Atomic Orbital-type cusps on Alternating Group Modular Towers
 Mike Fried, UCI and MSU-Billings 12/08/07

http://math.uci.edu/~mfried $\rightarrow \S 1 . a \longrightarrow \#$ Generalizing modular curve properties to Modular Towers
\rightarrow \#1 mt-overview.html
Let $\varphi: X \rightarrow \mathbb{P}_{z}^{1}$ be a map on compact Riemann surfaces X;
φ Galois having group G. Then, φ defines these quantities:

- Unordered branch points $\boldsymbol{z}=\left\{z_{1}, \ldots, z_{r}\right\} \in U_{r}$:

Space of unordered distinct points on \mathbb{P}_{z}^{1};

- Conjugacy classes $\mathbf{C}=\left\{\mathrm{C}_{1}, \ldots, \mathrm{C}_{r}\right\}$ in G; and
- A Poincaré extension of groups (abelianized theory):

$$
\psi_{\varphi}: M_{\varphi} \rightarrow G \text { with } \operatorname{ker}_{\psi} \stackrel{\text { def }}{=} \operatorname{ker}\left(M_{\varphi} \rightarrow G\right)=H_{1}(X) .
$$

Given (G, \mathbf{C}), finding fulfilling $X \Leftrightarrow$ Nonempty Nielsen classes:

$$
\mathrm{Ni}(G, \mathbf{C})=\left\{\boldsymbol{g} \in \mathbf{C} \mid\langle\boldsymbol{g}\rangle=G, g_{1} \cdots g_{r}=1\right\}
$$

Note: Product-one condition. $g_{1} \cdots g_{r}=1$.

Part I: Finite Group Property Gives Tower of Spaces

D_{p} (order $2 p, p$ odd) fact: With C_{2}, conjugacy class of involution, if $\left(g_{1}, g_{2}\right) \in \mathrm{C}_{2^{2}}$ generate D_{p}, then for $\boldsymbol{g}^{\prime} \in\left(D_{p^{k+1}}\right)^{2} \cap \mathrm{C}_{2^{2}}$ over $\boldsymbol{g},\left\langle\boldsymbol{g}^{\prime}\right\rangle=D_{p^{k+1}}, k \geq 1$.

For $k \geq 0 \exists \psi_{k}: G_{k, \text { ab }} \stackrel{\text { def }}{=} G_{k} \rightarrow G_{0}=G \rightarrow 1$ with kernel $\left(\mathbb{Z} / p^{k}\right)^{u}, u \geq 1$ (if $p \| G \mid$: independent of k), with $G_{k} \leftrightarrow G_{0}$ as $D_{p^{k+1}} \leftrightarrow D_{p}$. Key: G_{k} is versal for abelian exponent p^{k} extensions of G_{0}.

Note: $u=1$ if and only if G is p-supersolvable (slight generalization of dihedral groups).
(G, \mathbf{C}, p) Fact, with $\mathbf{C} p^{\prime}$, produces spaces
(*) For $\boldsymbol{g} \in \mathbf{C}$ with $\langle\boldsymbol{g}\rangle=G$,
each $\boldsymbol{g}^{\prime} \in G_{k}^{r} \cap \mathbf{C}$ over \boldsymbol{g} has $\left\langle\boldsymbol{g}^{\prime}\right\rangle=G_{k}$. $\left(^{*}\right)$ requires G-perfect: no $G \rightarrow \mathbb{Z} / p \rightarrow 1$.

