Finite group theory and Connectedness of moduli spaces of Riemann Surface covers

 Mike Fried, UCI and MSU-Billings 03/27/07http://math.uci.edu/ ${ }^{\sim}$ mfried $\rightarrow \S 1 . a \rightarrow \#$ Generalizing modular curve properties to Modular Towers
\rightarrow \#1 mt-overview.html
Let $\varphi: X \rightarrow \mathbb{P}_{z}^{1}$ be a function on a Riemann surface X, with
φ Galois having group G. Then, φ defines these quantities:

- Unordered branch points $z=\left\{z_{1}, \ldots, z_{r}\right\} \in U_{r}$ (undered distinct points on \mathbb{P}_{z}^{1});
- Conjugacy classes $\mathbf{C}=\left\{\mathrm{C}_{1}, \ldots, \mathrm{C}_{r}\right\}$ in G; and
- A Poincaré extension of groups:

$$
\psi_{\varphi}: M_{\varphi} \rightarrow G \text { with } \operatorname{ker}_{\psi} \stackrel{\text { def }}{=} \operatorname{ker}\left(M_{\varphi} \rightarrow G\right)=\pi_{1}(X)
$$

Using Classical Generators of $\pi_{1}\left(\mathbb{P}_{z}^{1} \backslash \boldsymbol{z}, z_{0}\right)$

Denote $\left(\mathcal{P}_{1}, \ldots, \mathcal{P}_{r}\right)$ (see App. A) \mapsto an isotopy class of r generators $\overline{\boldsymbol{g}}=\left(\bar{g}_{1}, \ldots, \bar{g}_{r}\right)$.

Refer to their images in M_{φ} also as \bar{g}, and their images in G by $\left(g_{1}, \ldots, g_{r}\right)=\boldsymbol{g}$.

Then, \boldsymbol{g} is in the Nielsen class of (G, \mathbf{C}) :

$$
\mathrm{Ni}(G, \mathbf{C}) \stackrel{\text { def }}{=}\left\{\boldsymbol{g} \in \mathbf{C} \mid\langle\boldsymbol{g}\rangle=G, \Pi(\boldsymbol{g}) \stackrel{\text { def }}{=} g_{1} \cdots g_{r}=1\right\}
$$

Notion: Given classical generators $\overline{\boldsymbol{g}}$ of M_{φ}, rename it $M_{\bar{g}}: \psi_{\varphi}$ becomes $\psi_{g}: M_{\bar{g}} \rightarrow G$, by $\bar{g}_{i} \mapsto g_{i}$.

Part I: E(xtension) P(roblem) (Item \#1 below)

Given $(\boldsymbol{g}, \mathbf{C})$, and a prime p :

1. When does ψ_{g} extend to all $H \rightarrow G \rightarrow 1$ with p-group kernel? Abelianized version (App. C): To all H with $\operatorname{ker}(H \rightarrow G)$ abelian.
2. How does this depend on g ?
3. What equivalence relation on extensions gives a reasonable description of all cases?
4. Why should this concern mathematics?

Non-obvious Reductions

- Complete $M_{\bar{g}}$ so $\operatorname{ker}_{\psi_{\varphi}}=$ pro- p completion of $\pi_{1}(X)$.
- Restrict in \#1 (p. 3) to p-Frattini covers of G.
- Any $g \in \mathbf{C}$ must have order prime to p.
- G is p-perfect (no \mathbb{Z} / p quotient; or $\# 1$ impossible).

Equivalent: When are all p-Frattini covers $H \rightarrow$ $G \rightarrow 1$ achieved by unramified extensions $Y_{H} \rightarrow X$?

Deformation equivalence of extensions

If φ were a cyclic cover of \mathbb{P}^{1}, we could write it by hand. It isn't. Further, why deal one cover at-a-time? Consider all covers with (G, \mathbf{C}) as their data: In the Nielsen class.

Deformation Conclusion: Can always start by fixing branch points z^{0}. Any cover (with branch points $z \in U_{r} ; r$ unordered points in \mathbb{P}_{z}^{1}) deforms to a cover with branch points z^{0}. Then, $M_{\bar{g}}$ and any of its extension properties deform with it.

One cover defines a family: $\varphi: X \rightarrow \mathbb{P}_{z}^{1} \Longrightarrow$

