How pure-cycle Nielsen classes
 Test the Main Modular Tower Conjecture Mike Fried, UCI and MSU-Billings 10/26/06

Tight connections between three arithmetic problems MT/RIGP/STC:

- M(ain)C(onjecture) on Modular Towers (MTs),
- R(egular)I(nverse)G(alois)P(roblem), and the
- S (trong) T (orsion) C (onjecture) on abelian varieties.

MT Main Conjecture explicitly challenges the STC

MTs encodes a huge portion of the RIGP into questions about towers of varieties (MTs). A simple ramification assumption on regular realizations forces K points at all tower levels on some MT. Generalization of Mazur-Merel implies this should be impossible: STC \Longrightarrow MC (Cadoret, [STMT]). So, if STC holds, the ramification assumption must be wrong.
l'll show the MC holds for ∞-ly many (non-modular curve) MTs using the Fried-Serre lifting invariant. Technique: Explicitly analysis projective systems of cusps on a MT cusp tree. We will see geometrically why it holds in these cases, giving info about what is needed to prove the general case. So, these cases challenge the STC, about which little is known.

Part I: Conjugacy classes and covers

G a group, \mathbf{C} is r conjugacy classes in G.

- $g=\left(g_{1}, \ldots, g_{r}\right) \in \mathbf{C}$ means $g_{(i) \pi}$ is in C_{i}, for some π permuting $\{1, \ldots, r\}$.
- $\Pi(\boldsymbol{g}) \stackrel{\text { def }}{=} \prod_{i=1}^{r} g_{i}$ (order matters).

An analytic cover, $\varphi: X \rightarrow \mathbb{P}_{z}^{1}$ of compact Riemann surfaces, ramifies over a finite set of points $\boldsymbol{z}=z_{1}, \ldots, z_{r} \subset \mathbb{P}_{z}^{1}: \mathbb{P}_{z}^{1} \backslash\{\boldsymbol{z}\}=U_{z}$.
Then, $\varphi \Longrightarrow(G, \mathbf{C}, \boldsymbol{z}), G \leq S_{n}$, with $n=\operatorname{deg}(\varphi)$:
G the monodromy group of φ.

Nielsen classes/ R(iemann's)E(xistence)T(heorem)

Fix $\boldsymbol{z}=\boldsymbol{z}^{0}$ and classical generators of $\pi_{1}\left(U_{z^{0}}, z_{0}\right)$.
Combinatorial description of all $\varphi \Longrightarrow(G, \mathbf{C})$:
Nielsen classes:

$$
\{\boldsymbol{g} \in \mathbf{C} \mid\langle\boldsymbol{g}\rangle=G, \Pi(\boldsymbol{g})=1\} \stackrel{\text { def }}{=} \mathrm{Ni}(G, \mathbf{C}) .
$$

Projective r space $\mathbb{P}^{r} \Leftrightarrow$ degree $\leq r$, monic polynomials; deg $<r-1$ or with equal zeros form its discriminant locus D_{r}. Denote $\mathbb{P}^{r} \backslash D_{r}$ by U_{r}.

Hurwitz combinatorics: Deformations (r branch points) of $\varphi \Longrightarrow$ paths in U_{r} based at z^{0}.

One cover defines a family: $\varphi: X \rightarrow \mathbb{P}_{z}^{1} \Longrightarrow$

1. Permutation representation of $\pi_{1}\left(U_{r}, z^{0}\right) \stackrel{\text { def }}{=} H_{r}$ Hurwitz monodromy on orbit $\mathrm{Ni}_{\varphi}^{\prime}$ —independent of classical generators - of $[\varphi] \in \mathrm{Ni}(G, \mathbf{C})$.
2. An unramified connected cover $\mathcal{H}(G, \mathbf{C})_{\varphi} \rightarrow U_{r}$: Hurwitz space component containing φ.
Equivalences of covers and Nielsen classes.
[Abs.] $\varphi^{\prime}: X^{\prime} \rightarrow \mathbb{P}_{z}^{1} \sim \varphi \Leftrightarrow \boldsymbol{g}=h \boldsymbol{g}^{\prime} h^{-1}, h \in N_{S_{n}, \mathrm{C}}(G)$.
[Inn.] φ Galois with $\mu: \operatorname{Aut}\left(X / \mathbb{P}_{z}^{1}\right) \xrightarrow{\text { isom }} G \sim\left(\varphi^{\prime}, u^{\prime}\right) \Leftrightarrow$

