
Limit groups: Mapping class orbits and

maximal Frattini quotients of dim. 2

p-Poincaré dual groups

All those Frattini p-extensions

Group theorists consider it unlikely there will

ever be a classification of all finite groups. Why?

The unknowable collection of p-groups because

of all their non-split extensions. Worse still are

nonsplit extensions of p-perfect G (p||G|, but

no G → Z/p → 1) by a p-group.

Yet, algebraic equations in the 20th century

faced nonsplit abelian p-group extensions, from

moduli of abelian varieties through torsion points.

Goal: Explain a moduli approach to melding all

p-group extensions into arithmetic geometry,

and why it is necessary.
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Universal p-Frattini cover of a p-perfect G

Are there many nonsplit finite group extensions

of an arbitrary finite group? Answer: You bet!

Consider them all FG = {ϕ : H → G → 1}. For

G of rank t, let F̃t be the pro-free group of

rank t. Fix ψ : F̃t → G → 1.

Take all closed {H̃ ≤ F̃t} with ψ : H̃ → G → 1.

Let G̃ be a minimal such H̃. (Existence from

Zorn’s Lemma; use F̃t is complete.) So, G̃ of

rank t, is unique up to isomorphism. Further:

• Versality: ψ : G̃ → G is a Frattini cover

that factors through any ϕ ∈ FG.

• Projectivity: In category of profinite groups.

• Prime Factorization: G̃ is the fiber product

over G of {pG̃}p||G| (p. 3) [FrJ04, Chap. 22.11].
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Universal p-Frattini cover pG̃ of G

• p-Projectivity: ψ : pG̃ → G is maximal sub-
quotient ofG̃ → G having p-group as kernel.

• Pro-free kernel:

ker0
def
= kerG,p,0 = ker(pG̃ → G)

is pro-free pro-p of finite rank.

• Split case: If G = P ×sH with P a (normal)
p-Sylow of rank t′, then pG̃ = pF̃t′ ×sH.

Comments on Split case: How to extend H to

pF̃t′ is non-obvious, and hard to find explicitly.
Also, Examples # and # 2 of Talk #1 (p. 12)
show the “easy” split case doesn’t simplify un-
derstanding MT components and their cusps.

Characteristic module sequence:

ker1 = Φ(ker0)
def
= kerp0 ·(ker0, ker0),

keri = Φ(keri−1), . . . and Gi = pG̃/ keri.

Then, Mi
def
= keri / keri+1 is a Z/p[Gi] module.
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Modular Tower for (G,C, p) with p′ set C

Take any p′ conjugacy classes C of G. Form
Ni(Gk,C)/〈Q′′, Gk〉 and

H(Gk,C)in,rd = Hin,rd
k = Hk.

When r = 4: gives a diagram of j-line covers

· · · → H̄k+1 → H̄k → · · · → P1
j . (1)

MT levels are moduli spaces: Galois covers
with group G in Ni(G,C)in equivalencing

(ϕi : X → P1
z ,Aut(X/P1

z)), i = 1,2,

if there is (ψ : X1 → X2, α ∈ PGL2(C)) with
α ◦ ϕ1 = ϕ2 ◦ ψ inducing inner automorphism
on G ⇔ ppp ∈ H(G,C)in,rd.

Discrete objects of a MT (1):

• Projective systems of (q2 
→)γ∞ orbits (cusps).

• Projective systems of 〈γ1, γ∞〉 orbits.
The Shift: q1q2q3 
→ γ1 acts as the shift:

(g1, g2, g3, g4) 
→ (g2, g3, g4, g1).
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MTs and Greatest Hopes for the RIGP

Hope for [K : Q] < ∞: Get all finite quo-

tients of pG̃ over K� and even over K, at one

time. Data for any regular realization of Gk is

(Gk,Ck) (rk conjugacy classes in Gk).

Simplest if Ck doesn’t change too much.

