Generalized Jonsson Cardinals

S. Jackson

Department of Mathematics
University of North Texas

July, 2016
Irvine, CA

We discuss some joint work with J. Holshauser on generalizing questions and results about Jonsson and similar notions to non-wellordered sets in the AD context.

We work throughout in ZF + AD.
We write $[\kappa]_{<\delta}^{<\omega} \rightarrow[\kappa]_{\gamma}^{<\omega}$ if for all $\lambda<\delta$ and $f: \kappa^{<\omega} \rightarrow \lambda$ there is an $H \subseteq \kappa$ of size κ such that $\left|f\left[H^{<\omega}\right]\right| \leq \gamma$.

Recall the following definitions.

- κ is Jonsson if whenever $f: \kappa^{<\omega} \rightarrow \kappa$, there is an $H \subseteq \kappa$ of size κ with $f\left[H^{<\omega}\right] \neq \kappa$.
- κ is Rowbottom if $[\kappa]_{<\kappa}^{<\omega} \rightarrow[\kappa]_{\omega}^{<\omega}$.
- κ is Ramsey if for every $f: \kappa^{<\omega} \rightarrow 2$, there is an $H \subseteq \kappa$ of size κ with $f \upharpoonright H^{n}$ constant for each n.

In the wellordered case we have the following.
Theorem
(J,Ketchersid, Schlutzenberg, Woodin) Assume AD $+V=L(\mathbb{R})$.
Let $\kappa<\Theta$ be an uncountable cardinal. then:

- κ is Jonsson.
- If $\operatorname{cof}(\kappa)=\omega$ then κ is Rowbottom.
- $[\kappa]_{<\kappa}^{<\omega} \rightarrow[\kappa]_{\operatorname{cof}(k)}^{<\omega}$ and $[\kappa]_{<\operatorname{cof}(\kappa)}^{<\omega} \rightarrow[\kappa]_{\omega}^{<\omega}$.
- Let $\lambda \leq \kappa$ be an uncountable cardinal. Suppose $f: \kappa^{<\omega} \rightarrow \lambda$. Then there is an $H \subseteq \kappa$ of size κ such that $\left|\lambda-f\left[H^{<\omega}\right]\right|=\lambda$. In fact, $\lambda-f\left[H^{<\omega}\right]$ contains a club.

We extend these questions/results to general sets.
For any set A, let $A^{n}=\{a \subseteq A:|a|=n\}$. Let $A^{<\omega}=\cup_{n} A^{n}$.

Definition

Let A, B be infinite sets.

- A is Jonsson if for any $f: A^{<\omega} \rightarrow A$ there is an $X \subseteq A$ with $|X|=|A|$ and $f\left[X^{<\omega}\right] \neq A$.
- A is strongly Jonsson if for any $f: A^{<\omega} \rightarrow A$ there is an $X \subseteq A$ with $|X|=|A|$ and $\left|A-f\left[X^{<\omega}\right]\right|=|A|$.
- (A, B) is a Jonsson pair if for any $f: A^{<\omega} \rightarrow B$ there is an $X \subseteq A$ with $|X|=|A|$ and such that $f\left[X^{<\omega}\right] \neq B$.
- (A, B) is a strong Jonsson pair if for any $f: A^{<\omega} \rightarrow B$ there is an $X \subseteq A$ with $|X|=|A|$ and such that $\left|B-f\left[X^{<\omega}\right]\right|=|B|$.
- (A, B) is Rowbottom if for any $f: A^{<\omega} \rightarrow B$ there is an $X \subseteq A$ with $|X|=|A|$ and $f\left[X^{<\omega}\right]$ is countable.
- (A, B) is Ramsey if for any $f: A^{<\omega} \rightarrow B$ there is an $X \subseteq A$ with $|X|=|A|$ and $f\left[X^{\eta}\right]$ is constant for each n.

Theorem
$(\mathrm{AD}+V=L(\mathbb{R}))$ Let C be the closure of $\left\{\kappa, \mathbb{R}, \mathbb{R} / E_{0}: \omega<\kappa<\Theta\right\}$ under \cup and \times. Then for any $A, B \in C,(A, B)$ is a strong Jonsson pair.

Conjecture
Every set $A \in L_{\Theta}(\mathbb{R})$ is (strongly) Jonsson.

Question
Which sets are Rowbottom?