1. Permutation representation of $\pi_{1}\left(U_{r}, z^{0}\right) \stackrel{\text { def }}{=} H_{r}$ Hurwitz monodromy on orbit $\mathrm{Ni}_{\varphi}^{\prime}$ —independent of classical generators - of $[\varphi] \in \mathrm{Ni}(G, \mathbf{C})$.
2. An unramified connected cover $\mathcal{H}(G, \mathbf{C})_{\varphi} \rightarrow U_{r}$: Hurwitz space component containing φ.
Equivalences of covers and Nielsen classes.
[Abs.] $\varphi^{\prime}: X^{\prime} \rightarrow \mathbb{P}_{z}^{1} \sim \varphi \Leftrightarrow \boldsymbol{g}=h \boldsymbol{g}^{\prime} h^{-1}, h \in N_{S_{n}, \mathbf{C}}(G)$.
[Inn.] φ Galois with $\mu: \operatorname{Aut}\left(X / \mathbb{P}_{z}^{1}\right) \xrightarrow{\text { isom }} G \sim\left(\varphi^{\prime}, u^{\prime}\right) \Leftrightarrow$

$$
\boldsymbol{g}=h \boldsymbol{g}^{\prime} h^{-1}, h \in G
$$

Braid equivalence of extensions

H_{r} has two generators given by their action on $\overline{\boldsymbol{g}}$:

- Shift: sh : $\overline{\boldsymbol{g}} \mapsto\left(\bar{g}_{2}, \ldots, \bar{g}_{r}, \bar{g}_{1}\right)$; and
- 2ndTwist: $q_{2}: \overline{\boldsymbol{g}} \mapsto\left(\bar{g}_{1}, \bar{g}_{2} \bar{g}_{3} \bar{g}_{2}^{-1}, \bar{g}_{2}, \bar{g}_{4}, \ldots\right): q_{i+2} \stackrel{\text { def }}{=} \mathbf{s h}^{i} q_{2} \mathbf{s h}^{-i}$.

Braid Comments: H_{r} is automorphism group of $\pi_{1}\left(\mathbb{P}_{z}^{1} \backslash \boldsymbol{z}^{0}, z_{0}\right)$ preserving classical generators. It acts compatibly on these:

- Inner Nielsen Classes: $\mathrm{Ni}(G, \mathbf{C}) / G \stackrel{\text { def }}{=} \mathrm{Ni}^{\text {in }}$
- Absolute Nielsen classes: $\mathrm{Ni}(G, \mathbf{C}) / N_{S_{n}}(G) \stackrel{\text { def }}{=} \mathrm{Ni}^{\text {abs }}$ (given $G \leq S_{n}$ a permutation representation)
- Poincaré extensions: $\psi_{\boldsymbol{g}}: M_{\bar{g}} \rightarrow G$, preserving extension properties of ψ_{g}

Part II: Introduction to/Existence of Modular Towers

GOAL 1: Given (G, \mathbf{C}, p), understand projective systems of H_{r} orbits acting on $\left\{\mathrm{Ni}(H, \mathbf{C})^{\mathrm{in}}\right\}_{H \rightarrow G}$ (lift C uniquely to p^{\prime} conjugacy classes in H): Running over p-Frattini covers $H \rightarrow G$.

Reduction: Take $G_{1} \rightarrow G=G_{0}$ to be the maximal p-Frattini cover of G with elementary p group kernel. Let $G_{k+1}=G_{1}\left(G_{k}\right)$. In GOAL 1 need only the case H runs over the G_{k} s.

Def: M(odular) T (ower): A projective system $\left\{O_{k}=H_{r}\left(\boldsymbol{g}_{k}\right)\right\}_{k=0}^{\infty}$ of H_{r} orbits on $\left\{\mathrm{Ni}\left(G_{k}, \mathbf{C}\right)^{\text {in }}\right\}_{k=0}^{\infty}$.

Inductive Existence of a MT: [Lum, Cor. 4.19], [We]

 Let $\mu_{k}: R_{k} \rightarrow G_{k}$ be the universal exponent p central extension of G_{k} :- $G_{k+1} \rightarrow G_{k}$ factors through μ_{k}.
- $\operatorname{ker}\left(R_{k} \rightarrow G_{k}\right)=$ max. elementary p-quotient of $G_{k} \mathrm{~s}$ Schur multiplier.
Proposition 1 (App. C- Abel. Vers.). If p-perfect G has no p-center, then neither does $G_{k}, k \geq 1$.
$H_{r}\left(\boldsymbol{g}_{k}\right) \subset \mathrm{Ni}\left(G_{k}, \mathbf{C}\right)^{\text {in }}$ is in the image of $\operatorname{Ni}\left(G_{k+1}, \mathbf{C}\right)^{\text {in }} \Leftrightarrow$ \boldsymbol{g}_{k} is in the image of $\mathrm{Ni}\left(R_{k}, \mathbf{C}\right) \Leftrightarrow H_{r}$ orbit of $M_{\boldsymbol{g}} \rightarrow G$ extends through all G_{k}.

Part III: Cusps and the p Cusp Problem

Cusp on an H_{r} orbit $O \subset \mathrm{Ni}(G, \mathbf{C})$:

- $r \geq 5$: An orbit of $\mathrm{Cu}_{r}=\left\langle q_{2}\right\rangle$
- $r=4$: An orbit of $\mathrm{Cu}_{4}=\left\langle q_{2}, \mathbf{s h}^{2}, q_{1} q_{3}^{-1}\right\rangle$.

