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Let ϕ : X → P1
z be a function on a Riemann surface X, with

ϕ Galois having group G. Then, ϕ defines these quantities:
• Unordered branch points zzz = {z1, . . . , zr} ∈ Ur (undered

distinct points on P1
z);

• Conjugacy classes C = {C1, . . . ,Cr} in G; and

• A Poincaré extension of groups:

ψϕ : Mϕ → G with kerψ
def= ker(Mϕ → G) = π1(X).
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Using Classical Generators of π1(P1
z \ zzz, z0)

Denote (P1, . . . ,Pr) (see App. A) �→ an isotopy

class of r generators ḡgg = (ḡ1, . . . , ḡr).
Refer to their images in Mϕ also as ḡgg, and their

images in G by (g1, . . . , gr) = ggg.

Then, ggg is in the Nielsen class of (G,C):

Ni(G,C) def= {ggg ∈ C | 〈ggg〉 = G, Π(ggg) def= g1 · · · gr = 1}.

Notion: Given classical generators ḡgg of Mϕ, rename it

Mḡgg: ψϕ becomes ψggg : Mḡgg → G, by ḡi �→ gi.
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Part I: E(xtension) P(roblem) (Item #1 below)

Given (ggg,C), and a prime p:

1. When does ψggg extend to all H → G → 1 with

p-group kernel? Abelianized version (App. C):

To all H with ker(H → G) abelian.

2. How does this depend on ggg?

3. What equivalence relation on extensions gives a

reasonable description of all cases?

4. Why should this concern mathematics?
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Non-obvious Reductions

• CompleteMḡgg so kerψϕ =pro-pcompletion ofπ1(X).

• Restrict in #1 (p. 3) to p-Frattini covers of G.

• Any g ∈ C must have order prime to p.

• G is p-perfect (no Z/p quotient; or #1 impossible).

Equivalent: When are all p-Frattini covers H →
G → 1 achieved by unramified extensions YH → X?
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Deformation equivalence of extensions

If ϕ were a cyclic cover of P1, we could write it by hand. It

isn’t. Further, why deal one cover at-a-time? Consider all

covers with (G,C) as their data: In the Nielsen class.

Deformation Conclusion: Can always start by fixing branch

points zzz0. Any cover (with branch points zzz ∈ Ur; r unordered

points in P1
z) deforms to a cover with branch points zzz0. Then,

Mḡgg and any of its extension properties deform with it.
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One cover defines a family: ϕ : X → P1
z =⇒

1. Permutation representation of π1(Ur,zzz
0) def= Hr

Hurwitz monodromy on orbit Ni′ϕ — independent

of classical generators — of [ϕ] ∈ Ni(G,C).

2. An unramified connected cover H(G,C)ϕ → Ur:

Hurwitz space component containing ϕ.

Equivalences of covers and Nielsen classes.

[Abs.] ϕ′ :X ′ →P1
z∼ϕ⇔ ggg = hggg′h−1, h ∈ NSn,C(G).

[Inn.]ϕ Galois with μ : Aut(X/P1
z)

isom−→G ∼ (ϕ′, u′) ⇔
ggg = hggg′h−1, h ∈ G.
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Braid equivalence of extensions
Hr has two generators given by their action on ḡgg:

• Shift: sh : ḡgg �→ (ḡ2, . . . , ḡr, ḡ1); and

• 2ndTwist:q2 :ḡgg �→(ḡ1, ḡ2ḡ3ḡ
−1
2 ,ḡ2, ḡ4, . . . ): qi+2

def= shiq2sh
−i.

Braid Comments: Hr is automorphism group of π1(P1
z \zzz0, z0)

preserving classical generators. It acts compatibly on these:

• Inner Nielsen Classes: Ni(G,C)/G
def= Niin

• Absolute Nielsen classes: Ni(G,C)/NSn(G) def= Niabs (given

G ≤ Sn a permutation representation)

• Poincaré extensions: ψggg : Mḡgg → G, preserving extension

properties of ψggg
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Part II: Introduction to/Existence of Modular Towers

GOAL 1: Given (G,C, p), understand projective

systems of Hr orbits acting on {Ni(H,C)in}H→G (lift

C uniquely to p′ conjugacy classes in H): Running

over p-Frattini covers H → G.

Reduction: Take G1 → G = G0 to be the maximal

p-Frattini cover of G with elementary p group kernel.

Let Gk+1 = G1(Gk). In GOAL 1 need only the case

H runs over the Gk s.