If we assume $V=L(\mathbb{R})$, then every $A \in L_{\Theta}(\mathbb{R})$ is the surjective image of \mathbb{R}, and thus can be identified with an equivalence relation on \mathbb{R}.

Thus, we are asking which equivalence relations on \mathbb{R} are Jonsson?

Tentative result: If C^{\prime} is the smallest collection containing $\left\{\kappa, \mathbb{R}, \mathbb{R} / E_{0}: \kappa<\Theta\right\}$ and closed under \times and increasing unions, then every $A \in C^{\prime}$ is strongly Jonsson.

Recall that any two non-smooth hyperfinite equivalence relations on \mathbb{R} are isomorphic, thus we can replace \mathbb{R} / E_{0} in the above with "hyperfinite."

Some easy cases

Recall a basic result of Mycielski.
Theorem
(Mycielski) Suppose $C_{n} \subseteq\left(2^{\omega}\right)^{n}$ are comeager. Then there is a perfect $P \subseteq 2^{\omega}$ such that $P^{n} \subseteq C_{n}$ for all n.

Theorem

- \mathbb{R} is strongly Jonsson.
- For all uncountable κ, (\mathbb{R}, κ) is Rowbottom.
- For all uncountable $\kappa,(\kappa, \mathbb{R})$ is Rowbottom.

To see \mathbb{R} is strongly Jonsson, let $f: R^{<\omega} \rightarrow \mathbb{R}$. View f as $\left\{f_{n}\right\}$, with $f_{n}: \mathbb{R}^{n} \rightarrow \mathbb{R}$.

By taking comeager sets $C_{n} \subseteq\left(2^{\omega}\right)^{n}$ on which f_{n} is continuous, and using Mycielski's theorem, we may assume each f_{n} is continuous.

We build sequences σ_{s}, ρ_{t} for $s, t \in 2^{<\omega}$, extending in the usual way and with $\left|\sigma_{s}\right|=\ell(|s|)$ and $\left|\rho_{t}\right|=r(|t|)$.

We will have for all $k \leq 2^{n}, \vec{s} \in\left(2^{n}\right)^{k}$ and $t \in 2^{n}$:

$$
f_{k}\left[N\left(\sigma_{s_{1}}\right), \ldots, N\left(\sigma_{s_{k}}\right)\right] \cap N\left(\rho_{t}\right)=\emptyset
$$

We let P, Q be the perfect sets defined by the σ_{s} and ρ_{t}, then $f\left[P^{<\omega}\right] \cap Q=\emptyset$.

Assume σ_{s}, ρ_{t} are defined for $s, t \in 2^{n}$.
For $s, t \in 2^{n+1}$, first let $\sigma_{s}^{0}=\sigma_{s \upharpoonright n}{ }^{\wedge} s(n)$, and $\rho_{s}=t^{0}=\rho_{t \upharpoonright n^{\wedge}} t(n)$.
Let K be large enough so that

$$
2^{k-r(n)}>\sum_{k \leq 2^{n+1}}\binom{2^{n+1}}{k}
$$

For each $k \leq 2^{n+1}$ and each s_{1}, \ldots, s_{k} in $\left(2^{n+1}\right)^{k}$, we successively extend the σ_{s} so that $N\left(\sigma_{s_{1}}\right) \times \cdots \times N\left(\sigma_{s_{k}}\right)$ determines the first K values of f_{k}.

From the choice of K, there are ρ_{t} such that

$$
f\left[N\left(\sigma_{s_{1}}\right) \times \cdots \times N\left(\sigma_{s_{k}}\right)\right] \cap N\left(\rho_{t}\right)=\emptyset
$$

for all $t \in 2^{n+1}$.

The fact that (\mathbb{R}, κ) is Rowbottom follows from additivity of category and the fact that there are only countably many neighborhoods in $\left(2^{\omega}\right)^{n}$.

The fact that (κ, \mathbb{R}) is Rowbottom follows from the fact that any wellordered subset of \mathbb{R} is countable.

We next show that \mathbb{R} / E_{0} is Jonsson.
This requires establishing a generalization of Mycielski's theorem to E_{0}.

Mycielski for E_{0}

Recall the Glimm-Effros dichotomy for E_{0}.
Theorem
Let $X \subseteq \mathbb{R} / E_{0}$. Then either

1. X is countable, or
2. X is in bijection with \mathbb{R}, or
3. X is in bijection with \mathbb{R} / E_{0}.

We say $A \subseteq \mathbb{R}$ has size E_{0} if A is E_{0}-saturated and $A /\left(E_{0} \upharpoonright A\right)$ is in bijection with \mathbb{R} / E_{0}.

