On Steel's Conjecture

S. Jackson

Department of Mathematics University of North Texas

> July, 2016 Irvine, CA

イロト イロト イヨト イヨト

We discuss some joint work with R. Atmai with also contributions by H. Woodin.

The theory ZF + AD + DC gives a complete picture of the scale property below the supremum of the Suslin cardinals.

This theory also gives a complete picture of the prewellordering property. For every Levy class Γ either pwo(Γ) or pwo($\check{\Gamma}$).

There is an important closure question about pointclasses, Steel's conjecture which is open. We introduce a notion called the spectrum of a pointclass, show how it relates to the conjecture, and use it to prove some related results.

We henceforth assume ZF + AD + DC.

イロト イロト イヨト イヨト

A pointclass is a $\Lambda \subseteq \mathcal{P}(\omega^{\omega})$ closed under Wadge reduction, i.e., if $A \in \Lambda$ and $B \leq_w A$, then $B \in \Lambda$.

• We usually write Γ for nonselfdual pointclasses, δ for selfdual classes, and Λ for either.

For Γ a pointclass, $\Delta(\Gamma) = \Gamma \cap \check{\Gamma}$.

We let $o(\Lambda) = \sup\{|A|_w \colon A \in \mathbf{\Delta}(\Lambda)\}.$

A Levy class is a nonselfdual pointclass Γ closed under $\exists^{\omega^{\omega}}$ or $\forall^{\omega^{\omega}}$ (or both).

イロト イポト イヨト イヨト

Definition A projective algebra is a selfdual pointclass δ closed under $\exists^{\omega^{\omega}}, \forall^{\omega^{\omega}}, \lor, \land$.

For any pointclass $\Lambda,$ there is a largest projective algebra δ contained in $\Lambda.$

Fact

If Δ is a projective algebra, then

$$o(\mathbf{\Delta}) = \sup\{|A|_{w} : A \in \mathbf{\Delta}\}$$

= sup{| \le |: \le is a \Delta prewellordering}

э

Let Γ be a Levy class. Let $\Lambda = \Lambda(\Gamma)$ be the largest projective algebra contained in Γ . Let $\kappa = o(\Lambda)$.

Then Γ is in a projective hierarchy over Λ . The nature of this projective hierarchy splits into cases.

Case 1.) $cof(\kappa) = \omega$.

Let $A_n \in \Lambda$ with $\sup |A_n| = \kappa$. Then $A = \oplus A_n$ is selfdual, defining δ , and has Wadge degree κ . Let

$$\mathbf{\Sigma}_{0} = \bigcup_{\omega} \Lambda = \exists^{\omega^{\omega}} \mathbf{\Delta}.$$

Then pwo(Σ_0), and Σ_0 is closed under $\exists^{\omega^{\omega}}, \wedge, \vee$.

イロト イロト イヨト イヨト

э

In the remaining cases assume $cof(\kappa) > \omega$. There is a nonselfdual pointclass (Steel pointclass) Γ_{κ} closed under $\forall^{\omega^{\omega}}$ with $o(\Gamma_{\kappa}) = \kappa$.

We have $pwo(\mathbf{\Gamma}_{\kappa})$.

 Γ_{κ} is the collection of Σ_1^1 -bounded unions of Λ sets ($\Lambda = \Delta_{\kappa}$).

Case 2.) Γ_{κ} is not closed under \vee .

This includes the case κ is singular.

Then pwo(Γ_{κ}), and Γ_{κ} is not closed unions with Δ_{κ} sets.

イロト イポト イヨト イヨト

э

Case 3.) Γ_{κ} is closed under \lor , but not $\exists^{\omega^{\omega}}$.

We have $pwo(\Gamma_{\kappa})$, and Γ_{κ} is closed under \cup_{ω} , \cap_{ω} .

Case 4.) Γ_{κ} is closed under $\exists^{\omega^{\omega}}, \forall^{\omega^{\omega}}$. We have pwo(Γ_{κ}), and the projective hierarchy is generated from $\Pi_1 = \forall^{\omega^{\omega}} (\Gamma_{\kappa} \vee \check{\Gamma}_{\kappa})$.

We have $pwo(\Pi_1)$, $pwo(\Sigma_2)$,....

 $\Pi_1 = \pmb{\Sigma}_1^1 \text{-bounded unions of } \check{\pmb{\Gamma}}_{\scriptscriptstyle \mathcal{K}} \text{ sets.}$

 $\Sigma_2 = \bigcup_{\kappa} \Delta_{\kappa}.$

Steel conjecture: Γ_{κ} is closed under \vee (case 3 or 4 holds) iff κ is regular.

- Steel showed the conjecture holds if κ is a limit of Suslin cardinals.
- First place where conjecture is unknown is above the least type IV hierarchy.

