Finite group theory and Connectedness of moduli spaces of Riemann Surface covers Mike Fried, UCI and MSU-Billings 03/27/07

 $\texttt{http://math.uci.edu/~mfried} \rightarrow \S1.a \rightarrow \# \text{ Generalizing modular curve properties to Modular Towers}$

 \rightarrow #1 mt-overview.html

Let $\varphi: X \to \mathbb{P}^1_z$ be a function on a Riemann surface X, with

- φ Galois having group G. Then, φ defines these quantities:
- Unordered branch points *z* = {*z*₁,...,*z_r*} ∈ *U_r* (undered distinct points on P¹_z);
- Conjugacy classes $\mathbf{C} = \{C_1, \dots, C_r\}$ in G; and
- A Poincaré extension of groups:

$$\psi_{\varphi}: M_{\varphi} \to G \text{ with } \ker_{\psi} \stackrel{\text{def}}{=} \ker(M_{\varphi} \to G) = \pi_1(X).$$

Using Classical Generators of $\pi_1(\mathbb{P}^1_z \setminus z, z_0)$ Denote $(\mathcal{P}_1, \ldots, \mathcal{P}_r)$ (see App. A) \mapsto an isotopy class of r generators $\bar{g} = (\bar{g}_1, \ldots, \bar{g}_r)$. Refer to their images in M_{φ} also as \bar{g} , and their images in G by $(g_1, \ldots, g_r) = g$. Then, g is in the Nielsen class of (G, \mathbb{C}) :

 $\operatorname{Ni}(G, \mathbf{C}) \stackrel{\text{def}}{=} \{ \boldsymbol{g} \in \mathbf{C} \mid \langle \boldsymbol{g} \rangle = G, \Pi(\boldsymbol{g}) \stackrel{\text{def}}{=} g_1 \cdots g_r = 1 \}.$

Notion: Given classical generators \bar{g} of M_{φ} , rename it $M_{\bar{g}}$: ψ_{φ} becomes $\psi_{g}: M_{\bar{g}} \to G$, by $\bar{g}_{i} \mapsto g_{i}$.

– Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

Part I: E(xtension) P(roblem) (Item #1 below) Given (g, C), and a prime p:

- 1. When does ψ_g extend to all $H \to G \to 1$ with *p*-group kernel? Abelianized version (App. C): To all H with ker $(H \to G)$ abelian.
- 2. How does this depend on g?
- 3. What equivalence relation on extensions gives a reasonable description of all cases?
- 4. Why should this concern mathematics?

Non-obvious Reductions

- Complete $M_{\bar{g}}$ so $\ker_{\psi_{\varphi}} = \text{pro-}p \text{ completion of } \pi_1(X)$.
- Restrict in #1 (p. 3) to *p*-Frattini covers of *G*.
- Any $g \in \mathbf{C}$ must have order prime to p.
- G is p-perfect (no \mathbb{Z}/p quotient; or #1 impossible).

Equivalent: When are all *p*-Frattini covers $H \rightarrow G \rightarrow 1$ achieved by unramified extensions $Y_H \rightarrow X$?

Deformation equivalence of extensions

If φ were a cyclic cover of \mathbb{P}^1 , we could write it by hand. It isn't. Further, why deal one cover at-a-time? Consider all covers with (G, \mathbb{C}) as their data: In the Nielsen class.

Deformation Conclusion: Can always start by fixing branch points z^0 . Any cover (with branch points $z \in U_r$; r unordered points in \mathbb{P}^1_z) deforms to a cover with branch points z^0 . Then, $M_{\bar{g}}$ and any of its extension properties deform with it. One cover defines a family: $\varphi : X \to \mathbb{P}^1_z \Longrightarrow$ 1. Permutation representation of $\pi_1(U_r, \mathbf{z}^0) \stackrel{\text{def}}{=} H_r$ *Hurwitz monodromy* on orbit $\operatorname{Ni}'_{\varphi}$ — independent of classical generators — of $[\varphi] \in \operatorname{Ni}(G, \mathbb{C})$.

