
How pure-cycle Nielsen classes

Test the Main Modular Tower Conjecture Mike Fried,

UCI and MSU-Billings 10/26/06

Tight connections between three arithmetic problems

MT/RIGP/STC:

• M(ain)C(onjecture) on Modular Towers (MTs),

• R(egular)I(nverse)G(alois)P(roblem), and the

• S(trong)T(orsion)C(onjecture) on abelian varieties.
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MT Main Conjecture explicitly challenges the STC

MTs encodes a huge portion of the RIGP into questions

about towers of varieties (MTs). A simple ramification

assumption on regular realizations forces K points at all tower

levels on some MT. Generalization of Mazur-Merel implies this

should be impossible: STC =⇒ MC (Cadoret, [STMT]). So,

if STC holds, the ramification assumption must be wrong.

I’ll show the MC holds for ∞-ly many (non-modular

curve) MTs using the Fried-Serre lifting invariant. Technique:

Explicitly analysis projective systems of cusps on a MT cusp

tree. We will see geometrically why it holds in these cases,

giving info about what is needed to prove the general case. So,

these cases challenge the STC, about which little is known.
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Part I: Conjugacy classes and covers

G a group, C is r conjugacy classes in G.

• ggg = (g1, . . . , gr) ∈ C means g(i)π is in Ci, for some

π permuting {1, . . . , r}.
• Π(ggg)def=

∏r
i=1 gi (order matters).

An analytic cover, ϕ : X → P1
z of compact

Riemann surfaces, ramifies over a finite set of points

zzz = z1, . . . , zr ⊂ P1
z : P1

z \ {zzz} = Uzzz.

Then, ϕ =⇒ (G,C, zzz), G ≤ Sn, with n = deg(ϕ):
G the monodromy group of ϕ.
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Nielsen classes/ R(iemann’s)E(xistence)T(heorem)

Fix zzz = zzz0 and classical generators of π1(Uzzz0, z0).
Combinatorial description of all ϕ =⇒ (G,C):

Nielsen classes:

{ggg ∈ C | 〈ggg〉 = G, Π(ggg) = 1} def= Ni(G,C).
Projective r space Pr ⇔ degree ≤ r, monic poly-

nomials; deg < r − 1 or with equal zeros form its

discriminant locus Dr. Denote Pr \ Dr by Ur.

Hurwitz combinatorics: Deformations (r branch

points) of ϕ =⇒ paths in Ur based at zzz0.
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One cover defines a family: ϕ : X → P1
z =⇒

1. Permutation representation of π1(Ur,zzz
0) def= Hr

Hurwitz monodromy on orbit Ni′ϕ — independent

of classical generators — of [ϕ] ∈ Ni(G,C).

2. An unramified connected cover H(G,C)ϕ → Ur:

Hurwitz space component containing ϕ.

Equivalences of covers and Nielsen classes.

[Abs. ]ϕ′ :X ′ →P1
z∼ϕ⇔ ggg = hggg′h−1, h ∈ NSn,C(G).

[Inn. ]ϕ Galois with μ : Aut(X/P1
z)

isom−→G ∼ (ϕ′, u′) ⇔
ggg = hggg′h−1, h ∈ G.
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Part II: Importance of Connectedness Results:

II.A. Constellations of H(An,C3r)abs [AGLI, §1]

g≥1−→ �⊕ �⊕ . . . �⊕ �⊕ 1≤g←−

g=0−→ � ⊕ . . . � ⊕ 0=g←−

n ≥ 4 n = 4 n = 5 . . . n even n odd 4 ≤ n
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Theorem 1 (tag
g=0−→, r = n − 1, n ≥ 5).

H(An,C3n−1)in has one component. Further,
Ψin

abs : H(An,C3n−1)in → H(An,C3n−1)abs is deg. 2.

Theorem 2 (tag
g≥1−→, r ≥ n ≥ 5).H(An,C3r)in

has two components, H+(An,C3r)in (symbol ⊕) and
H−(An,C3r)in (symbol �). Further

Ψin,±
abs : H±(An,C3r)in → H±(An,C3r)abs has degree 2.