イロト イポト イヨト イヨト

э

Spectrum of a pointclass

Definition

Let Λ be a pointclass. the spectrum of Λ , spec(Λ), is the set of $\alpha \in \text{On such that there is a strictly increasing sequence <math>E = \bigcup_{\beta < \alpha} E_{\beta}$ with $E \in \Lambda$ such that the union is Σ_1^1 bounded.

Remark

There is no requirement on the complexity of the sets E_{β} , just on their union *E*. Note that $\alpha \in \text{spec}(\Lambda)$ requires $\text{cof}(\alpha) > \omega$.

The following is the basic fact about the spectrum.

Lemma

Let $\kappa = o(\Delta)$, where Δ is a projective algebra with $cof(\kappa) > \omega$, and let Γ_{κ} be the corresponding Steel pointclass. If $cof(\kappa) \in spec(\Lambda)$, then $\check{\Gamma}_{\kappa}$ is not closed under intersection with Λ sets.

Proof. Let $E = \bigcup_{\beta < cof(\kappa)} E_{\beta}$ be a Σ_1^1 -bounded union with $E \in \Lambda$. Let A be Γ_{κ} complete, and write $A = \bigcup_{\alpha < cof(\kappa)} A_{\alpha}$, an increasing union with each $A_{\alpha} \in \delta_{\kappa}$. Let $U \subseteq \omega^{\omega} \times \omega^{\omega}$ be a universal $\check{\Gamma}_{\kappa}$ set. Fix a map $\rho : cof(\kappa) \to \kappa$ increasing and cofinal.

イロト イポト イヨト イヨト

Consider the game where I plays x, II plays y, and II wins iff

$$(x \in E) \Rightarrow [\exists \gamma > |x| (U_y = A_{\gamma})]$$

where |x|, for $x \in E$, denotes the least β such that $x \in E_{\beta}$. By Σ_1^1 -boundedness of the E_{β} union, II has a winning strategy τ for this game. We then have

$$z \in A \leftrightarrow \exists x [(x \in E) \land z \in U_{\tau(x)}].$$

Since $\check{\Gamma}_{\kappa}$ is closed under $\exists^{\omega^{\omega}}$, and $A \notin \check{\Gamma}_{\kappa}$, we must have that the expression inside the square brackets is not in $\check{\Gamma}_{\kappa}$. This expression is the intersection of a $\check{\Gamma}_{\kappa}$ set with *E*, a Λ set. \Box

イロト 不得下 不足下 不足下

Example

Let $\kappa = o(\Delta)$ where Δ is a projective algebra and $cof(\kappa) = \omega_2$. Let Γ_{κ} be the Steel pointclass. Then $\check{\Gamma}_{\kappa}$ is not closed under intersections with Π_2^1 .

Proof.

Let $\Lambda = \Pi_2^1$. Then $\omega_2 \in \operatorname{spec}(\Pi_2^1)$. For example, we can let *E* be the set of *x* such that T_x is wellfounded, where $T \subseteq \omega \times \omega_1$ is the Kunen tree. Then $E = \bigcup_{\beta < \omega_2} E_{\beta}$, where

$$E_{\beta} = \{ x \in E : [\gamma \mapsto |T_x| \upharpoonright \gamma]_{W_1^1} = \beta \}.$$

This is a Σ_1^1 -bounded union, and $E \in \Pi_2^1$ (here W_1^1 is the normal measure on ω_1).

イロト イタト イヨト イヨト

Remark

Every Π_2^1 set is an ω_1 intersection of δ_1^1 sets, and the class $\check{\Gamma}_{\kappa}$ of the example is closed under intersections with δ_1^1 sets (in fact with Σ_2^1 sets) by Steel's theorem. This shows that having $B = \bigcap_{\beta < \lambda} B_{\beta}$ with $\lambda < \operatorname{cof}(\kappa)$, and $\check{\Gamma}_{\kappa}$ closed under intersections with a pointclass containing all the B_{β} is not sufficient to guarantee that $\check{\Gamma}_{\kappa}$ is closed under intersections with *B*.

In contrast, the corresponding statement for unions is true by an easy argument.

▲御▶ ▲ 臣▶ ▲ 臣▶

We let $\overline{C} \subseteq \Theta$ be the canonical c.u.b. set where we define Steel pointclasses.

Definition

 $\kappa \in \overline{C}$ iff $\kappa = o(\delta)$ for some projective algebra Δ .

 \overline{C} is c.u.b in both δ_1^2 and Θ .

Theorem

Let μ be a normal measure on δ_1^2 . Let $\kappa = j_{\mu}(\delta_1^2)$. If $\kappa \in \overline{C}'$, then Γ_{κ} is a counterexample to Steel's conjecture. In fact $\check{\Gamma}_{\kappa}$ is not closed under intersection with Π_1^2 .

A (1) > A (2) > A

Proof. Fix a Δ_1^2 pwo (P, \leq) of length δ_1^2 . We view this as $P = \bigcup_{\alpha} P_{\alpha}$ an increasing, discontinuous union of Δ_1^2 sets.