2. An unramified connected cover $\mathcal{H}(G, \mathbf{C})_{\varphi} \to U_r$: Hurwitz space component containing φ . Equivalences of covers and Nielsen classes.

$$[\mathsf{Abs.}] \hspace{0.1cm} \varphi' : \hspace{-0.1cm} X' \to \mathbb{P}^1_z \hspace{-0.1cm} \sim \hspace{-0.1cm} \varphi \Leftrightarrow \hspace{-0.1cm} \boldsymbol{g} = h \boldsymbol{g}' h^{-1}, h \in N_{S_n, \mathbf{C}}(G).$$

 $[\mathsf{Inn.}] \varphi \text{ Galois with } \mu : \operatorname{Aut}(X/\mathbb{P}^1_z) \xrightarrow{\mathsf{isom}} G \sim (\varphi', u') \Leftrightarrow$ $\boldsymbol{g} = h \boldsymbol{g}' h^{-1}, h \in G.$

Braid equivalence of extensions

 H_r has two generators given by their action on \bar{g} :

- Shift: $\mathbf{sh} : \overline{\mathbf{g}} \mapsto (\overline{g}_2, \dots, \overline{g}_r, \overline{g}_1)$; and
- 2ndTwist: $q_2: \overline{\boldsymbol{g}} \mapsto (\overline{g}_1, \overline{g}_2 \overline{g}_3 \overline{g}_2^{-1}, \overline{g}_2, \overline{g}_4, \dots): q_{i+2} \stackrel{\text{def}}{=} \mathbf{sh}^i q_2 \mathbf{sh}^{-i}.$

Braid Comments: H_r is automorphism group of $\pi_1(\mathbb{P}^1_z \setminus z^0, z_0)$ preserving classical generators. It acts compatibly on these:

- Inner Nielsen Classes: $Ni(G, \mathbf{C})/G \stackrel{\text{def}}{=} Ni^{\text{in}}$
- Absolute Nielsen classes: $\operatorname{Ni}(G, \mathbf{C})/N_{S_n}(G) \stackrel{\text{def}}{=} \operatorname{Ni}^{\operatorname{abs}}$ (given $G \leq S_n$ a permutation representation)
- Poincaré extensions: $\psi_{\pmb{g}}:M_{\bar{\pmb{g}}}\to G,\ preserving\ extension$ properties of $\psi_{\pmb{g}}$

Part II: Introduction to/Existence of Modular Towers GOAL 1: Given (G, \mathbf{C}, p) , understand projective systems of H_r orbits acting on $\{Ni(H, \mathbf{C})^{in}\}_{H\to G}$ (lift \mathbf{C} uniquely to p' conjugacy classes in H): Running over p-Frattini covers $H \to G$.

Reduction: Take $G_1 \rightarrow G = G_0$ to be the maximal *p*-Frattini cover of *G* with elementary *p* group kernel. Let $G_{k+1} = G_1(G_k)$. In GOAL 1 need only the case *H* runs over the G_k s.

Def: M(odular) T(ower): A projective system $\{O_k = H_r(\boldsymbol{g}_k)\}_{k=0}^{\infty}$ of H_r orbits on $\{\operatorname{Ni}(G_k, \mathbf{C})^{\operatorname{in}}\}_{k=0}^{\infty}$.

– Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

Inductive Existence of a MT: [Lum, Cor. 4.19], [We] Let $\mu_k : R_k \to G_k$ be the universal exponent pcentral extension of G_k :

- $G_{k+1} \rightarrow G_k$ factors through μ_k .
- $\ker(R_k \to G_k) = \max$. elementary *p*-quotient of G_k s Schur multiplier.

Proposition 1 (App. C– Abel. Vers.). If p-perfect G has no p-center, then neither does G_k , $k \ge 1$.

 $H_r(\boldsymbol{g}_k) \subset \operatorname{Ni}(G_k, \mathbf{C})^{\operatorname{in}}$ is in the image of $\operatorname{Ni}(G_{k+1}, \mathbf{C})^{\operatorname{in}} \Leftrightarrow$ \boldsymbol{g}_k is in the image of $\operatorname{Ni}(R_k, \mathbf{C}) \Leftrightarrow H_r$ orbit of $M_{\boldsymbol{g}} \to G$ extends through all G_k .

Part III: Cusps and the p Cusp Problem Cusp on an H_r orbit $O \subset Ni(G, \mathbb{C})$:

- $r \geq 5$: An orbit of $\operatorname{Cu}_r = \langle q_2 \rangle$
- r = 4: An orbit of $Cu_4 = \langle q_2, \mathbf{sh}^2, q_1q_3^{-1} \rangle$.