Essential data is from conjugacy class of $\mathrm{Cu}_{r} \Longrightarrow$ can substitute q_{i} for q_{2}.
MiddleProduct: $\left(g_{1}, g_{2}, g_{3}, g_{4}\right) \mapsto \operatorname{ord}\left(g_{2} g_{3}\right) \stackrel{\text { def }}{=}(\boldsymbol{g}) \mathbf{m p r}$.
p cusp: represented by $g \in O$ for which $p^{\mu_{p}(\boldsymbol{g})} \|(\boldsymbol{g}) \mathbf{m p r}, \mu_{p}(\boldsymbol{g})>0$ (p-mult. of \boldsymbol{g}).

Other cusp types for $r=4$ (App. B for $r>4$)

- $\mathrm{g}($ roup $)-p^{\prime}: U_{1,4}(\boldsymbol{g})=\left\langle g_{1}, g_{4}\right\rangle$ and $U_{2,3}(\boldsymbol{g})=\left\langle g_{2}, g_{3}\right\rangle$ are p^{\prime} groups
- o(nly)-p': Not a p cusp, but $U_{1,4}(\boldsymbol{g})$ or $U_{2,3}(\boldsymbol{g}) \operatorname{not} p^{\prime}$.

GOAL 2: Given a MT, $\left\{O_{k} \subset \mathrm{Ni}\left(G_{k}, \mathbf{C}\right)^{\text {in }}\right\}_{k=0}^{\infty}$, classify when there is a p cusp on O_{k} for $k \gg 0$. Proposition 2 ($\mathrm{g}-p^{\prime} \mathrm{MT}$). If O_{0} has a $g-p^{\prime}$ cusp, then $a \mathrm{MT}, \mathcal{O}=\left\{O_{k} \subset \mathrm{Ni}\left(G_{k}, \mathbf{C}\right)^{\mathrm{in}}\right\}_{k=0}^{\infty}$, lies over it.

Part IV: MT Geometric correspondence $\mathcal{O}=\left\{O_{k} \subset \operatorname{Ni}\left(G_{k}, \mathbf{C}\right)^{\text {in }}\right\}_{k=0}^{\infty} \Leftrightarrow\left\{\mathcal{H}_{k}^{\prime}\right\}_{k=0}^{\infty}$ where:

- $\mathcal{H}_{k}^{\prime} \mathrm{s}$ are (normal) absolutely irreducible algebraic varieties ($\operatorname{dim}=r-3$);
- Cusps at level k correspond to divisors on the normal compactification $\overline{\mathcal{H}}_{k}^{\prime}$.
- ${ }_{0} \boldsymbol{g} \in O_{0}$ a p cusp $\Longrightarrow \mu_{p}\left({ }_{k} \boldsymbol{g}\right)=k+\mu_{p}(0 \boldsymbol{g})$. Gives order of p dividing ramification index of the divisor.
- $r=4: \mathcal{H}_{k}^{\prime}$, upper-half plane quotient, j-line cover, ramific. order dividing 3 (resp. 2) over 0 (resp. 1).

Inner (resp. absolute) Reduced spaces [BFr02, §2]

Reduced equiv.: $\varphi: X \rightarrow \mathbb{P}_{z}^{1} \sim \beta \circ \varphi, \beta \in \operatorname{PGL}_{2}(\mathbb{C})$.
j-invariant: $\boldsymbol{z} \in U_{4} \mapsto j_{z} \in U_{\infty} \stackrel{\text { def }}{=} \mathbb{P}_{j}^{1} \backslash\{\infty\}$ of \boldsymbol{z}. Normalize so $j=0$ and 1 are elliptic points: j_{z} with more than a Klein 4 -group stabilizer in $\mathrm{PGL}_{2}(\mathbb{C})$.

Let $\mathcal{Q}^{\prime \prime}=\left\langle\left(q_{1} q_{2} q_{3}\right)^{2}=\mathbf{s h}^{2}, q_{1} q_{3}^{-1}\right\rangle \leq H_{4}$. Reduced classes of covers with j-invariant $j^{\prime} \in U_{\infty} \Leftrightarrow$ elements of reduced Nielsen classes: $\mathrm{Ni}(G, \mathbf{C})^{*} / \mathcal{Q}^{\prime \prime}$ (where $*=$ in or abs).
H_{4} on reduced Nielsen classes factors through the mapping class group: $\bar{M}_{4} \stackrel{\text { def }}{=} H_{4} / \mathcal{Q}^{\prime \prime} \equiv \operatorname{PSL}_{2}(\mathbb{Z})$.

p Cusps and Main MT Conjecture

Main Conj.: K a number field, then $\mathcal{H}_{k}^{\prime}(K)=\emptyset$ for $k \gg 0$. For $r=4$, let g_{k}^{\prime} be the genus of $\overline{\mathcal{H}}_{k}^{\prime}$. Proposition 3. If $g_{0}^{\prime}>0$, (resp. $=0$) and, for some $k, \mathcal{H}_{k}^{\prime}$ has a p cusp (resp. three p cusps), then Main Conj. holds for \mathcal{O}.

$$
\begin{aligned}
& \bar{M}_{4}=\left\langle\gamma_{0}, \gamma_{1}, \gamma_{\infty}\right\rangle, q_{1} q_{2} \mapsto \gamma_{0}(\text { order } 3), \\
& \text { shift } \left.=q_{1} q_{2} q_{3} \mapsto \gamma_{1} \text { (order } 2\right)
\end{aligned}
$$

$q_{2} \mapsto \gamma_{\infty}(j=\infty$ monodromy generator), satisfying the product-one relation: $\gamma_{0} \gamma_{1} \gamma_{\infty}=1$.

