Limit groups: Mapping class orbits and
maximal Frattini quotients of dim. 2
p-Poincaré dual groups

All those Frattini p-extensions

Group theorists consider it unlikely there will
ever be a classification of all finite groups. Why?

The unknowable collection of p-groups because
of all their non-split extensions. Worse still are
nonsplit extensions of p-perfect G (p||G|, but
no G — Z/p— 1) by a p-group.

Yet, algebraic equations in the 20th century
faced nonsplit abelian p-group extensions, from
moduli of abelian varieties through torsion points.

Goal: Explain a moduli approach to melding all
p-group extensions into arithmetic geometry,
and why it is necessary.



Universal p-Frattini cover of a p-perfect G

Are there many nonsplit finite group extensions
of an arbitrary finite group? Answer: You bet!
Consider them all Fp ={¢: H — G — 1}. For
G of rank t, let F; be the pro-free group of
rank t. Fix ¢ : F} — G — 1.

Take all closed {H < F}with ¢ : H— G — 1.
Let G be a minimal such H. (Existence from
Zorn's Lemma; use F; is complete.) So, G of
rank ¢, is unique up to isomorphism. Further:

e Versality: ¢ : G — G is a Frattini cover
that factors through any ¢ € Fgq.

e Projectivity: In category of profinite groups.

e Prime Factorization: G is the fiber product
over G of {pG}, g (p. 3) [FrJ04, Chap. 22.11].



Universal p-Frattini cover ,G of G

e p-Projectivity: ¢ : G — G is maximal sub-
quotient of G — G having p-group as kernel.

e Pro-free kernel:

def

kerg = kerg, 0 = ker(pG — G)

is pro-free pro-p of finite rank.

e Split case: If G = P x%H with P a (normal)
p-Sylow of rank ¢/, then ,G = pF, x5H.

Comments on Split case: How to extend H to
pFy is non-obvious, and hard to find explicitly.
Also, Examples # and # 2 of Talk #1 (p. 12)
show the “easy” split case doesn't simplify un-
derstanding M T components and their cusps.

Characteristic module sequence:
ker; = ®(kerp) det kerp -(kerg, kerg),
ker; = ®d(ker;_1),... and G; = G/ ker;.

Then, M, der ker; /ker;41 is a Z/p|G;] module.
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Modular Tower for (G, C,p) with p’ set C

Take any p’ conjugacy classes C of G. Form
NI(Gk7C)/<Q”7Gk> and
H(G,, C)in,rd — 7_(ikn,rd = H,.
When r = 4. gives a diagram of j-line covers
'—>7:lk+1—>7rlk—>---—>P}. (1)
MT Jlevels are moduli spaces: Galois covers
with group G in Ni(G, C)'"M equivalencing
(¢; - X — PL Aut(X/P})), i = 1,2,

if there is (v : X1 — Xo,a € PGL,(C)) with
a0 1 = o 01 Inducing inner automorphism
on G < p e H(G,C)nrd,

Discrete objects of a MT (1):

e Projective systems of (go — )vso Orbits (cusps).

e Projective systems of (v1,7x) Orbits.
The Shift: g1gog3 — 1 acts as the shift:

(91,92,93,94) — (92,93,94,91).



MTs and Greatest Hopes for the RIGP

Hope for [K : Q] < oo: Get all finite quo-
tients of ,G over K, and even over K, at one
time. Data for any regular realization of G is

(G, C) (rp conjugacy classes in Gp.).
Simplest if C; doesn’'t change too much.
1. Maybe has r;. bounded.

2. Maybe has r; fixed at some value r.

3. Maybe has branch points zF = z (all k).

[FK97, Using Branch Cycle Lemma]: For a
number field #1 —— #2, and 34 MT with a
K point at each level.

#3 —— d projective sequence of realizations:
equivalent to K points on a MT. No such
projective sequence if [K : Q] < .

Main Conjecture of MTs: If [K : Q] < o ,
H(Gy, C)MII(K) =0 if k is large.



First step: Decide if 3 a(n infinite) projective
sequence of components on a given MT
Geometric Conjecture [Fr04c]: 3 projective se-
quence of components (PSC) is equivalent to

existence of a g-p’ rep. (at level 0).
Established Facts on g-p’ cusps: [K : Q] < oo.

e p. 8-9 of Alternating Groups Talk: g-p/
rep. sufficient for PSC.

e [Fr95, Part III] When 3 Harbater-Mumford
(H-M) cusps, there is an effective sufficient
criterion for PSC over K.

e With condition [Fr95, Part III], there is a
K, point on the MT ([DDe04] and [DEmMO04]).