For n = 4, two 3-cycle classes C+3, C−3 in A4,

C = C+3s1·−3s2: Ni(G, C±3s1,s2) nonempty iff

s1 − s2 ≡ 0 mod 3 and s1 + s2 = r.
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Frattini covers

Frattini cover G′ → G is a group cover (surjection)

with restriction to a proper subgroup not a cover.

Get a lifting invariant from a central Frattini cover.

Central Frattini from An: Spin+
n the nonsplit

degree 2 cover of the connected component O+
n of

the orthogonal group. Regard Sn ⊂ On; An ⊂ O+
n .

Denote pullback of An to Spin+
n by Spinn. Identify

ker(Spinn → An) with {±1}.
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F-S Small lifting invariants ([LUM,§1], [Ser90a])

Odd order g ∈ An has a unique odd order lift,

ĝ ∈ Spinn. Let ggg ∈ Ni(An,C) with C odd-order.

Small lifting invariant:

s(ggg) = sSpinn
(ggg) = ĝ1 · · · ĝr ∈ {±1}.

For g odd-order, let w(g) by the number of cycles

in g with lengths (�) with �2−1
8 ≡ 1 mod 2.

Theorem 3 (F-S). On any braid orbit, s(ggg) is
constant (explains Const. diag. comps). If genus 0
Nielsen class, then s(ggg) = (−1)

∑r
i=1 w(gi).
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II.B. Pure-cycle components
• g ∈ Sn is pure-cycle if one cycle has length > 1.

• Nielsen class Ni(G,C)abs is pure-cycle if all

conjugacy classes are pure-cycle (a d-cycle).

• If d1, . . . , dr are the pure-cycle lengths, denote the

Nielsen class Ni(G,Cd1···dr)
∗ (* an equivalence).

Assume G ≤ Sn transitive and CSn def= Cd1···dr

image of C in Sn, with di s all odd. Necessary

condition Ni(G,C)abs is nonempty: Genus

g = gd1···dr

def=
∑r

i=1 d−1
2

− (n − 1) is non-negative.
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Liu-Osserman genus 0 result [LOs06]

Theorem 4. If ggg ∈ Ni(G,Cd1···dr) has genus 0, then
G = An, and Hr is transitive on it.

Compactify the reduced inner space:

H̄(An,Cd1·d2·d3·d4)
in,rd def= H̄n,d1···d4.

Consider {H̄(Gk(An),Cd1·d2·d3·d4)
in,rd def= H̄n,d1···d4,k}∞k=0

with Gk(An) → An the universal exponent 2k 2-

group extension of An.
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Statement of the Goal
Goal (r = 4): Given a projective sequence

of components {H̄′
n,d1···d4,k}∞k=0 on {H̄n,d1···d4,k}∞k=0

(defined uniformly over some number field), decide

if genus of level k grows with k.

Up to Appendix, assume all di s the same (= d).

Genus 0 Nielsen class implies =⇒ 2(d−1) = n−1.
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Inner (resp. absolute) Reduced spaces [BFr02, §2]

Reduced equiv.: ϕ :X →P1
z ∼β ◦ ϕ,β ∈ PGL2(C).

j-invariant: zzz ∈ U4 �→ jzzz ∈ U∞
def= P1

j \ {∞} of zzz.

Normalize so j = 0 and 1 are elliptic points: jzzz with

more than a Klein 4-group stabilizer in PGL2(C).
Reduced classes of covers with j-invariant j′ ∈ U∞

⇔ elements of reduced Nielsen classes.
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Part III: r = 4 Upper-half plane quotients

Recall: H4 = 〈q1, q2, q3〉: Acts on any Nielsen

classes with r = 4 by a twisting on its 4-tuples:

q2 : ggg �→ (ggg)q2 = (g1, g2g3g
−1
2 , g2, g4).

Reduced equivalence corresponds to modding out

the Nielsen class by Q′′ = 〈(q1q2q3)2, q1q
−1
3 〉 ≤ H4.