Operations on Nielsen classes generate H_{r} :
sh : $\left(g_{1}, \ldots, g_{r}\right) \mapsto\left(g_{2}, \ldots, g_{r}, g_{1}\right)$
$q_{2}:\left(g_{1}, \ldots, g_{r}\right) \mapsto\left(g_{1}, g_{2} g_{3} g_{2}^{-1}, g_{2}, g_{4}, \ldots, g_{r}\right)$.
Homological condition produces spaces:
Equivalent existence of three projective sequences:
$\left.{ }^{* *}\right) M_{\varphi} \rightarrow G$ extends to $M_{\varphi, k} \rightarrow G_{k}, k \geq 1\left[\bmod H_{r}\right]$
$\Leftrightarrow\left\{O_{k}=H_{r}\left(\boldsymbol{g}_{k}\right)\right\}_{k=0}^{\infty}$ of H_{r} orbits on $\left\{\mathrm{Ni}\left(G_{k}, \mathbf{C}\right)^{\text {in }}\right\}_{k=0}^{\infty} \Leftrightarrow$
[components of] reduced, inner Hurwitz spaces (dim. $r-3$) $\left\{\mathcal{H}\left(O_{k}\right)^{\mathrm{in}, \mathrm{rd}} \subset \mathcal{H}\left(G_{k}, \mathbf{C}\right)^{\mathrm{in}, \mathrm{rd}}\right\}_{k=0}^{\infty}$.

Modular Curves and their generalization

Assume G centerless. \exists unique versal central extension $\mu_{G, p}: R_{p} \rightarrow G$ with $\operatorname{ker}\left(R_{p} \rightarrow G\right)$:
p part of Schur multiplier of G.
[F (ried)-W(eigel) [Lum, Cor. 4.19], [We]]
$\left.{ }^{* *}\right)$ holds $\Leftrightarrow M_{\varphi} \rightarrow G$ extends to $M_{\varphi} \rightarrow R_{p}$.
Modular Curve Fact: Modular Curve sequence $\left\{X_{1}\left(p^{k+1}\right)\right\}$ automatic from $\mathrm{Ni}\left(D_{p}, \mathbf{C}_{2^{4}}, p\right)$ by compactifying the Hurwitz spaces. Schur multiplier of D_{p} is trivial $\Longrightarrow[F-W]$ hypothesis.

Def: M(odular)T(ower): (Nonempty) Projective system of $H_{r}=\left\langle q_{2}, \mathbf{s h}\right\rangle$ orbits on $\left\{\mathrm{Ni}\left(G_{k}, \mathbf{C}\right)^{\text {in }}\right\}_{k=0}^{\infty}$.

Part II: Odd Pure-Cycle Modular Towers

- $g \in S_{n}$ is pure-cycle if exactly one cycle has length >1.
- Nielsen class $\mathrm{Ni}(G, \mathbf{C})$ is pure-cycle if all conjugacy classes are pure-cycle (of length $\left\{d_{1}, \ldots, d_{r}\right\}=\boldsymbol{d}$): $\mathbf{C}=\mathbf{C}_{\boldsymbol{d}}$. Assume $G \leq S_{n}$ transitive and $\mathbf{C}^{S_{n}} \stackrel{\text { def }}{=} \mathbf{C}_{d_{1} \cdots d_{r}}$ image of \mathbf{C} in S_{n}, with d_{i} s all odd.

Iff Genus condition for $\operatorname{Ni}\left(G, \mathbf{C}_{g}\right) \neq \emptyset$:
$\mathbf{g}_{\boldsymbol{d}}=\mathbf{g}_{d_{1} \cdots d_{r}} \stackrel{\text { def }}{=} \frac{\sum_{i=1}^{r} d-1}{2}-(n-1)$ is non-negative.
[Wilson]: For g odd, $r \geq 3$ and $\mathbf{g}_{d}=0, G=A_{n}$. [LOs06]: One H_{r} orbit.

F(ried)-S(erre): MTs over $\mathcal{H}\left(A_{n}, \mathbf{C}_{\boldsymbol{d}}\right)_{\text {(LLUM, } 81, ~[s e r o o a l) ~}$
$\operatorname{Spin}_{n}^{+} \rightarrow O_{n}^{+}$: nonsplit connected degree 2 cover of O_{n}^{+}.
Spin $_{n}=$ pullback of A_{n} to Spin $_{n}^{+}$: $\operatorname{ker}\left(\operatorname{Spin}_{n} \rightarrow A_{n}\right)=\{ \pm 1\}$ is Schur multiplier of $A_{n}, n \geq 4$.