Riemann-Hurwitz on components

Interpret R-H: Denote $\left(\gamma_{0}, \gamma_{1}, \gamma_{\infty}\right)$ acting on an H_{r} orbit $O^{\prime} \leq \mathrm{Ni}(G, \mathbf{C})^{*, \text { rd }}$ by $\left(\gamma_{0}^{\prime}, \gamma_{1}^{\prime}, \gamma_{\infty}^{\prime}\right)$, branch cycles for $\overline{\mathcal{H}}^{\prime} \rightarrow \mathbb{P}_{j}^{1}$ corresponding to O^{\prime}.

- Points over 0 (resp. 1$) \Leftrightarrow$ orbits of γ_{0} (resp. γ_{1}).
- The index contribution $\operatorname{ind}\left(\gamma_{\infty}\right)$ from a cusp with rep. $\boldsymbol{g} \in \mathrm{Ni}_{G, \mathrm{C}}^{*, \text { rd }}$ is $\left|(\boldsymbol{g}) \mathrm{Cu}_{4} / \mathcal{Q}^{\prime \prime}\right|-1$.

Part V: Point of connectedness results: Locate where are the p (and other types) of cusps.
Constellations of $\mathcal{H}\left(A_{n}, \mathbf{C}_{3 r}\right)^{\text {abs }}$ [AGLI, §1]

$\stackrel{g \geq 1}{\longrightarrow}$	$\ominus \oplus$	$\ominus \oplus$	\ldots	$\ominus \oplus$	$\ominus \oplus$	$\stackrel{1 \leq g}{\leftrightarrows}$
$\stackrel{g=0}{\longrightarrow}$	\ominus	\oplus	\ldots	\ominus	\oplus	$\stackrel{0=g}{\longleftarrow}$
$n \geq 4$	$n=4$	$n=5$	\ldots	n even	n odd	$4 \leq n$

Theorem 4 (tag $\xrightarrow{g=0}, r=n-1, \quad n \geq 5$). $\mathcal{H}\left(A_{n}, \mathbf{C}_{3^{n-1}}\right)^{\text {in }}$ has one component. Further, $\Psi_{\mathrm{abs}}^{\mathrm{in}}: \mathcal{H}\left(A_{n}, \mathbf{C}_{3^{n-1}}\right)^{\text {in }} \rightarrow \mathcal{H}\left(A_{n}, \mathbf{C}_{3^{n-1}}\right)^{\text {abs }}$ is deg. 2.

Theorem 5 (tag $\xrightarrow{g \geq 1}, r \geq n \geq 5) . \mathcal{H}\left(A_{n}, \mathbf{C}_{3^{r}}\right)^{\text {in }}$ has two components, $\mathcal{H}_{+}\left(A_{n}, \mathbf{C}_{3^{r}}\right)^{\text {in }}$ (symbol \oplus) and $\mathcal{H}_{-}\left(A_{n}, \mathbf{C}_{3^{r}}\right)^{\text {in }}$ (symbol \ominus). Further
$\Psi_{\mathrm{abs}}^{\mathrm{in}, \pm}: \mathcal{H}_{ \pm}\left(A_{n}, \mathbf{C}_{3^{r}}\right)^{\text {in }} \rightarrow \mathcal{H}_{ \pm}\left(A_{n}, \mathbf{C}_{3^{r}}\right)^{\text {abs }}$ has degree 2.
For $n=4$, two 3 -cycle classes $\mathrm{C}_{+3}, \mathrm{C}_{-3}$ in A_{4}, $\mathbf{C}=\mathbf{C}_{+3^{s_{1},-3^{s_{2}}}}: \mathrm{Ni}\left(G, \mathrm{C}_{ \pm 3^{s_{1}}, s_{2}}\right)$ nonempty iff

$$
s_{1}-s_{2} \equiv 0 \bmod 3 \text { and } s_{1}+s_{2}=r .
$$

Frattini covers

Frattini cover $G^{\prime} \rightarrow G$ is a group cover (surjection) with restriction to a proper subgroup not a cover. Get a lifting invariant from a central Frattini cover.