Def: M(odular) T(ower): A projective system

{Ok = Hr(gggk)}∞k=0 of Hr orbits on {Ni(Gk,C)in}∞k=0.
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Inductive Existence of a MT: [Lum, Cor. 4.19], [We]

Let μk : Rk → Gk be the universal exponent p

central extension of Gk:

• Gk+1 → Gk factors through μk.

• ker(Rk → Gk) = max. elementary p-quotient of

Gk s Schur multiplier.
Proposition 1 (App. C– Abel. Vers.). If p-perfect G has no
p-center, then neither does Gk, k ≥ 1.

Hr(gggk) ⊂ Ni(Gk,C)in is in the image of Ni(Gk+1,C)in ⇔
gggk is in the image of Ni(Rk,C) ⇔ Hr orbit of Mggg → G

extends through all Gk.
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Part III: Cusps and the p Cusp Problem

Cusp on an Hr orbit O ⊂ Ni(G,C):
• r ≥ 5: An orbit of Cur = 〈q2〉
• r = 4: An orbit of Cu4 = 〈q2, sh

2, q1q
−1
3 〉.

Essential data is from conjugacy class of Cur =⇒
can substitute qi for q2.

MiddleProduct: (g1, g2, g3, g4) �→ord(g2g3)
def= (ggg)mpr.

p cusp: represented by ggg ∈ O for which

pμp(ggg)||(ggg)mpr, μp(ggg) > 0 (p-mult. of ggg).
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Other cusp types for r = 4 (App. B for r > 4)

• g(roup)-p′: U1,4(ggg) = 〈g1, g4〉 and

U2,3(ggg) = 〈g2, g3〉 are p′ groups

• o(nly)-p′: Notap cusp, butU1,4(ggg) or U2,3(ggg)notp′.

GOAL 2: Given a MT, {Ok ⊂ Ni(Gk,C)in}∞k=0,

classify when there is a p cusp on Ok for k >> 0.

Proposition 2 (g-p′ MT). If O0 has a g-p′ cusp,
then a MT,O = {Ok ⊂ Ni(Gk,C)in}∞k=0, lies over it.
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Part IV: MT Geometric correspondence

O = {Ok ⊂ Ni(Gk,C)in}∞k=0 ⇔ {H′
k}∞k=0 where:

• H′
k s are (normal) absolutely irreducible algebraic varieties

(dim=r − 3);

• Cusps at level k correspond to divisors on the normal

compactification H̄′
k.

• 0ggg ∈ O0 a p cusp =⇒ μp(kggg)= k +μp(0ggg). Gives order of p

dividing ramification index of the divisor.

• r = 4: H′
k, upper-half plane quotient, j-line cover,

ramific. order dividing 3 (resp. 2) over 0 (resp. 1).
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Inner (resp. absolute) Reduced spaces [BFr02, §2]

Reduced equiv.: ϕ :X →P1
z ∼β ◦ ϕ,β ∈ PGL2(C).

j-invariant: zzz ∈ U4 �→ jzzz ∈ U∞
def= P1

j \ {∞} of zzz.

Normalize so j = 0 and 1 are elliptic points: jzzz with

more than a Klein 4-group stabilizer in PGL2(C).
Let Q′′ = 〈(q1q2q3)2 = sh2, q1q

−1
3 〉 ≤ H4. Reduced

classes of covers with j-invariant

j′ ∈ U∞ ⇔ elements of reduced Nielsen classes:

Ni(G,C)∗/Q′′ (where ∗ = in or abs).
H4 on reduced Nielsen classes factors through the

mapping class group: M̄4
def= H4/Q′′ ≡ PSL2(Z).
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p Cusps and Main MT Conjecture

Main Conj.: K a number field, then H′
k(K) = ∅ for

k >> 0. For r = 4, let g′k be the genus of H̄′
k.

Proposition 3. If g′0 > 0, (resp. = 0) and, for some
k, H′

k has a p cusp (resp. three p cusps), then Main
Conj. holds for O.

M̄4 = 〈γ0, γ1, γ∞〉, q1q2 �→ γ0 (order 3),

shift = q1q2q3 �→ γ1 (order 2),

q2 �→ γ∞ (j = ∞ monodromy generator),

satisfying the product-one relation: γ0γ1γ∞ = 1.
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Riemann-Hurwitz on components

Interpret R-H: Denote (γ0, γ1, γ∞) acting on an

Hr orbit O′ ≤ Ni(G,C)∗,rd by (γ′
0, γ

′
1, γ

′
∞),

branch cycles for H̄′ → P1
j corresponding to O′.