Let $h: \delta_1^2 \to \delta_1^2$ be given by $h(\alpha) = |P_{\alpha}|_W$.

- First, since δ²₁ has the strong partition property, there is a c.u.b. D ⊆ C̄ such that j_µ(D) ⊆ C̄.
- Fix f: δ²₁ → δ²₁ increasing, discontinuous, and f(α) a type-4 limit of C with pointclass Γ_{f(α)}.
- Choose *f* so that $|\mathbf{\Gamma}_{f(\alpha)}|_W > h(\alpha)$.

Let $\kappa = [f]_{\mu}$. κ is a limit of \overline{C} so Γ_{κ} is defined. κ is regular. This follows from the finite exponent block partition property.

We may assume that for each α there is a sequence A^{α}_{β} , $\beta < f(\alpha)$, of $\Delta_{f(\alpha)}$ sets which union to a $\Gamma_{f(\alpha)}$ set A^{α} .

To show the conjecture fails at κ , it suffices to show that $\kappa \in \text{spec}(\Pi_1^2)$.

イロト イポト イヨト イヨト

Let *E* be the set of codes *x* for functions $f_x : \delta_1^2 \to \delta_1^2$ such that $f(\alpha) \in (\sup_{\beta < \alpha} f(\beta), f(\alpha)].$

Let

$$E_{\beta} = \{ x \in E : [f_x]_{\mu} = \beta \}.$$

Say *y* is an α -code if $y \in A^{\alpha}$, and let $|y|^{\alpha} = \text{least } \gamma < f(\alpha)$ with $y \in A^{\alpha}_{\gamma}$.

Say *x* is α -good if $U(x, \leq_{\alpha}, <_{\alpha}) \neq \emptyset$ and

- $U(x, \leq_{\alpha}, <_{\alpha}) \neq \emptyset$ [U universal $\Sigma_{1}^{1}(\leq, <)$.]
- $y, z \in U(x, \leq_{\alpha}, <_{\alpha}) \rightarrow |y|^{\alpha} = |z|^{\alpha}.$

イロト 不得 トイヨト イヨト

э.

Then $x \in E$ iff x is α -good for all $\alpha < \delta_1^2$. Clearly $E \in \Pi_1^2$. Claim. The sequence E_β , $\beta < \kappa$, is Σ_1^1 -bounded. Proof. Let $S \subseteq E$ be Σ_1^1 . Fix $\alpha < \delta_1^2$.

Then the set $B \subseteq A^{\alpha}$ defined by

$$y \in B \leftrightarrow \exists x [(x \in S) \land (y \in U(x, \leq_{\alpha}, <_{\alpha}))]$$

is in $\Delta_{f(\alpha)}$. Since the $(A^{\alpha}_{\gamma})_{\gamma < f(\alpha)}$ are $\Delta_{f(\alpha)}$ -bounded (this is because $\Gamma_{f(\alpha)}$ was Type-4), { $f_x(\alpha) : x \in S$ } is bounded below $f(\alpha)$.

米間 とくほ とくほう

Question

Is there a normal measure μ on δ_1^2 such that $j_{\mu}(\delta_1^2)$ is a limit point of \overline{C} ?

We only need a normal measure μ on δ_1^2 such that $j_{\mu}(\bar{C}) \cap [g]_{\mu} = \bar{C} \cap [g]_{\mu}$, where g enumerates the type-4 κ which are limits of \bar{C} below δ_1^2 , and $g(\alpha) > h(\alpha)$.

< 回 > < 三 > < 三 >

The leads to the next result. It says that the function $\alpha \mapsto h(\alpha) = |P_{\alpha}|_W$ must be badly discontinuous.

Theorem

(with H. Woodin) Let $\delta_1^2 < \kappa < \Theta$ with $\kappa \in C'$ and κ of type 4. Let μ be a normal measure on δ_1^2 (following Woodin) such that $[f]_{\mu} = \kappa$ and $\forall^* \alpha \ f(\alpha) \in C'$ is of type 4. Then $\forall_{\mu}^* \alpha \ f(\alpha) < h(\alpha)$.

Corollary

For any $P = \bigcup_{\alpha} P_{\alpha}$ increasing, discontinuous, there are $\alpha < \delta_1^2$ such that $|P_{\alpha}|_W >$ the next type 4 pointclass after α (or type 4 limit of type 4's etc.).

(人間) トイヨト イヨト

Fix a normal measure μ on δ_1^2 . then $\kappa = J_{\mu}(\delta_1^2)$ is regular (as δ_1^2 has the strong partition property).

If $\kappa \notin C'$, then let $[g]_{\mu}$ be the largest point in *C* below κ . So, the g' > g taking values in type 4 $\alpha < \delta_1^2$ do not represent type 4 ordinals.

So either Steel's conjecture fails, or there are many $g \colon \delta_1^2 \to \delta_1^2$ taking type 4 values but with $[g]_{\mu}$ not of type 4.

イロト イロト イヨト イヨト