Central Frattini from $A_{n}: \operatorname{Spin}_{n}^{+}$the nonsplit degree 2 cover of the connected component O_{n}^{+}of the orthogonal group. Regard $S_{n} \subset O_{n} ; A_{n} \subset O_{n}^{+}$. Denote pullback of A_{n} to $\operatorname{Spin}_{n}^{+}$by Spin_{n}. Identify $\operatorname{ker}\left(\operatorname{Spin}_{n} \rightarrow A_{n}\right)$ with $\{ \pm 1\}$.

F-S Small lifting invariants ([LUM, $\S 1],[S e r 90 a])$

Odd order $g \in A_{n}$ has a unique odd order lift, $\hat{g} \in \operatorname{Spin}_{n}$. Let $\boldsymbol{g} \in \mathrm{Ni}\left(A_{n}, \mathbf{C}\right)$ with \mathbf{C} odd-order. Small lifting invariant:

$$
s(\boldsymbol{g})=s_{\mathrm{Spin}_{n}}(\boldsymbol{g})=\hat{g}_{1} \cdots \hat{g}_{r} \in\{ \pm 1\} .
$$

For g odd-order, let $w(g)$ by the number of cycles in g with lengths (ℓ) with $\frac{\ell^{2}-1}{8} \equiv 1 \bmod 2$. Theorem 6 (F-S). On any braid orbit, $s(\boldsymbol{g})$ is constant (explains Const. diag. comps). If genus 0 Nielsen class, then $s(\boldsymbol{g})=(-1)^{\sum_{i=1}^{r} w\left(g_{i}\right)}$.

Pure-cycle components

- $g \in S_{n}$ is pure-cycle if exactly one cycle has length >1.
- Nielsen class $\mathrm{Ni}(G, \mathbf{C})^{\text {abs }}$ is pure-cycle if all conjugacy classes are pure-cycle (a d-cycle).
- If d_{1}, \ldots, d_{r} are the pure-cycle lengths, denote the Nielsen class $\operatorname{Ni}\left(G, \mathbf{C}_{d_{1} \cdots d_{r}}\right)^{*}(*$ an equivalence).
Assume $G \leq S_{n}$ transitive and $\mathbf{C}^{S_{n}} \stackrel{\text { def }}{=} \mathbf{C}_{d_{1} \cdots d_{r}}$ image of \mathbf{C} in S_{n}, with d_{i} s all odd. Necessary condition $\mathrm{Ni}(G, \mathbf{C})^{\text {abs }}$ is nonempty: Genus

$$
\mathbf{g}=\mathbf{g}_{d_{1} \cdots d_{r}} \stackrel{\text { def }}{=} \frac{\sum_{i=1}^{r} d-1}{2}-(n-1) \text { is non-negative. }
$$

Liu-Osserman genus 0 result [LOs06]

Theorem 7. If $\boldsymbol{g} \in \operatorname{Ni}\left(G, \mathbf{C}_{d_{1} \cdots d_{r}}\right)$ has genus 0, then $G=A_{n}$, and H_{r} is transitive on it.

Compactify the reduced inner space:

$$
\overline{\mathcal{H}}\left(A_{n}, \mathbf{C}_{d_{1} \cdot d_{2} \cdot d_{3} \cdot d_{4}}\right) \stackrel{\text { in,rd }}{ } \stackrel{\text { def }}{=} \overline{\mathcal{H}}_{n, d_{1} \cdots d_{4}} .
$$

Consider $\left\{\overline{\mathcal{H}}\left(G_{k}\left(A_{n}\right), \mathbf{C}_{d_{1} \cdot d_{2} \cdot d_{3} \cdot d_{4}}\right) \stackrel{\text { in,rd }}{ } \stackrel{\text { def }}{=} \overline{\mathcal{H}}_{n, d_{1} \cdots d_{4}, k}\right\}_{k=0}^{\infty}$ with $G_{k}\left(A_{n}\right) \rightarrow A_{n}$ the universal exponent 2^{k} 2group extension of A_{n}.

Remaining Goal: Give an idea of why the Main Conjecture holds for the Liu-Osserman examples.

Cusp rep listings, $r=4, \mathrm{Ni}_{\left(\frac{n+1}{2}\right)^{\text {abs }}{ }^{4} \text { in }}$, all d_{i} s equal Define $x_{i, j}=(i i+1 \cdots j)$. g-2' cusps ${ }^{2}$ here are shifts of HM reps. $\left(g_{1}, g_{1}^{-1}, g_{2}, g_{2}^{-1}\right)$. Mod conjugation by A_{n} they are

$$
\begin{array}{r}
\mathrm{HM}_{1} \stackrel{\text { def }}{=}\left(x_{\frac{n+1}{2}, 1}, x_{1, \frac{n+1}{2}}, x_{\frac{n+1}{2}, n}, x_{n, \frac{n+1}{2}}\right) \\
\mathrm{HM}_{2}=\left(\mathrm{HM}_{1}\right) q_{1} \stackrel{\text { def }}{=}\left(x_{1, \frac{n+1}{2}}, x_{\frac{n+1}{2}, 1}, x_{\frac{n+1}{2}, n}, x_{n, \frac{n+1}{2}}\right)
\end{array}
$$

Proposition 8. For $n \equiv 5 \bmod 8, \mathrm{HM}_{1}$ and HM_{2} are are not inner equivalent \Longrightarrow one braid orbit on $\mathrm{Ni}\left(A_{n}, \mathbf{C}_{\left(\frac{n+1}{2}\right)^{4}}\right)^{\mathrm{in}}$.