• Points over 0 (resp. 1) ⇔ orbits of γ0 (resp. γ1).

• The index contribution ind(γ∞) from a cusp with

rep. ggg ∈ Ni∗,rdG,C is |(ggg)Cu4/Q′′| − 1.
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Part V: Point of connectedness results: Locate

where are the p (and other types) of cusps.

Constellations of H(An,C3r)abs [AGLI, §1]

g≥1−→ �⊕ �⊕ . . . �⊕ �⊕ 1≤g←−

g=0−→ � ⊕ . . . � ⊕ 0=g←−

n ≥ 4 n = 4 n = 5 . . . n even n odd 4 ≤ n
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Theorem 4 (tag
g=0−→, r = n − 1, n ≥ 5).

H(An,C3n−1)in has one component. Further,
Ψin

abs : H(An,C3n−1)in → H(An,C3n−1)abs is deg. 2.

Theorem 5 (tag
g≥1−→, r ≥ n ≥ 5).H(An,C3r)in

has two components, H+(An,C3r)in (symbol ⊕) and
H−(An,C3r)in (symbol �). Further

Ψin,±
abs : H±(An,C3r)in → H±(An,C3r)abs has degree 2.

For n = 4, two 3-cycle classes C+3, C−3 in A4,

C = C+3s1·−3s2: Ni(G, C±3s1,s2) nonempty iff

s1 − s2 ≡ 0 mod 3 and s1 + s2 = r.
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Frattini covers

Frattini cover G′ → G is a group cover (surjection)

with restriction to a proper subgroup not a cover.

Get a lifting invariant from a central Frattini cover.

Central Frattini from An: Spin+
n the nonsplit

degree 2 cover of the connected component O+
n of

the orthogonal group. Regard Sn ⊂ On; An ⊂ O+
n .

Denote pullback of An to Spin+
n by Spinn. Identify

ker(Spinn → An) with {±1}.
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F-S Small lifting invariants ([LUM,§1], [Ser90a])

Odd order g ∈ An has a unique odd order lift,

ĝ ∈ Spinn. Let ggg ∈ Ni(An,C) with C odd-order.

Small lifting invariant:

s(ggg) = sSpinn
(ggg) = ĝ1 · · · ĝr ∈ {±1}.

For g odd-order, let w(g) by the number of cycles

in g with lengths (�) with �2−1
8 ≡ 1 mod 2.

Theorem 6 (F-S). On any braid orbit, s(ggg) is
constant (explains Const. diag. comps). If genus 0
Nielsen class, then s(ggg) = (−1)

∑r
i=1 w(gi).
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Pure-cycle components
• g ∈ Sn is pure-cycle if exactly one cycle has length > 1.

• Nielsen class Ni(G,C)abs is pure-cycle if all conjugacy classes

are pure-cycle (a d-cycle).

• If d1, . . . , dr are the pure-cycle lengths, denote the Nielsen

class Ni(G,Cd1···dr)
∗ (* an equivalence).

Assume G ≤ Sn transitive and CSn def= Cd1···dr

image of C in Sn, with di s all odd. Necessary

condition Ni(G,C)abs is nonempty: Genus

g = gd1···dr

def=
∑r

i=1 d−1
2

− (n − 1) is non-negative.
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Liu-Osserman genus 0 result [LOs06]

Theorem 7. If ggg ∈ Ni(G,Cd1···dr) has genus 0, then
G = An, and Hr is transitive on it.

Compactify the reduced inner space:

H̄(An,Cd1·d2·d3·d4)
in,rd def= H̄n,d1···d4.

Consider {H̄(Gk(An),Cd1·d2·d3·d4)
in,rd def= H̄n,d1···d4,k}∞k=0

with Gk(An) → An the universal exponent 2k 2-

group extension of An.

Remaining Goal: Give an idea of why the Main

Conjecture holds for the Liu-Osserman examples.
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Cusp rep listings, r = 4, Niabs or in
(n+1

2 )4 , all di s equal
Define xi,j = (i i+1 · · · j). g-2′ cusps here are shifts of HM
reps. (g1, g

−1
1 , g2, g

−1
2 ). Mod conjugation by An they are

HM1
def= (xn+1

2 ,1, x1,n+1
2

, xn+1
2 ,n, xn,n+1

2
)

HM2 = (HM1)q1
def= (x1,n+1

2
, xn+1

2 ,1, xn+1
2 ,n, xn,n+1

2
)

Proposition 8.For n ≡ 5 mod 8, HM1 and HM2 are are not
inner equivalent =⇒ one braid orbit on Ni(An,C(n+1

2 )4)
in.

