ker_{0}, \ker_{0}),$$

$$\ker_{i} = \Phi(\ker_{i-1}), \dots \text{ and } G_{i} = p\tilde{G}/\ker_{i}.$$

Then, $M_{i} \stackrel{\text{def}}{=} \ker_{i}/\ker_{i+1}$ is a $\mathbb{Z}/p[G_{i}]$ module.

Modular Tower for (G, \mathbf{C}, p) with p' set \mathbf{C}

Take any p' conjugacy classes **C** of G. Form $Ni(G_k, \mathbf{C})/\langle Q'', G_k \rangle$ and

 $\mathcal{H}(G_k, \mathbf{C})^{\text{in,rd}} = \mathcal{H}_k^{\text{in,rd}} = \mathcal{H}_k.$

When r = 4: gives a diagram of *j*-line covers

$$\cdots \to \bar{\mathcal{H}}_{k+1} \to \bar{\mathcal{H}}_k \to \cdots \to \mathbb{P}_j^1.$$
(1)

MT *levels* are moduli spaces: Galois covers with group G in $Ni(G, \mathbf{C})^{in}$ equivalencing

$$(\varphi_i : X \to \mathbb{P}^1_z, \operatorname{Aut}(X/\mathbb{P}^1_z)), i = 1, 2,$$

if there is $(\psi : X_1 \to X_2, \alpha \in \mathsf{PGL}_2(\mathbb{C}))$ with $\alpha \circ \varphi_1 = \varphi_2 \circ \psi$ inducing inner automorphism on $G \Leftrightarrow p \in \mathcal{H}(G, \mathbb{C})^{\mathsf{in}, \mathsf{rd}}$.

Discrete objects of a MT(1):

- Projective systems of $(q_2 \mapsto) \gamma_{\infty}$ orbits (*cusps*).
- Projective systems of $\langle \gamma_1, \gamma_\infty \rangle$ orbits. The Shift: $q_1q_2q_3 \mapsto \gamma_1$ acts as the shift:

$$(g_1, g_2, g_3, g_4) \mapsto (g_2, g_3, g_4, g_1).$$

MTs and Greatest Hopes for the RIGP

Hope for $[K : \mathbb{Q}] < \infty$: Get all finite quotients of $_{p}\tilde{G}$ over K_{ℓ} and even over K, at one time. Data for any regular realization of G_{k} is (G_{k}, \mathbf{C}_{k}) $(r_{k}$ conjugacy classes in G_{k}).

Simplest if C_k doesn't change too much.

- 1. Maybe has r_k bounded.
- 2. Maybe has r_k fixed at some value r.
- 3. Maybe has branch points $z^k = z$ (all k).

[FK97, Using Branch Cycle Lemma]: For a number field $\#1 \implies \#2$, and \exists MT with a K point at each level.

#3 \implies \exists projective sequence of realizations: equivalent to K points on a MT. No such projective sequence if $[K : \mathbb{Q}] < \infty$.

Main Conjecture of MTs: If $[K : \mathbb{Q}] < \infty$, $\mathcal{H}(G_k, \mathbb{C})^{\text{in}, \text{rd}}(K) = \emptyset$ if k is large. First step: Decide if \exists a(n infinite) projective sequence of components on a given MT Geometric Conjecture [Fr04c]: \exists projective sequence of components (PSC) is equivalent to existence of a *g*-*p*' rep. (at level 0). Established Facts on g-*p*' cusps: [$K : \mathbb{Q}$] < ∞ .

- p. 8-9 of Alternating Groups Talk: g-p' rep. sufficient for PSC.
- [Fr95, Part III] When ∃ Harbater-Mumford (H-M) cusps, there is an effective sufficient criterion for PSC over K.
- With condition [Fr95, Part III], there is a K_{ℓ} point on the MT ([DDe04] and [DEm04]).

Analyzing cusps means representing objects \mapsto cusps (over \mathbb{R} or $W(\mathbb{F}_q)$). Like elliptic curves \mapsto modular curve cusp.

Big improvement over PSC over K to get small dimensional subvarieties on the tower levels over K. First substantial result is [Ca05a] (uses H-M cusps). [Iha86], [IM95] and [Na99] applies to see the Grothendieck-Teichmüller relations in $G_{\mathbb{Q}}$ along MT cusps. Generalizing to g-p'cusps is in cards, but not done yet.

p-Poincaré Duality Setup

Let $\varphi : X \to \mathbb{P}^1_z$, with branch points z, a Galois cover in Ni $(G, \mathbb{C})^{\text{in}}$: represents a braid orbit O.