By Glimm-Effros, this is the same as saying that $E_{0} \upharpoonright A$ is not smooth.

For $X \subseteq \mathbb{R}$, we write $X_{E_{0}}^{n}$ for $\left\{\vec{x} \in X^{n}: x_{1}, \ldots, x_{n}\right.$ are pairwise E_{0} inequivalent $\}$.

Theorem

Suppose $C_{m} \subseteq \mathbb{R}^{m}$ are comeager for all m. Then there is an $A \subseteq \mathbb{R}$ of size E_{0} so that for all $m, A_{E_{0}}^{m} \subseteq C_{m}$.

Proof. Let $C_{m} \subseteq \mathbb{R}^{m}=\left(2^{\omega}\right)^{m}$ be comeager, and wlog the C_{m} are E_{0}-saturated. We build $A \subseteq 2^{\omega}$ such that $E_{0} \upharpoonright A$ is not smooth and $A_{E_{0}}^{m} \subseteq C_{m}$ for all m.

We build a binary tree σ_{s} for $s \in 2^{<\omega}$. will have $\left|\sigma_{s}\right|=\left|\sigma_{t}\right|$ if $|s|=|t|$.

For $s \neq t \in 2^{<\omega}$ with $|s|=|t|$ we set

$$
D(s, t)=\max \{n: s(n) \neq t(n) .
$$

For $s_{1}, \ldots, s_{m} \in 2^{<\omega}$, set

$$
\lambda\left(s_{1}, \ldots, s_{m}\right)=\min \left\{D(u, v): u \neq v \in\left\{s_{1}, \ldots, s_{m}\right\}\right\}
$$

The λ function records how " E_{0}-inequivalent" the pairs from s_{1}, \ldots, s_{m} appear to be.

Definition

We say $s_{1}, \ldots, s_{m} \in\left(2^{<\omega}\right)^{m}$ is active if:

1. $\left|s_{1}\right|=\left|s_{2}\right|=\cdots=\left|s_{m}\right|(=n)$
2. $\lambda\left(s_{1} \upharpoonright n-1, \ldots, s_{m} \upharpoonright n-1\right)<\lambda\left(s_{1}, \ldots, s_{m}\right)$
3. $\lambda(\vec{s}) \geq m$

We let $S_{m} \subseteq\left(2^{<\omega}\right)^{m}$ denote the set of active m-tuples.
Let $S_{m}=\left\{\vec{s}_{m, n}\right\}_{n \in \omega}$ where $\vec{s}_{m, n}=\left(s_{m, n, 1}, \ldots, s_{m, n, m}\right)$ enumerate S_{m}.

Let

$$
\begin{aligned}
v \in S_{m}(n, i) & \Leftrightarrow s_{m, n, i} \sqsubseteq v \\
v \in S_{m}(n,-1) & \Leftrightarrow v \notin \bigcup_{1 \leq i \leq m} S_{m}(n, i)
\end{aligned}
$$

Let $\sigma_{\emptyset}=\emptyset$. Assume σ_{s} has been defined for $|s| \leq n$.
First just split: $\sigma_{s^{\wedge} i}^{0}=\sigma_{s)_{n}}{ }^{-}$.
For the $m \leq n$ such that $S_{m, n} \cap 2^{n+1} \neq \emptyset$:

- We define $\tau_{m, i}$ for $i \in\{1,2, \ldots, m\} \cup\{-1\}$
- We define integers $i(m, s) \in\{1,2, \ldots, m\} \cup\{-1\}$ for $s \in 2^{n+1}$.

We then let $\sigma_{s}=\sigma_{s}^{0-} \tau_{1, i(1, s)}{ }^{\wedge} \ldots^{\wedge} \tau_{m, i(m, s)} \ldots$

Suppose after stage m we have defined

$$
\sigma_{s}^{m}=\sigma_{s}^{0 \sim} \tau_{1, i(1, s)} \cdots^{\wedge} \tau_{m, i(m, s)}
$$

We need to define $\tau_{m+1, i}$ and $i(m+1, s)$ (where $i \in\{1, \ldots, m+1\} \cup\{-1\})$.