$$
\boldsymbol{g}=h \boldsymbol{g}^{\prime} h^{-1}, h \in G
$$

Part II: Importance of Connectedness Results: II.A. Constellations of $\mathcal{H}\left(A_{n}, \mathbf{C}_{3^{r}}\right)^{\text {abs }}$ [AGLI, §1]

$\xrightarrow{g \geq 1}$	$\ominus \oplus$	$\ominus \oplus$	\ldots	$\ominus \oplus$	$\ominus \oplus$	$\stackrel{1 \leq g}{\longleftrightarrow}$
$\stackrel{g=0}{\longrightarrow}$	\ominus	\oplus	\ldots	\ominus	\oplus	$\stackrel{0=g}{\longleftrightarrow}$
$n \geq 4$	$n=4$	$n=5$	\ldots	n even	n odd	$4 \leq n$

Theorem 1 (tag $\xrightarrow{g=0}, r=n-1, n \geq 5)$. $\mathcal{H}\left(A_{n}, \mathbf{C}_{3^{n-1}}\right)^{\text {in }}$ has one component. Further, $\Psi_{\mathrm{abs}}^{\text {in }}: \mathcal{H}\left(A_{n}, \mathbf{C}_{3^{n-1}}\right)^{\text {in }} \rightarrow \mathcal{H}\left(A_{n}, \mathbf{C}_{3^{n-1}}\right)^{\text {abs }}$ is deg. 2.
Theorem $2(\mathbf{t a g} \xrightarrow{g \geq 1}, r \geq n \geq 5) . \mathcal{H}\left(A_{n}, \mathbf{C}_{3^{r}}\right)^{\text {in }}$ has two components, $\mathcal{H}_{+}\left(A_{n}, \mathbf{C}_{3^{r}}\right)^{\text {in }}$ (symbol \oplus) and $\mathcal{H}_{-}\left(A_{n}, \mathbf{C}_{3^{r}}\right)^{\text {in }}$ (symbol \ominus). Further
$\Psi_{\mathrm{abs}}^{\mathrm{in}, \pm}: \mathcal{H}_{ \pm}\left(A_{n}, \mathbf{C}_{3^{r}}\right)^{\text {in }} \rightarrow \mathcal{H}_{ \pm}\left(A_{n}, \mathbf{C}_{3^{r}}\right)^{\text {abs }}$ has degree 2.
For $n=4$, two 3-cycle classes $\mathrm{C}_{+3}, \mathrm{C}_{-3}$ in A_{4}, $\mathbf{C}=\mathbf{C}_{+3^{s_{1--3}}}: \mathrm{Ni}\left(G, \mathrm{C}_{ \pm 3^{s_{1}}, s_{2}}\right)$ nonempty jiff

$$
s_{1}-s_{2} \equiv 0 \bmod 3 \text { and } s_{1}+s_{2}=r .
$$

Frattini covers

Frattini cover $G^{\prime} \rightarrow G$ is a group cover (surjection) with restriction to a proper subgroup not a cover. Get a lifting invariant from a central Frattini cover.

Central Frattini from $A_{n}: \operatorname{Spin}_{n}^{+}$the nonsplit degree 2 cover of the connected component O_{n}^{+}of the orthogonal group. Regard $S_{n} \subset O_{n} ; A_{n} \subset O_{n}^{+}$. Denote pullback of A_{n} to $\operatorname{Spin}_{n}^{+}$by Spin_{n}. Identify $\operatorname{ker}\left(\operatorname{Spin}_{n} \rightarrow A_{n}\right)$ with $\{ \pm 1\}$.