For n ≡ 1 mod 8, if h ∈ Sn\An, there is no braid between
ggg and hgggh−1 =⇒ two braid orbits on Ni(An,C(n+1

2 )4)
in.
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Ni(An,C(n+1
2 )4)

abs,rd Table of Cusps reps.(row starts

ord(g2g3)): HM1 and sh applied to Cu4(HM1) =
{HM1,t = (xn+1

2 ,1, x1+t,n+1
2 +t, xn+1

2 +t,n+t, xn,n+1
2

)}n−1
t=0 .

1: (HM1,0)sh = (x1,n+1
2

, xn+1
2 ,n, xn,n+1

2
, xn+1

2 ,1)

3: (HM1,1)sh = (x2,n+3
2

, (n+3
2 . . . n 1), xn,n+1

2
, xn+1

2 ,1)

5: (HM1,2)sh = (x3,n+5
2

, (n+5
2 . . . n 1 2), xn,n+1

2
, xn+1

2 ,1)
· · ·

n: (HM1,n−1
2

)sh = (xn+1
2 n, (n 1 . . . n−1

2 ), xn,n+1
2

, xn+1
2 ,1)

n: (HM1,n+1
2

)sh = ((n+3
2 . . . n 1), x1,n+1

2
, xn,n+1

2
, xn+1

2 ,1)
· · ·

5: (HM1,n−2)sh = ((n−1 n 1 . . . n−3
2 ), xn−3

2 ,n−2, xn,n+1
2

, xn+1
2 ,1)

3: (HM1,n−1)sh = ((n 1 . . . n−1
2 ), xn−1

2 ,n−1, xn,n+1
2

, xn+1
2 ,1)

– Typeset by FoilTEX – 23



sh-incidence Matrix: r = 4 and Niin,rd
34

Pairing on Cu4 orbits: (O, O′) �→ |O ∩ (O′)sh|. O5,5;2

(resp. O1,2) indicates 2nd mpr 5, width 5 (resp. only mpr 1,

width 2) orbit. sh-incidence gives H̄(A5,C34)in,rd has genus 0:

2(18+g−1) = 2 ·18/3+18/2+(1+2 ·2+2 ·4) =⇒ g = 0.

Orbit O5,5;1 O5,5;2 O3,3;1 O3,3;2 O1,2

O5,5;1 0 2 1 1 1

O5,5;2 2 0 1 1 1

O3,3;1 1 1 0 1 0

O3,3;2 1 1 1 0 0

O1,2 1 1 0 0 0

Complete orbit for M̄4 = 〈sh, γ∞〉 on Niin,rd
34 in

2-steps: Apply (sh ◦ Cu4)2 to H-M rep.
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Cusp Tree Conclusions in Liu-Osserman cases

Apply F-S lift inv. to (g2, g3, (g2g3)−1) for Ni34: Level 0

o-2′ cusps O5,5,• and O3,3,• have only 2 cusps above them:

(A5,C34, p = 2) cusp tree has only g-2′ or 2 cusp branches.

Theorem 9. If a cusp branch is both H-M and p, then MT
cusp tree contains a spire: a modular curve cusp tree =⇒
Main Conjecture holds. At level 1, holds for (L-O) n = 5,
but not for n = 9.
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Fried-Serre Lifting Invariant formula

Level 0 Dilemma: ord(g2g3) = � in each line of

Table p. 26 is odd: no 2 cusps at level 0.

Help by Level 1: The exact condition for each

cusp at level 1 above the cusp in Table p. 26 to be

a 2 cusp is that �2−1
8 ≡ 1 mod 2.

Main Conjecture?: n = 5, � ∈ {1, 3, 3, 5, 5}, so four (> 3) 2

cusps (32−1
2 ≡ 52−1

2 ≡ 1 mod 2).

n = 9, � ∈ {1, 3, 5, 7, 9}: two 2 cusps (⇔ � = 3, 5) at level

1 for certain, but above cusps with middle products 7 and 9,

not clear there is a 2 cusp. Need more info on level 1 cusps.
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Connections between 3 arithmetic problems

MT/RIGP/STC using A5

[STMT] Strong Tors. Conj. =⇒ Main MT Conj. and (∼⇔).

Ramr0: Choose any r0. For k ≥ 0, use covers in Ni(Gk,Ck)
with at most r0 classes in Ck.