Odd order $g \in A_{n}$ has a unique odd order lift, $\hat{g} \in \operatorname{Spin}_{n}$. Let $\boldsymbol{g} \in \operatorname{Ni}\left(A_{n}, \mathbf{C}_{\boldsymbol{d}}\right)$. Small lifting invariant:
$s(\boldsymbol{g})=s_{\text {Spin }_{n}}(\boldsymbol{g})=\hat{g}_{1} \cdots \hat{g}_{r} \in\{ \pm 1\}$.
Theorem 1. \exists at least one MT over a component $\leftrightarrow H_{r}$ orbit O on $\mathrm{Ni}\left(A_{n}, \mathbf{C}_{\boldsymbol{d}}\right) \Leftrightarrow$ something in $\mathrm{Ni}\left(\mathrm{Spin}_{n}, \mathbf{C}_{\boldsymbol{d}}\right)$ over O. If $\mathbf{g}_{d}=0 \Leftrightarrow \sum_{i=1}^{r} \frac{d_{i}^{2}-1}{2} \equiv 0 \bmod 2$.

Cusp on an H_{r} orbit $O \subset \mathrm{Ni}(G, \mathbf{C})$

- $r \geq 5$: An orbit of $\mathrm{Cu}_{r}=\left\langle q_{2}\right\rangle$
- $r=4$: An orbit of $\mathrm{Cu}_{4}=\left\langle q_{2}, \mathbf{s h}^{2}, q_{1} q_{3}^{-1}\right\rangle=\left\langle q_{2}, \mathcal{Q}^{\prime \prime}\right\rangle$.

MiddleProduct: $\left(g_{1}, g_{2}, g_{3}, g_{4}\right) \mapsto \operatorname{ord}\left(g_{2} g_{3}\right) \stackrel{\text { def }}{=}(\boldsymbol{g}) \mathbf{m p r}$.

- p cusp: $\mathrm{Cu}_{r}(\boldsymbol{g})$ for which $p^{\mu_{p}(\boldsymbol{g})} \|(\boldsymbol{g}) \mathbf{m p r}, \mu_{p}(\boldsymbol{g})>0$.
- g(roup)- $p^{\prime}: U_{1,4}(\boldsymbol{g})=\left\langle g_{1}, g_{4}\right\rangle, U_{2,3}(\boldsymbol{g})=\left\langle g_{2}, g_{3}\right\rangle$ are p^{\prime} groups.

Example 2 (Two cusps on $X_{0}(p)$). 1st: $\left(p\right.$ cusp) is Cu_{4} orbit of H (arbater)- M (umford) rep. $\boldsymbol{g}=\left(g_{1}, g_{1}^{-1}, g_{2}, g_{2}^{-1}\right), g_{1}, g_{2}$ distinct involutions in D_{p}. 2nd: (width 1, special g-p ${ }^{\prime}$) is orbit of $(\boldsymbol{g}) \mathbf{s h}=\left(g_{1}^{-1}, g_{2}, g_{2}^{-1}, g_{1}\right)$.

Part III: Given a MT, $\left\{O_{k} \subset \mathrm{Ni}\left(G_{k}, \mathbf{C}\right)^{\text {in }}\right\}_{k=0}^{\infty}$, classify when there is a p cusp on O_{k} for $k \gg 0$.
Main Conj.: K a number field, then $\mathcal{H}_{k}^{\prime}(K)=\emptyset$ for $k \gg 0$. For $r=4$, this holds if $g_{k}^{\prime}>0$ and there is a p-cusp.