F-S Small lifting invariants ([LUM, $\S 1],[S e r 90 a])$

Odd order $g \in A_{n}$ has a unique odd order lift, $\hat{g} \in \operatorname{Spin}_{n}$. Let $\boldsymbol{g} \in \mathrm{Ni}\left(A_{n}, \mathbf{C}\right)$ with \mathbf{C} odd-order. Small lifting invariant:

$$
s(\boldsymbol{g})=s_{\mathrm{Spin}_{n}}(\boldsymbol{g})=\hat{g}_{1} \cdots \hat{g}_{r} \in\{ \pm 1\} .
$$

For g odd-order, let $w(g)$ by the number of cycles in g with lengths (ℓ) with $\frac{\ell^{2}-1}{8} \equiv 1 \bmod 2$. Theorem 3 (F-S). On any braid orbit, $s(\boldsymbol{g})$ is constant (explains Const. diag. comps). If genus 0 Nielsen class, then $s(\boldsymbol{g})=(-1)^{\sum_{i=1}^{r} w\left(g_{i}\right)}$.

II.B. Pure-cycle components

- $g \in S_{n}$ is pure-cycle if one cycle has length >1.
- Nielsen class $\mathrm{Ni}(G, \mathbf{C})^{\text {abs }}$ is pure-cycle if all conjugacy classes are pure-cycle (a d-cycle).
- If d_{1}, \ldots, d_{r} are the pure-cycle lengths, denote the Nielsen class $\mathrm{Ni}\left(G, \mathbf{C}_{d_{1} \cdots d_{r}}\right)^{*}$ (* an equivalence).
Assume $G \leq S_{n}$ transitive and $\mathbf{C}^{S_{n}} \stackrel{\text { def }}{=} \mathbf{C}_{d_{1} \cdots d_{r}}$ image of \mathbf{C} in S_{n}, with d_{i} s all odd. Necessary condition $\mathrm{Ni}(G, \mathbf{C})^{\text {abs }}$ is nonempty: Genus

$$
\mathbf{g}=\mathbf{g}_{d_{1} \cdots d_{r}} \stackrel{\text { def }}{=} \frac{\sum_{i=1}^{r} d-1}{2}-(n-1) \text { is non-negative. }
$$

Liu-Osserman genus 0 result [LOs06]

Theorem 4. If $\boldsymbol{g} \in \mathrm{Ni}\left(G, \mathbf{C}_{d_{1} \cdots d_{r}}\right)$ has genus 0, then
$G=A_{n}$, and H_{r} is transitive on it.
Compactify the reduced inner space:

$$
\overline{\mathcal{H}}\left(A_{n}, \mathbf{C}_{d_{1} \cdot d_{2} \cdot d_{3} \cdot d_{4}}\right)^{\text {in,rd }} \stackrel{\text { def }}{=} \overline{\mathcal{H}}_{n, d_{1} \cdots d_{4}} .
$$

Consider $\left\{\overline{\mathcal{H}}\left(G_{k}\left(A_{n}\right), \mathbf{C}_{d_{1} \cdot d_{2} \cdot d_{3} \cdot d_{4}}\right)^{\text {in,rd }} \stackrel{\text { def }}{=} \overline{\mathcal{H}}_{n, d_{1} \cdots d_{4}, k}\right\}_{k=0}^{\infty}$ with $G_{k}\left(A_{n}\right) \rightarrow A_{n}$ the universal exponent 2^{k} 2group extension of A_{n}.

Statement of the Goal

Goal $(r=4)$: Given a projective sequence of components $\left\{\overline{\mathcal{H}}_{n, d_{1} \cdots d_{4}, k}^{\prime}\right\}_{k=0}^{\infty}$ on $\left\{\overline{\mathcal{H}}_{n, d_{1} \cdots d_{4}, k}\right\}_{k=0}^{\infty}$ (defined uniformly over some number field), decide if genus of level k grows with k.

