Generalized Jonsson Cardinals

S. Jackson

Department of Mathematics University of North Texas

> July, 2016 Irvine, CA

S. Jackson Generalized Jonsson Cardinals

イロト イロト イヨト イヨト

2

We discuss some joint work with J. Holshauser on generalizing questions and results about Jonsson and similar notions to non-wellordered sets in the AD context.

We work throughout in ZF + AD.

We write $[\kappa]^{<\omega}_{<\delta} \rightarrow [\kappa]^{<\omega}_{\gamma}$ if for all $\lambda < \delta$ and $f : \kappa^{<\omega} \rightarrow \lambda$ there is an $H \subseteq \kappa$ of size κ such that $|f[H^{<\omega}]| \leq \gamma$.

Recall the following definitions.

向下すコトイヨト

- κ is Rowbottom if $[\kappa]^{<\omega}_{<\kappa} \to [\kappa]^{<\omega}_{\omega}$.
- ▶ *κ* is Ramsey if for every *f* : $κ^{<\omega} \rightarrow 2$, there is an *H* ⊆ *κ* of size *κ* with *f* ↾ *Hⁿ* constant for each *n*.

In the wellordered case we have the following.

Theorem

(J,Ketchersid, Schlutzenberg, Woodin) Assume $AD + V = L(\mathbb{R})$. Let $\kappa < \Theta$ be an uncountable cardinal. then:

- κ is Jonsson.
- If $cof(\kappa) = \omega$ then κ is Rowbottom.
- $\blacktriangleright \ [\kappa]_{<\kappa}^{<\omega} \to [\kappa]_{cof(\kappa)}^{<\omega} \text{ and } [\kappa]_{<cof(\kappa)}^{<\omega} \to [\kappa]_{\omega}^{<\omega}.$
- Let $\lambda \leq \kappa$ be an uncountable cardinal. Suppose $f: \kappa^{<\omega} \to \lambda$. Then there is an $H \subseteq \kappa$ of size κ such that $|\lambda - f[H^{<\omega}]| = \lambda$. In fact, $\lambda - f[H^{<\omega}]$ contains a club.

(日本)(日本)(日本)(日本)(日本)

We extend these questions/results to general sets.

For any set A, let $A^n = \{a \subseteq A : |a| = n\}$. Let $A^{<\omega} = \bigcup_n A^n$.

Definition

Let A, B be infinite sets.

- ► A is Jonsson if for any $f: A^{<\omega} \to A$ there is an $X \subseteq A$ with |X| = |A| and $f[X^{<\omega}] \neq A$.
- A is strongly Jonsson if for any f: A^{<ω} → A there is an X ⊆ A with |X| = |A| and |A − f[X^{<ω}]| = |A|.
- ► (A, B) is a Jonsson pair if for any $f: A^{<\omega} \to B$ there is an $X \subseteq A$ with |X| = |A| and such that $f[X^{<\omega}] \neq B$.
- (A, B) is a strong Jonsson pair if for any f: A^{<ω} → B there is an X ⊆ A with |X| = |A| and such that |B − f[X^{<ω}]| = |B|.
- (A, B) is Rowbottom if for any f: A^{<ω} → B there is an X ⊆ A with |X| = |A| and f[X^{<ω}] is countable.
- ► (A, B) is Ramsey if for any $f: A^{<\omega} \to B$ there is an $X \subseteq A$ with |X| = |A| and $f[X^n]$ is constant for each *n*.

Theorem

 $(AD + V = L(\mathbb{R}))$ Let *C* be the closure of $\{\kappa, \mathbb{R}, \mathbb{R}/E_0 : \omega < \kappa < \Theta\}$ under \cup and \times . Then for any $A, B \in C$, (A, B) is a strong Jonsson pair.

Conjecture

Every set $A \in L_{\Theta}(\mathbb{R})$ is (strongly) Jonsson.

Question Which sets are Rowbottom?

A B F A B F

If we assume $V = L(\mathbb{R})$, then every $A \in L_{\Theta}(\mathbb{R})$ is the surjective image of \mathbb{R} , and thus can be identified with an equivalence relation on \mathbb{R} .