We define $\tau_{m+1, i}$ for $i \in\{1, \ldots, m+1\}$ such that for all $\vec{s}=\left(s_{1}, \ldots, s_{m+1}\right) \in\left(2^{n+1}\right)^{m+1}$ extending $\left(s_{m+1, n+1,1}, \ldots, s_{m+1, n+1, m+1}\right)$ we have:

$$
N\left(\sigma_{s_{1}}^{m} \tau_{m+1,1}\right) \times \cdots \times N\left(\sigma_{s_{m+1}}^{m}\right) \subseteq W_{m+1, n+1}
$$

where $W_{m+1, n+1}$ is dense open in $\left(2^{\omega}\right)^{m+1}$, decreasing in n, and $\bigcap_{n} W_{m+1, n} \subseteq C_{m+1}$.

If $s \in 2^{n+1}$ extends $s_{m+1, n+1, i}$, we set $i(m+1, s)=i$.
If $s \in 2^{n+1}$ does not extend any of the $s_{m+1, n+1, i}$, let
$i=i(m+, s) \in\{1, \ldots, m+1\}$ be least such that $D\left(s, s_{m+1, n+1, i}\right)$ is minimal among $i \in\{1, \ldots, m+1\}$.

For such s set $\sigma_{s}^{m+1}=\sigma_{s}^{m-} \tau_{m+1, i(m+1, s)}$.
This completes the definition of the σ_{s}^{m+1}, and so completes the definition of the σ_{s} for $s \in 2^{n+1}$.

Let $A=\bigcup_{a} \in 2^{\omega} \bigcap_{n \in \omega} N\left(\sigma_{a \upharpoonright n}\right)$ be the perfect set defined by the σ_{s}.

We first show that $E_{0} \upharpoonright A$ has size E_{0}, that is, $E_{0} \upharpoonright A$ embeds E_{0}. Let $\phi: 2^{\omega} \rightarrow A$ be the continuous map $\phi(a)=\bigcap_{n} N\left(\sigma_{a \upharpoonright n}\right)$. We show that ϕ is a reduction of E_{0} to $E_{0} \upharpoonright A$.

If $a \neq b \in 2^{\omega}$ and a is not E_{0} equivalent to b, it is clear that $\phi(a)$ is E_{0}-inequivalent to $\phi(b)$.

Suppose $a E_{0} b$ and let $n_{0}=\max \{n: a(n) \neq b(n)\}$.

Claim
There are only finitely many n such that there is an $m \leq n$ with $\vec{s}_{m, n}$ defined and such that there are $1 \leq i<j<m$ with a $\upharpoonright n$ extending $s_{m, n, i}$ and $b \upharpoonright n$ extending $s_{m, n, j}$.

Proof. We need only consider m with $m \geq n_{0}$ (from definition of active). Fix such am m. We may assume the values of i and j are fixed. But then for such n we have $\lambda\left(\vec{s}_{m, n}\right) \leq n_{0}$. As the value of λ increases for active tuples, there can be only finitely many such n.

We can repeat the argument to also get the conclusion for all $a^{\prime} \neq b^{\prime}$ in Y, the set of s which agree with a (and hence b) after n_{0}. Say the conclusion holds for all $n \geq n_{1}$ (for all a^{\prime}, b^{\prime}).

It suffices to show that for all $n \geq n_{1}$ that $i(m, a \upharpoonright n)=i(m, b \upharpoonright n)$ for all $m \leq n$. Fix $n \geq n_{1}$ and $m \leq n$.
Case 1. There are $1 \leq i \neq j \leq m$ with a $\upharpoonright n$ extending $s_{m, n, i}$ and $b \upharpoonright n$ extending $s_{m, n, j}$.

This case cannot occur from the claim and definition of n_{1}.

Case 2. There is an $1 \leq i \leq m$ with $a \upharpoonright n \in S_{m}(n,-1)$ and $b \upharpoonright n$ extending $s_{m, n, i}$ (or with a, b switched).
As $n>n_{0}, t_{a \upharpoonright n} \in Y$. We must have $i\left(m, t_{a \upharpoonright n}\right)=i$ as otherwise, since $n>n_{1}, D(a \upharpoonright n, b \upharpoonright n)>n_{0}$, a contradiction.

Case 3. $a \upharpoonright n, b \upharpoonright n \in S_{m}(n,-1)$.
First assume that $t_{a \upharpoonright n} \in Y$, and so $t_{b \upharpoonright n} \in Y$ as well. As $n>n_{1}$ we must have $i\left(m, t_{a \upharpoonright n}\right)=i\left(m, t_{b\lceil n}\right)$, as otherwise $D(a \upharpoonright n, b \upharpoonright n)>n_{0}$.