Up to Appendix, assume all d_{i} s the same $(=d)$.
Genus 0 Nielsen class implies $\Longrightarrow 2(d-1)=n-1$.

Inner (resp. absolute) Reduced spaces [BFr02, §2]

Reduced equiv.: $\varphi: X \rightarrow \mathbb{P}_{z}^{1} \sim \beta \circ \varphi, \beta \in \mathrm{PGL}_{2}(\mathbb{C})$.
j-invariant: $\boldsymbol{z} \in U_{4} \mapsto j_{z} \in U_{\infty} \stackrel{\text { def }}{=} \mathbb{P}_{j}^{1} \backslash\{\infty\}$ of \boldsymbol{z}. Normalize so $j=0$ and 1 are elliptic points: j_{z} with more than a Klein 4-group stabilizer in $\mathrm{PGL}_{2}(\mathbb{C})$.

Reduced classes of covers with j-invariant $j^{\prime} \in U_{\infty}$ \Leftrightarrow elements of reduced Nielsen classes.

Part III: $r=4$ Upper-half plane quotients

Recall: $H_{4}=\left\langle q_{1}, q_{2}, q_{3}\right\rangle$: Acts on any Nielsen classes with $r=4$ by a twisting on its 4-tuples:

$$
q_{2}: \boldsymbol{g} \mapsto(\boldsymbol{g}) q_{2}=\left(g_{1}, g_{2} g_{3} g_{2}^{-1}, g_{2}, g_{4}\right)
$$

Reduced equivalence corresponds to modding out the Nielsen class by $\mathcal{Q}^{\prime \prime}=\left\langle\left(q_{1} q_{2} q_{3}\right)^{2}, q_{1} q_{3}^{-1}\right\rangle \leq H_{4}$.
H_{4} on reduced Nielsen classes factors through the mapping class group: $\bar{M}_{4} \stackrel{\text { def }}{=} H_{4} / \mathcal{Q}^{\prime \prime} \equiv \operatorname{PSL}_{2}(\mathbb{Z})$.

III.A. Using generators of \bar{M}_{4}

$$
\begin{aligned}
& \bar{M}_{4}=\left\langle\gamma_{0}, \gamma_{1}, \gamma_{\infty}\right\rangle, \gamma_{0}=q_{1} q_{2}(\text { order } 3), \\
& \gamma_{1}=\operatorname{shift}=q_{1} q_{2} q_{3}(\text { order } 2) \\
& \gamma_{\infty}=q_{2}(j=\infty \text { monodromy generator }),
\end{aligned}
$$

$$
\text { satisfying the product-one relation: } \gamma_{0} \gamma_{1} \gamma_{\infty}=1
$$

The cusp group $\mathrm{Cu}_{4}=\left\langle q_{2}, \mathcal{Q}^{\prime \prime}\right\rangle \leq H_{4}$:
A cusp is an orbit of $\mathrm{Cu}_{4} .(\boldsymbol{g}) \mathbf{s h} \mapsto$ reduced class of $\left(g_{2}, g_{3}, g_{4}, g_{1}\right)$. and $\mathbf{s h}^{2}$ is trivial.

Riemann-Hurwitz on components

Interpret R-H: Denote $\left(\gamma_{0}, \gamma_{1}, \gamma_{\infty}\right)$ acting on $\mathrm{Ni}_{d^{4}}$ as giving branch cycles for $\overline{\mathcal{H}}_{d^{4}} \rightarrow \mathbb{P}_{j}^{1}$. Denote the resulting permutations by $\left(\gamma_{0}^{\prime}, \gamma_{1}^{\prime}, \gamma_{\infty}^{\prime}\right)$:

- Points over 0 (resp. 1$) \Leftrightarrow$ orbits of γ_{0} (resp. γ_{1}).
- The index contribution $\operatorname{ind}\left(\gamma_{\infty}\right)$ from a cusp with rep. $\boldsymbol{g} \in \mathrm{Ni}_{d^{4}}$ is $\left|(\boldsymbol{g}) \mathrm{Cu}_{4} / \mathcal{Q}^{\prime \prime}\right|-1$.