1. Maybe has rk bounded.

2. Maybe has rk fixed at some value r.

3. Maybe has branch points zzzk = zzz (all k).

[FK97, Using Branch Cycle Lemma]: For a

number field #1 =⇒ #2, and ∃ MT with a

K point at each level.

#3 =⇒ ∃ projective sequence of realizations:

equivalent to K points on a MT. No such

projective sequence if [K : Q] < ∞.

Main Conjecture of MTs: If [K : Q] < ∞ ,

H(Gk,C)in,rd(K) = ∅ if k is large.
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First step: Decide if ∃ a(n infinite) projective
sequence of components on a given MT

Geometric Conjecture [Fr04c]: ∃ projective se-
quence of components (PSC) is equivalent to
existence of a g-p′ rep. (at level 0).
Established Facts on g-p′ cusps: [K : Q] < ∞.

• p. 8-9 of Alternating Groups Talk: g-p′
rep. sufficient for PSC.

• [Fr95, Part III] When ∃ Harbater-Mumford
(H-M) cusps, there is an effective sufficient
criterion for PSC over K.

• With condition [Fr95, Part III], there is a
K� point on the MT ([DDe04] and [DEm04]).

Analyzing cusps means representing objects 
→
cusps (over R or W (Fq)). Like elliptic curves

→ modular curve cusp.
Big improvement over PSC over K to get small
dimensional subvarieties on the tower levels
over K. First substantial result is [Ca05a] (uses
H-M cusps). [Iha86], [IM95] and [Na99] applies
to see the Grothendieck-Teichmüller relations
in GQ along MT cusps. Generalizing to g-p′
cusps is in cards, but not done yet.
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p-Poincaré Duality Setup

Let ϕ : X → P1
z , with branch points zzz, a Galois

cover in Ni(G,C)in: represents a braid orbit O.

Use classical generators (App. A1) for π1(Uzzz, z0).

[BFr02, Prop. 4.15] produces a quotient Mϕ

of π1(Uzzz, z0) so ker(Mϕ → G) identifies with

the pro-p completion of the fundamental group

of X. If ggg ∈ Ni(G,C) corresponds to these

choices, denote Mϕ by Mggg.

p-Nielsen limit through O is a maximal quotient

of Mggg that is Frattini over G. Equivalence by

conjugation braid action fixed on ggg (automat-

ically includes conjugation by ker(Mggg → G).

Extension Viewpoint: Projective systems

{pppk ∈ H(Gk,C)in,rd}∞k=0 over fixed ppp0 ⇔
extensions of Mggg → G to Mggg → pG̃ → G.
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p-Poincaré duality groups [We05] (extending

[Br82] and [Ser91])

Dimension 2 p-Poincaré duality [We05, (5.8)].

Expresses an exact cohomology pairing

Hk(Mggg, U
∗) × H2−k(Mggg, U) → Qp/Zp

def
= IG,p

where U is any abelian p-power group that is

also a Γ = Mggg module, U∗ is its dual with

respect to IG,p and k is any integer. [Ser91,

I.4.5] has the same definition, though that as-

sumes Mggg is a pro-p-group, while we have the

p-perfect group G at its head.

Basic Idea: Mggg has a finite index subgroup satis-

fying Poincaré duality: pro-pcompletion ofπ1(X).

Weak Orientability: When U is a Z/p[G] mod-

ule, the pairing rt. side has trivial Mggg action.
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Test for going from MT Level k to Level k+1

[FrK97] Lift principle: If G′
2 → G′

1 → G are

p-Frattini covers, with ker(G′
2 → G′

1) = M an

irreducible non-trivial G module, then

ggg1 ∈ Ni(G′
1,C) lifts to ggg2 ∈ Ni(G′

2,C).

Test for going from braid orbit Ok ≤ Ni(Gk,C)

to Ok+1 ≤ Ni(Gk+1,C).

Let Rk → Gk be maximal among central, ex-

ponent p Frattini extensions of Gk. Then,

ker(Rk → Gk) = Sck is the maximal exponent

p quotient of Gk s Schur multiplier.

