Atomic Orbital-type cusps on Alternating Group Modular Towers Mike Fried, UCI and MSU-Billings 12/08/07

 $\texttt{http://math.uci.edu/~mfried} \rightarrow \S1.a \rightarrow \# \text{ Generalizing modular curve properties to Modular Towers}$

 $\rightarrow \#1$ mt-overview.html

Let $\varphi: X \to \mathbb{P}^1_z$ be a map on compact Riemann surfaces X;

- φ Galois having group G. Then, φ defines these quantities:
- Unordered branch points $\boldsymbol{z} = \{z_1, \dots, z_r\} \in U_r$: Space of unordered distinct points on \mathbb{P}^1_z ;
- Conjugacy classes $\mathbf{C} = \{C_1, \dots, C_r\}$ in G; and
- A *Poincaré extension* of groups (abelianized theory):

 $\psi_{\varphi}: M_{\varphi} \to G \text{ with } \ker_{\psi} \stackrel{\text{def}}{=} \ker(M_{\varphi} \to G) = H_1(X).$

Given (G, \mathbf{C}) , finding fulfilling $X \Leftrightarrow$ Nonempty *Nielsen classes*:

$$Ni(G, \mathbf{C}) = \{ \mathbf{g} \in \mathbf{C} | \langle \mathbf{g} \rangle = G, g_1 \cdots g_r = 1 \}.$$

Note: Product-one condition. $g_1 \cdots g_r = 1$.

– Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

Part I: Finite Group Property Gives Tower of Spaces D_p (order 2p, p odd) fact: With C_2 , conjugacy class of involution, if $(g_1, g_2) \in C_{2^2}$ generate D_p , then for $m{g}' \in (D_{p^{k+1}})^2 \cap \mathcal{C}_{2^2}$ over $m{g}$, $\langle m{g}'
angle = D_{p^{k+1}}$, $k \ge 1$. For $k \ge 0 \exists \psi_k : G_{k,ab} \stackrel{\text{def}}{=} G_k \to G_0 = G \to 1$ with kernel $(\mathbb{Z}/p^k)^u$, $u \ge 1$ (if p||G|: independent of k), with $G_k \leftrightarrow G_0$ as $D_{p^{k+1}} \leftrightarrow D_p$. Key: G_k is versal for abelian exponent p^k extensions of G_0 .

Note: u = 1 if and only if G is p-supersolvable (slight generalization of dihedral groups).

 (G, \mathbf{C}, p) Fact, with $\mathbf{C} p'$, produces spaces (*) For $g \in \mathbf{C}$ with $\langle g \rangle = G$, each $g' \in G_k^r \cap \mathbf{C}$ over g has $\langle g' \rangle = G_k$. (*) requires G p-perfect: no $G \to \mathbb{Z}/p \to 1$. Operations on Nielsen classes generate H_r : $\mathbf{sh} : (g_1, \dots, g_r) \mapsto (g_2, \dots, g_r, g_1)$ $q_2 : (g_1, \dots, g_r) \mapsto (g_1, g_2 g_3 g_2^{-1}, g_2, g_4, \dots, g_r)$.

Homological condition produces spaces:

Equivalent existence of three projective sequences:

(**) $M_{\varphi} \to G$ extends to $M_{\varphi,k} \to G_k$, $k \ge 1 \mod H_r$] $\Leftrightarrow \{O_k = H_r(\boldsymbol{g}_k)\}_{k=0}^{\infty}$ of H_r orbits on $\{\operatorname{Ni}(G_k, \mathbf{C})^{\operatorname{in}}\}_{k=0}^{\infty} \Leftrightarrow$ [components of] reduced, inner Hurwitz spaces (dim. r-3) $\{\mathcal{H}(O_k)^{\operatorname{in,rd}} \subset \mathcal{H}(G_k, \mathbf{C})^{\operatorname{in,rd}}\}_{k=0}^{\infty}$.

Modular Curves and their generalization

Assume G centerless. \exists unique versal central extension $\mu_{G,p}: R_p \to G$ with $\ker(R_p \to G)$: p part of Schur multiplier of G.