Thus, we are asking which equivalence relations on $\ensuremath{\mathbb{R}}$ are Jonsson?

Tentative result: If C' is the smallest collection containing $\{\kappa, \mathbb{R}, \mathbb{R}/E_0 : \kappa < \Theta\}$ and closed under × and increasing unions, then every $A \in C'$ is strongly Jonsson.

Recall that any two non-smooth hyperfinite equivalence relations on \mathbb{R} are isomorphic, thus we can replace \mathbb{R}/E_0 in the above with "hyperfinite."

向下すコトイヨト

Recall a basic result of Mycielski.

Theorem (Mycielski) Suppose $C_n \subseteq (2^{\omega})^n$ are comeager. Then there is a perfect $P \subseteq 2^{\omega}$ such that $P^n \subseteq C_n$ for all n.

Theorem

- \blacktriangleright \mathbb{R} is strongly Jonsson.
- For all uncountable κ , (\mathbb{R}, κ) is Rowbottom.
- For all uncountable κ , (κ, \mathbb{R}) is Rowbottom.

伺 ト イ ヨ ト イ ヨ ト

To see \mathbb{R} is strongly Jonsson, let $f: \mathbb{R}^{<\omega} \to \mathbb{R}$. View f as $\{f_n\}$, with $f_n: \mathbb{R}^n \to \mathbb{R}$.

By taking comeager sets $C_n \subseteq (2^{\omega})^n$ on which f_n is continuous, and using Mycielski's theorem, we may assume each f_n is continuous.

We build sequences σ_s, ρ_t for $s, t \in 2^{<\omega}$, extending in the usual way and with $|\sigma_s| = \ell(|s|)$ and $|\rho_t| = r(|t|)$.

We will have for all $k \leq 2^n$, $\vec{s} \in (2^n)^k$ and $t \in 2^n$:

$$f_k[N(\sigma_{s_1}),\ldots,N(\sigma_{s_k})]\cap N(\rho_t)=\emptyset.$$

We let P, Q be the perfect sets defined by the σ_s and ρ_t , then $f[P^{<\omega}] \cap Q = \emptyset$.

伺 ト イ ヨ ト イ ヨ ト 一

Assume σ_s , ρ_t are defined for $s, t \in 2^n$.

For $s, t \in 2^{n+1}$, first let $\sigma_s^0 = \sigma_{s \upharpoonright n} s(n)$, and $\rho_s = t^0 = \rho_{t \upharpoonright n} t(n)$. Let *K* be large enough so that

$$2^{K-r(n)} > \sum_{k \leq 2^{n+1}} {\binom{2^{n+1}}{k}}.$$

For each $k \leq 2^{n+1}$ and each s_1, \ldots, s_k in $(2^{n+1})^k$, we successively extend the σ_s so that $N(\sigma_{s_1}) \times \cdots \times N(\sigma_{s_k})$ determines the first K values of f_k .

From the choice of *K*, there are ρ_t such that

$$f[N(\sigma_{s_1}) \times \cdots \times N(\sigma_{s_k})] \cap N(\rho_t) = \emptyset$$

for all $t \in 2^{n+1}$.

• • = • • = •

The fact that (\mathbb{R}, κ) is Rowbottom follows from additivity of category and the fact that there are only countably many neighborhoods in $(2^{\omega})^n$.

The fact that (κ, \mathbb{R}) is Rowbottom follows from the fact that any wellordered subset of \mathbb{R} is countable.

We next show that \mathbb{R}/E_0 is Jonsson.

This requires establishing a generalization of Mycielski's theorem to E_0 .

向下すコトイヨト

Recall the Glimm-Effros dichotomy for E_0 .

Theorem Let $X \subseteq \mathbb{R}/E_0$. Then either

- 1. X is countable, or
- 2. X is in bijection with \mathbb{R} , or
- 3. *X* is in bijection with \mathbb{R}/E_0 .

We say $A \subseteq \mathbb{R}$ has size E_0 if A is E_0 -saturated and $A/(E_0 \upharpoonright A)$ is in bijection with \mathbb{R}/E_0 .