2-Frattini extensions of A_{5}

$(\mathbb{Z} / 2)^{2} \times{ }^{s} \mathbb{Z} / 3=A_{4}$: The universal 2-Frattini extension of A_{4} is ${ }_{2} \tilde{G}\left(A_{4}\right)=\tilde{F}_{2} \times{ }^{s} \mathbb{Z} / 3$.

Univ. 2-Frattini extension ${ }_{2} \tilde{G}\left(A_{5}\right)$ of A_{5} :
Restriction over A_{4} is ${ }_{2} \tilde{G}\left(A_{4}\right)$. With
$\operatorname{ker}_{0}=\operatorname{ker}\left({ }_{2} \tilde{G}\left(A_{5}\right) \rightarrow A_{5}\right)$, $\Phi_{1}\left(\operatorname{ker}_{0}\right)=\left\langle\left(\operatorname{ker}_{0}, \operatorname{ker}_{0}\right), \operatorname{ker}_{0}^{2}\right\rangle$.
Then, $\Phi_{k}\left(\operatorname{ker}_{0}\right) \stackrel{\text { def }}{=} \Phi_{k-1}\left(\Phi_{1}\left(\operatorname{ker}_{0}\right)\right)$.
Iterate Φ_{1} to get max. exp. 2^{k} Frattini extension of $A_{5}: G_{k}\left(A_{5}\right) \stackrel{\text { def }}{=}{ }_{2} \tilde{G}\left(A_{5}\right) / \Phi_{k}\left(\operatorname{ker}_{0}\right)$.

III.B. Modular curve-like towers

$$
\left\{\overline{\mathcal{H}}\left(G_{k}\left(A_{5}\right), \mathbf{C}_{3^{4}}\right)^{\mathrm{in}, \mathrm{rd}}\right\}_{k=0}^{\infty}
$$

Ram $_{r_{0}}$: Choose any r_{0}. For $k \geq 0$, use covers in $\mathrm{Ni}\left(G_{k}, \mathbf{C}_{k}\right)$ with at most r_{0} classes in \mathbf{C}_{k}. Question 5 (RIGP $\left(A_{5}, p=2, r_{0}\right)$ Quest.). Is there r_{0}, so the RIGP holds for all G_{k} s from covers in $\mathrm{Ram}_{r_{0}}$? Theorem 6. If the answer is "Yes!,"then there are 2^{\prime} conjugacy classes \mathbf{C} (no more than r_{0}) in G, and a projective system $\left\{\mathcal{H}_{k}^{\prime} \subset \mathcal{H}\left(G_{k}, \mathbf{C}\right)^{\mathrm{in}, \text { rd }}\right\}_{k=0}^{\infty}$ (a Modular Tower component branch over \mathbb{Q}) each having a \mathbb{Q} point ([D06] [FrK97]).

The Main Conjecture

Conjecture 7 (MainConj.). If $k \gg 0, \mathcal{H}_{k}^{\text {rd }}(\mathbb{Q})=\emptyset$.
Our examples: Towers over $\overline{\mathcal{H}}\left(A_{n}, \mathbf{C}_{\left.\left(\frac{n+1}{2}\right)^{4}\right)^{\text {in,rd }} \text {, }}^{\text {, }}\right.$ odd $n \geq 5, p=2$. Three cusp types [LUM, §3]:

$$
\overline{H_{2,3}}(\boldsymbol{g}) \stackrel{\text { def }}{=}\left\langle g_{2}, g_{3}\right\rangle \text { and } H_{1,4}(\boldsymbol{g})=\left\langle g_{1}, g_{4}\right\rangle
$$

and $(\boldsymbol{g}) \mathbf{m p r} \stackrel{\text { def }}{=} \operatorname{ord}\left(g_{2} g_{3}\right)$, middle product order.