[F(ried)-W(eigel) [Lum, Cor. 4.19], [We]] (**) holds $\Leftrightarrow M_{\varphi} \to G$ extends to $M_{\varphi} \to R_p$.

Modular Curve Fact: Modular Curve sequence $\{X_1(p^{k+1})\}$ automatic from $Ni(D_p, \mathbf{C}_{2^4}, p)$ by compactifying the Hurwitz spaces. Schur multiplier of D_p is trivial \implies [F-W] hypothesis.

Def: M(odular)T(ower): (Nonempty) Projective system of $H_r = \langle q_2, \mathbf{sh} \rangle$ orbits on $\{ \operatorname{Ni}(G_k, \mathbf{C})^{\operatorname{in}} \}_{k=0}^{\infty}$.

– Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

Part II: Odd Pure-Cycle Modular Towers

• $g \in S_n$ is *pure-cycle* if exactly one cycle has length > 1.

Nielsen class Ni(G, C) is *pure-cycle* if all conjugacy classes are pure-cycle (of length {d₁,...,d_r} = d): C = C_d. Assume G ≤ S_n transitive and C^{S_n} def = C<sub>d₁...d_r image of C
</sub>

in S_n , with d_i s all odd.

Iff Genus condition for $Ni(G, \mathbf{C}_g) \neq \emptyset$:

$$\begin{split} \mathbf{g}_{d} &= \mathbf{g}_{d_{1}\cdots d_{r}} \stackrel{\text{def}}{=} \frac{\sum_{i=1}^{r} d-1}{2} - (n-1) \text{ is non-negative.} \\ & [\text{Wilson}]: \text{ For } \boldsymbol{g} \text{ odd, } r \geq 3 \text{ and } \mathbf{g}_{d} = 0, \ G = A_{n}. \\ & [\text{LOs06}]: \text{ One } H_{r} \text{ orbit.} \end{split}$$

– Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

 $F(\text{ried})-S(\text{erre}): \text{ MTs over } \mathcal{H}(A_n, \mathbb{C}_d) \text{ ([LUM, §1], [Ser90a])}$ $\operatorname{Spin}_n^+ \to O_n^+: \text{ nonsplit connected degree 2 cover of } O_n^+.$ $\operatorname{Spin}_n = \text{pullback of } A_n \text{ to } \operatorname{Spin}_n^+:$ $\operatorname{ker}(\operatorname{Spin}_n \to A_n) = \{\pm 1\} \text{ is Schur multiplier of } A_n, n \geq 4.$

Odd order $g \in A_n$ has a unique odd order lift, $\hat{g} \in \operatorname{Spin}_n$. Let $g \in \operatorname{Ni}(A_n, \mathbf{C}_d)$. Small lifting invariant: $s(g) = s_{\operatorname{Spin}_n}(g) = \hat{g}_1 \cdots \hat{g}_r \in \{\pm 1\}.$ **Theorem 1.** \exists at least one MT over a component $\leftrightarrow H_r$ orbit O on $\operatorname{Ni}(A_n, \mathbf{C}_d) \Leftrightarrow$ something in $\operatorname{Ni}(\operatorname{Spin}_n, \mathbf{C}_d)$ over O. If $\mathbf{g}_d = 0 \Leftrightarrow \sum_{i=1}^r \frac{d_i^2 - 1}{2} \equiv 0 \mod 2.$ Cusp on an H_r orbit $O \subset Ni(G, \mathbf{C})$

• $r \geq 5$: An orbit of $\operatorname{Cu}_r = \langle q_2 \rangle$

•
$$r = 4$$
: An orbit of $Cu_4 = \langle q_2, \mathbf{sh}^2, q_1 q_3^{-1} \rangle = \langle q_2, \mathcal{Q}'' \rangle$.

MiddleProduct: $(g_1, g_2, g_3, g_4) \mapsto \operatorname{ord}(g_2g_3) \stackrel{\text{def}}{=} (\boldsymbol{g})$ mpr.