Use classical generators (App. A₁) for $\pi_1(U_z, z_0)$. [BFr02, Prop. 4.15] produces a quotient M_{φ} of $\pi_1(U_z, z_0)$ so ker $(M_{\varphi} \to G)$ identifies with the pro-*p* completion of the fundamental group of *X*. If $g \in \operatorname{Ni}(G, \mathbb{C})$ corresponds to these choices, denote M_{φ} by M_g .

p-Nielsen limit through O is a maximal quotient of M_g that is Frattini over *G*. Equivalence by conjugation braid action fixed on *g* (automatically includes conjugation by ker($M_g \rightarrow G$).

Extension Viewpoint: Projective systems

 $\{\mathbf{p}_k \in \mathcal{H}(G_k, \mathbf{C})^{\text{in,rd}}\}_{k=0}^{\infty} \text{ over fixed } \mathbf{p}_0 \Leftrightarrow$ extensions of $M_{\mathbf{g}} \to G$ to $M_{\mathbf{g}} \to p\tilde{G} \to G$.

p-Poincaré duality groups [We05] (extending [Br82] and [Ser91])

Dimension 2 *p*-Poincaré duality [We05, (5.8)]. Expresses an exact cohomology pairing

 $H^k(M_{\boldsymbol{g}}, U^*) \times H^{2-k}(M_{\boldsymbol{g}}, U) \to \mathbb{Q}_p/\mathbb{Z}_p \stackrel{\text{def}}{=} I_{G,p}$

where U is any abelian p-power group that is also a $\Gamma = M_g$ module, U^* is its dual with respect to $I_{G,p}$ and k is any integer. [Ser91, I.4.5] has the same definition, though that assumes M_g is a pro-p-group, while we have the p-perfect group G at its head.

Basic Idea: M_g has a finite index subgroup satisfying Poincaré duality: pro-*p* completion of $\pi_1(X)$.

Weak Orientability: When U is a $\mathbb{Z}/p[G]$ module, the pairing rt. side has trivial M_g action.

Test for going from MT Level k to Level k+1

[FrK97] Lift principle: If $G'_2 \to G'_1 \to G$ are p-Frattini covers, with $\ker(G'_2 \to G'_1) = M$ an irreducible non-trivial G module, then $g_1 \in \operatorname{Ni}(G'_1, \mathbb{C})$ lifts to $g_2 \in \operatorname{Ni}(G'_2, \mathbb{C})$.

Test for going from braid orbit $O_k \leq Ni(G_k, \mathbf{C})$ to $O_{k+1} \leq Ni(G_{k+1}, \mathbf{C})$.

Let $R_k \to G_k$ be maximal among central, exponent p Frattini extensions of G_k . Then, $\ker(R_k \to G_k) = \operatorname{Sc}_k$ is the maximal exponent p quotient of G_k s Schur multiplier.

Theorem 1 (W Test A). $s_{R_k/G_k}(O) = 0$ is iff test for $\exists O_{k+1}$ (use $s_{R/G}$ lift inv., p. 3, Talk 2).

Proof for [W Test A] [Fr05c, Cor. 4.12] Proof. Let $g_k \in O_k \Leftrightarrow \psi : M_{g_0} \to G_k$. Need: If fiber of Ni $(G_{k+1}, \mathbb{C}) \to Ni(G_k, \mathbb{C})$ over g_k is empty, then $s_{R/G_k}(g) \neq 0$ for $R_k \leq R \leq G_k$ with ker $(R \to G_k) = \mathbb{Z}/p$. [Fr95, Prop. 2.7] says $H^2(G_k, M_k) = \mathbb{Z}/p$: It is 1-dimensional.

Obstruction to lifting ψ to G_{k+1} is inflation of a generator of $H^2(G_k, M_k)$ to $H^2(M_g, M_k)$. *p*-Poincaré duality says this is

 $H_0(M_{\boldsymbol{g}}, D \otimes M_k) \simeq D \otimes_{\mathbb{Z}/p[M_{\boldsymbol{g}}]} M_k,$

with $D = \mathbb{Z}/p$ the duality module for $\mathbb{Z}/p[M_g]$ (on which it acts trivially). So, $D \otimes_{\mathbb{Z}/p[M_g]} M_k$ is the maximal quotient of M_k on which M_g (so G_k) acts trivially.

Limit Group Test and return to Modular Curves

Theorem 2 (F-K-W Test B). For $G^* \to G$ a limit group, there is a unique *p*-Frattini extension $G^{**} \to G^*$ with ker($G^{**} \to G^*$) an irreducible module, and that module must be $\mathbf{1}_G$.