- p cusps: $p \mid$ (g)mpr.
- g (roup)- $p^{\prime}: H_{2,3}(\boldsymbol{g})$ and $H_{1,4}(\boldsymbol{g})$ are p^{\prime} groups. H-M rep.: $\boldsymbol{g}=\left(g_{1}, g_{1}^{-1}, g_{2}, g_{2}^{-1}\right) \Longrightarrow(\boldsymbol{g})$ sh is g - p^{\prime}.
- o(nly)- $p^{\prime}: p \nmid(\boldsymbol{g}) \mathbf{m p r}$, but the cusp is not $\mathrm{g}-p^{\prime}$.

III.C. sh-incidence for $r=4$ and $\mathrm{Ni}_{\left(\frac{(2+1}{2}\right)^{4}}^{\mathrm{abs}, \mathrm{rd}}$

(g)mpr: $\left(g_{2}, g_{3}\right)$ pairs for abs. cusp reps.:
n : H-M rep.: $\left(\bullet,\left(1 \ldots \frac{n+1}{2}\right),\left(\frac{n+1}{2} \frac{n+3}{2} \ldots n\right), \bullet\right)$
$n-2:\left(\bullet,\left(2 \ldots \frac{n-1}{2} \frac{n+3}{2} \frac{n+1}{2}\right),\left(\frac{n+1}{2} \frac{n+3}{2} \ldots n\right), \bullet\right)$
1: shift of H-M rep.: $\left(\bullet,\left(\frac{n+1}{2} \frac{n+3}{2} \ldots n\right)^{-1},\left(\frac{n+1}{2} \frac{n+3}{2} \ldots n\right), \bullet\right)$

1. Fill in $\bullet s\left(1\right.$ st and last rows hint how), and apply Cu_{4}.
2. q_{2} orbit length is $2 \cdot(\boldsymbol{g}) \mathbf{m p r}$ unless $(\boldsymbol{g}) \mathbf{m p r}=o$ odd, and $\operatorname{ord}\left(\left(g_{2} g_{3}\right)^{\frac{o-1}{2}} g_{2}\right)=2$ [BFr02, Prop. 2.17]. Latter for L-O cusps, each is $\mathrm{H}-\mathrm{M}$ oro- 2^{\prime}; widths (top-bottom) $n, n-2, \ldots, 1$.

$$
\operatorname{deg}\left(\overline{\mathcal{H}}\left(A_{n}, \mathbf{C}_{\left(\frac{n+1}{2}\right)^{4}}\right)^{\mathrm{abs}, \mathrm{rd}} / \mathbb{P}_{j}^{1}\right)=\left(\frac{n+1}{2}\right)^{2}
$$

See from sh-incidence one connected component of genus 0 .

sh-incidence Matrix: $r=4$ and $\mathrm{Ni}_{\left.\frac{(n-1)}{2}\right)^{\text {in,rd }}}^{\text {it }}$

Pairing on Cu_{4} orbits: $\left(O, O^{\prime}\right) \mapsto\left|O \cap\left(O^{\prime}\right) \mathbf{s h}\right| . \quad O_{5,5 ; 2}$ (resp. $O_{1,2}$) indicates 2 nd mpr 5 , width 5 (resp. only mpr 1 , width 2) orbit. sh-incidence gives $\overline{\mathcal{H}}\left(A_{5}, \mathrm{C}_{3^{4}}\right)^{\mathrm{in}, \mathrm{rd}}$ genus.