Analyzing cusps means representing objects —
cusps (over R or W(IF;)). Like elliptic curves

— modular curve cusp.
Big improvement over PSC over K to get small

dimensional subvarieties on the tower levels
over K. First substantial result is [Ca05a] (uses
H-M cusps). [Iha86], [IM95] and [Na99] applies
to see the Grothendieck-Teichmuller relations
in Gg along MT cusps. Generalizing to g-p’
cusps is in cards, but not done yet.



p-Poincaré Duality Setup

Let ¢ : X — P, with branch points z, a Galois

z 1

cover in Ni(G, C)'": represents a braid orbit O.

Use classical generators (App. Aq) for w1 (Uz, zg).
[BFr02, Prop. 4.15] produces a quotient M,
of m1(Uz, 209) so ker(M, — G) identifies with
the pro-p completion of the fundamental group
of X. If g € Ni(G,C) corresponds to these
choices, denote M, by My.

p-Nielsen limit through O is a maximal quotient
of Mg that is Frattini over . Equivalence by
conjugation braid action fixed on g (automat-
ically includes conjugation by ker(Mg — G).

Extension Viewpoint: Projective systems

{p;. € H(G, C)i”’rd}zozo over fixed pg &

extensions of My — G to Mg — ,G — G.



p-Poincaré duality groups [We05] (extending
[Br82] and [Ser91])

Dimension 2 p-Poincaré duality [We05, (5.8)].
Expresses an exact cohomology pairing

H* (Mg, U*) x H2F(My, U) — Qp/Zp € 1,
where U is any abelian p-power group that is
also a ' = Mg module, U* is its dual with
respect to Ig, and k is any integer. [Ser91,
[.4.5] has the same definition, though that as-
sumes Mg is a pro-p-group, while we have the
p-perfect group G at its head.

Basicldea: My hasa finite index subgroup satis-
fying Poincaré duality: pro-pcompletion ofrq (X).

Weak Orientability: When U is a Z/p[G] mod-
ule, the pairing rt. side has trivial Mg action.



Test for going from MT Level k£ to Level k41

[FrKo7] Lift principle: If G, — G} — G are
p-Frattini covers, with ker(G5, — G7) = M an
irreducible non-trivial G module, then
g1 € Ni(G%, C) lifts to g, € Ni(G5, C).

Test for going from braid orbit O, < Ni(G, C)
to Og41 < Ni(Gg41,C).

Let R — G5 be maximal among central, ex-
ponent p Frattini extensions of Gjp. Then,
ker(R;, — G1) = Sci is the maximal exponent
p quotient of GG s Schur multiplier.

Theorem 1 (W Test A).sp /, (0) =0 isiff
test for 3 Ogy1 (usesg,q lift inv., p. 3, Talk 2).



Proof for [W Test A] [FrO5c, Cor. 4.12]

Proof. Let g, € O < ¢ : Mgy, — Gj. Need:
If fiber of Ni(Gg41,C) — Ni(Gg, C) over gi is
empty, then SR/Gk(g) # 0 for R, < R < G,
with ker(R — Gp) = Z/p. |[Fr95, Prop. 2.7]
says H2(Gy, M) = Z/p: It is 1-dimensional.

Obstruction to lifting ¥ to Gy is inflation
of a generator of H?(G}, My,) to H?(Myg, My,).
p-Poincaré duality says this is

Ho(Mg, D ® M) ~ D Qg (n,] Mie»

with D = Z/p the duality module for Z/p[Mg]
(on which it acts trivially). So, D Qg ,1n,] Mk
is the maximal quotient of M} on which Mg (so
G) acts trivially. L]
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Limit Group Test and return to Modular
Curves
Theorem 2 (F-K-W Test B). For G* — G
a limit group, there is a unique p-Frattini ex-
tension G** — G* with ker(G** — G*) an irre-
ducible module, and that module must be 1.

Examples p. 11-12, Talk 1:
Example 1: All modular curves.

Projectively complete
F3 = (0 =01,...,04 mMod g10p0304 = 1).
Denote result by Fy.
Proposition 3. Denote the quotient of Fy by
O‘,L-Q =1, :1=1,2,3,4 (S0 0100 = 0403)

by Do. Then, [y2072 x5Jo = Dg and Z3 x5.J5
is the unique C,a p-Nielsen class limit.
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Argument for Prop. 3 (more in [FrO5c, §6.1])

Goal: show Dy is Z2 x5J5 and o105 and o103
are independent generators of 72 Then, o1
acts on Z2 by multiplication by —1.

First: 01(0102)01 = 02071 Shows o1 conjugates
o10o to its inverse. Also,

(0102)(0103) =(0103)03(0201)03=(0103)(0102)

shows the said generators commute. The max-
imal possible quotient is Z2 x5{+1}.