$$
\begin{aligned}
& H_{4} / \mathcal{Q}^{\prime \prime} \stackrel{\text { def }}{=} \bar{M}_{4}=\left\langle\gamma_{0}, \gamma_{1}, \gamma_{\infty}\right\rangle, q_{1} q_{2} \mapsto \gamma_{0} \text { (order 3), } \\
& \text { shift } \left.=q_{1} q_{2} q_{3} \mapsto \gamma_{1} \text { (order } 2\right), \\
& q_{2} \mapsto \gamma_{\infty}(j=\infty \text { monodromy generator), } \\
& \text { satisfying the product-one relation: } \gamma_{0} \gamma_{1} \gamma_{\infty}=1 .
\end{aligned}
$$

Tower levels are upper half-plane quotients, j-line covers: γ_{i} s acting on $\mathrm{Ni}(G, \mathbf{C})^{\text {in }, r d} \stackrel{\text { def }}{=} \mathrm{Ni}(G, \mathbf{C})^{\text {in }} / \mathcal{Q}^{\prime \prime}$ are their branch cycles.
 Define $x_{i, j}=(i i+1 \cdots j)$. g-2' cusps's here are shifts of HM reps. ($g_{1}, g_{1}^{-1}, g_{2}, g_{2}^{-1}$). Mod conjugation by A_{n} they are

$$
\begin{array}{r}
\mathrm{HM}_{1} \stackrel{\text { def }}{=}\left(x_{\frac{n+1}{2}, 1}, x_{1, \frac{n+1}{2}}, x_{\frac{n+1}{2}, n}, x_{n, \frac{n+1}{2}}\right) \\
\mathrm{HM}_{2}=\left(\mathrm{HM}_{1}\right) q_{1} \stackrel{\text { def }}{=}\left(x_{1, \frac{n+1}{2}}, x_{\frac{n+1}{2}, 1}, x_{\frac{n+1}{2}, n}, x_{n, \frac{n+1}{2}}\right)
\end{array}
$$

Proposition 3. For $n \equiv 5 \bmod 8, \mathrm{HM}_{1}$ and HM_{2} are not inner equivalent \Longrightarrow one braid orbit on $\mathrm{Ni}\left(A_{n}, \mathbf{C}_{\left.\left(\frac{n+1}{2}\right)^{4}\right)^{\text {in }}}\right.$: One component defined $/ \mathbb{Q}$.