Orbit	$O_{5,5 ; 1}$	$O_{5,5 ; 2}$	$O_{3,3 ; 1}$	$O_{3,3 ; 2}$	$O_{1,2}$
$O_{5,5 ; 1}$	0	2	1	1	1
$O_{5,5 ; 2}$	2	0	1	1	1
$O_{3,3 ; 1}$	1	1	0	1	0
$O_{3,3 ; 2}$	1	1	1	0	0
$O_{1,2}$	1	1	0	0	0

Complete orbit for $\bar{M}_{4}=\left\langle\mathbf{s h}, \gamma_{\infty}\right\rangle$ on $\mathrm{Ni}_{3^{4}}^{\mathrm{in}, \text { rd }}$ in 2-steps: Apply $\left(\mathbf{s h} \circ \mathrm{Cu}_{4}\right)^{2}$ to $\mathrm{H}-\mathrm{M}$ rep.

Frattini Principles [LUM, §3]

A MT is defined by a projective sequence $\left\{\mathrm{Ni}_{k}^{\prime}\right\}_{k=0}^{\infty}$ of H_{r} orbits on $\mathrm{Ni}\left(G_{k}, \mathbf{C}\right)^{\mathrm{in}, \mathrm{rd}} \Longrightarrow$ there is a projective sequence of cusp reps (cusp branch).
[FP1] A p cusp at level k_{0} has above it at level k only p cusps of width increased by $p^{k-k_{0}}$.
[FP2] g-2' cusp at level $0 \Longrightarrow \mathrm{~g}-2^{\prime}$ cusp branch.
[FP3] Lifting invariant gives iff test for all cusps above level $k o-p^{\prime}$ cusps being p cusps ([LUM, §4], [We]).

Cusp Tree Conclusions in Liu-Osserman cases

 [STMT] Strong Tors. Conj. \Longrightarrow Main MT Conj. and $(\sim \Leftrightarrow)$.Apply F-S lift inv. to $\left(g_{2}, g_{3},\left(g_{2} g_{3}\right)^{-1}\right)$ for $\mathrm{Ni}_{3^{4}}$: Level 0 o- 2^{\prime} cusps $O_{5,5, \bullet}$ and $O_{3,3, \bullet}$ have only 2 cusps above them: $\left(A_{5}, \mathbf{C}_{3^{4}}, p=2\right)$ cusp tree has only $\mathrm{g}-2^{\prime}$ or 2 cusp branches. Theorem 8. If $\geq 3 p$ cusps for any MT level k \Longrightarrow Main Conj \Longrightarrow holds for L-O cases (many 2 cusps at level 1). If a cusp branch is both $H-M$ and p, then MT cusp tree contains a spire: a modular curve cusp tree. At level 1, holds for ($L-O$) $n=5$, but not for $n=9$.
Question 9. When does it hold for Fried + L-O cases?

Appendix A: Using Lifting Invariant on p. 19

 List of 3-tuples $\left(g_{2}, g_{3},\left(g_{2} g_{3}\right)^{-1}\right)$, with parameter $1 \leq k \leq \frac{n-1}{2}$:- $\operatorname{ord}\left(g_{2} g_{3}\right)=2 k+1$; and $\left\langle g_{2}, g_{3}\right\rangle$ is isomorphic to $A_{k+\frac{n+1}{2}}$.
[LUM, Fratt. Princ. 3]: Since 2 part of the Schur multiplier of A_{n} is just $\mathbb{Z} / 2$, all cusps at level 1 above an o- 2^{\prime} cusp are 2 -cusps if and only if $s_{\text {Spin }_{n} / A_{n}}\left(g_{2}, g_{3},\left(g_{2} g_{3}\right)^{-1}\right)=-1$. Apply F-S formula (p. 9): In each case $\left(g_{2}, g_{3},\left(g_{2} g_{3}\right)^{-1}\right)$ has genus 0 . So lifting invariant satisfies: $k \Longrightarrow(-1)^{\frac{(2 k+1)^{2}-1}{2}}$. Example: $n=9, k=1 \Longrightarrow-1,2 \Longrightarrow-1,3 \Longrightarrow+1,4 \Longrightarrow+1$.