Second: G =V x%Jp, V a nontrivial quotient
of ZQ, gives nonempty Nielsen classes. Use a
cofinal family of Vs, (Z/p"t1)2, p £ 2. Two
proofs, one using elliptic curves and the other
pure Nielsen class, appear in [Fr05a,86.1.3].
That shows Z2 x*{+1} is a limit group. Unique-
ness comes from Talk 1.
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Heisenberg analysis of modular curve Nielsen
classes [FrO5c, App. A.2]

Loewy layers (App. Ag) show Prop. 3 is an
example of [F-K-W Test B].

First: (Z x7Z) x57/2 is an orientable p-Poincaré
duality group if p is odd: Finite-index subgroup

Z, X 7, is fundamental group of the torus. De-
1 = =z

note the matrix (0 1 y| by M(z,y,z). Heisen-
0 0 1

berg group with entries in ring R:

Hg 3 ={M(z,y,2)}zy 2R
Consider 1~ and Z,: g € Sp — mult. by Det(g).

Proposition 4 ([FrO5c, App. B2]).

Hz,/p3 — (Z/p)* by M(z,y,z) — (z,y)
is Frattini. The p-Frattini module My(Gg) of
Go = (Z/p)* x°ZL/2 has 1g, ® 15 ®1g, at its
head. Extension defined by 1G0 gives ﬁleisen—

berg group, obstructing M'T at level 1. Also
gives infinite limit group

(Zp)? x°L)2 = (Z,)? x°Z/2.
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(G, C) having many Limit Groups

Talk 5 does Example 2, p. 12 of Talk 1, with
H = 7/3 = (a), considering limit groups of
Ni((Z/p)? x$7Z/3,C,32) = Nip (p # 3). Note:
(Z)2)2 x57./3 = Aq.

1. pF5x57/3 is a limit group because Ni, con-
tains an H-M rep.

2. There are two braid orbits Og ;1 (H-M) and
Op,2 (Sping — A4(Op2) = —1) on Nix.

3. Niy has many limit groups, all so far, fitting
into a pattern.

4. Six braid orbits on Ni(G1(Z/p)?x*Z/3), C_32):

° 092071 and 092072_@ genus 0, complex
conjugate curves H,—q; — P1, i =1,2;

° OH—M,l and OH—M,Q (H—M‘?OI’bItS) ~
genus 1 curves;

e Oy=31 and Oy=3> < dgenus 3 curves

over Q covering Ile..

Talk 5 has #4: Ni(G1(A4),C,52) braid orbits,
applied to Ni(G1(As),Cs34), level 1 MTcompo-
nents for Ag,p = 2, any conjugacy classes.
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App. As. Loewy layers of modular curves

Jacobson radical of Z/p|GlJg, = J: Intersec-
tion of maximal left (or right) ideals of Z/p[G].

Basic Lemma: M/JGJ?M, the first Loewy layer
of G module M, is maximal semi-simple GG quo-
tient of M. For Loewy layers continue series
inductively: J - M replaces M.

Knowing M from its Loewy layers requires info
on nonsplit subquotients M’ of M of this form:

0—S —M — S, —0
(51, S> irreducible in the ¢+ 1st, ¢th layer).
Let Fi,(G) ={gecGl|lg—1¢€J%}: Fi(G) =QG.
Input for Hn(t) is dimensions nq,no,...,ny, ...
of graded pieces of Jenning’'s Lie algebra:

e uth graded piece is Fy/F,41; and

e commutators and pth powers from F's with
lower subscripts generate Fi,.

For G a p-group, and M = Z/p[G], J is the
augmentation ideal: ker(Y,cqagg — > 4ecq ag)-
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Easiest non-trivial case of Loewy layers

Jenning’s Thm. [Ben91, Thm. 3.14.6] gives
LLoewy layer dimensions as a Hilbert polynomial
Hqn(t) (variable t). Only p-group irreducible is

1~. Arrows from levels ¢ to ¢ — 1 give all.
Conclude: For G = (Z/p)", n1 =n, Fy/Fy41 is

trivial for uw > 2: general case
1 — P 1 —¢P

ul;Il( o) = Hapyr =G

Lemma 5. So: Hy () = (1+t+.. AtP—1)2;

respective Loewy layers of 7Z/p[(Z/p)?] have
the dimensions 1,2,...,p,p — 1,...,1. With
(Z/p)2 = (x1,x2), symbols a:?:cé_o‘ O< a,l—a<
p generate 1s at Loewy layer £. Arrows from

)"

1 — 25 % go to 1s associated to xz§xs 17
and to x¢" 125" under above constraints.

Proof. Loewy arrows come from subquotient
R = Z/p|G] module extensions of 1 by 1. Use
the Poincaré-Birkoff-Witt basis for the univer-
sal enveloping algebra of R [Ben91, p. 88]. L
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