• p cusp: $\operatorname{Cu}_r(\boldsymbol{g})$ for which $p^{\mu_p(\boldsymbol{g})}||(\boldsymbol{g})\mathsf{mpr}, \ \mu_p(\boldsymbol{g}) > 0.$

• g(roup)-p': $U_{1,4}(\boldsymbol{g}) = \langle g_1, g_4 \rangle$, $U_{2,3}(\boldsymbol{g}) = \langle g_2, g_3 \rangle$ are p' groups.

Example 2 (Two cusps on $X_0(p)$). 1st: (p cusp) is Cu_4 orbit of H(arbater)-M(umford) rep. $\boldsymbol{g} = (g_1, g_1^{-1}, g_2, g_2^{-1}), g_1, g_2$ distinct involutions in D_p . 2nd: (width 1, special g-p') is orbit of $(\boldsymbol{g})\mathbf{sh} = (g_1^{-1}, g_2, g_2^{-1}, g_1)$.

Part III: Given a MT, $\{O_k \subset \operatorname{Ni}(G_k, \mathbb{C})^{\operatorname{in}}\}_{k=0}^{\infty}$, classify when there is a p cusp on O_k for k >> 0. Main Conj.: K a number field, then $\mathcal{H}'_k(K) = \emptyset$ for k >> 0. For r = 4, this holds if $g'_k > 0$ and there is a p-cusp.

$$H_4/\mathcal{Q}'' \stackrel{\text{def}}{=} \bar{M}_4 = \langle \gamma_0, \gamma_1, \gamma_\infty \rangle, q_1q_2 \mapsto \gamma_0 \text{ (order 3)},$$

 $\mathbf{shift} = q_1q_2q_3 \mapsto \gamma_1 \text{ (order 2)},$
 $q_2 \mapsto \gamma_\infty \text{ (}j = \infty \text{ monodromy generator)},$
 $\mathbf{satisfying the product-one relation: $\gamma_0\gamma_1\gamma_\infty = 1.$$

Tower levels are upper half-plane quotients, *j*-line covers: γ_i s acting on $\operatorname{Ni}(G, \mathbb{C})^{\operatorname{in}, rd} \stackrel{\text{def}}{=} \operatorname{Ni}(G, \mathbb{C})^{\operatorname{in}}/\mathcal{Q}''$ are their branch cycles.

Cusp rep listings, r = 4, $\operatorname{Ni}_{(\frac{n+1}{2})^4}^{\operatorname{abs or in}}$, all d_i s equal Define $x_{i,j} = (i \, i + 1 \, \cdots \, j)$. g-2' cusps here are shifts of HM reps. $(g_1, g_1^{-1}, g_2, g_2^{-1})$. Mod conjugation by A_n they are

$$\text{HM}_{1} \stackrel{\text{def}}{=} (x_{\frac{n+1}{2},1}, x_{1,\frac{n+1}{2}}, x_{\frac{n+1}{2},n}, x_{n,\frac{n+1}{2}})$$
$$\text{HM}_{2} = (\text{HM}_{1})q_{1} \stackrel{\text{def}}{=} (x_{1,\frac{n+1}{2}}, x_{\frac{n+1}{2},1}, x_{\frac{n+1}{2},n}, x_{n,\frac{n+1}{2}})$$

Proposition 3. For $n \equiv 5 \mod 8$, HM_1 and HM_2 are not inner equivalent \implies one braid orbit on $\operatorname{Ni}(A_n, \mathbf{C}_{(\frac{n+1}{2})^4})^{\operatorname{in}}$: One component defined/ \mathbb{Q} .