Question 10 (RIGP(A5,p=2,r0) Quest.). Is there r0, so the

RIGP holds for all Gk s from covers in Ramr0?

Theorem 11. If the answer is “Yes!,”then there are 2′

conjugacy classes C (no more than r0) in G, and a
projective system {H′

k ⊂ H(Gk,C)in,rd}∞k=0 (a Modular
Tower component branch over Q) each having a Q point
([D06] [FrK97]).
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All Ni(n+1
2 )4 satisfy Main Conjecture for p = 2

All odd 1, . . . , n on left side of Table, p. 22, so

number of 2 cusps at level 1 goes up with with n.

For n = 17 get ≥ 2 more: 112−1
8 ≡ 132−1

8 ≡ 1 mod 2.
MTs encodes a huge portion of the RIGP into questions

about towers of varieties (MTs). A simple ramification

assumption on regular realizations forces K points at all tower

levels on some MT. Generalization of Mazur-Merel implies this

should be impossible: STC =⇒ MC (Cadoret, [STMT]). So,

if STC holds, the ramification assumption must be wrong.

Question 12. When is there an umbrella result for both the

Fried + L-O cases?
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Appendix A: Using Lifting Invariant on p. 19

List of 3-tuples (g2, g3, (g2g3)−1), with parameter 1 ≤ k ≤ n−1
2 :

• ord(g2g3) = 2k + 1; and 〈g2, g3〉 is isomorphic to Ak+n+1
2

.

[LUM, Fratt. Princ. 3]: Since 2 part of the Schur multiplier

of An is just Z/2, all cusps at level 1 above an o-2′ cusp are

2-cusps if and only if sSpinn/An(g2, g3, (g2g3)−1) = −1. Apply

F-S formula (p. 9): In each case (g2, g3, (g2g3)−1) has genus 0.

So lifting invariant satisfies: k =⇒ (−1)
(2k+1)2−1

2 . Example:

n = 9, k = 1 =⇒ −1, 2 =⇒ −1, 3 =⇒ +1, 4 =⇒ +1.
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Appendix B: Why I took all the di s equal

Basic Conjecture: A MT whose levels are uniformly defined

over one number field is defined by a g-p′ cusp branch [LUM,

Conj. 1.5] (evidence in [LUM, §4.4].

Group theory: Odd pure-cycles generate an alternating (or

cyclic) group =⇒ a g-2′ cusp must be an H-M rep. =⇒ di s

equal in pairs. So, dealing with {Hn,d2
1·d2

2,k}∞k=0.

Case of {H̄′
n,d2

1·d2
2,k

}∞k=0 where d1 �= d2. Fact: Genus of

H̄n,d2
1·d2

2,0 exceeds 0. One possibility: All Hn,d2
1·d2

2,k s are the

same space. Producing a single 2-cusp, however, at level 1

excludes this: so, the same argument works.
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[D06 ]P. Dèbes, Modular Towers: Construction and Diophantine Questions, same vol. as [LUM].

[Def-Lst ]Select from the list in www.math.uci.edu/conffiles rims/deflist-mt/full-deflist-mt.html of present MT-
related definitions. 09/05/06 examples: Branch-Cycle-Lem CFPV-Thm Cusp-Comp-Tree FS-Lift-Inv
Hurwitz-Spaces Main-MT-Conj Modular-Towers Nielsen-Classes RIGP Strong-Tors-Conj mt-rigp-stc
p-Poincare-Dual sh-Inc-Mat. A similar URL, www.math.uci.edu/conffiles rims/deflist-mt/full-paplist-
mt.html, is a repository for not just mine, but also of the growing list of those joining the MT
project.

[FrK97 ]M. Fried and Y. Kopeliovic, Applying Modular Towers to the inverse Galois problem, Geometric Galois
Actions II Dessins d’Enfants, Mapping Class Groups . . . , vol. 243, Cambridge U. Press, 1997, London
Math. Soc. Lecture Notes, 172–197.

[Fr77 ]M. Fried, Fields of definition of function fields and Hurwitz families and groups as Galois groups,
Communications in Algebra 5 (1977), 17–82.

[FrV ]Michael D. Fried and Helmut Völklein, The inverse Galois problem and rational points on moduli spaces,
Math. Ann. 290 (1991), no. 4, 771–800.

[LUM ]M. D. Fried, The Main Conjecture of Modular Towers and its higher rank generalization, in Groupes
de Galois arithmetiques et differentiels (Luminy 2004; eds. D. Bertrand and P. Dèbes), Seminaires et
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