For $n \equiv 1 \bmod 8$, if $h \in S_{n} \backslash A_{n}$, there is no braid between g and $h \boldsymbol{g} h^{-1} \Longrightarrow$ two braid orbits on $\operatorname{Ni}\left(A_{n}, \mathbf{C}_{\left(\frac{n+1}{2}\right)^{4}}\right)^{\text {in }}$.
$\mathrm{Ni}\left(A_{n}, \mathbf{C}_{\left(\frac{n+1}{2}\right)^{4}}\right)^{\text {abs,rd }}$ Table of Cusps reps.(row starts $\left.\operatorname{ord}\left(g_{2} g_{3}\right)\right): \mathrm{HM}_{1}$ and $\boldsymbol{s h}$ applied to $\mathrm{Cu}_{4}\left(\mathrm{HM}_{1}\right)=$ $\left\{\mathrm{HM}_{1, t}=\left(x_{\frac{n+1}{2}, 1}, x_{1+t, \frac{n+1}{2}+t}, x_{\frac{n+1}{2}+t, n+t}, x_{n, \frac{n+1}{2}}\right)\right\}_{t=0}^{n-1}$.
1: $\left(\mathrm{HM}_{1,0}\right) \mathbf{s h}=\left(x_{1, \frac{n+1}{2}}, x_{\frac{n+1}{2}, n}, x_{n, \frac{n+1}{2}}, x_{\frac{n+1}{2}, 1}\right)$
3: $\left(\mathrm{HM}_{1,1}\right) \mathbf{s h}=\left(x_{2, \frac{n+3}{2}},\left(\frac{n+3}{2} \ldots n 1\right), x_{n, \frac{n+1}{2}}, x_{\frac{n+1}{2}, 1}\right)$
5: $\left(\mathrm{HM}_{1,2}\right) \mathbf{s h}=\left(x_{3, \frac{n+5}{2}},\left(\frac{n+5}{2} \ldots n 12\right), x_{n, \frac{n+1}{2}}, x_{\frac{n+1}{2}, 1}\right)$
$\mathrm{n}:\left(\mathrm{HM}_{1, \frac{n-1}{2}}\right) \mathbf{s h}=\left(x_{\frac{n+1}{2} n},\left(n 1 \ldots \frac{n-1}{2}\right), x_{n, \frac{n+1}{2}}, x_{\frac{n+1}{2}, 1}\right)$
$\mathrm{n}:\left(\mathrm{HM}_{1, \frac{n+1}{2}}\right) \mathbf{s h}=\left(\left(\frac{n+3}{2} \ldots n 1\right), x_{1, \frac{n+1}{2}}, x_{n, \frac{n+1}{2}}, x_{\frac{n+1}{2}, 1}\right)$
5: $\left(\mathrm{HM}_{1, n-2}\right) \mathbf{s h}=\left(\left(n-1 n 1 \ldots \frac{n-3}{2}\right), x_{\frac{n-3}{2}, n-2}, x_{n, \frac{n+1}{2}}, x_{\frac{n+1}{2}, 1}\right)$
3: $\left(\mathrm{HM}_{1, n-1}\right) \mathbf{s h}=\left(\left(n 1 \ldots \frac{n-1}{2}\right), x_{\frac{n-1}{2}, n-1}, x_{n, \frac{n+1}{2}}, x_{\frac{n+1}{2}, 1}\right)$
sh-incidence Matrix: $r=4$ and $\mathrm{Ni}_{3^{4}}^{\mathrm{in}, \mathrm{rd}}$
Pairing on Cu_{4} orbits: $\quad\left(O, O^{\prime}\right) \mapsto \mid O \cap\left(O^{\prime}\right)$ sh|. $\quad O_{5,5 ; 2}$ (resp. $O_{1,2}$) indicates 2 nd $\mathbf{m p r} 5$, width 5 (resp. only mpr 1 , width 2) orbit. sh-incidence gives $\overline{\mathcal{H}}\left(A_{5}, \mathrm{C}_{3^{4}}\right)^{\text {in,rd }}$ has genus 0 :

$$
2(18+\mathbf{g}-1)=2 \cdot 18 / 3+18 / 2+(1+2 \cdot 2+2 \cdot 4) \Longrightarrow \mathbf{g}=0 .
$$

Orbit	$O_{5,5 ; 1}$	$O_{5,5 ; 2}$	$O_{3,3 ; 1}$	$O_{3,3 ; 2}$	$O_{1,2}$
$O_{5,5 ; 1}$	0	2	1	1	1
$O_{5,5 ; 2}$	2	0	1	1	1
$O_{3,3 ; 1}$	1	1	0	1	0
$O_{3,3 ; 2}$	1	1	1	0	0
$O_{1,2}$	1	1	0	0	0

Complete orbit for $\bar{M}_{4}=\left\langle\mathbf{s h}, \gamma_{\infty}\right\rangle$ on $\mathrm{Ni}_{3^{4}}^{\text {in,rd }}$ in 2-steps: Apply $\left(\mathbf{s h} \circ \mathrm{Cu}_{4}\right)^{2}$ to H-M rep.