For $n \equiv 1 \mod 8$, if $h \in S_n \setminus A_n$, there is no braid between \boldsymbol{g} and $h\boldsymbol{g}h^{-1} \implies two \ braid \ orbits \ on \ Ni(A_n, \mathbf{C}_{(\frac{n+1}{2})^4})^{in}$: Two components $conjugate/\mathbb{Q}(\sqrt{-\frac{n+1}{2}})$.

$$\begin{split} \operatorname{Ni}(A_n, \mathbf{C}_{(\frac{n+1}{2})^4})^{\operatorname{abs,rd}} \text{ Table of Cusp reps.}(\operatorname{row starts} \\ \operatorname{ord}(g_2g_3)): \ \mathbf{sh} \ \operatorname{applied} \ \operatorname{to} \ \operatorname{Cu}_4(\operatorname{HM}_1) = \\ \{\operatorname{HM}_{1,t} = (x_{\frac{n+1}{2},1}, x_{1+t,\frac{n+1}{2}+t}, x_{\frac{n+1}{2}+t,n+t}, x_{n,\frac{n+1}{2}})\}_{t=0}^{n-1}. \\ 1: \ (\operatorname{HM}_{1,0})\mathbf{sh} = (x_{1,\frac{n+1}{2}}, x_{\frac{n+1}{2},n}, x_{n,\frac{n+1}{2}}, x_{\frac{n+1}{2},1}) \\ 3: \ (\operatorname{HM}_{1,1})\mathbf{sh} = (x_{2,\frac{n+3}{2}}, (\frac{n+3}{2} \dots n 1), x_{n,\frac{n+1}{2}}, x_{\frac{n+1}{2},1}) \\ 5: \ (\operatorname{HM}_{1,2})\mathbf{sh} = (x_{3,\frac{n+5}{2}}, (\frac{n+5}{2} \dots n 12), x_{n,\frac{n+1}{2}}, x_{\frac{n+1}{2},1}) \\ \dots \end{split}$$

n:
$$(HM_{1,\frac{n-1}{2}})$$
sh = $(x_{\frac{n+1}{2}n}, (n \ 1 \ \dots \ \frac{n-1}{2}), x_{n,\frac{n+1}{2}}, x_{\frac{n+1}{2},1})$

For cusps of $\operatorname{Ni}(A_n, \mathbb{C}_{(\frac{n+1}{2})^4})^{\operatorname{in,rd}}$, $n \equiv 5 \mod 8$: Two each of width k for each odd $3 \leq k \leq n$, $O'_{k;j}$, j = 1, 2, one, $O_{1,2}$, of width 2 (shift of H-M cusp). None are 2 cusps.

sh-incidence Matrix: r = 4 and $\operatorname{Ni}_{3^4}^{\operatorname{in,rd}}$ sh-incidence pairing on Cu_4 orbits $\mod \mathcal{Q}''$: $(O, O') \mapsto |O \cap (O') \operatorname{sh}|$: $\overline{\mathcal{H}}(A_5, \mathbb{C}_{3^4})^{\operatorname{in,rd}}$

Orbit	$O'_{5;1}$	$O'_{5;2}$	$O'_{3;1}$	$O'_{3;2}$	$O_{1,2}$
$O'_{5;1}$	0	2	1	1	1
$O'_{5;2}$	2	0	1	1	1
$O'_{3;1}$	1	1	0	1	0
$O'_{3;2}$	1	1	1	0	0
$O_{1,2}$	1	1	0	0	0

Lemma 4. Fixed points of γ_0 or γ_1 contribute to diagonal of sh-incidence matrix. $\mathbf{g}_{3^4} = 0$: $2(18 + \mathbf{g}_{3^4} - 1) = 2 \cdot 18/3 + 18/2 + (1 + 2 \cdot 2 + 2 \cdot 4).$

2 cusps in Liu-Osserman cases

List 3-tuples $(g_2, g_3, (g_2g_3)^{-1})$ for each $O'_{2u+1;j}$, $3 \le u \le \frac{n-1}{2}$, j = 1, 2: ord $(g_2g_3) = 2u+1$; $\langle g_2, g_3 \rangle \sim A_{u+\frac{n+1}{2}}$. [LUM, Fratt. Princ. 3]: Level 1 has only 2 cusps above $O'_{2u+1;j}$ iff $s_{\text{Spin}_n/A_n}(g_2, g_3, (g_2g_3)^{-1}) = \frac{\operatorname{ord}(g_2g_3)^2 - 1}{8} (\mathsf{F-S}) \equiv 1 \mod 2.$ **Theorem 5.** If a cusp branch is both H-M and p, then MT cusp tree contains a spire: sub-tree isomorphic to a modular *curve cusp tree.* Holds for p = 2 at level 1, for L-O $n \equiv 5$ mod 8. Doesn't hold for $n \equiv 1 \mod 8$. SPIRE: Growth of p cusps with level: Subscript is power of pdividing the middle product.