Essential data is from conjugacy class of $Cu_r \implies$ can substitute q_i for q_2 . MiddleProduct: $(g_1, g_2, g_3, g_4) \mapsto \operatorname{ord}(g_2g_3) \stackrel{\text{def}}{=} (\boldsymbol{g})$ mpr.

p cusp: represented by $g \in O$ for which $p^{\mu_p(g)}||(g)$ mpr, $\mu_p(g) > 0$ (*p*-mult. of g).

Other cusp types for r = 4 (App. B for r > 4)

• g(roup)-
$$p'$$
: $U_{1,4}(\boldsymbol{g}) = \langle g_1, g_4 \rangle$ and $U_{2,3}(\boldsymbol{g}) = \langle g_2, g_3 \rangle$ are p' groups

o(nly)-p': Not a p cusp, but U_{1,4}(g) or U_{2,3}(g) not p'.
GOAL 2: Given a MT, {O_k ⊂ Ni(G_k, C)ⁱⁿ}[∞]_{k=0}, classify when there is a p cusp on O_k for k >> 0.
Proposition 2 (g-p' MT). If O₀ has a g-p' cusp, then a MT, O = {O_k ⊂ Ni(G_k, C)ⁱⁿ}[∞]_{k=0}, lies over it.

Part IV: MT Geometric correspondence $\mathcal{O} = \{O_k \subset \operatorname{Ni}(G_k, \mathbb{C})^{\operatorname{in}}\}_{k=0}^{\infty} \Leftrightarrow \{\mathcal{H}'_k\}_{k=0}^{\infty} \text{ where:}$

- \mathcal{H}'_k s are (normal) absolutely irreducible algebraic varieties (dim=r-3);
- Cusps at level k correspond to divisors on the normal compactification $\bar{\mathcal{H}}'_k.$
- ${}_{0}\boldsymbol{g} \in O_{0} \text{ a } p \text{ cusp} \implies \mu_{p}({}_{k}\boldsymbol{g}) = k + \mu_{p}({}_{0}\boldsymbol{g}).$ Gives order of p dividing ramification index of the divisor.
- r = 4: \mathcal{H}'_k , upper-half plane quotient, *j*-line cover, ramific. order dividing 3 (resp. 2) over 0 (resp. 1).

Inner (resp. absolute) Reduced spaces [BFr02, §2] Reduced equiv.: $\varphi : X \to \mathbb{P}^1_z \sim \beta \circ \varphi, \beta \in \mathrm{PGL}_2(\mathbb{C}).$ *j*-invariant: $z \in U_4 \mapsto j_z \in U_\infty \stackrel{\mathrm{def}}{=} \mathbb{P}^1_j \setminus \{\infty\}$ of z. Normalize so j = 0 and 1 are *elliptic points*: j_z with more than a Klein 4-group stabilizer in $\mathrm{PGL}_2(\mathbb{C})$.

Let $Q'' = \langle (q_1q_2q_3)^2 = \mathbf{sh}^2, q_1q_3^{-1} \rangle \leq H_4$. Reduced classes of covers with *j*-invariant

 $j' \in U_{\infty} \Leftrightarrow$ elements of reduced Nielsen classes: Ni $(G, \mathbf{C})^* / \mathcal{Q}''$ (where * = in or abs).

 H_4 on reduced Nielsen classes factors through the mapping class group: $\overline{M}_4 \stackrel{\text{def}}{=} H_4/\mathcal{Q}'' \equiv \mathrm{PSL}_2(\mathbb{Z}).$

$p\ {\sf Cusps}$ and Main ${\rm MT}\ {\sf Conjecture}$

Main Conj.: K a number field, then $\mathcal{H}'_k(K) = \emptyset$ for k >> 0. For r = 4, let g'_k be the genus of $\overline{\mathcal{H}}'_k$. **Proposition 3.** If $g'_0 > 0$, (resp. = 0) and, for some k, \mathcal{H}'_k has a p cusp (resp. three p cusps), then Main Conj. holds for \mathcal{O} .

$$ar{M}_4 = \langle \gamma_0, \gamma_1, \gamma_\infty \rangle, q_1 q_2 \mapsto \gamma_0 \text{ (order 3)},$$