By Glimm-Effros, this is the same as saying that $E_0 \upharpoonright A$ is not smooth.

A (1) < A (2) < A (2) </p>

For $X \subseteq \mathbb{R}$, we write $X_{E_0}^n$ for

 $\{\vec{x} \in X^n : x_1, \dots, x_n \text{ are pairwise } E_0 \text{ inequivalent }\}.$

Theorem

Suppose $C_m \subseteq \mathbb{R}^m$ are comeager for all m. Then there is an $A \subseteq \mathbb{R}$ of size E_0 so that for all m, $A_{E_0}^m \subseteq C_m$.

Proof. Let $C_m \subseteq \mathbb{R}^m = (2^{\omega})^m$ be comeager, and wlog the C_m are E_0 -saturated. We build $A \subseteq 2^{\omega}$ such that $E_0 \upharpoonright A$ is not smooth and $A_{E_0}^m \subseteq C_m$ for all m.

伺 ト イ ヨ ト イ ヨ ト

We build a binary tree σ_s for $s \in 2^{<\omega}$. will have $|\sigma_s| = |\sigma_t|$ if |s| = |t|.

For $s \neq t \in 2^{<\omega}$ with |s| = |t| we set

$$D(s,t) = \max\{n \colon s(n) \neq t(n).$$

For $s_1, \ldots, s_m \in 2^{<\omega}$, set

$$\lambda(s_1,\ldots,s_m)=\min\{D(u,v)\colon u\neq v\in\{s_1,\ldots,s_m\}\}.$$

The λ function records how " E_0 -inequivalent" the pairs from s_1, \ldots, s_m appear to be.

< ロ > < 同 > < 三 > < 三 > 、

Definition

We say $s_1, \ldots, s_m \in (2^{<\omega})^m$ is active if:

1.
$$|s_1| = |s_2| = \cdots = |s_m| (= n)$$

2. $\lambda(s_1 \upharpoonright n - 1, \dots, s_m \upharpoonright n - 1) < \lambda(s_1, \dots, s_m)$
3. $\lambda(\vec{s}) \ge m$

We let $S_m \subseteq (2^{<\omega})^m$ denote the set of active *m*-tuples.

Let $S_m = \{\vec{s}_{m,n}\}_{n \in \omega}$ where $\vec{s}_{m,n} = (s_{m,n,1}, \dots, s_{m,n,m})$ enumerate S_m .

Let

$$v \in S_m(n,i) \Leftrightarrow s_{m,n,i} \sqsubseteq v$$

 $v \in S_m(n,-1) \Leftrightarrow v \notin \bigcup_{1 \le i \le m} S_m(n,i)$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ →

Let $\sigma_{\emptyset} = \emptyset$. Assume σ_s has been defined for $|s| \le n$. First just split: $\sigma_{s \cap i}^0 = \sigma_{s \cap n} i$.

For the $m \leq n$ such that $S_{m,n} \cap 2^{n+1} \neq \emptyset$:

- We define $\tau_{m,i}$ for $i \in \{1, 2, ..., m\} \cup \{-1\}$
- We define integers $i(m, s) \in \{1, 2, \dots, m\} \cup \{-1\}$ for $s \in 2^{n+1}$.

We then let $\sigma_s = \sigma_s^{0} \tau_{1,i(1,s)} \cdots \tau_{m,i(m,s)} \cdots$

何トメヨトメヨト

Suppose after stage *m* we have defined

$$\sigma_s^m = \sigma_s^{0} \tau_{1,i(1,s)} \cdots \tau_{m,i(m,s)}$$

We need to define $\tau_{m+1,i}$ and i(m + 1, s) (where $i \in \{1, ..., m + 1\} \cup \{-1\}$).