Examples p. 11-12, Talk 1: Example 1: All modular curves.

Projectively complete

 $F_3 = \langle \boldsymbol{\sigma} = \sigma_1, \dots, \sigma_4 \mod \sigma_1 \sigma_2 \sigma_3 \sigma_4 = 1 \rangle.$ Denote result by $\hat{F}_{\boldsymbol{\sigma}}$.

Proposition 3. Denote the quotient of \hat{F}_{σ} by

 $\sigma_i^2 = 1, \ i = 1, 2, 3, 4 \ (so \ \sigma_1 \sigma_2 = \sigma_4 \sigma_3)$

by \hat{D}_{σ} . Then, $\prod_{p \neq 2} \mathbb{Z}_p^2 \times^s J_2 \equiv \hat{D}_{\sigma}$ and $\mathbb{Z}_p^2 \times^s J_2$ is the unique \mathbb{C}_{2^4} *p*-Nielsen class limit.

Argument for Prop. 3 (more in [Fr05c, §6.1])

Goal: show \hat{D}_{σ} is $\mathbb{Z}^2 \times^s J_2$ and $\sigma_1 \sigma_2$ and $\sigma_1 \sigma_3$ are independent generators of \mathbb{Z}^2 . Then, σ_1 acts on \mathbb{Z}^2 by multiplication by -1.

First: $\sigma_1(\sigma_1\sigma_2)\sigma_1 = \sigma_2\sigma_1$ shows σ_1 conjugates $\sigma_1\sigma_2$ to its inverse. Also,

 $(\sigma_1 \sigma_2)(\sigma_1 \sigma_3) = (\sigma_1 \sigma_3)\sigma_3(\sigma_2 \sigma_1)\sigma_3 = (\sigma_1 \sigma_3)(\sigma_1 \sigma_2)$ shows the said generators commute. The maximal possible quotient is $\mathbb{Z}_p^2 \times^s \{\pm 1\}$.

Second: $G = V \times^s J_2$, V a nontrivial quotient of \mathbb{Z}^2 , gives nonempty Nielsen classes. Use a cofinal family of Vs, $(\mathbb{Z}/p^{k+1})^2$, $p \neq 2$. Two proofs, one using elliptic curves and the other pure Nielsen class, appear in [Fr05a,§6.1.3]. That shows $\mathbb{Z}_p^2 \times^s \{\pm 1\}$ is a limit group. Uniqueness comes from Talk 1. Heisenberg analysis of modular curve Nielsen classes [Fr05c, App. A.2]

Loewy layers (App. A_4) show Prop. 3 is an example of [F-K-W Test B].

First: $(\mathbb{Z} \times \mathbb{Z}) \times^{s} \mathbb{Z}/2$ is an orientable *p*-Poincaré duality group if *p* is odd: Finite-index subgroup $\mathbb{Z} \times \mathbb{Z}$ is fundamental group of the torus. Denote the matrix $\begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix}$ by M(x, y, z). Heisenberg group with entries in ring *R*:

 $\mathbb{H}_{R,3} = \{ M(x, y, z) \}_{x, y, z \in R}.$

Consider $\mathbf{1}^-$ and \mathbb{Z}_p^- : $g \in S_n \mapsto \text{mult. by } \text{Det}(g)$.

Proposition 4 ([Fr05c, App. B2]).

 $\mathbb{H}_{\mathbb{Z}/p,3} \to (\mathbb{Z}/p)^2$ by $M(x,y,z) \mapsto (x,y)$ is Frattini. The *p*-Frattini module $M_0(G_0)$ of $G_0 = (\mathbb{Z}/p)^2 \times^s \mathbb{Z}/2$ has $\mathbf{1}_{G_0} \oplus \mathbf{1}_{G_0}^- \oplus \mathbf{1}_{G_0}^-$ at its head. Extension defined by $\mathbf{1}_{G_0}$ gives Heisenberg group, obstructing MT at level 1. Also gives infinite limit group

 $(\mathbb{Z}_p)^2 \times^s \mathbb{Z}/2 = (\mathbb{Z}_p^-)^2 \times^s \mathbb{Z}/2.$

 (G, \mathbf{C}) having many Limit Groups

Talk 5 does Example 2, p. 12 of Talk 1, with $H = \mathbb{Z}/3 = \langle \alpha \rangle$, considering limit groups of $Ni((\mathbb{Z}/p)^2 \times^s \mathbb{Z}/3, \mathbb{C}_{+3^2}) = Ni_p \ (p \neq 3).$ Note: $(\mathbb{Z}/2)^2 \times^s \mathbb{Z}/3 = A_4.$