 $\mathbf{shift} = q_1 q_2 q_3 \mapsto \gamma_1 \text{ (order 2)},$
 $q_2 \mapsto \gamma_\infty \ (j = \infty \text{ monodromy generator}),$
 $\mathbf{satisfying the product-one relation: } \gamma_0 \gamma_1 \gamma_\infty = 1.$

– Typeset by Foil $T_{\!E\!} \! \mathrm{X}$ –

Riemann-Hurwitz on components

Interpret R-H: Denote $(\gamma_0, \gamma_1, \gamma_\infty)$ acting on an H_r orbit $O' \leq \operatorname{Ni}(G, \mathbb{C})^{*, \operatorname{rd}}$ by $(\gamma'_0, \gamma'_1, \gamma'_\infty)$, branch cycles for $\overline{\mathcal{H}}' \to \mathbb{P}^1_j$ corresponding to O'.

- Points over 0 (resp. 1) \Leftrightarrow orbits of γ_0 (resp. γ_1).
- The index contribution $\operatorname{ind}(\gamma_{\infty})$ from a cusp with rep. $\boldsymbol{g} \in \operatorname{Ni}_{G,\mathbf{C}}^{*,\operatorname{rd}}$ is $|(\boldsymbol{g})\operatorname{Cu}_4/\mathcal{Q}''| 1$.

Part V: Point of connectedness results: Locate where are the p (and other types) of cusps. Constellations of $\mathcal{H}(A_n, \mathbf{C}_{3^r})^{\text{abs}}$ [AGLI, §1]

$\xrightarrow{g \ge 1}$	$\ominus \oplus$	$\ominus \oplus$	 $\ominus \oplus$	$\ominus \oplus$	$\stackrel{1 \leq g}{\longleftarrow}$
$\xrightarrow{g=0}$	\ominus	\bigoplus	 \ominus	\bigoplus	$\stackrel{0=g}{\longleftarrow}$
$n \ge 4$	n = 4	n = 5	 n even	$n \; odd$	$4 \le n$

Theorem 4 (tag $\xrightarrow{g=0}$, r = n - 1, $n \geq 5$). $\mathcal{H}(A_n, \mathbf{C}_{3^{n-1}})^{\text{in}}$ has one component. Further, $\Psi_{\text{abs}}^{\text{in}} : \mathcal{H}(A_n, \mathbf{C}_{3^{n-1}})^{\text{in}} \to \mathcal{H}(A_n, \mathbf{C}_{3^{n-1}})^{\text{abs}}$ is deg. 2.

Theorem 5 (tag $\xrightarrow{g \ge 1}$, $r \ge n \ge 5$). $\mathcal{H}(A_n, \mathbf{C}_{3^r})^{\text{in}}$ has two components, $\mathcal{H}_+(A_n, \mathbf{C}_{3^r})^{\text{in}}$ (symbol \oplus) and $\mathcal{H}_-(A_n, \mathbf{C}_{3^r})^{\text{in}}$ (symbol \ominus). Further

$$\begin{split} \Psi_{\text{abs}}^{\text{in},\pm} &: \mathcal{H}_{\pm}(A_n, \mathbf{C}_{3^r})^{\text{in}} \to \mathcal{H}_{\pm}(A_n, \mathbf{C}_{3^r})^{\text{abs}} \text{ has degree } 2. \\ \text{For } n = 4, \text{ two 3-cycle classes } \mathcal{C}_{+3}, \mathcal{C}_{-3} \text{ in } A_4, \\ \mathbf{C} &= \mathbf{C}_{+3^{s_1} \cdot -3^{s_2}} \colon \operatorname{Ni}(G, \mathcal{C}_{\pm 3^{s_1} \cdot s_2}) \text{ nonempty iff} \end{split}$$

$$s_1 - s_2 \equiv 0 \mod 3$$
 and $s_1 + s_2 = r$.

– Typeset by Foil $T_{\!E\!} X$ –

Frattini covers

Frattini cover $G' \rightarrow G$ is a group cover (surjection) with restriction to a proper subgroup not a cover. Get a lifting invariant from a *central* Frattini cover.