We define $\tau_{m+1,i}$ for $i \in \{1, ..., m+1\}$ such that for all $\vec{s} = (s_1, ..., s_{m+1}) \in (2^{n+1})^{m+1}$ extending $(s_{m+1,n+1,1}, ..., s_{m+1,n+1,m+1})$ we have:

$$N(\sigma_{s_1}^{m} \tau_{m+1,1}) \times \cdots \times N(\sigma_{s_{m+1}}^m) \subseteq W_{m+1,n+1}$$

where $W_{m+1,n+1}$ is dense open in $(2^{\omega})^{m+1}$, decreasing in *n*, and $\bigcap_n W_{m+1,n} \subseteq C_{m+1}$.

If
$$s \in 2^{n+1}$$
 extends $s_{m+1,n+1,i}$, we set $i(m+1, s) = i$.
If $s \in 2^{n+1}$ does not extend any of the $s_{m+1,n+1,i}$, let
 $i = i(m+, s) \in \{1, \dots, m+1\}$ be least such that $D(s, s_{m+1,n+1,i})$ is
minimal among $i \in \{1, \dots, m+1\}$.

For such *s* set
$$\sigma_s^{m+1} = \sigma_s^{m} \tau_{m+1,i(m+1,s)}$$
.

This completes the definition of the σ_s^{m+1} , and so completes the definition of the σ_s for $s \in 2^{n+1}$.

(1日) (1日) (1日)

Let $A = \bigcup_{a} \in 2^{\omega} \bigcap_{n \in \omega} N(\sigma_{a \upharpoonright n})$ be the perfect set defined by the σ_s .

We first show that $E_0 \upharpoonright A$ has size E_0 , that is, $E_0 \upharpoonright A$ embeds E_0 . Let $\phi: 2^{\omega} \to A$ be the continuous map $\phi(a) = \bigcap_n N(\sigma_{a \upharpoonright n})$. We show that ϕ is a reduction of E_0 to $E_0 \upharpoonright A$.

If $a \neq b \in 2^{\omega}$ and *a* is not E_0 equivalent to *b*, it is clear that $\phi(a)$ is E_0 -inequivalent to $\phi(b)$.

Suppose aE_0b and let $n_0 = \max\{n : a(n) \neq b(n)\}$.

3

Claim

There are only finitely many *n* such that there is an $m \le n$ with $\vec{s}_{m,n}$ defined and such that there are $1 \le i < j < m$ with $a \upharpoonright n$ extending $s_{m,n,i}$ and $b \upharpoonright n$ extending $s_{m,n,j}$.

Proof. We need only consider *m* with $m \ge n_0$ (from definition of active). Fix such am *m*. We may assume the values of *i* and *j* are fixed. But then for such *n* we have $\lambda(\vec{s}_{m,n}) \le n_0$. As the value of λ increases for active tuples, there can be only finitely many such *n*.

A B M A B M

We can repeat the argument to also get the conclusion for all $a' \neq b'$ in *Y*, the set of *s* which agree with *a* (and hence *b*) after n_0 . Say the conclusion holds for all $n \ge n_1$ (for all a', b').

It suffices to show that for all $n \ge n_1$ that $i(m, a \upharpoonright n) = i(m, b \upharpoonright n)$ for all $m \le n$. Fix $n \ge n_1$ and $m \le n$.

Case 1. There are $1 \le i \ne j \le m$ with $a \upharpoonright n$ extending $s_{m,n,i}$ and $b \upharpoonright n$ extending $s_{m,n,j}$.

This case cannot occur from the claim and definition of n_1 .

向下すコトイヨト

Case 2. There is an $1 \le i \le m$ with $a \upharpoonright n \in S_m(n, -1)$ and $b \upharpoonright n$ extending $s_{m,n,i}$ (or with a, b switched).

As $n > n_0$, $t_{a \upharpoonright n} \in Y$. We must have $i(m, t_{a \upharpoonright n}) = i$ as otherwise, since $n > n_1$, $D(a \upharpoonright n, b \upharpoonright n) > n_0$, a contradiction.

白 ト イ ヨ ト イ ヨ ト

Case 3. $a \upharpoonright n, b \upharpoonright n \in S_m(n, -1)$.