For $n \equiv 1 \bmod 8$, if $h \in S_{n} \backslash A_{n}$, there is no braid between \boldsymbol{g} and $h \boldsymbol{g} h^{-1} \Longrightarrow$ two braid orbits on $\mathrm{Ni}\left(A_{n}, \mathbf{C}_{\left(\frac{n+1}{2}\right)^{4}}\right)^{\mathrm{in}}$: Two components conjugate $/ \mathbb{Q}\left(\sqrt{-\frac{n+1}{2}}\right)$.
$\mathrm{Ni}\left(A_{n}, \mathbf{C}_{\left(\frac{n+1}{2}\right)^{4}}\right)^{\text {abs,rd }}$ Table of Cusp reps.(row starts $\left.\operatorname{ord}\left(g_{2} g_{3}\right)\right):$ sh applied to $\mathrm{Cu}_{4}\left(\mathrm{HM}_{1}\right)=$
$\left\{\mathrm{HM}_{1, t}=\left(x_{\frac{n+1}{2}, 1}, x_{1+t, \frac{n+1}{2}+t}, x_{\frac{n+1}{2}+t, n+t}, x_{n, \frac{n+1}{2}}\right)\right\}_{t=0}^{n-1}$.
1: $\left(\mathrm{HM}_{1,0}\right) \mathbf{s h}=\left(x_{1, \frac{n+1}{2}}, x_{\frac{n+1}{2}, n}, x_{n, \frac{n+1}{2}}, x_{\frac{n+1}{2}, 1}\right)$
3: $\left(\mathrm{HM}_{1,1}\right) \mathbf{s h}=\left(x_{2, \frac{n+3}{2}},\left(\frac{n+3}{2} \ldots n 1\right), x_{n, \frac{n+1}{2}}, x_{\frac{n+1}{2}, 1}\right)$
5: $\left(\mathrm{HM}_{1,2}\right) \mathbf{s h}=\left(x_{3, \frac{n+5}{2}},\left(\frac{n+5}{2} \ldots n 12\right), x_{n, \frac{n+1}{2}}, x_{\frac{n+1}{2}, 1}\right)$
$\mathrm{n}:\left(\mathrm{HM}_{1, \frac{n-1}{2}}\right) \mathbf{s h}=\left(x_{\frac{n+1}{2} n},\left(n 1 \ldots \frac{n-1}{2}\right), x_{n, \frac{n+1}{2}}, x_{\frac{n+1}{2}, 1}\right)$
For cusps of $\operatorname{Ni}\left(A_{n}, \mathbf{C}_{\left(\frac{n+1}{2}\right)^{4}}\right)^{\text {in,rd }}, n \equiv 5 \bmod 8$: Two each of width k for each odd $3 \leq k \leq n, O_{k ; j}^{\prime}$, $j=1,2$, one, $O_{1,2}$, of width 2 (shift of $\mathrm{H}-\mathrm{M}$ cusp). None are 2 cusps.
sh-incidence Matrix: $r=4$ and $\mathrm{Ni}_{3^{4}}^{\mathrm{in}, \mathrm{rd}}$ sh-incidence pairing on Cu_{4} orbits $\bmod \mathcal{Q}^{\prime \prime}$:
$\left(O, O^{\prime}\right) \mapsto\left|O \cap\left(O^{\prime}\right) \mathbf{s h}\right|: \overline{\mathcal{H}}\left(A_{5}, \mathbf{C}_{3^{4}}\right)^{\text {in }, \mathrm{rd}}$

Orbit	$O_{5 ; 1}^{\prime}$	$O_{5 ; 2}^{\prime}$	$O_{3 ; 1}^{\prime}$	$O_{3 ; 2}^{\prime}$
$O_{5 ; 1}^{\prime}$	0	2	1	1
$O_{1,2}$				
$O_{5 ; 2}^{\prime}$	2	0	1	1
$O_{3 ; 1}^{\prime}$	1	1	0	1
$O_{3 ; 2}^{\prime}$	1	1	1	0
$O_{1,2}$	1	1	0	0
O_{1}	0			

Lemma 4. Fixed points of γ_{0} or γ_{1} contribute to diagonal of $\mathbf{s h}$-incidence matrix. $\mathbf{g}_{3^{4}}=0$:
$2\left(18+\mathbf{g}_{3^{4}}-1\right)=2 \cdot 18 / 3+18 / 2+(1+2 \cdot 2+2 \cdot 4)$.

2 cusps in Liu-Osserman cases

List 3-tuples $\left(g_{2}, g_{3},\left(g_{2} g_{3}\right)^{-1}\right)$ for each $O_{2 u+1 ; j}^{\prime}$, $3 \leq u \leq \frac{n-1}{2}, j=1,2: \operatorname{ord}\left(g_{2} g_{3}\right)=2 u+1 ;\left\langle g_{2}, g_{3}\right\rangle \sim A_{u+\frac{n+1}{2}}$. [LUM, Fratt. Princ. 3]: Level 1 has only 2 cusps above $O_{2 u+1 ; j}^{\prime}$ iff $s_{\text {Spin }_{n} / A_{n}}\left(g_{2}, g_{3},\left(g_{2} g_{3}\right)^{-1}\right)=\frac{\operatorname{ord}\left(g_{2} g_{3}\right)^{2}-1}{8}(\mathrm{~F}-\mathrm{S}) \equiv 1 \bmod 2$.
Theorem 5. If a cusp branch is both $H-M$ and p, then MT cusp tree contains a spire: sub-tree isomorphic to a modular curve cusp tree. Holds for $p=2$ at level 1, for L-O $n \equiv 5$ $\bmod 8$. Doesn't hold for $n \equiv 1 \bmod 8$.
SPIRE: Growth of p cusps with level: Subscript is power of p dividing the middle product.