Cusp Tree Conclusions in Liu-Osserman cases

Apply F-S lift inv. to $\left(g_{2}, g_{3},\left(g_{2} g_{3}\right)^{-1}\right)$ for $\mathrm{Ni}_{3} 4$: Level 0 o- 2^{\prime} cusps $O_{5,5, \bullet}$ and $O_{3,3, \bullet}$ have only 2 cusps above them: ($A_{5}, \mathrm{C}_{3^{4}}, p=2$) cusp tree has only $\mathrm{g}-2^{\prime}$ or 2 cusp branches.
Theorem 9. If a cusp branch is both $H-M$ and p, then MT cusp tree contains a spire: a modular curve cusp tree \Longrightarrow Main Conjecture holds. At level 1, holds for ($L-O$) $n=5$, but not for $n=9$.

Fried-Serre Lifting Invariant formula

Level 0 Dilemma: $\operatorname{ord}\left(g_{2} g_{3}\right)=\ell$ in each line of Table p. 26 is odd: no 2 cusps at level 0.

Help by Level 1: The exact condition for each cusp at level 1 above the cusp in Table p. 26 to be a 2 cusp is that $\frac{\ell^{2}-1}{8} \equiv 1 \bmod 2$.

Main Conjecture?: $n=5, \ell \in\{1,3,3,5,5\}$, so four (>3) 2 cusps ($\frac{3^{2}-1}{2} \equiv \frac{5^{2}-1}{2} \equiv 1 \bmod 2$).

$$
n=9, \ell \in\{1,3,5,7,9\}: \text { two } 2 \text { cusps }(\Leftrightarrow \ell=3,5) \text { at level }
$$

1 for certain, but above cusps with middle products 7 and 9 , not clear there is a 2 cusp. Need more info on level 1 cusps.

Connections between 3 arithmetic problems

 MT/RIGP/STC using A_{5}[STMT] Strong Tors. Conj. \Longrightarrow Main MT Conj. and $(\sim \Leftrightarrow)$. Ram $_{r_{0}}$: Choose any r_{0}. For $k \geq 0$, use covers in $\operatorname{Ni}\left(G_{k}, \mathbf{C}_{k}\right)$ with at most r_{0} classes in \mathbf{C}_{k}.
Question 10 ($\operatorname{RIGP}\left(A_{5}, p=2, r_{0}\right)$ Quest.). Is there r_{0}, so the RIGP holds for all G_{k} s from covers in $\operatorname{Ram}_{r_{0}}$?
Theorem 11. If the answer is "Yes!,"then there are 2^{\prime} conjugacy classes C (no more than r_{0}) in G, and a projective system $\left\{\mathcal{H}_{k}^{\prime} \subset \mathcal{H}\left(G_{k}, \mathbf{C}\right)^{\text {in,rd }}\right\}_{k=0}^{\infty}$ (a Modular Tower component branch over \mathbb{Q}) each having $a \mathbb{Q}$ point ([D06] [FrK97]).

All $\mathrm{Ni}_{\left(\frac{n+1}{2}\right)^{4}}$ satisfy Main Conjecture for $p=2$ All odd $1, \ldots, n$ on left side of Table, p . 22, so number of 2 cusps at level 1 goes up with with n. For $n=17$ get ≥ 2 more: $\frac{11^{2}-1}{8} \equiv \frac{13^{2}-1}{8} \equiv 1 \bmod 2$.

MTs encodes a huge portion of the RIGP into questions about towers of varieties (MTs). A simple ramification assumption on regular realizations forces K points at all tower levels on some MT. Generalization of Mazur-Merel implies this should be impossible: STC \Longrightarrow MC (Cadoret, [STMT]). So, if STC holds, the ramification assumption must be wrong.
Question 12. When is there an umbrella result for both the Fried + L-O cases?