Theorem 1 (W Test A). sRk/Gk
(O) = 0 is iff

test for ∃ Ok+1 (use sR/G lift inv., p. 3,Talk 2).
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Proof for [W Test A] [Fr05c, Cor. 4.12]

Proof. Let gggk ∈ Ok ⇔ ψ : Mggg0 → Gk. Need:

If fiber of Ni(Gk+1,C) → Ni(Gk,C) over gggk is

empty, then sR/Gk
(ggg) �= 0 for Rk ≤ R ≤ Gk

with ker(R → Gk) = Z/p. [Fr95, Prop. 2.7]

says H2(Gk, Mk) = Z/p: It is 1-dimensional.

Obstruction to lifting ψ to Gk+1 is inflation

of a generator of H2(Gk, Mk) to H2(Mggg, Mk).

p-Poincaré duality says this is

H0(Mggg, D ⊗ Mk) � D ⊗Z/p[Mggg] Mk,

with D = Z/p the duality module for Z/p[Mggg]

(on which it acts trivially). So, D ⊗Z/p[Mggg] Mk

is the maximal quotient of Mk on which Mggg (so

Gk) acts trivially.
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Limit Group Test and return to Modular

Curves

Theorem 2 (F-K-W Test B). For G∗ → G

a limit group, there is a unique p-Frattini ex-

tension G∗∗ → G∗ with ker(G∗∗ → G∗) an irre-

ducible module, and that module must be 111G.

Examples p. 11-12, Talk 1:

Example 1: All modular curves.

Projectively complete

F3 = 〈σσσ = σ1, . . . , σ4 mod σ1σ2σ3σ4 = 1〉.
Denote result by F̂σσσ.

Proposition 3. Denote the quotient of F̂σσσ by

σ2
i = 1, i = 1,2,3,4 (so σ1σ2 = σ4σ3)

by D̂σσσ. Then,
∏

p�=2 Z2
p ×sJ2 ≡ D̂σσσ and Z2

p ×sJ2

is the unique C24 p-Nielsen class limit.
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Argument for Prop. 3 (more in [Fr05c, §6.1])

Goal: show D̂σσσ is Z̃2 ×sJ2 and σ1σ2 and σ1σ3

are independent generators of Z̃2. Then, σ1

acts on Z̃2 by multiplication by −1.

First: σ1(σ1σ2)σ1 = σ2σ1 shows σ1 conjugates

σ1σ2 to its inverse. Also,

(σ1σ2)(σ1σ3)=(σ1σ3)σ3(σ2σ1)σ3=(σ1σ3)(σ1σ2)

shows the said generators commute. The max-

imal possible quotient is Z2
p ×s{±1}.

Second: G = V ×sJ2, V a nontrivial quotient

of Z2, gives nonempty Nielsen classes. Use a

cofinal family of V s, (Z/pk+1)2, p �= 2. Two

proofs, one using elliptic curves and the other

pure Nielsen class, appear in [Fr05a,§6.1.3].
That shows Z2

p×s{±1} is a limit group. Unique-

ness comes from Talk 1.
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Heisenberg analysis of modular curve Nielsen
classes [Fr05c, App. A.2]

Loewy layers (App. A4) show Prop. 3 is an
example of [F-K-W Test B].

First: (Z×Z)×sZ/2 is an orientable p-Poincaré
duality group if p is odd: Finite-index subgroup
Z × Z is fundamental group of the torus. De-

note the matrix

⎛
⎝

1 x z
0 1 y
0 0 1

⎞
⎠ by M(x, y, z). Heisen-

berg group with entries in ring R:

HR,3 = {M(x, y, z)}x,y,z∈R.

Consider 111− and Z−
p : g ∈ Sn 
→ mult. by Det(g).

Proposition 4 ([Fr05c, App. B2]).