Central Frattini from A_n : Spin_n^+ the nonsplit degree 2 cover of the connected component O_n^+ of the orthogonal group. Regard $S_n \subset O_n$; $A_n \subset O_n^+$. Denote pullback of A_n to Spin_n^+ by Spin_n . Identify $\operatorname{ker}(\operatorname{Spin}_n \to A_n)$ with $\{\pm 1\}$. F-S Small lifting invariants ([LUM,§1], [Ser90a]) Odd order $g \in A_n$ has a unique odd order lift, $\hat{g} \in \text{Spin}_n$. Let $\boldsymbol{g} \in \text{Ni}(A_n, \mathbf{C})$ with \mathbf{C} odd-order. Small lifting invariant:

$$s(\boldsymbol{g}) = s_{\operatorname{Spin}_n}(\boldsymbol{g}) = \hat{g}_1 \cdots \hat{g}_r \in \{\pm 1\}.$$

For g odd-order, let w(g) by the number of cycles in g with lengths (ℓ) with $\frac{\ell^2-1}{8} \equiv 1 \mod 2$. **Theorem 6 (F-S).** On any braid orbit, s(g) is constant (explains Const. diag. comps). If genus 0 Nielsen class, then $s(g) = (-1)^{\sum_{i=1}^{r} w(g_i)}$.

Pure-cycle components

- $g \in S_n$ is *pure-cycle* if exactly one cycle has length > 1.
- Nielsen class Ni(G, C)^{abs} is *pure-cycle* if all conjugacy classes are pure-cycle (a *d*-cycle).
- If d₁,..., d_r are the pure-cycle lengths, denote the Nielsen class Ni(G, C_{d1}...d_r)* (* an equivalence).

Assume $G \leq S_n$ transitive and $\mathbf{C}^{S_n} \stackrel{\text{def}}{=} \mathbf{C}_{d_1 \cdots d_r}$ image of \mathbf{C} in S_n , with d_i s all odd. Necessary condition $\operatorname{Ni}(G, \mathbf{C})^{\operatorname{abs}}$ is nonempty: Genus

$$\mathbf{g} = \mathbf{g}_{d_1 \cdots d_r} \stackrel{\text{def}}{=} \frac{\sum_{i=1}^r d - 1}{2} - (n-1) \text{ is non-negative.}$$

Liu-Osserman genus 0 result [LOs06] Theorem 7. If $g \in Ni(G, C_{d_1 \cdots d_r})$ has genus 0, then $G = A_n$, and H_r is transitive on it. Compactify the reduced inner space:

 $\bar{\mathcal{H}}(A_n, \mathbf{C}_{d_1 \cdot d_2 \cdot d_3 \cdot d_4})^{\text{in,rd}} \stackrel{\text{def}}{=} \bar{\mathcal{H}}_{n, d_1 \cdots d_4}.$ Consider $\{\bar{\mathcal{H}}(G_k(A_n), \mathbf{C}_{d_1 \cdot d_2 \cdot d_3 \cdot d_4})^{\text{in,rd}} \stackrel{\text{def}}{=} \bar{\mathcal{H}}_{n, d_1 \cdots d_4, k}\}_{k=0}^{\infty}$ with $G_k(A_n) \to A_n$ the universal exponent 2^k 2group extension of A_n .

Remaining Goal: Give an idea of why the Main Conjecture holds for the Liu-Osserman examples.

Cusp rep listings, r = 4, $\operatorname{Ni}_{(\frac{n+1}{2})^4}^{\operatorname{abs or in}}$, all d_i s equal Define $x_{i,j} = (i \, i + 1 \cdots j)$. g-2' cusps here are shifts of HM reps. $(g_1, g_1^{-1}, g_2, g_2^{-1})$. Mod conjugation by A_n they are

$$HM_{1} \stackrel{\text{def}}{=} (x_{\frac{n+1}{2},1}, x_{1,\frac{n+1}{2}}, x_{\frac{n+1}{2},n}, x_{n,\frac{n+1}{2}})$$
$$HM_{2} = (HM_{1})q_{1} \stackrel{\text{def}}{=} (x_{1,\frac{n+1}{2}}, x_{\frac{n+1}{2},1}, x_{\frac{n+1}{2},n}, x_{n,\frac{n+1}{2}})$$

Proposition 8. For $n \equiv 5 \mod 8$, HM_1 and HM_2 are are not inner equivalent \implies one braid orbit on $\operatorname{Ni}(A_n, \mathsf{C}_{(\frac{n+1}{2})^4})^{\operatorname{in}}$. For $n \equiv 1 \mod 8$, if $h \in S_n \setminus A_n$, there is no braid between g and $hgh^{-1} \implies$ two braid orbits on $\operatorname{Ni}(A_n, \mathsf{C}_{(\frac{n+1}{2})^4})^{\operatorname{in}}$.

– Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

$$\begin{split} \text{Ni}(A_n, \mathbf{C}_{(\frac{n+1}{2})^4})^{\text{abs,rd}} \text{ Table of Cusps reps.}(\text{row starts} \\ & \text{ord}(g_2g_3)): \text{ HM}_1 \text{ and } \mathbf{sh} \text{ applied to } \text{Cu}_4(\text{HM}_1) = \\ \{\text{HM}_{1,t} = (x_{\frac{n+1}{2},1}, x_{1+t,\frac{n+1}{2}+t}, x_{\frac{n+1}{2}+t,n+t}, x_{n,\frac{n+1}{2}})\}_{t=0}^{n-1}. \\ 1: (\text{HM}_{1,0})\mathbf{sh} = (x_{1,\frac{n+1}{2}}, x_{\frac{n+1}{2},n}, x_{n,\frac{n+1}{2}}, x_{\frac{n+1}{2},1}) \\ 3: (\text{HM}_{1,1})\mathbf{sh} = (x_{2,\frac{n+3}{2}}, (\frac{n+3}{2} \dots n 1), x_{n,\frac{n+1}{2}}, x_{\frac{n+1}{2},1}) \\ 5: (\text{HM}_{1,2})\mathbf{sh} = (x_{3,\frac{n+5}{2}}, (\frac{n+5}{2} \dots n 12), x_{n,\frac{n+1}{2}}, x_{\frac{n+1}{2},1}) \\ & \dots \end{split}$$

n:
$$(HM_{1,\frac{n-1}{2}})$$
sh = $(x_{\frac{n+1}{2}n}, (n \ 1 \ \dots \ \frac{n-1}{2}), x_{n,\frac{n+1}{2}}, x_{\frac{n+1}{2},1})$
n: $(HM_{1,\frac{n+1}{2}})$ **sh** = $((\frac{n+3}{2} \ \dots \ n \ 1), x_{1,\frac{n+1}{2}}, x_{n,\frac{n+1}{2}}, x_{\frac{n+1}{2},1})$
...

5:
$$(\text{HM}_{1,n-2})$$
sh = $((n-1 n 1 \dots \frac{n-3}{2}), x_{\frac{n-3}{2},n-2}, x_{n,\frac{n+1}{2}}, x_{\frac{n+1}{2},1})$

3:
$$(HM_{1,n-1})$$
sh = $((n \ 1 \ \dots \ \frac{n-1}{2}), x_{\frac{n-1}{2},n-1}, x_{n,\frac{n+1}{2}}, x_{\frac{n+1}{2},1})$

sh-incidence Matrix: r = 4 and $\operatorname{Ni}_{34}^{\operatorname{in,rd}}$ Pairing on Cu₄ orbits: $(O, O') \mapsto |O \cap (O')\mathbf{sh}|$. $O_{5,5;2}$ (resp. $O_{1,2}$) indicates 2nd mpr 5, width 5 (resp. only mpr 1, width 2) orbit. sh-incidence gives $\overline{\mathcal{H}}(A_5, \mathbf{C}_{34})^{\operatorname{in,rd}}$ has genus 0: $2(18 + \mathbf{g} - 1) = 2 \cdot 18/3 + 18/2 + (1 + 2 \cdot 2 + 2 \cdot 4) \implies \mathbf{g} = 0.$

Orbit	$O_{5,5;1}$	$O_{5,5;2}$	$O_{3,3;1}$	$O_{3,3;2}$	$O_{1,2}$
$O_{5,5;1}$	0	2	1	1	1
$O_{5,5;2}$	2	0	1	1	1
$O_{3,3;1}$	1	1	0	1	0
$O_{3,3;2}$	1	1	1	0	0
$O_{1,2}$	1	1	0	0	0

Complete orbit for $\overline{M}_4 = \langle \mathbf{sh}, \gamma_{\infty} \rangle$ on $\operatorname{Ni}_{3^4}^{\operatorname{in}, \operatorname{rd}}$ in 2-steps: Apply $(\mathbf{sh} \circ \operatorname{Cu}_4)^2$ to H-M rep.