Level 1 :
$$\bullet_p$$

Level 2 : $\bullet_{p^2} \bullet_p$
Level 3 : $\bullet_{p^3} \bullet_{p^2} \bullet_p$
 \cdots : \cdots \cdots \cdots

• •

– Typeset by $\ensuremath{\mathsf{FoilT}}\xspace{T_EX}$ –

App. A: Atomic Orbital type; and 2 cusp comment

Correspondence with atomic orbitals: $n \leftrightarrow$ orbital energy level, for each n, total inner reduced Nielsen classes: $2 \cdot (\sum_{\text{odd } k=0}^{n} k = 2 \cdot n^2).$

2 cusps for L-O n = 9, C_{5^4} : $\ell \in \{1, 3, 5, 7, 9\}$ (each component has such width cusps): two 2 cusps ($\Leftrightarrow \ell = 3, 5$) at level 1 for certain. Above cusps with middle products 7 and 9, not clear there is a 2 cusp on every component.

Abbreviated References: [LUM] has much more

- [BFr02] P. Bailey and M. D. Fried, Hurwitz monodromy, spin separation and higher levels of a Modular Tower, in Proceed. of Symposia in Pure Math. 70 (2002) editors M. Fried and Y. Ihara, 1999 von Neumann Symposium, August 16-27, 1999 MSRI, 79–221.
- [STMT]A. Cadoret, Modular Towers and Torsion on Abelian Varieties, preprint May, 2006.
 - [D06]P. Dèbes, Modular Towers: Construction and Diophantine Questions, same vol. as [LUM].
- [Def-Lst]Select from the list in www.math.uci.edu/conffiles_rims/deflist-mt/full-deflist-mt.html of present MTrelated definitions. 09/05/06 examples: Branch-Cycle-Lem CFPV-Thm Cusp-Comp-Tree FS-Lift-Inv Hurwitz-Spaces Main-MT-Conj Modular-Towers Nielsen-Classes RIGP Strong-Tors-Conj mt-rigp-stc p-Poincare-Dual sh-Inc-Mat. A similar URL, www.math.uci.edu/conffiles_rims/deflist-mt/full-paplistmt.html, is a repository for not just mine, but also of the growing list of those joining the MT project.
- [FrK97]M. Fried and Y. Kopeliovic, Applying Modular Towers to the inverse Galois problem, Geometric Galois Actions II Dessins d'Enfants, Mapping Class Groups . . . , vol. 243, Cambridge U. Press, 1997, London Math. Soc. Lecture Notes, 172–197.
 - [Fr77] M. Fried, Fields of definition of function fields and Hurwitz families and groups as Galois groups, Communications in Algebra 5 (1977), 17–82.
 - [FrV]Michael D. Fried and Helmut Völklein, The inverse Galois problem and rational points on moduli spaces, Math. Ann. 290 (1991), no. 4, 771–800.
- [LUM]M. D. Fried, The Main Conjecture of Modular Towers and its higher rank generalization, in Groupes de Galois arithmetiques et differentiels (Luminy 2004; eds. D. Bertrand and P. Dèbes), Seminaires et Congres, 13 (2006), 165–230.
- [AGLI]M. D. Fried, Alternating groups and lifting invariants, (2006), 1–36.

- [LOs06] F. Liu and B. Osserman, *The Irreducibility of Certain Pure-cycle Hurwitz Spaces*, preprint as of August 10, 2006.
- [Ser90a]J.-P. Serre, *Relêvements dans* \tilde{A}_n , C. R. Acad. Sci. Paris **311** (1990), 477–482.
 - [We]T. Weigel, *Maximal p-frattini quotients of p-poincare duality groups of dimension 2*, volume for O.H. Kegel on his 70th birthday, Arkiv der Mathematik–Basel, 2005.