H4 on reduced Nielsen classes factors through the

mapping class group: M̄4
def= H4/Q′′ ≡ PSL2(Z).
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III.A. Using generators of M̄4

M̄4 = 〈γ0, γ1, γ∞〉, γ0 = q1q2 (order 3),

γ1 = shift = q1q2q3 (order 2),

γ∞ = q2 (j = ∞ monodromy generator),

satisfying the product-one relation: γ0γ1γ∞ = 1.
The cusp group Cu4 = 〈q2,Q′′〉 ≤ H4:

A cusp is an orbit of Cu4. (ggg)sh �→ reduced class of

(g2, g3, g4, g1). and sh2 is trivial.
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Riemann-Hurwitz on components

Interpret R-H: Denote (γ0, γ1, γ∞) acting on Nid4

as giving branch cycles for H̄d4 → P1
j. Denote the

resulting permutations by (γ′
0, γ

′
1, γ

′
∞):

• Points over 0 (resp. 1) ⇔ orbits of γ0 (resp. γ1).

• The index contribution ind(γ∞) from a cusp with

rep. ggg ∈ Nid4 is |(ggg)Cu4/Q′′| − 1.
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2-Frattini extensions of A5

(Z/2)2 ×s Z/3 = A4: The universal 2-Frattini

extension of A4 is 2G̃(A4) = F̃2 ×sZ/3.

Univ. 2-Frattini extension 2G̃(A5) of A5:

Restriction over A4 is 2G̃(A4). With

ker0 = ker(2G̃(A5) → A5),
Φ1(ker0) = 〈(ker0, ker0), ker2

0〉.
Then, Φk(ker0)

def= Φk−1(Φ1(ker0)).
Iterate Φ1 to get max. exp. 2k Frattini extension

of A5: Gk(A5)
def= 2G̃(A5)/Φk(ker0).
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III.B. Modular curve-like towers

{H̄(Gk(A5),C34)in,rd}∞k=0
Ramr0: Choose any r0. For k ≥ 0, use covers in

Ni(Gk,Ck) with at most r0 classes in Ck.

Question 5 (RIGP(A5,p=2,r0) Quest.). Is there r0,

so the RIGP holds for all Gk s from covers in Ramr0?

Theorem 6. If the answer is “Yes!,”then there are
2′ conjugacy classes C (no more than r0) in G,
and a projective system {H′

k ⊂ H(Gk,C)in,rd}∞k=0
(a Modular Tower component branch over Q) each
having a Q point ([D06] [FrK97]).
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The Main Conjecture

Conjecture 7 (MainConj.). If k>> 0, H′rd
k (Q)= ∅.

Our examples: Towers over H̄(An,C(n+1
2 )4)

in,rd,

odd n ≥ 5, p = 2. Three cusp types [LUM, §3]:
H2,3(ggg) def= 〈g2, g3〉 and H1,4(ggg) = 〈g1, g4〉;

and (ggg)mpr
def= ord(g2g3), middle product order.

• p cusps: p|(ggg)mpr.

• g(roup)-p′: H2,3(ggg) and H1,4(ggg) are p′ groups.

H-M rep.: ggg = (g1, g
−1
1 , g2, g

−1
2 ) =⇒ (ggg)sh is g-p′.

• o(nly)-p′: p � |(ggg)mpr, but the cusp is not g-p′.
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III.C. sh-incidence for r = 4 and Niabs,rd
(n+1

2 )4
(ggg)mpr: (g2, g3) pairs for abs. cusp reps.:

n: H-M rep.: (•, (1 . . . n+1
2 ), (n+1

2
n+3

2 . . . n), •)

n−2: (•, (2 . . . n−1
2

n+3
2

n+1
2 ), (n+1

2
n+3

2 . . . n), •)
· · ·

1: shift of H-M rep.: (•, (n+1
2

n+3
2 . . . n)−1, (n+1

2
n+3

2 . . . n), •)
1. Fill in • s (1st and last rows hint how), and apply Cu4.

2. q2 orbit length is 2 · (ggg)mpr unless (ggg)mpr = o odd, and

ord((g2g3)
o−1
2 g2) = 2 [BFr02, Prop. 2.17]. Latter for L-O

cusps,each is H-M oro-2′; widths (top-bottom)n,n−2,. . . , 1.

deg(H̄(An,C
(n+1

2 )
4)abs,rd/P1

j) =
(n+1

2
)2

.