$$
\begin{array}{llll}
\text { Level 1: } & \bullet_{p} & & \\
\text { Level 2: } & \bullet_{p^{2}} & \bullet_{p} & \\
\text { Level 3: } & \bullet_{p^{3}} & \bullet_{p^{2}} & \bullet_{p}
\end{array}
$$

App. A: Atomic Orbital type; and 2 cusp comment

Correspondence with atomic orbitals: $n \leftrightarrow$ orbital energy level, for each n, total inner reduced Nielsen classes:
$2 \cdot\left(\sum_{\text {odd } k=0}^{n} k=2 \cdot n^{2}\right)$.
2 cusps for L-O $n=9, \mathbf{C}_{54}: \quad \ell \in\{1,3,5,7,9\}$ (each component has such width cusps): two 2 cusps ($\Leftrightarrow \ell=3,5$) at level 1 for certain. Above cusps with middle products 7 and 9 , not clear there is a 2 cusp on every component.

Abbreviated References: [LUM] has much more

[BFr02]P. Bailey and M. D. Fried, Hurwitz monodromy, spin separation and higher levels of a Modular Tower, in Proceed. of Symposia in Pure Math. 70 (2002) editors M. Fried and Y. Ihara, 1999 von Neumann Symposium, August 16-27, 1999 MSRI, 79-221.
[STMT]A. Cadoret, Modular Towers and Torsion on Abelian Varieties, preprint May, 2006.
[D06]P. Dèbes, Modular Towers: Construction and Diophantine Questions, same vol. as [LUM].
[Def-Lst]Select from the list in www.math.uci.edu/conffiles_rims/deflist-mt/full-deflist-mt.html of present MTrelated definitions. 09/05/06 examples: Branch-Cycle-Lem CFPV-Thm Cusp-Comp-Tree FS-Lift-Inv Hurwitz-Spaces Main-MT-Conj Modular-Towers Nielsen-Classes RIGP Strong-Tors-Conj mt-rigp-stc p-Poincare-Dual sh-Inc-Mat. A similar URL, www.math.uci.edu/conffiles_rims/deflist-mt/full-paplistmt.html, is a repository for not just mine, but also of the growing list of those joining the MT project.
[FrK97]M. Fried and Y. Kopeliovic, Applying Modular Towers to the inverse Galois problem, Geometric Galois Actions II Dessins d'Enfants, Mapping Class Groups . . . , vol. 243, Cambridge U. Press, 1997, London Math. Soc. Lecture Notes, 172-197.
[Fr77]M. Fried, Fields of definition of function fields and Hurwitz families and groups as Galois groups, Communications in Algebra 5 (1977), 17-82.
[FrV]Michael D. Fried and Helmut Völklein, The inverse Galois problem and rational points on moduli spaces, Math. Ann. 290 (1991), no. 4, 771-800.
[LUM]M. D. Fried, The Main Conjecture of Modular Towers and its higher rank generalization, in Groupes de Galois arithmetiques et differentiels (Luminy 2004; eds. D. Bertrand and P. Dèbes), Seminaires et Congres, 13 (2006), 165-230.
[AGLI]M. D. Fried, Alternating groups and lifting invariants, (2006), 1-36.
[LOs06]F. Liu and B. Osserman, The Irreducibility of Certain Pure-cycle Hurwitz Spaces, preprint as of August 10, 2006.
[Ser90a].-P. Serre, Relêvements dans \tilde{A}_{n}, C. R. Acad. Sci. Paris 311 (1990), 477-482.
[We]T. Weigel, Maximal p-frattini quotients of p-poincare duality groups of dimension 2, volume for O.H. Kegel on his 70th birthday, Arkiv der Mathematik-Basel, 2005.