Cusp Tree Conclusions in Liu-Osserman cases

Apply F-S lift inv. to $(g_2, g_3, (g_2g_3)^{-1})$ for Ni₃₄: Level 0 o-2' cusps $O_{5,5,\bullet}$ and $O_{3,3,\bullet}$ have only 2 cusps above them: $(A_5, \mathbf{C}_{3^4}, p = 2)$ cusp tree has only g-2' or 2 cusp branches. **Theorem 9.** If a cusp branch is both H-M and p, then MT cusp tree contains a spire: a modular curve cusp tree \Longrightarrow Main Conjecture holds. At level 1, holds for (L-O) n = 5, but not for n = 9.

Fried-Serre Lifting Invariant formula

Level 0 Dilemma: $\operatorname{ord}(g_2g_3) = \ell$ in each line of **Table** p. 26 is odd: no 2 cusps at level 0.

Help by Level 1: The exact condition for each cusp at level 1 above the cusp in **Table** p. 26 to be a 2 cusp is that $\frac{\ell^2 - 1}{8} \equiv 1 \mod 2$. Main Conjecture?: $n = 5, \ell \in \{1, 3, 3, 5, 5\}$, so four (> 3) 2

cusps $(\frac{3^2-1}{2} \equiv \frac{5^2-1}{2} \equiv 1 \mod 2).$

 $n = 9, \ \ell \in \{1, 3, 5, 7, 9\}$: two 2 cusps ($\Leftrightarrow \ell = 3, 5$) at level 1 for certain, but above cusps with middle products 7 and 9, not clear there is a 2 cusp. Need more info on level 1 cusps.

Connections between 3 arithmetic problems MT/RIGP/STC using A_5

[STMT] Strong Tors. Conj. \Longrightarrow Main MT Conj. and ($\sim \Leftrightarrow$). Ram_{r0}: Choose any r_0 . For $k \ge 0$, use covers in Ni(G_k, \mathbf{C}_k) with at most r_0 classes in \mathbf{C}_k .

Question 10 (RIGP($A_5, p=2, r_0$) Quest.). Is there r_0 , so the RIGP holds for all G_k s from covers in Ram_{r_0} ?

Theorem 11. If the answer is "Yes!,"then there are 2' conjugacy classes C (no more than r_0) in G, and a projective system $\{\mathcal{H}'_k \subset \mathcal{H}(G_k, C)^{\text{in,rd}}\}_{k=0}^{\infty}$ (a Modular Tower component branch over \mathbb{Q}) each having a \mathbb{Q} point ([D06] [FrK97]).

– Typeset by $\ensuremath{\mathsf{FoilT}}\xspace{-}{E\!X}$ –

All Ni_{$(n+1)^4$} satisfy Main Conjecture for p=2All odd $1, \ldots, n$ on left side of Table, p. 22, so number of 2 cusps at level 1 goes up with with n. For $n = 17 \text{ get} \ge 2 \text{ more: } \frac{11^2 - 1}{8} \equiv \frac{13^2 - 1}{8} \equiv 1 \mod 2$. MTs encodes a huge portion of the RIGP into questions about towers of varieties (MTs). A simple ramification assumption on regular realizations forces K points at all tower levels on some MT. Generalization of Mazur-Merel implies this should be impossible: STC \implies MC (Cadoret, [STMT]). So, if STC holds, the ramification assumption must be wrong. **Question 12.** When is there an umbrella result for both the Fried + L-O cases?