Next assume $t_{a \upharpoonright n} \notin Y$, so $t_{b \upharpoonright n} \notin Y$ as well. In this case $D\left(a \upharpoonright n, s_{m, n, i}\right)>n_{0}$ for all $1 \leq i \leq m$, and likewise for $b \upharpoonright n$.

It follows that $D\left(a \upharpoonright n, s_{m, n, i}\right)=D\left(b \upharpoonright n, s_{m, n, i}\right)$ for all $1 \leq i \leq m$. It then follows that $i(m, a \upharpoonright n)=i(m, s \upharpoonright n)$.

Thus, ϕ is an embedding from E_{0} to $E_{0} \upharpoonright A$.
Finally, we show that $A_{E_{0}}^{m} \subseteq C_{m}$ for all m.
Fix $x_{1}, \ldots, x_{m} \in A_{E_{0}}^{m}$. Say $\phi\left(a_{i}\right)=x_{i}$.
Thus a_{1}, \ldots, a_{m} are pairwise E_{0}-inequivalent. Thus $\lambda\left(a_{1} \upharpoonright n, \ldots, a_{m} \upharpoonright n\right)$ is monotonically increasing and unbounded with n.

So, for infinitely many k we have $\left(a_{1} \upharpoonright k, \ldots, a_{m} \upharpoonright k\right) \in S_{m}$ (is an active m-tuple). So, for infinitely many n we have ($a_{1} \upharpoonright n, \ldots, a_{m} \upharpoonright n$) extends ($s_{m, n, 1}, \ldots, s_{m, n, m}$), and so $\phi(\vec{a}) \in W_{m}, n$. Thus, $\vec{x}=\phi(\vec{a}) \in C_{m}$.

Proof that \mathbb{R} / E_{0} is strongly Jonsson.
Let $f:\left[\mathbb{R} / E_{0}\right]^{<\omega} \rightarrow \mathbb{R} / E_{0}$ be given.
By countable uniformization, there are functions $f_{n}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ which induce $f\left(\vec{x} E_{0} \vec{y} \rightarrow f_{n}(\vec{x}) E_{0} f_{n}(\vec{y})\right)$.

Get comeager $C_{m} \subseteq \mathbb{R}^{m}$ such that $f_{m} \upharpoonright C_{m}$ is continuous.
Build sequences σ_{s}, ρ_{t}. The σ_{s} are defined similarly to the E_{0}-Mycielski theorem.

Suppose σ_{s}, ρ_{t} have been defined for $|s|,|t| \leq n$.

$$
\text { Let } \sigma_{s}^{0}=\sigma_{s \mid n} s(n), \rho_{t}^{0}=\rho_{t \upharpoonright n} \uparrow t(n), \text { for }|s|=|t|=n+1 .
$$

We define $\sigma_{s}^{m}, \rho_{t}^{m}$ for $m \leq n+1$. We will have $\rho_{t}^{m}=\rho_{t}^{0 \wedge} \pi_{1}-\cdots{ }^{\wedge} \pi_{m}$, where π_{m} doesn't depend on t.
For $m+1$, consider $\vec{s}_{m+1, n+1}$ as before. Let $\ell=\left|s_{m+1, n+1, i}\right|$. There are $p=\left(2^{n+1-\ell}\right)^{m+1}$ many $m+1$-tuples of length $n+1$ extending $\vec{s}_{m+1, n+1}$. Let k be large enough so that $2^{k}>p$.
Then we may define the σ_{s}^{m+1} as before and such that for any \vec{s} extending $\vec{s}_{m+1, n+1}$, the corresponding σ_{s}^{m+1} determine $f(\vec{s})$ on the k length block of digits after $\left|\rho_{t}\right|+\left|\pi_{1}\right|+\cdots+\left|\pi_{m}\right|$.
We can then choose π_{m+1} such that
$f_{m}\left(N\left(\sigma_{s}^{m+1}\right) \times \cdots \times N\left(\sigma_{s}^{m+1}\right)\right) \cap N\left(\rho_{t} \cdots^{\wedge} \pi_{m+1}\right)=\emptyset$ for all $t \in 2^{n+1}$.

The perfect sets A, B defined by the σ_{s} and ρ_{t} witness that \mathbb{R} / E_{0} is strongly Jonsson.