See from sh-incidence one connected component of genus 0.
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sh-incidence Matrix: r = 4 and Niin,rd
(n−1)

2

4

Pairing on Cu4 orbits: (O, O′) �→ |O ∩ (O′)sh|. O5,5;2

(resp. O1,2) indicates 2nd mpr 5, width 5 (resp. only mpr 1,

width 2) orbit. sh-incidence gives H̄(A5,C34)in,rd genus.

Orbit O5,5;1 O5,5;2 O3,3;1 O3,3;2 O1,2

O5,5;1 0 2 1 1 1

O5,5;2 2 0 1 1 1

O3,3;1 1 1 0 1 0

O3,3;2 1 1 1 0 0

O1,2 1 1 0 0 0

Complete orbit for M̄4 = 〈sh, γ∞〉 on Niin,rd
34 in 2-steps:

Apply (sh ◦ Cu4)2 to H-M rep.

– Typeset by FoilTEX – 21



Frattini Principles [LUM, §3]

A MT is defined by a projective sequence {Ni′k}∞k=0
of Hr orbits on Ni(Gk,C)in,rd =⇒ there is a

projective sequence of cusp reps (cusp branch).

[FP1 ] A p cusp at level k0 has above it at level k only p cusps of

width increased by pk−k0.

[FP2 ] g-2′ cusp at level 0 =⇒ g-2′ cusp branch.

[FP3 ] Lifting invariant gives iff test for all cusps above level k o-p′

cusps being p cusps ([LUM, §4], [We]).
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Cusp Tree Conclusions in Liu-Osserman cases
[STMT] Strong Tors. Conj. =⇒ Main MT Conj. and (∼⇔).

Apply F-S lift inv. to (g2, g3, (g2g3)−1) for Ni34: Level 0

o-2′ cusps O5,5,• and O3,3,• have only 2 cusps above them:

(A5,C34, p = 2) cusp tree has only g-2′ or 2 cusp branches.

Theorem 8. If ≥ 3 p cusps for any MT level k

=⇒ Main Conj =⇒ holds for L-O cases (many 2
cusps at level 1). If a cusp branch is both H-M and
p, then MT cusp tree contains a spire: a modular
curve cusp tree. At level 1, holds for (L-O) n = 5,
but not for n = 9.
Question 9.Whendoes it hold forFried+L-O cases?
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Appendix A: Using Lifting Invariant on p. 19

List of 3-tuples (g2, g3, (g2g3)−1), with parameter 1 ≤ k ≤ n−1
2 :

• ord(g2g3) = 2k + 1; and 〈g2, g3〉 is isomorphic to Ak+n+1
2

.

[LUM, Fratt. Princ. 3]: Since 2 part of the Schur multiplier

of An is just Z/2, all cusps at level 1 above an o-2′ cusp are

2-cusps if and only if sSpinn/An(g2, g3, (g2g3)−1) = −1. Apply

F-S formula (p. 9): In each case (g2, g3, (g2g3)−1) has genus 0.

So lifting invariant satisfies: k =⇒ (−1)
(2k+1)2−1

2 . Example:

n = 9, k = 1 =⇒ −1, 2 =⇒ −1, 3 =⇒ +1, 4 =⇒ +1.
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Appendix B: Why I took all the di s equal

Basic Conjecture: A MT whose levels are uniformly defined

over one number field is defined by a g-p′ cusp branch [LUM,

Conj. 1.5] (evidence in [LUM, §4.4].

Group theory: Odd pure-cycles generate an alternating (or

cyclic) group =⇒ a g-2′ cusp must be an H-M rep. =⇒ di s

equal in pairs. So, dealing with {Hn,d2
1·d2

2,k}∞k=0.

Case of {H̄′
n,d2

1·d2
2,k

}∞k=0 where d1 �= d2. Fact: Genus of

H̄n,d2
1·d2

2,0 exceeds 0. One possibility: All Hn,d2
1·d2

2,k s are the

same space. Producing a single 2-cusp, however, at level 1

excludes this: so, the same argument works.
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