Appendix A: Using Lifting Invariant on p. 19 List of 3-tuples $(g_2, g_3, (g_2g_3)^{-1})$, with parameter $1 \le k \le \frac{n-1}{2}$: • $\operatorname{ord}(g_2g_3) = 2k + 1$; and $\langle g_2, g_3 \rangle$ is isomorphic to $A_{k+\frac{n+1}{2}}$. [LUM, Fratt. Princ. 3]: Since 2 part of the Schur multiplier of A_n is just $\mathbb{Z}/2$, all cusps at level 1 above an o-2' cusp are 2-cusps if and only if $s_{\text{Spin}_n/A_n}(g_2, g_3, (g_2g_3)^{-1}) = -1$. Apply F-S formula (p. 9): In each case $(g_2, g_3, (g_2g_3)^{-1})$ has genus 0. So lifting invariant satisfies: $k \implies (-1)^{\frac{(2k+1)^2-1}{2}}$. Example: $n = 9, k = 1 \implies -1, 2 \implies -1, 3 \implies +1, 4 \implies +1.$

Appendix B: Why I took all the d_i s equal

Basic Conjecture: A MT whose levels are uniformly defined over one number field is defined by a g-p' cusp branch [LUM, Conj. 1.5] (evidence in [LUM, §4.4].

Group theory: Odd pure-cycles generate an alternating (or cyclic) group \implies a g-2' cusp must be an H-M rep. $\implies d_i$ s equal in pairs. So, dealing with $\{\mathcal{H}_{n,d_1^2\cdot d_2^2,k}\}_{k=0}^{\infty}$.

Case of $\{\overline{\mathcal{H}}'_{n,d_1^2 \cdot d_2^2,k}\}_{k=0}^{\infty}$ where $d_1 \neq d_2$. Fact: Genus of $\overline{\mathcal{H}}_{n,d_1^2 \cdot d_2^2,0}$ exceeds 0. One possibility: All $\mathcal{H}_{n,d_1^2 \cdot d_2^2,k}$ s are the same space. Producing a single 2-cusp, however, at level 1 excludes this: so, the same argument works.

Abbreviated References: [LUM] has much more

- [BFr02] P. Bailey and M. D. Fried, Hurwitz monodromy, spin separation and higher levels of a Modular Tower, in Proceed. of Symposia in Pure Math. 70 (2002) editors M. Fried and Y. Ihara, 1999 von Neumann Symposium, August 16-27, 1999 MSRI, 79–221.
- [STMT]A. Cadoret, Modular Towers and Torsion on Abelian Varieties, preprint May, 2006.
 - [D06]P. Dèbes, Modular Towers: Construction and Diophantine Questions, same vol. as [LUM].
- [Def-Lst]Select from the list in www.math.uci.edu/conffiles_rims/deflist-mt/full-deflist-mt.html of present MTrelated definitions. 09/05/06 examples: Branch-Cycle-Lem CFPV-Thm Cusp-Comp-Tree FS-Lift-Inv Hurwitz-Spaces Main-MT-Conj Modular-Towers Nielsen-Classes RIGP Strong-Tors-Conj mt-rigp-stc p-Poincare-Dual sh-Inc-Mat. A similar URL, www.math.uci.edu/conffiles_rims/deflist-mt/full-paplistmt.html, is a repository for not just mine, but also of the growing list of those joining the MT project.
- [FrK97]M. Fried and Y. Kopeliovic, Applying Modular Towers to the inverse Galois problem, Geometric Galois Actions II Dessins d'Enfants, Mapping Class Groups . . . , vol. 243, Cambridge U. Press, 1997, London Math. Soc. Lecture Notes, 172–197.
 - [Fr77] M. Fried, Fields of definition of function fields and Hurwitz families and groups as Galois groups, Communications in Algebra 5 (1977), 17–82.
 - [FrV]Michael D. Fried and Helmut Völklein, The inverse Galois problem and rational points on moduli spaces, Math. Ann. 290 (1991), no. 4, 771–800.
- [LUM]M. D. Fried, The Main Conjecture of Modular Towers and its higher rank generalization, in Groupes de Galois arithmetiques et differentiels (Luminy 2004; eds. D. Bertrand and P. Dèbes), Seminaires et Congres, 13 (2006), 165–230.
- [AGLI]M. D. Fried, Alternating groups and lifting invariants, (2006), 1–36.

- [LOs06] F. Liu and B. Osserman, *The Irreducibility of Certain Pure-cycle Hurwitz Spaces*, preprint as of August 10, 2006.
- [Ser90a]J.-P. Serre, *Relêvements dans* \tilde{A}_n , C. R. Acad. Sci. Paris **311** (1990), 477–482.
 - [We]T. Weigel, *Maximal p-frattini quotients of p-poincare duality groups of dimension 2*, volume for O.H. Kegel on his 70th birthday, Arkiv der Mathematik–Basel, 2005.