HZ/p,3 → (Z/p)2 by M(x, y, z) 
→ (x, y)

is Frattini. The p-Frattini module M0(G0) of
G0 = (Z/p)2 ×sZ/2 has 111G0

⊕ 111−G0
⊕ 111−G0

at its
head. Extension defined by 111G0

gives Heisen-
berg group, obstructing MT at level 1. Also
gives infinite limit group

(Zp)
2 ×sZ/2 = (Z−

p )2 ×sZ/2.
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(G,C) having many Limit Groups

Talk 5 does Example 2, p. 12 of Talk 1, with
H = Z/3 = 〈α〉, considering limit groups of
Ni((Z/p)2 ×sZ/3,C±32) = Nip (p �= 3). Note:
(Z/2)2 ×sZ/3 = A4.

1. pF̃2×sZ/3 is a limit group because Nip con-
tains an H-M rep.

2. There are two braid orbits O0,1 (H-M) and
O0,2 (Spin4 → A4(O0,2) = −1) on Ni2.

3. Ni2 has many limit groups, all so far, fitting
into a pattern.

4. Six braid orbits on Ni(G1(Z/p)2×sZ/3),C±32):

• Og=0,1 and Og=0,2 ⇔ genus 0, complex
conjugate curves H̄g=0,i → P1

j , i = 1,2;
• OH−M,1 and OH−M,2 (H-M orbits) ⇔

genus 1 curves;
• Og=3,1 and Og=3,2 ⇔ genus 3 curves

over Q covering P1
j .

Talk 5 has #4: Ni(G1(A4),C±32) braid orbits,
applied to Ni(G1(A5),C34), level 1 MTcompo-
nents for A5, p = 2, any conjugacy classes.
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App. A4: Loewy layers of modular curves

Jacobson radical of Z/p[G]JG,p = J: Intersec-
tion of maximal left (or right) ideals of Z/p[G].

Basic Lemma: M/JG,pM , the first Loewy layer
of G module M , is maximal semi-simple G quo-
tient of M . For Loewy layers continue series
inductively: J · M replaces M .

Knowing M from its Loewy layers requires info
on nonsplit subquotients M ′ of M of this form:

0 → S1 → M ′ → S2 → 0

(S1, S2 irreducible in the � + 1st, �th layer).
Let Fu(G) = {g ∈ G | g − 1 ∈ Ju}: F1(G) = G.
Input for HG(t) is dimensions n1, n2, . . . , nu, . . .

of graded pieces of Jenning’s Lie algebra:

• uth graded piece is Fu/Fu+1; and

• commutators and pth powers from F s with
lower subscripts generate Fu.

For G a p-group, and M = Z/p[G], J is the
augmentation ideal: ker(

∑
g∈G agg 
→ ∑

g∈G ag).
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Easiest non-trivial case of Loewy layers

Jenning’s Thm. [Ben91, Thm. 3.14.6] gives
Loewy layer dimensions as a Hilbert polynomial
HG(t) (variable t). Only p-group irreducible is
111G. Arrows from levels � to � − 1 give all.
Conclude: For G = (Z/p)n, n1 = n, Fu/Fu+1 is
trivial for u ≥ 2: general case

∏

u≥1

(
1 − tpu

1 − tu
)nu =⇒ H(Z/p)n(t) = (

1 − tp

1 − t
)n.

Lemma 5.So: H(Z/p)2(t) = (1+t+. . .+tp−1)2;

respective Loewy layers of Z/p[(Z/p)2] have
the dimensions 1,2, . . . , p, p − 1, . . . ,1. With
(Z/p)2 = 〈x1, x2〉, symbols xα

1x�−α
2 0 ≤ α, �−α <

p generate 111 s at Loewy layer �. Arrows from
111 ↔ xα

1x�−α
2 go to 111 s associated to xα

1x�−1−α
2

and to xα−1
1 x�−α

2 under above constraints.

Proof. Loewy arrows come from subquotient
R = Z/p[G] module extensions of 111 by 111. Use
the Poincaré-Birkoff-Witt basis for the univer-
sal enveloping algebra of R [Ben91, p. 88].
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