First assume that $t_{a \upharpoonright n} \in Y$, and so $t_{b \upharpoonright n} \in Y$ as well. As $n > n_1$ we must have $i(m, t_{a \upharpoonright n}) = i(m, t_{b \upharpoonright n})$, as otherwise $D(a \upharpoonright n, b \upharpoonright n) > n_0$.

Next assume $t_{a \upharpoonright n} \notin Y$, so $t_{b \upharpoonright n} \notin Y$ as well. In this case $D(a \upharpoonright n, s_{m,n,i}) > n_0$ for all $1 \le i \le m$, and likewise for $b \upharpoonright n$.

It follows that $D(a \upharpoonright n, s_{m,n,i}) = D(b \upharpoonright n, s_{m,n,i})$ for all $1 \le i \le m$. It then follows that $i(m, a \upharpoonright n) = i(m, s \upharpoonright n)$.

留をするとする。

Thus, ϕ is an embedding from E_0 to $E_0 \upharpoonright A$.

Finally, we show that $A_{E_0}^m \subseteq C_m$ for all *m*.

Fix $x_1, \ldots, x_m \in A^m_{E_0}$. Say $\phi(a_i) = x_i$.

Thus a_1, \ldots, a_m are pairwise E_0 -inequivalent. Thus $\lambda(a_1 \upharpoonright n, \ldots, a_m \upharpoonright n)$ is monotonically increasing and unbounded with *n*.

So, for infinitely many k we have $(a_1 \upharpoonright k, ..., a_m \upharpoonright k) \in S_m$ (is an active *m*-tuple). So, for infinitely many *n* we have $(a_1 \upharpoonright n, ..., a_m \upharpoonright n)$ extends $(s_{m,n,1}, ..., s_{m,n,m})$, and so $\phi(\vec{a}) \in W_m$, *n*. Thus, $\vec{x} = \phi(\vec{a}) \in C_m$.

< ロ > < 同 > < 三 > < 三 > 、

Proof that \mathbb{R}/E_0 is strongly Jonsson.

Let $f: [\mathbb{R}/E_0]^{<\omega} \to \mathbb{R}/E_0$ be given.

By countable uniformization, there are functions $f_n : \mathbb{R}^n \to \mathbb{R}$ which induce $f(\vec{x}E_0\vec{y} \to f_n(\vec{x})E_0f_n(\vec{y}))$.

Get comeager $C_m \subseteq \mathbb{R}^m$ such that $f_m \upharpoonright C_m$ is continuous.

Build sequences σ_s , ρ_t . The σ_s are defined similarly to the E_0 -Mycielski theorem.

Suppose σ_s , ρ_t have been defined for $|s|, |t| \le n$.

何トイヨトイヨト

3

Let
$$\sigma_s^0 = \sigma_{s \upharpoonright n} s(n)$$
, $\rho_t^0 = \rho_{t \upharpoonright n} t(n)$, for $|s| = |t| = n + 1$.

We define σ_s^m , ρ_t^m for $m \le n + 1$. We will have $\rho_t^m = \rho_t^{0^{\circ}} \pi_1^{\circ} \cdots \pi_m$, where π_m doesn't depend on *t*.

For m + 1, consider $\vec{s}_{m+1,n+1}$ as before. Let $\ell = |s_{m+1,n+1,i}|$. There are $p = (2^{n+1-\ell})^{m+1}$ many m + 1-tuples of length n + 1 extending $\vec{s}_{m+1,n+1}$. Let k be large enough so that $2^k > p$.

Then we may define the σ_s^{m+1} as before and such that for any \vec{s} extending $\vec{s}_{m+1,n+1}$, the corresponding σ_s^{m+1} determine $f(\vec{s})$ on the k length block of digits after $|\rho_t| + |\pi_1| + \cdots + |\pi_m|$.

We can then choose π_{m+1} such that $f_m(N(\sigma_s^{m+1}) \times \cdots \times N(\sigma_s^{m+1})) \cap N(\rho_t \cap \cdots \cap \pi_{m+1}) = \emptyset$ for all $t \in 2^{n+1}$.

The perfect sets *A*, *B* defined by the σ_s and ρ_t witness that \mathbb{R}/E_0 is strongly Jonsson.