- 1. ${}_{p}\tilde{F}_{2} \times {}^{s}\mathbb{Z}/3$ is a limit group because Ni $_{p}$ contains an H-M rep.
- 2. There are two braid orbits $O_{0,1}$ (H-M) and $O_{0,2}$ (Spin₄ $\rightarrow A_4(O_{0,2}) = -1$) on Ni₂.
- 3. Ni₂ has many limit groups, all so far, fitting into a pattern.
- 4. Six braid orbits on Ni $(G_1(\mathbb{Z}/p)^2 \times {}^s\mathbb{Z}/3), \mathbb{C}_{+3^2})$:
 - $O_{g=0,1}$ and $O_{g=0,2} \Leftrightarrow$ genus 0, complex
 - conjugate curves $\overline{\mathcal{H}}_{g=0,i} \to \mathbb{P}^1$, i = 1, 2; $O_{H-M,1}$ and $O_{H-M,2}$ (H-M^j orbits) \Leftrightarrow genus 1 curves;
 - $O_{g=3,1}$ and $O_{g=3,2} \Leftrightarrow$ genus 3 curves over \mathbb{Q} covering \mathbb{P}_{j}^{1} .

Talk 5 has #4: Ni $(G_1(A_4), \mathbf{C}_{+3^2})$ braid orbits, applied to Ni($G_1(A_5), \mathbf{C}_{3^4}$), level 1 MTcomponents for $A_5, p = 2$, any conjugacy classes.

App. A₄: Loewy layers of modular curves

Jacobson radical of $\mathbb{Z}/p[G]J_{G,p} = J$: Intersection of maximal left (or right) ideals of $\mathbb{Z}/p[G]$.

Basic Lemma: $M/J_{G,p}M$, the first Loewy layer of G module M, is maximal semi-simple G quotient of M. For Loewy layers continue series inductively: $J \cdot M$ replaces M.

Knowing M from its Loewy layers requires info on nonsplit subquotients M' of M of this form:

$$0 \to S_1 \to M' \to S_2 \to 0$$

 $(S_1, S_2 \text{ irreducible in the } \ell + 1 \text{ st, } \ell \text{th layer}).$ Let $F_u(G) = \{g \in G \mid g - 1 \in J^u\}$: $F_1(G) = G.$ Input for $H_G(t)$ is dimensions $n_1, n_2, \ldots, n_u, \ldots$ of graded pieces of Jenning's Lie algebra:

- *uth* graded piece is F_u/F_{u+1} ; and
- commutators and pth powers from Fs with lower subscripts generate F_u .

For G a p-group, and $M = \mathbb{Z}/p[G]$, J is the augmentation ideal: $\ker(\sum_{g \in G} a_g g \mapsto \sum_{g \in G} a_g)$.

Jenning's Thm. [Ben91, Thm. 3.14.6] gives Loewy layer dimensions as a Hilbert polynomial $H_G(t)$ (variable t). Only p-group irreducible is $\mathbf{1}_G$. Arrows from levels ℓ to $\ell - 1$ give all. Conclude: For $G = (\mathbb{Z}/p)^n$, $n_1 = n$, F_u/F_{u+1} is trivial for $u \ge 2$: general case

$$\prod_{u \ge 1} (\frac{1 - t^{pu}}{1 - t^u})^{n_u} \implies H_{(\mathbb{Z}/p)^n}(t) = (\frac{1 - t^p}{1 - t})^n.$$

Lemma 5. So: $H_{(\mathbb{Z}/p)^2}(t) = (1+t+\ldots+t^{p-1})^2$; respective Loewy layers of $\mathbb{Z}/p[(\mathbb{Z}/p)^2]$ have the dimensions $1, 2, \ldots, p, p-1, \ldots, 1$. With $(\mathbb{Z}/p)^2 = \langle x_1, x_2 \rangle$, symbols $x_1^{\alpha} x_2^{\ell-\alpha} \ 0 \le \alpha, \ell-\alpha < p$ generate **1**s at Loewy layer ℓ . Arrows from $\mathbf{1} \leftrightarrow x_1^{\alpha} x_2^{\ell-\alpha}$ go to **1**s associated to $x_1^{\alpha} x_2^{\ell-1-\alpha}$ and to $x_1^{\alpha-1} x_2^{\ell-\alpha}$ under above constraints.

Proof. Loewy arrows come from subquotient $R = \mathbb{Z}/p[G]$ module extensions of **1** by **1**. Use the Poincaré-Birkoff-Witt basis for the universal enveloping algebra of R [Ben91, p. 88].