Appendix B: Why I took all the d_{i} s equal

Basic Conjecture: A MT whose levels are uniformly defined over one number field is defined by a $g-p^{\prime}$ cusp branch [LUM, Conj. 1.5] (evidence in [LUM, §4.4].

Group theory: Odd pure-cycles generate an alternating (or cyclic) group \Longrightarrow a g-2' cusp must be an $\mathrm{H}-\mathrm{M}$ rep. $\Longrightarrow d_{i} \mathrm{~s}$ equal in pairs. So, dealing with $\left\{\mathcal{H}_{n, d_{1}^{2} \cdot d_{2}^{2}, k}\right\}_{k=0}^{\infty}$.

Case of $\left\{\overline{\mathcal{H}}_{n, d_{1}^{2} \cdot d_{2}^{2}, k}^{\prime}\right\}_{k=0}^{\infty}$ where $d_{1} \neq d_{2}$. Fact: Genus of $\overline{\mathcal{H}}_{n, d_{1}^{2} \cdot d_{2}^{2}, 0}$ exceeds 0 . One possibility: All $\mathcal{H}_{n, d_{1}^{2} \cdot d_{2}^{2}, k} \mathrm{~s}$ are the same space. Producing a single 2 -cusp, however, at level 1 excludes this: so, the same argument works.

Abbreviated References: [LUM] has much more

[BFr02]P. Bailey and M. D. Fried, Hurwitz monodromy, spin separation and higher levels of a Modular Tower, in Proceed. of Symposia in Pure Math. 70 (2002) editors M. Fried and Y. Ihara, 1999 von Neumann Symposium, August 16-27, 1999 MSRI, 79-221.
[STMT]A. Cadoret, Modular Towers and Torsion on Abelian Varieties, preprint May, 2006.
[D06]P. Dèbes, Modular Towers: Construction and Diophantine Questions, same vol. as [LUM].
[Def-Lst]Select from the list in www.math.uci.edu/conffiles_rims/deflist-mt/full-deflist-mt.html of present MTrelated definitions. 09/05/06 examples: Branch-Cycle-Lem CFPV-Thm Cusp-Comp-Tree FS-Lift-Inv Hurwitz-Spaces Main-MT-Conj Modular-Towers Nielsen-Classes RIGP Strong-Tors-Conj mt-rigp-stc p-Poincare-Dual sh-Inc-Mat. A similar URL, www.math.uci.edu/conffiles_rims/deflist-mt/full-paplistmt.html, is a repository for not just mine, but also of the growing list of those joining the MT project.
[FrK97]M. Fried and Y. Kopeliovic, Applying Modular Towers to the inverse Galois problem, Geometric Galois Actions II Dessins d'Enfants, Mapping Class Groups . . . , vol. 243, Cambridge U. Press, 1997, London Math. Soc. Lecture Notes, 172-197.
[Fr77] M. Fried, Fields of definition of function fields and Hurwitz families and groups as Galois groups, Communications in Algebra 5 (1977), 17-82.
[FrV]Michael D. Fried and Helmut Völklein, The inverse Galois problem and rational points on moduli spaces, Math. Ann. 290 (1991), no. 4, 771-800.
[LUM]M. D. Fried, The Main Conjecture of Modular Towers and its higher rank generalization, in Groupes de Galois arithmetiques et differentiels (Luminy 2004; eds. D. Bertrand and P. Dèbes), Seminaires et Congres, 13 (2006), 165-230.
[AGLI]M. D. Fried, Alternating groups and lifting invariants, (2006), 1-36.
[LOs06]F. Liu and B. Osserman, The Irreducibility of Certain Pure-cycle Hurwitz Spaces, preprint as of August 10, 2006.
[Ser90a]J.-P. Serre, Relêvements dans \tilde{A}_{n}, C. R. Acad. Sci. Paris 311 (1990), 477-482.
[We]T. Weigel, Maximal p-frattini quotients of p-poincare duality groups of dimension 2, volume for O.H. Kegel on his 70th birthday, Arkiv der Mathematik-Basel, 2005.