Appendix A: Using Lifting Invariant on p. 19
List of 3-tuples ($g_{2}, g_{3},\left(g_{2} g_{3}\right)^{-1}$), with parameter $1 \leq k \leq \frac{n-1}{2}$:

- $\operatorname{ord}\left(g_{2} g_{3}\right)=2 k+1$; and $\left\langle g_{2}, g_{3}\right\rangle$ is isomorphic to $A_{k+\frac{n+1}{2}}$.
[LUM, Fratt. Princ. 3]: Since 2 part of the Schur multiplier of A_{n} is just $\mathbb{Z} / 2$, all cusps at level 1 above an o- 2^{\prime} cusp are 2 -cusps if and only if $s_{\text {Spin }_{n} / A_{n}}\left(g_{2}, g_{3},\left(g_{2} g_{3}\right)^{-1}\right)=-1$. Apply F-S formula (p. 9): In each case $\left(g_{2}, g_{3},\left(g_{2} g_{3}\right)^{-1}\right)$ has genus 0 . So lifting invariant satisfies: $k \Longrightarrow(-1)^{\frac{(2 k+1)^{2}-1}{2}}$. Example: $n=9, k=1 \Longrightarrow-1,2 \Longrightarrow-1,3 \Longrightarrow+1,4 \Longrightarrow+1$.

Appendix B: Why I took all the d_{i} s equal

Basic Conjecture: A MT whose levels are uniformly defined over one number field is defined by a $g-p^{\prime}$ cusp branch [LUM, Conj. 1.5] (evidence in [LUM, §4.4].

Group theory: Odd pure-cycles generate an alternating (or cyclic) group \Longrightarrow a g-2' cusp must be an $\mathrm{H}-\mathrm{M}$ rep. $\Longrightarrow d_{i} \mathrm{~s}$ equal in pairs. So, dealing with $\left\{\mathcal{H}_{n, d_{1}^{2} \cdot d_{2}^{2}, k}\right\}_{k=0}^{\infty}$.

Case of $\left\{\overline{\mathcal{H}}_{n, d_{1}^{2} \cdot d_{2}^{2}, k}^{\prime}\right\}_{k=0}^{\infty}$ where $d_{1} \neq d_{2}$. Fact: Genus of $\overline{\mathcal{H}}_{n, d_{1}^{2} \cdot d_{2}^{2}, 0}$ exceeds 0 . One possibility: All $\mathcal{H}_{n, d_{1}^{2} \cdot d_{2}^{2}, k} \mathrm{~s}$ are the same space. Producing a single 2 -cusp, however, at level 1 excludes this: so, the same argument works.

Abbreviated References: [LUM] has much more

[BFr02]P. Bailey and M. D. Fried, Hurwitz monodromy, spin separation and higher levels of a Modular Tower, in Proceed. of Symposia in Pure Math. 70 (2002) editors M. Fried and Y. Ihara, 1999 von Neumann Symposium, August 16-27, 1999 MSRI, 79-221.
[STMT]A. Cadoret, Modular Towers and Torsion on Abelian Varieties, preprint May, 2006.
[D06]P. Dèbes, Modular Towers: Construction and Diophantine Questions, same vol. as [LUM].
[Def-Lst]Select from the list in www.math.uci.edu/conffiles_rims/deflist-mt/full-deflist-mt.html of present MTrelated definitions. 09/05/06 examples: Branch-Cycle-Lem CFPV-Thm Cusp-Comp-Tree FS-Lift-Inv Hurwitz-Spaces Main-MT-Conj Modular-Towers Nielsen-Classes RIGP Strong-Tors-Conj mt-rigp-stc p-Poincare-Dual sh-Inc-Mat. A similar URL, www.math.uci.edu/conffiles_rims/deflist-mt/full-paplistmt.html, is a repository for not just mine, but also of the growing list of those joining the MT project.
[FrK97]M. Fried and Y. Kopeliovic, Applying Modular Towers to the inverse Galois problem, Geometric Galois Actions II Dessins d'Enfants, Mapping Class Groups . . . , vol. 243, Cambridge U. Press, 1997, London Math. Soc. Lecture Notes, 172-197.
[Fr77]M. Fried, Fields of definition of function fields and Hurwitz families and groups as Galois groups, Communications in Algebra 5 (1977), 17-82.
[FrV]Michael D. Fried and Helmut Völklein, The inverse Galois problem and rational points on moduli spaces, Math. Ann. 290 (1991), no. 4, 771-800.
[LUM]M. D. Fried, The Main Conjecture of Modular Towers and its higher rank generalization, in Groupes de Galois arithmetiques et differentiels (Luminy 2004; eds. D. Bertrand and P. Dèbes), Seminaires et Congres, 13 (2006), 165-230.
[AGLI]M. D. Fried, Alternating groups and lifting invariants, (2006), 1-36.
[LOs06]F. Liu and B. Osserman, The Irreducibility of Certain Pure-cycle Hurwitz Spaces, preprint as of August 10, 2006.
[Ser90a].-P. Serre, Relêvements dans \tilde{A}_{n}, C. R. Acad. Sci. Paris 311 (1990), 477-482.
[We]T. Weigel, Maximal p-frattini quotients of p-poincare duality groups of dimension 2, volume for O.H. Kegel on his 70th birthday, Arkiv der Mathematik-Basel, 2005.

